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UNIFORM CONVERGENCE OF RANDOM FUNCTIONS WITH
APPLICATIONS TO STATISTICS!

By HermMaN RuBiN

Stanford University?

0. Introduction and Summary. In many statistical problems, we obtain func-
tions of both the random variable and the parameters involved, from whose
asymptotic behavior we may deduce the asymptotic behavior of certain esti-
mates. In many of these cases, it is sufficient to demonstrate uniform converg-
ence with probability one of these functions. In this paper, a set of sufficient
conditions for this is given, and we show how these results may be applied to
some statistical problems.

1. Statement of the theorem.® Let X,,---,X,, - be a sequence of in-
dependent and identically distributed variables with values in an arbitrary space
X. Let T be a compact topological space, and let f be a complex-valued function
on T X X, measurable in z for each ¢ ¢ T. Let P be the common distribution
of the X, .

TuEOREM 1. If there is an integrable g such that | f(t, x) | < g(x) for all t € T
and x & X, and if there is a sequence S; of measurable sets such that

PX - UL, 8) =0,

and for each i, f(¢, x) is equicontinuous in ¢t for z € S; , then with probability one,
1556, X0 - [ 16,2 aPG)

uniformly jor t ¢ T, and the limit function is confinuous.

We may assume the S; are monotonically increasing. Let ¢ > 0 be given. Then
for some ¢, [x_s; g(x) dP(z) < €/5.

Since f(¢, z) is equicontinuous in ¢ for x ¢ S; and T is compact, there exist
b, -+, and open subsets N1, -+, Nyof T such that U, N; = T, ¢t; e N;,
and for t e Njand z e S;, |f¢t,x) — f(t;,2)| < ¢/4. Let Y = f(t;, Xx);
Zy = g(Xk), XkZSi;Zk = 0, XpeS;.

By the strong law of large numbers, we may select an N such that, if
A; = 8 i) and 6 > 0,

P(for some n > N, ’%E Y — Aj| = e/4> < §/2q, j=1,-,q
k=1 .
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and

= e/4=> < 8/2.
ButifteNj, |f¢, Xi) — Y| < ¢/4 + 2Z; . Hence,

1 n
- kgf@, Xi) — 4;

P(forsomen > N, ,EEZIG
N k=1

§e><6.

P <for some n > N and some ¢, ¢ ¢ N; and

Therefore, 1/n 2 r f(¢, Xi) converges uniformly to a continuous function with
probability one. By the strong law of large numbers, that function is

[ 1, z) dP(z).

2. Applications. As an application of this theorem, we see that the sample
characteristic function converges to the population characteristic function uni-
formly with probability one in any bounded interval, since f(f, z) = e** satis-
fies the conditions of the theorem.

It may happen that log L(x|68) = f(x, §) satisfies the conditions of the
theorem. For example, for the multivariate normal, the Poisson, Cauchy, x°,
double exponential, and many other distributions, we are led to the almost cer-
tain convergence of maximum likelihood estimates to the true values if the
parameter is restricted to a compact set.

More difficult estimation procedures can also be shown to be consistent. For
example, consider a problem of Reiersgl [4]. The model is

z; = §;cos a + u;,
Ys = &isina + v;,

where u; and v; have a joint normal distribution, £; is not normal, and &; , (u;, v;)
are independent. Let p = £sin 3, ¢ = —¢ cos 8, and let

¢(t, B; XJ) = eini-’-i’yi'

Then 1/n 211 0@, 8, X;) — ¥(¢, B) uniformly with probability one for # in any
finite interval. Let

x® = [ 192t 8) — ¢t By(~1,8) [ M),
where A is a bounded monotone function, such that for any ¢ > 0,
Ae) — A(—¢€) > 0. Then x is a periodic function of period =, and x(8) = 0
only for 8 = a + kw. Let

Valt, B) = 23" o1, 6, X,
n j=1

xe(® = [ 19.(2,8) = ¥t Ba(—1,8) [ M.
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Since ¥, is bounded, it follows that x,(8) — x(8) uniformly with probability one.
Hence, if b, minimizes x,(8), it follows that b, — 8 with probability one, in the
sense of convergence mod . ‘

This result is stronger than that obtained by Neyman about Reiersgl’s prob-
lem. The method can also be extended to Neyman’s extension of the problem [3].

