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Abstract

We consider the unit-demand min-buying pricing problem, in which we want
to compute revenue maximizing prices for a set of products /P assuming that each
consumer from a set of consumer samples C will purchase her cheapest affordable
product once prices are fixed. We focus on the special uniform-budget case, in
which every consumer has only a single non-zero budget for some set of products.
This constitutes a special case also of the unit-demand envy-free pricing problem.

We show that, assuming specific hardness of the balanced bipartite indepen-
dent set problem in constant degree graphs or hardness of refuting random 3CNF
formulas, the unit-demand min-buying pricing problem with uniform budgets can-
not be approximated in polynomial time within O(log® |C|) for some € > 0. This
is the first result giving evidence that unit-demand envy-free pricing, as well, might
be hard to approximate essentially better than within the known logarithmic ratio.

We then introduce a slightly more general problem definition in which con-
sumers are given as an explicit probability distribution and show that in this case
the envy-free pricing problem can be shown to be inapproximable within O(|P|%)
assuming NP ¢ Ns>o BPTIME(ZO("(S)). Finally, we briefly argue that all the
results apply to the important setting of pricing with single-minded consumers as
well.

1 Introduction

Inspired by the possibility of gathering large amounts of data about the preferences
and budgets of a company’s potential customers by web sites designed for this pur-
pose, Rusmevichientong [18] and Glynn et al. [13] introduced a class of so called
multi-product pricing problems that aim at computing optimal pricing schemes for a
company’s product range. In the original version of the problem each consumer is rep-
resented by a budget and a set of products she is interested in. Given fixed prices for
the products, she decides to buy one of the products she is interested in with a price not
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exceeding her budget. The decision is made corresponding to either the min-buying,
max-buying, or rank-buying model, where the consumer buys the product with lowest
price not exceeding the budget, highest price not exceeding the budget, or highest rank
according to some consumer specific ranking, respectively. All these problems are usu-
ally referred to as unit-demand pricing, as consumers will decide to buy exactly one
product if they can afford to do so.

Aggarwal et al. [1] extend the problem definition and allow consumers with dif-
ferent budgets for the different products they are interested in. Assuming that a price
ladder constraint, i.e., a predefined order on the prices of all products, is given, they
derive a polynomial time approximation scheme (PTAS) for the max-buying and rank-
buying (under another reasonable assumption) models. They also show how to obtain
logarithmic approximation ratios for all three models if no price ladder is given. Briest
and Krysta [7] show that both of these algorithms are essentially best possible.

Guruswami et al. [14] consider a different selection rule, which has already been
proposed in [1]. In the max-gain model, a consumer buys the product maximizing her
personal utility, i.e., the difference between the product’s price and her respective bud-
get. In the case of limited product supply, the definition in [14] additionally requires
that each consumer must obtain the product she desires most whenever she can afford
any product at all. Thus, the resulting pricing scheme must be envy-free and we obtain
the unit-demand envy-free pricing problem, which has received a lot of attention. Gu-
ruswami et al. present an algorithm with logarithmic approximation guarantee for this
problem and prove APX-hardness. Chawla et al. [8] consider the situation in which
instead of having consumer samples, consumers are drawn from an explicit probabil-
ity distribution. They show that for the case of product distributions (i.e., consumers’
budgets are drawn independently for different products), results from optimal auction
theory [17] yield constant approximation guarantees.

Another problem introduced in [14] is so called single-minded pricing, which is in-
spired by single-minded combinatorial auction design. In this scenario each consumer
has a single budget value and buys the whole set of products she is interested in if the
sum of prices does not exceed her budget. Among other results, Guruswami et al. show
that techniques similar to those of [1] yield a logarithmic approximation for this prob-
lem, which is proven to be close to best possible by Demaine et al. [10]. Balcan and
Blum [3] and Briest and Krysta [6] present improved approximation results for several
different restricted versions of the problem.

Finally, Balcan et al. [4] show how algorithmic pricing feeds back into incen-
tive-compatible auction design and present competitive auctions based on pricing al-
gorithms combined with an appropriate random sampling procedure.

1.1 Preliminaries

Most of this paper will be focused on the unit-demand min-buying (or envy-free)
pricing problem (UDP-MIN) with uniform budgets, which is defined formally below.
Throughout the paper we will assume that all products are available in unlimited supply
and have zero marginal cost.



Definition 1 /n uniform-budget UDP-MIN we are given products P and consumer
samples C consisting of budgets b. € Ry and product sets S, C P forall ¢ € C. We
want to find pricesp : P — ]RS' that maximize

revyin(p) = Y min{p(e)|e € Se A p(e) < b},
c€A(D)

where A(p) = {c € C|3e € S; : p(e) < b.} denotes the set of consumers that can
afford to buy any product given prices p.

Unit-demand pricing models the situation that products are strict substitutes and
each consumer is interested in purchasing exactly one product out of a set of alterna-
tives. The other extreme is reached if products constitute strict complements and every
consumer seeks to purchase some specific set of products rather than a single alterna-
tive. In the single-minded pricing problem (SMP) we assume that each consumer is
interested in exactly one such product set, which she purchases if the sum of prices
does not exceed her budget.

Definition 2 Given products P and consumer samples C consisting of budgets b, €
Rar and product sets S, C P, SMP asks for pricesp : P — Rar maximizing

revsmp(p) = Y Y ple),

ceA(p) e€S.

where A(p) = {c € C| ) cq. ple) < be}.

A natural extension of both problems is obtained if we assume that our knowledge
of consumer preferences does not stem from some sampling procedure, but that we
know the explicit probability distribution over the space C* of all possible consumers,
which is a widely spread assumption in economics (see, e.g., [8] or [17]). Thus, in
the economist’s version of these problems we are given a probability distribution D
over consumer space C*. In this situation our aim is to find prices p maximizing the
expected revenue from a sale to a single consumer drawn according to distribution D.
In order to avoid additional complications (which are of no interest to this paper) we
restrict ourselves to finite support distributions, i.e., consumer sets C with a discrete
distribution D defined on C.

1.2 New Results

We first focus on the sampling-based version of uniform-budget UDP-MIN and prove
that assuming specific hardness of refuting random 3SAT-instances or approximating
the balanced bipartite independent set problem (BBIS) in constant degree graphs, this
problem does not allow approximation guarantees essentially beyond the known log-
arithmic ratios. The connection between BBIS and UDP-MIN is made via so-called
maximum expanding sequences (MES), which are a combinatorial formulation of the
interaction between different price levels in UDP-MIN and potentially also of indepen-
dent interest. In order to show hardness of sampling-based UDP-MIN we need hardness



of very sparse MES instances, which we obtain from constant degree BBIS by the care-
ful application of derandomized graph products [2] to scale hardness to the desired
level. Unfortunately, no explicit hardness of approximation results are known for con-
stant degree BBIS, although the problem has been receiving considerable attention. We
show that hardness of constant degree BBIS can be derived from a hypothesis about the
average case complexity of refuting random 3SAT-instances, which is almost identical
to the one originally put forward by Feige [11] in a similar context. Since UDP-MIN
with uniform budgets is a special case of the envy-free pricing problem from [14], for
which previously only APX-hardness was known, our results yield the first (strong)
evidence that this problem might be hard to approximate within O(log® |C|) for some
€ > 0. Turning to the economist’s version of envy-free pricing we obtain strong hard-
ness of approximation under standard assumptions, in which case the reduction from
BBIS to MES yields inapproximability within O(|P|) for some ¢ > 0. Similar bounds
in terms of the number of products can be shown for the sampling-based version of the
problem, if we strengthen the underlying hypothesis a little further.

Finally, we point out that with a few minor modifications the same reductions yield
similar hardness results for SMP as well. Even though SMP is known to be hard to ap-
proximate within semi-logarithmic ratios [10] in the number of consumer samples, this
has some new and interesting implications. First, we obtain the first near-tight hardness
results for approximation guarantees expressed in the number of products rather than
the number of consumer samples. Second, we obtain lower bounds for the economist’s
problem version, which can provably not be derived from previous reductions. This
also yields evidence that maximum expanding sequences are a combinatorial problem
that is implicitly present in quite different combinatorial pricing problems.

Independently of this paper, Chuzhoy et al. [9] have quite recently considered
uniform-budget UDP-MIN in a network setting with unit-sized flows, obtaining semi-
logarithmic lower bounds on the approximability in terms of the network size. While
their result holds under standard complexity theoretic assumptions even for unit-sized
flows, our results imply stronger bounds for the non-unit flow case, which corresponds
to the economist’s version of UDP-MIN.

The rest of this paper is organized as follows. We proceed by giving an exposition
of our results on UDP-MIN in Section 2. Section 3 briefly describes the application of
our results to SMP. Section 4 concludes.

2 Unit-Demand Pricing

As the main result of this section we describe a reduction from the Balanced Bipartite
Independent Set Problem (BBIS) in constant degree bipartite graphs to uniform-budget
UDP-MIN. This will prove that, assuming there are no randomized polynomial time al-
gorithms approximating constant degree BBIS within arbitrarily small constant factors,
there are no polynomial time algorithms approximating UDP-MIN within O(log® |C|)
for some € > (0. At the very end of the section we state similar (yet stronger) results
for the economist’s version of the problem, which hold under standard complexity the-
oretic assumptions.

Up to now, no explicit hardness results have been proven for BBIS in constant de-



gree graphs, although the problem has been receiving a lot of attention. The first result
for general BBIS using a quite moderate complexity theoretic assumption was obtained
by Khot [15]. Previous results by Feige [11] and Feige and Kogan [12] are deriving
hardness of BBIS under more specific assumptions. In [11] Feige shows an interesting
connection between the average case complexity of refuting 3CNF-formulas and the
worst case approximation complexity of several notorious optimization problems in-
cluding BBIS. We are going to formulate a slightly stronger version of the hypothesis
in [11] and show that this is enough for our purposes.

Remember that a 3CNF-formula is a conjunction of clauses, each of which is the
disjunction of 3 literals over variables x1, ..., x,, where a literal is a variable or its
negation. Before stating the hypothesis we need to describe the random sampling pro-
cedure used to obtain 3CNF formulas in [11]. Given n variables we create formulas
consisting of m = An clauses for some large constant A € N by independently pick-
ing each literal of every clause uniformly at random. When A is large enough, every
truth assignment satisfies roughly (7/8)m clauses of such a random 3CNF formula.
Thus, a typical random 3CNF formula does not have significantly more than (7/8)m
simultaneously satisfiable clauses. On the other hand, for a sufficiently small € > 0,
formulas with (1 — €)m simultaneously satisfiable clauses can be considered excep-
tional. Hypothesis 1 states that it is hard to detect exceptional formulas on average.

Hypothesis 1 For every fixed € > 0 and sufficiently large constant A € N, there
is no (randomized) algorithm that runs in time O(t(n)) and, given a random 3CNF
formula with n variables and m = An clauses, outputs typical with probability at
least 1/2 (randomization over input), but outputs exceptional on every formula with
(1 — €)m simultaneously satisfiable clauses with probability at least 1 — 1/2P°1¥(")
(randomization over algorithm’s coin flips).