We can, in fact, obtain some very strong results on the existence of consistent
estimates.

TuroreEM 2. Let § be a family of distributions on Euclidean n-space. Let w be
a continuous function mapping F into the topological space ®. Then there exists a
sequence Dy, of functions on Euclidean kn-space to ® such that if X1, -+ , Xz, - -~
are independently  distributed with  distribution  function F &S  then
limgae pr (X1, -+, Xi) = w(F) with probability one.

In other words, any continuous parameter is consistently estimable. The con-
verse is not true, since moments, which are not continuous parameters, are con-
sistently estimable. It is an unsolved problem, which functions = of a distribu-
tion in a family § are consistently estimable—even whether the topological
structure of the family & and the topological properties of the function = are
sufficient to characterize consistently estimable parameters .

Let us proceed to the proof of the theorem.

Let A be a non-negative finite measure on Euclidean n-space such that every
open set has positive measure. For each F ¢ &, let

‘l’(tly""tn:F) = 8<exp7:ztixf|F)7
j=1

ie.,¥(t, -+, ta, F) is the characteristic function of F evaluated at &1, --- , ¢, .
Similarly, let

k n
,; exp (’L Z th;.,) .

Jj=1

Bl

‘//k(tl,’°‘ ,tn,le”’ ’Xk) =
Then define
pr(X1, + oy Xi)

=}Fn§ I'Pk(tl,""’tn:Xl:'“’Xk) —"p(tl,"',tn:F) Iz'd)‘(h?“"t")

and let p; be any function such that for every Xy, -+, X there is an Fj ¢ &
satisfying ‘

fl‘/’k(hy”'tn,Xl"“,Xk) —lp(tl:""tn)Fk) Izd)\(tl,... 7tn)

<Pl XD+ g

and
pk(Xl y T Xk) = W(Fk)
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From Theorem 1, we see that yi(t1, -+, ?¢n, X1, ---, Xs) approaches
Y, -+, ta, F) uniformly with probability one for ¢, - - , £, in any bounded
set. Therefore,

f | ity - i, Xa, "',Xk) — ¢(t1, ""tn,F) Iz A\, "’,tn)
approaches zero with probability one. Hence,
/l\l’(tly v ,tn,Fk) ""p(tla o atn’F) Izd)‘(tla et 7tn)

approaches zero with probability one, and thus F, — F almost certainly. The
result then follows from the continuity of .

Similar results can be obtained in the case of a continuously identified param-
eter. If a structure S generates the distribution F, we may ask whether a func-
tion ¢ defined on the space 8§ of structures is determined by the distribution &.
If so, we say [1] that ¢ is identified at F.

Let us formulate the preceding definition without regard to the structure S.
We obtain for each F in a class § of distributions, a non-null set ®(F) in the
parameter space. The condition that ® is identified at F then becomes that
®(F) has one element. _

Let us say that ® is continuously identified at F with respect to & if for every
sequence Iy , -+ , F,, - of distributions of & such that F, — F, and for any
sequence 6y, +++ , 0,, -+- such that 6, ¢ ®(F}) for all k, 6, converges to the
one element of ®(F).

Then by a method similar to that of Theorem 2 we obtain

TureoreM 3. Let § be a family of distributions on Euclidean n-space and let ®
map § 1nto the set of non-null subsets of ®. Then there exists a sequence py of func-
tions on Euclidean kn-space to ® such that for any F ¢ F, if X1, -+ , X&, ++ - are
independently distributed with distribution function F and ® is continuously iden-
tifiable at F with respect to F, then pr(Xy, - -+ , X&) approaches the element of ®(F)
with probability one.
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