Choosing t(n) = poly(n) the only difference between Hypothesis 1 and the hy-
pothesis in [11] is that we also exclude randomized algorithms that have exponentially
small error probability when it comes to detecting exceptional formulas. We need this
stronger version as a result of our reduction from BBIS to uniform-budget UDP-MIN,
which is partially based on a random construction that introduces an exponentially
small one-sided error probability for detecting large independent sets. We are mostly
interested here in the case of ¢(n) = poly(n). However, going to other subexponential
time bounds will allow us to obtain lower bounds for differently parametrized approx-
imation goals. In analogy to [11] we define a notion of hardness based on Hypothesis
1. We use slightly different notation compared to [11] to reflect the difference in the
underlying hypotheses.

Definition 3 A problem is said to be R3ISAT*(t(n))-hard, if the existence of a (ran-
domized) polynomial time algorithm (with exponentially small failure probability) for
it refutes Hypothesis 1.

Most importantly, R3SAT* (¢(n))-hard problems do not allow polynomial time al-
gorithms if we believe that Hypothesis 1 is true for the given choice of t(n). As a
byproduct of the fact that Hypothesis 1 also excludes certain randomized algorithms,
R3SAT*(t(n))-hardness rules out the existence of this type of algorithm, too. We con-
tinue by giving a formal definition of BBIS, the base problem of our reduction.



Definition 4 In the Balanced Bipartite Independent Set Problem (BBIS) we are given
a bipartite graph G = (V,W, E). We want to find maximum cardinality subsets of
vertices V! C 'V, W' C W with |V'| = |W'|, such that {v,w} ¢ E forallv € V',
we W'

A slightly refined version of the analysis presented in [11] can be used to obtain
R3SAT*(poly(n))-hardness of BBIS in constant degree graphs. We point out that this
part of the reduction can be replaced by the following weaker hypothesis, which states
that the gap variant of BBIS in constant degree graphs does not have randomized poly-
nomial time algorithms with one-sided error (i.e., the decision variant does not belong
to class RP). More formally, let G~ (a, d), G (b, d) be two families of bipartite graphs
on 2n vertices with constant degree d € N and maximum balanced independent set of
size at most an or at least bn, respectively. Given 0 < a < b < 1 and d € N the prob-
lem BBIS(a, b, d) requires deciding whether G € G~ (a,d) or G € G*(b,d) for a given
graph G € G~ (a,d) U GT (b, d). For our purposes Hypothesis 2 is fully sufficient.

Hypothesis 2 There exist constants 0 < a < b < 1 and d € N, such that BB1S(a, b, d)
¢ RP.

Without expressing too much of an opinion about the validity of Hypothesis 2, it
should be noted that it is in accordance with our current knowledge and backed by the
fact that strong super-constant approximability thresholds have been proven for general
BBIS [15]. Having hardness of constant degree BBIS we apply the method of deran-
domized graph products [2] to obtain hardness of approximation within O(f(n)¢) for
BBIS in graphs with maximum degree O( f(n)), where the appropriate choice for f(n)
will become apparent later on. The main part of our result consists of the reduction to
UDP-MIN. As an intermediate step in the reduction we modify the BBIS instance by
adding a number of random edges and interpret vertices on one side of the bipartition
as sets. The connection to UDP-MIN is made by considering sequences of these sets
that have a certain expansion property. This is formalized in the following definition.

Definition 5 In the Maximum Expanding Sequence Problem (MES) we are given an
ordered collection S, ..., Sy, of sets. An expanding sequence ¢ = (Pp(1) < --- <
#(£)) of length |p| = L is a selection of sets Sg(1), - - -, Sg(¢), such that

j—1
Ssin € U s
=1

for2 < j < (. MES asks for finding such a sequence of maximum length.

We are not aware that MES has been considered explicitly before. We briefly point
out that a reduction similar to the one given in the proof of Lemma 1 below yields
hardness of approximation under a standard assumption, which is formally stated in
Theorem 4. In order to reduce MES to UDP-MIN with consumer samples we have
to focus our attention on severely restricted problem instances. BBIS instances with
bounded maximum degree yield MES instances that exhibit a nicely sparse structure.
Definition 6 formalizes our notion of sparse.
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Figure 1: Reducing BBIS to MES. (a) Adding random edges with probability
1/(b(n)n) each implants an expanding sequence of expected size {2(b(n)n) into an
independent set of size b(n)n. (b) An independent set of size a(n)n allows for expand-
ing sequences of at most twice that size.

Definition 6 We say that an MES instance Si,..., Sy, is k-separable if it can be
partitioned into k subsequences Cy, ... ,Cx, C; = {Sk(j), Sk(j)+1>- - -+ Se(s)}» where
k(1) =1, (k) =m, k(j +1) = €(j) + 1 for 1 < j < k— 1 and each C; contains
only non-intersecting sets.

Our starting point to prove hardness of approximation for sufficiently sparse MES
instances is Theorem 1, which can be derived by applying the method of derandomized
graph products [2] to constant degree BBIS, and states super-constant approximability
thresholds for BBIS parametrized in the graph’s super-constant maximum degree f(n).

Theorem 1 Ler f : N — RT be non-decreasing with f(n) < n and f(n¢) < f(n)¢
forallc > 1, n € N. Let G (a(n), f(n)) and G*(b(n), f(n)) be the families of
balanced bipartite graphs on 2n vertices, with maximum degree bounded by f(n) and
maximum BBIS of size at most a(n)n or at least b(n)n, respectively. There exist 0 <
a(n) < b(n) < 1 with b(n)/a(n) = Q(f(n)?) for some ¢ > 0, such that given
G e G (a(n), f(n))UGT(b(n), f(n)) it is RISAT*(poly(n))-hard to decide whether
G € G~(a(n). f(n)) or G € G* (b(n), f(n)).

Lemma 1 There exists € > 0, such that MES with f(m)-separable instances (f as in
Theorem 1) is R3SAT*(poly(n))-hard to approximate within O( f(m)®).

Proof: Let some G € G (a(n), f(n)) U GT(b(n), f(n)), G = (V,W,E), |[V] =
|[W| = n, with a(n), b(n) and f(n) as in Theorem 1 be given. We will reduce the
problem of deciding whether G € G~ (a(n), f(n)) or G € Gt (b(n), f(n)) to solving
a separable instance of MES, essentially by implanting large expanding sequences into
large balanced independent sets. As neither the independent set nor its size are known
at reduction time, we do this by adding a number of random edges to the graph, which
create a long expanding sequence in expectation if a large balanced independent set
exists (see Fig. 1).

More precisely, every possible edge is independently added to G with probability
(b(n)n) 1 if it is not already present in the original graph. We then remove vertices
whose degree has become too high. In expectation the random procedure above tries to



add b(n)~! edges to every vertex v € V UW. We remove a vertex v and all its incident
edges if more than c - b(n)~! edges are added to it, where c is some sufficiently large
constant to be determined later. Let A, be the random variable counting the number
of edges added to v. Applying the Chernoff bound [16] we obtain Pr(v is removed) =
Pr(A, > c-b(n)~') < e *™ for any constant ¢ > 3e — 1. We denote the modified
graph by G' = (V/, W', E"). For every vertex v; € V' we define a corresponding set
S; by S; = {w; € W | {v;,w;} € E'}, ie., vertices V' will correspond to sets over
the universe W' in our MES instance.

In order to obtain a feasible MES instance we need to define an order on sets
S;, which we do next. Observe that vertices in G’ have degree at most f'(n) <
f(n)+c-b(n)~t = O(f(n)), where we use the fact that bipartite graphs with bounded
degree f(n) have a balanced independent set of size at least n/(f(n) + 1) and, thus,
it must be the case that b(n)~* = O(f(n)) in order for the problem to be non-trivial.
Furthermore, if the maximum degree of G’ is f’(n), then the sets S; can be partitioned
into f’ (n)2 classes, such that sets in each class do not intersect, since every set contains
at most f’(n) elements, each of which is contained in at most f’(n) — 1 further sets.
Reordering the sets appropriately we obtain an O(f(n)?)-separable MES instance.

Soundness: Let G € G (b(n), f(n)). Assume for the moment that no vertices are
removed from G and let S* = {Sy(1), ..., Sy }» £ = [b(n)n], be the sets in the MES
instance corresponding to vertices from V that belong to a maximum balanced bipartite
independent set. Analogously, let W* C W denote the vertices from W belonging to
the balanced bipartite independent set. For 1 < j < //2 consider set S ;). We say that
S¢(j) 1s successful if we can use it to construct a large expanding sequence or, more
formally, if the following conditions are satisfied:

Aj: [Sp) NW* =1,1.e., Sy contains exactly one element from WW*.

B;: S¢(j) N S¢(i) NW*=(forall 1 <:<£¢/2,i# j, i.e., the intersection of S¢(j)
with any other set from S* lies outside W*.

Cj: The vertex corresponding to set Sy ;y is not removed due to the degree constraint.
D;: None of the vertices in Sg(;) N W* are removed due to the degree constraint.

It is not difficult to check that successful sets belong to the MES-instance and form an
expanding sequence, since their corresponding vertices are not removed from the graph
and each set covers a unique element in W*, which yields the necessary expansion
property. Let us now determine the probability that set Sy;) is successful. We can
write that
Pr(Sy(;y is successful) = 1—Pr(4; Vv B;VvC;V D)
(4;) = Pr(B;|A;) - Pr(4;)
- PI‘(Cj|Aj A BJ) . PI‘(Aj A Bj)
( j|Aj A Bj A OJ) . PI‘(AJ' A Bj A C])



We first consider event A, and obtain

, LN TmnT -1
Pr(4)) = ) Pr(SyppnW*={w})= ) Wn)n (1 b(n)n)
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1 1
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where the above holds with arbitrary precision for large values of n. Let us then con-
sider Pr(B;|A;). Sets Sy(;) and Sg(;) contain every element from 1W* with equal
probability 1/(b(n)n). Furthermore, Sy(;y N W* and Sy(;y N W* are independent by
construction. Applying the union bound yields

Q

_ L br)n]2 1 |
PI‘(B”Aj) < Z Z PI‘(IU S Sd)(z)) PI‘(U) S S¢7(J)) < 9 ~ —

i=1 weW=

again with arbitrary precision for large n. We have already seen that the probability
of any specific vertex being removed due to the degree constraint is bounded above by
e—¢/*() We conclude that

Pr(C;|A; A Bj) - Pr(Aj A B;) < Pr(C;) < e /b,
and the same estimate holds for Pr(D;|A; A B; A C;) - Pr(A; A B; A C;). Thus,

Pr(Sg(;) is successful) > 1 — (1 - i) - %% — 27/ 2%
for a sufficiently large constant c. Let Y denote the number of successful sets. By
linearity of expectation and the above bounds it holds that E[Y] > (1/4e)b(n)n. Using
that the value of Y is bounded above by b(n)n and applying a Markov type inequality
then yields that Pr(Y < 1/(8e)b(n)n) < 1—1/(8e). This implies that with probability
Q(1) there exists an expanding sequence of length Q(b(n)n).

Completeness: Let G € G~ (a(n), f(n)) and consider any expanding sequence ¢
in S1,...,Sp. Since the maximum balanced bipartite independent set in G is of size
a(n)n, every selection of a(n)n + 1 vertices from V' must be adjacent to all but a(n)n
vertices from W. Thus, the first a(n)n + 1 sets from ¢ leave at most a(n)n elements
uncovered. Since the expansion property requires that every further set in the sequence
must contain a previously uncovered element, it follows that |¢| < 2a(n)n + 1.

We have shown a randomized reduction with constant one-sided error probability.
By repeating the algorithm a polynomial number of times, we obtain error probabilities
that are exponentially close to 0. This proves Lemma 1. O

To encode MES in terms of UDP-MIN we translate sets into collections of con-
sumers with exponentially decreasing budgets. Reducing log m-separable MES en-
sures the resulting instances are of polynomial size.

Theorem 2 There exists a constant € > 0, such that it is R3SAT*(poly(n))-hard to ap-
proximate uniform-budget UDP-MIN within O(log® |C|). Hardness of approximation
holds even under the weaker assumption of Hypothesis 2.



Proof: Let MES instance Sy, ..., Sy, be separable into Cy, . .. ,Cx, £ = O(f(m)). For
each element e in the universe of the MES instance we have a corresponding product
e. For every set .S; in class C; we define a collection of 2k—1 jdentical consumers
Ci = {c},c2,...,c"}. Bach of these consumers has budget b; = 2~ and is
interested in products e € S;. Note that the total number of consumer samples in this
construction is bounded above by m2° /(7))

Soundness: Let ¢ = (¢(1) < --- < ¢(£)) be an expanding sequence of length £.
For every 1 < i < £ let Ny denote the elements that are newly covered by Sg;).
Now, for i = 1,...,/, determine Ny;) and set the prices of all products e € Ny
to b;. For consumers Cy;) it then holds that p(e) = b; for all e € Ny, p(e) > b;
for all e € Sy(;)\Np(). As a result, all 281 consumers belonging to a set Sy(;) in
the expanding sequence will buy at their budget value b; = 2'~* and jointly contribute
revenue 1. Thus, the overall revenue from consumers corresponding to the expanding
sequence is at least /.

Completeness: Assume that we are given a price assignment resulting in overall
revenue r. First observe that w.l.o.g. all prices are from the set of distinct budget
values, i.e., all prices are powers of 2. Then note that w.l.o.g. revenue at least 7 /2
is due to consumers buying at their budget values, since otherwise we could increase
overall revenue by doubling all prices. Finally, it is not difficult to see that consumers
buying at their budget values form an expanding sequence, as each such consumer must
be purchasing a product that none of the consumers with higher budgets is interested
in. It follows that we obtain an expanding sequence ¢ of length at least r /2. Choosing
f(m) = log m yields the theorem. O

Our reduction is flexible enough to yield inapproximability results also in the max-
imum number ¢ of non-zero budgets per consumer and, allowing UDP-MIN instances
of arbitrary subexponential size, we can stretch the construction to the limit and obtain
lower bounds on the approximability in terms of the number of products |P| as well.

Theorem 3 There exist constants {y € N and € > 0, such that for every £ > (g it is
R3SAT*(poly(n))-hard to approximate uniform-budget UDP-MIN with at most { non-
zero budgets per consumer within (. Furthermore, for every 6 > 0 there exists € > 0,
such that it is R3SAT*(2O("6))-hard to approximate uniform-budget UDP-MIN within
O(IP[*).

Next, let us consider the economist’s versions of uniform-budget UDP-MIN and the
unit-demand envy-free pricing problem. As mentioned before, a reduction similar to
the one given in the proof of Lemma 1 in combination with the known hardness results
for general BBIS from [15] yields a strong hardness result for general MES. Applying
the reduction from the proof of Theorem 2 we obtain inapproximability results for
uniform-budget UDP-MIN (economist’s version) under standard complexity theoretic
assumptions. These immediately extend to the more general unit-demand envy-free
pricing problem.

Theorem 4 MES is inapproximable within O(m?®) for some & > 0, assuming that NP
¢ 5= BPTIME@2C("),
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Theorem 5 UDP-MIN (economist’s version) with uniform budgets is hard to approxi-
mate within O(|P|°) for some £ > 0, if NP ¢ (\;., BPTIME2°("")),

Finally, let us mention that it is not difficult to achieve approximation guarantee
O(|P]) for the economist’s envy-free pricing problem, e.g., by using the known single-
price algorithm [1].

3 Single-Minded Pricing

We can adapt the reduction in Theorem 2 to work for single-minded consumers as well.
In fact, all we need to do is to choose price levels as powers of 2|P| rather than 2 and
define consumers in the opposite direction, i.e., start on the lowest price level and work
our way up. Again only consumers corresponding to an expanding sequence allow
extraction of full revenue. Demaine et al. [10] prove an approximation threshold of
Q(log® |C]|) for SMP under standard complexity theoretic assumptions. Our reduction
yields these and asymptotically stronger bounds in the number of products based on
the notion of R3SAT*-hardness.

Theorem 6 For every 6 > 0 there exists € > 0, such that it is R3SAT*(20(”6))-hard
to approximate SMP within O(|P|¢).

Once more, turning to the economist’s version of the problem, we obtain strong in-
approximability results under standard assumptions. We point out that it is not possible
to achieve these bounds by previous reductions.

Theorem 7 SMP (economist’s version) is hard to approximate within O(|P|¢) for
some € > 0, if NP € (-, BPTIME(2°("")),

4 Conclusions

In this paper we have made progress towards understanding the difficulty of different
combinatorial pricing problems. First, we have shown that assuming specific hardness
of constant degree BBIS or hardness on average of refuting random 3CNF-formulas,
the unit-demand min-buying pricing problem with uniform budgets, which constitutes
a special case also of unit-demand envy-free pricing, does not allow sub-logarithmic
approximation guarantees. Secondly, we have shown that our techniques apply to the
case of single-minded pricing as well, which indicates that expanding sequences are a
common source of hardness for quite different combinatorial pricing problems.

S Acknowledgments

The author thanks Piotr Krysta for insightful discussions and several anonymous refer-
ees for their valuable comments.

11



References

[1] G. Aggarwal, T. Feder, R. Motwani, and A. Zhu. Algorithms for Multi-Product
Pricing. In Proc. of 31st International Colloquium on Automata, Languages, and
Programming (ICALP), 2004.

[2] N. Alon, U. Feige, A. Wigderson, and D. Zuckerman. Derandomized Graph Prod-
ucts. Computational Complexity, 5(1): 60-75, 1995.

[3] N. Balcan and A. Blum. Approximation Algorithms and Online Mechanisms for
Item Pricing. In Proc. of 7th ACM Conference on Electronic Commerce (EC),
2006.

[4] N.Balcan, A. Blum, J. Hartline, and Y. Mansour. Mechanism Design via Machine
Learning. In Proc. of 46th IEEE Symposium on Foundations of Computer Science
(FOCS), 2005.

[5] P. Berman and G. Schnitger. On the Complexity of Approximating the Indepen-
dent Set Problem. Information and Computation, 96(1): 77-94, 1992.

[6] P. Briest and P. Krysta. Single-Minded Unlimited-Supply Pricing on Sparse In-
stances. In Proc. of 17th ACM-SIAM Symposium on Discrete Algorithms (SODA),
2006.

[7] P. Briest and P. Krysta. Buying Cheap is Expensive: Hardness of Non-Parametric
Multi-Product Pricing. In Proc. of 18th ACM-SIAM Symposium on Discrete Al-
gorithms (SODA ), 2007.

[8] S. Chawla, J. Hartline, and R. Kleinberg. Algorithmic Pricing via Virtual Valua-
tions. In Proc. of 8th ACM Conference on Electronic Commerce (EC), 2007.

[9] J. Chuzhoy, S. Kannan, and S. Khanna. Network Pricing for Multicommodity
Flows. Unpublished Manuscript, 2007.

[10] E.D. Demaine, U. Feige, M.T. Hajiaghayi, and M.R. Salavatipour. Combination
Can Be Hard: Approximability of the Unique Coverage Problem. In Proc. of 17th
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006.

[11] U. Feige. Relations between Average Case Complexity and Approximation Com-
plexity. In Proc. of 34th ACM Symposium on Theory of Computing (STOC), 2002.

[12] U. Feige and S. Kogan. Hardness of Approximation of the Balanced Complete
Bipartite Subgraph Problem. Technical Report MCS04-04, Dept. of Computer
Science and Applied Math., The Weizmann Institute of Science, 2004.

[13] P. Glynn, P. Rusmevichientong, and B. Van Roy. A Non-Parametric Approach to
Multi-Product Pricing. Operations Research, 54(1):82-98, 2006.

[14] V. Guruswami, J.D. Hartline, A.R. Karlin, D. Kempe, C. Kenyon, and F. Mc-
Sherry. On Profit-Maximizing Envy-Free Pricing. In Proc. of 16th ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2005.

12



[15] S. Khot. Ruling out PTAS for Graph Min-Bisection, Densest Subgraph and Bi-
partite Clique. In Proc. of 45th IEEE Symposium on Foundations of Computer
Science (FOCS), 2004.

[16] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[17] R. Myerson. Optimal Auction Design. Mathematics of Operations Research, 6,
58-73, 1981.

[18] P. Rusmevichientong. A Non-Parametric Approach to Multi-Product Pricing:
Theory and Application. Ph.D. dissertation, Stanford University, 2003.

13



A Constant Degree BBIS: Missing Proofs

We will show R3SAT* (poly(n))-hardness of constant degree BBIS by a reduction from
MAX-3AND. Given a collection of clauses, each of which contains 3 (not necessarily
distinct) literals and is satisfied if all 3 literals are assigned the boolean value true, we
want to determine the maximum number of simultaneously satisfiable clauses. The
remainder of this part of the proof is roughly identical to the one in [11], except for the
fact that a small change in the reduction yields graphs of constant degree. Lemma 2 is
explicitly stated in [11] for the case of their underlying hypothesis and extends easily
to our notion of R3SAT*(poly(n))-hardness. We note that if we talk about random
MAX-3AND instances, we assume the sampling procedure as described in Section 2.

Lemma 2 ([11]) For every fixed ¢ > 0 and sufficiently large A € N, the following
problem is R3SAT*(poly(n))-hard. Given a random 3AND formula with n variables
and m = An clauses, output typical with probability at least 1/2, but output excep-
tional on every formula with (1/4 — )m simultaneously satisfiable clauses.

We want to show that if we have some good approximation algorithm for BBIS in
constant degree graphs, then we can use it to design a refutation algorithm for MAX-
3 AND, which contradicts Hypothesis 1. Before doing this, we introduce the following
technical lemma, which states an upper bound on the probability of a random variable
with bounded range falling far below its expectation, similar to the Markov inequality
[16].

Lemma 3 Let X € [0, s] be random variable with E[X] > ns for some 0 < n < 1.
Then

1—n

[

t

re(x<2)

foranyt > 1.

Proof: Towards a contradiction, assume that the claim does not hold. We may then
write that

E[X] < Pr(Xg?)~$+Pr(X>?)~s
1—n ns ( 1—7])
< C— 1-—- S
1—? t 1—?
1 1
= U ST o)
-2\t ¢ t
= ns
a contradiction. O

Let us now have a closer look at the random 3AND formulas we are given as an
input. Clearly, in expectation each literal will appear (3/2)A times in the formula.
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Now let V; be a random variable counting the number of occurrences of literal ¢;.
Applying the Chernoff bound [16] we have that

Pr [(1 - 5)%A <Vi<(1+ 5)24 > 1 — 2 (B/95%A

for any 0 < § < 1. For every literal we define an additional random variable X; €
{0, 1} that indicates whether the above condition is satisfied and let X = X7 + --- +
Xo,. By linearity of expectation it obviously holds that

E[X] > (1 - 2e_(3/4)52A) 2.
This implies that

Pr|X < (1- \/ie—(3/8)52A)2n} < \/2e~(3/8)5°A

by Lemma 3 with p = 1 — 2¢~(3/49°4
t=(1— 2 B/OT8) /(1 _ /e~ (3/8)0°4)

and s = 2n. Now fix any v > 0 and observe that by choosing A sufficiently large we
can ensure that v/2e~(3/80°A <

Fact 1 With probability 1 — ~y a (1 — ~)-fraction of the literals appear between (1 —
§)3A and (1 + 8)3A times in a random MAX-3AND formula.

The first step of our refutation algorithm for MAX-3 AND consists of checking the
above condition. If too many literals deviate from their expected number of occur-
rences, the algorithm outputs exceptional. If this is not the case, we continue by re-
moving the few problematic literals from the formula. More precisely, we remove
every clause that contains a literal appearing more than (1 + §)(3/2)A times.

Let u = 3(0 + 7). We know that (1 — ~)2n good literals appear at least (1 —
0)(3/2)A times within the formula. Thus, a total number of at least

(I—=79)2n(1—-0)(3/2)A>(1—0—7)3An

literal occurrences belong to good literals. This leaves at most (§+7)3An = pum literal
occurrences belonging to bad literals and, consequently, gives an upper bound on the
number of clauses that are removed from the formula. For the rest of the reduction to
BBIS we need two more facts. Fact 3 is explicitly proven in [11]. Fact 2 is immediate
from the above.

Fact 2 [f the original MAX-3AND formula had (1/4 — €)m satisfiable clauses, the
number of satisfiable clauses in our modified formula is bounded below by (1/4 — ¢ —

p)m.

Fact 3 For every ¢ > 0, sufficiently large A € N and n large enough, the following
holds. With high probability every set of (1/8 4+ &)m clauses in a random MAX-3AND
formula with m = An clauses contains at least n + 1 different literals.
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We transform the modified formula into an instance of BBIS as follows. On both
sides of the bipartition we have a vertex for every clause of the formula. Vertices on
opposite sides are connected by an edge, if the corresponding clauses contain conflict-
ing literals, i.e., if some variable appears in positive form in one clause and in negative
form in the other. Thus, two vertices are connected if and only if the corresponding
clauses cannot be satisfied simultaneously.

It is straightforward to argue that (1/4 — ¢ — u)m satisfiable clauses result in a
balanced bipartite independent set of at least the same size, since for any given truth
assignment we can select the vertices corresponding to satisfied clauses on both sides
of the bipartition as a balanced bipartite independent set. On the other hand, for random
formulas the size of the maximum balanced bipartite independent set is bounded above
by (1/8 + £)m with high probability, since by Fact 3 every selection of (1/8 + &)m
clauses contains at least n + 1 distinct literals with high probability and, thus, is not
satisfiable because one literal must appear in both positive and negative form. Addi-
tionally we know that, since every clause contains 3 literals and every literal appears at
most (1 4 §)(3/2)A times, the resulting bipartite graph has a maximum degree of at
most (1 +6)(9/2)A.

Assume now we had some polynomial time algorithm that can distinguish the two
cases with an error probability exponentially close to 0. By applying this algorithm to
the above BBIS instance we immediately obtain a polynomial time refutation algorithm
for MAX-3AND with exponentially small failure probability for detecting exceptional
formulas. If the BBIS algorithm returns a balanced bipartite independent set larger than
(1/8 + €)m, we output exceptional. Otherwise, we output fypical. The failure prob-
ability for detecting typical formulas is dominated by the probability that the formula
has too many literals deviating from their expected number of occurrences and, thus,
can be made an arbitrarily small constant. Hence, we have shown the following lemma.

Lemmad Let G (a,d), G (b,d) be the families of bipartite graphs on 2n vertices
with maximum degree bounded by d € N and a maximum balanced bipartite indepen-
dent set of size at most an or at least bn, respectively. There exist 0 < a < b < 1 and
d € N, such that deciding whether a given graph G € G~ (a,d) U G (b, d) belongs to
G~ (a,d) or GT(b,d) is R3SAT*(poly(n))-hard.

B Graph Products: Missing Proofs

For a bipartite graph G = (V,W, E), |V| = |W| = n, let a(G) refer to the size of
a maximum balanced bipartite independent set in G. Let G~ (a,d) and G (b, d) be
two families of bipartite graphs with maximum degree bounded by d and a(G) < an
for G € G (a,d), a(G) > bn for G € G (b,d). From Section A we know that
we can choose constants a, b and d, such that deciding whether a given graph is from
G~ (a,d) or G*(b,d) is hard assuming Hypothesis 1 holds. The following definition is
in analogy to the definition in [5].

Definition 7 Let G = (V,W, E), |V| = |W| = n, be a bipartite graph and k € N.
The k-fold graph product G* = (V*, Wk, Ey) is defined by Cartesian products V¥,
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Wk and {(vy,...,v), (wi,...,wx)} € Ey, ifand only if {vy, ..., vg, w1, ..., Wy} is
not a bipartite independent set in graph G.

We briefly describe the application of the technique of derandomized graph prod-
ucts due to Alon et al. [2] to bipartite graphs. Given G = (V,W, E), |[V| = |W| =n,
we construct a non-bipartite J-regular Ramanujan graph H on n vertices with constant
degree ¢ (depending only on constants a and b). Vertices V* and W of the derandom-
ized graph product DG* are obtained by choosing a vertex of H uniformly at random
and taking a random walk of length k — 1 starting at this vertex. For £ = O(logn) the
number nd* 1 of such random walks is polynomial and, thus, DG? can be constructed
deterministically in polynomial time. The edges of DG* are defined as in Definition 7.

An analysis similar to the standard case of amplifying general independent sets in
non-bipartite graphs yields Theorem 1 (see Section 2). We want to remark that by
construction the constant degree graphs obtained by the reduction in Section A are
symmetric in the sense that we can rename vertices V' = {vy,...,v,} and W =
{wn,...,wy}, such that {v;,w;} € E if and only if {v;, w;} € E. This property is
not lost during gap amplification, since we can use the same expander graph to obtain
the vertices on both sides of the graph product.

C Unit-Demand Pricing: Missing Proofs

Theorem 3 There exist constants £y € N and € > 0, such that for every { > {q it
is R3SAT*(poly(n))-hard to approximate uniform-budget UDP-MIN (computer scien-
tist’s version) with at most ¢ non-zero budgets per consumer within {¢. Furthermore,
for every 6 > 0 there exists € > 0, such that it is R3SAT*(20("5))-hard to approximate
uniform-budget UDP-MIN (computer scientist’s version) within O(|P|¢).

Proof: To obtain inapproximability for instances with a bounded number of non-zero
budgets per consumer we have to start from BBIS in constant degree graphs again. As
shown in [2] for the independent set problem, BBIS in graphs of degree at most A
is R3SAT*(poly(n))-hard to approximate within a factor of A® for some ¢ > 0 and
all A > Ag, where Ay is constant d from Lemma 4 (see Appendix A). We then ap-
ply our reduction as described above and obtain uniform-budget UDP-MIN (computer
scientist’s version) instances with £ = A non-zero budgets per consumer and inapprox-
imability within a factor of (1/(16e))A*®, where the term 1/16e stems from the fact that
the randomized reduction from BBIS to MES might blow up small independent sets by
a factor of 2 or shrink large independent sets by a factor of 1/8e. Choosing ¢, € N
sufficiently large ensures that £°=° < (1/(16e))¢< for all £ > .
R3SAT*(20("5))-hardness of approximation for uniform-budget UDP-MIN within
O(n®) follows by choosing f(m) = m* for arbitrary & > 0. O

17



D Single-Minded Pricing: Missing Proofs

Theorem 6 There exist constants £y € N and € > 0, such that for every £ > (g it is
R3SAT* (poly(n))-hard to approximate SMP with sets of maximum cardinality £ within
£¢. Furthermore, for every 6 > 0 there exists € > 0, such that it is R3SAT*(2O(”6))—
hard to approximate SMP within O(n*).

Proof: We only prove the second part of the theorem. Let a given MES instance
Si,...,Sm be separable into Cy,...,C, with K = O(f(m)). For each element e
in the universe of the MES instance we have a corresponding product e. We assume
that the MES instance is defined on a universe of size n and n = m. This is w.l.o.g.
due to the reduction in Section 2. For every set S; in class C; we define a collection

r—i
Le? c?" "}. Each of these consumers

of (2n)"~7 identical consumers C; = {c},c?,...,c3
has budget b; = (2n)7~" and wants to purchase all the products from set S;. Note
that the total number of consumer samples in this construction is bounded above by
n(2n)°U ),

Soundness: Let ¢ = (¢(1) < --- < ¢(£)) be an expanding sequence of length /.
For every 1 < i < £ let Ny(;) denote the elements that are newly covered by Sg;).

Now we repeat the following fori = 1,.. ., £. Determine N ;) and let

f¢(i) = Z p(e)

e€S4(i) \Ng ()

denote the sum of prices of previously covered elements contained in Sy(;). Let
Sei) € Cj. By the fact that sets from class C; do not intersect and budgets increase
exponentially between different classes, it follows that every e € Sy(;)\ Ny (;) has price
pe) < byiy/(2n) and we get that £4(;) < by(i)/2. Thus, by — ;) > 0 and by
setting the prices of all e € Ny ;) to

ple) = boti) — Ea(i)
[Nl

we extract revenue |Cy(;)|bg(;) = (2n)"~7(2n)?~" = 1 from consumers C ;). Con-
sequently, overall revenue is at least £.

Completeness: Assume that we are given a price assignment p resulting in overall
revenue r. W.lo.g. revenue at least /2 is due to consumers buying at a price that is
at least half their budget value, since otherwise we could increase overall revenue by
multiplying all prices by 2.

Consider consumers C; with product set S;. For consumers Cy, k < i, with product
sets Sg and S; NSk # 0 it must be true that by, < b;/(2n). Thus, if S; is contained in the
union of product sets of consumers with smaller indices contributing to the revenue, it
follows that p(e) < b;/(2n) for all e € S;. Consequently, revenue from any consumer
c¥ € O; is at most |S;|b;/(2n) < b;/2, where we use that w.l.o.g. |S;| < n for all
but the last set in any MES instance. Conversely, product sets of consumers that yield
revenue equal to at least half their budget values must adhere to the expansion property
and we obtain an expanding sequence ¢ of length at least /2.
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Finally, for any given value of § > 0 fix §' < ¢ and let f(n) = n% . We obtain MES

. . 5 . . s
instances of size 2°(""), which are hard to approximate within O(n?) for some ¢ > 0.
The first part of the theorem follows similar to our argumentation in Section C. (]
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