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UNIFORM CONVERGENCE RATES FOR NONPARAMETRIC
REGRESSION AND PRINCIPAL COMPONENT ANALYSIS IN

FUNCTIONAL/LONGITUDINAL DATA

BY YEHUA LI1 AND TAILEN HSING2

University of Georgia and University of Michigan

We consider nonparametric estimation of the mean and covariance func-
tions for functional/longitudinal data. Strong uniform convergence rates are
developed for estimators that are local-linear smoothers. Our results are ob-
tained in a unified framework in which the number of observations within
each curve/cluster can be of any rate relative to the sample size. We show
that the convergence rates for the procedures depend on both the number
of sample curves and the number of observations on each curve. For sparse
functional data, these rates are equivalent to the optimal rates in nonparamet-
ric regression. For dense functional data, root-n rates of convergence can be
achieved with proper choices of bandwidths. We further derive almost sure
rates of convergence for principal component analysis using the estimated
covariance function. The results are illustrated with simulation studies.

1. Introduction. Estimating the mean and covariance functions are essential
problems in longitudinal and functional data analysis. Many recent papers focused
on nonparametric estimation so as to model the mean and covariance structures
flexibly. A partial list of such work includes Ramsay and Silverman (2005), Lin
and Carroll (2000), Wang (2003), Yao, Müller and Wang (2005a, 2005b), Yao and
Lee (2006) and Hall, Müller and Wang (2006).

On the other hand, functional principal component analysis (FPCA) based on
nonparametric covariance estimation has become one of the most common di-
mension reduction approaches in functional data analysis. Applications include
temporal trajectory interpolation [Yao, Müller and Wang (2005a)], functional gen-
eralized linear models [Müller and Stadtmüller (2005) and Yao, Müller and Wang
(2005b)] and functional sliced inverse regression [Férre and Yao (2005), Li and
Hsing (2010)], to name a few. A number of algorithms have been proposed for
FPCA, some of which are based on spline smoothing [James, Hastie and Sugar
(2000), Zhou, Huang and Carroll (2008)] and others based on kernel smoothing
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[Yao, Müller and Wang (2005a), Hall, Müller and Wang (2006)]. As usual, large-
sample theories can provide a basis for understanding the properties of these esti-
mators. So far, the asymptotic theories for estimators based on kernel smoothing
or local-polynomial smoothing are better understood than those based on spline
smoothing.

Some definitive theoretical findings on FPCA emerged in recent years. In par-
ticular, Hall and Hosseini-Nasab (2006) proved various asymptotic expansions for
FPCA for densely recorded functional data, and Hall, Müller and Wang (2006)
established the optimal L2 convergence rate for FPCA in the sparse functional
data setting. One of the most interesting findings in Hall, Müller and Wang (2006)
was that the estimated eigenfunctions, although computed from an estimated two-
dimensional surface, enjoy the convergence rate of one-dimensional smoothers,
and under favorable conditions the estimated eigenvalues are root-n consistent. In
contrast with the L2 convergence rates of these nonparametric estimators, less is
known in term of uniform convergence rates. Yao, Müller and Wang (2005a) stud-
ied the uniform consistency of the estimated mean, covariance and eigenfunctions,
and demonstrated that such uniform convergence properties are useful in many
settings; some other examples can also be found in Li et al. (2008).

In classical nonparametric regression where observations are independent, there
are a number of well-known results concerning the uniform convergence rates
of kernel-based estimators. Those include Bickel and Rosenblatt (1973), Härdle,
Janssen and Serfling (1988) and Härdle (1989). More recently, Claeskens and Van
Keilegom (2003) extended some of those results to local likelihood estimators
and local estimating equations. However, as remarked in Yao, Müller and Wang
(2005a), whether those optimal rates can be extended to functional data remains
unknown.

In a typical functional data setting, a sample of n curves are observed at a set
of discrete points; denote by mi the number of observations for curve i. The ex-
isting literature focuses on two antithetical data types: the first one, referred to
as dense functional data, is the case where each mi is larger than some power
of n; the second type, referred to as sparse functional data, is the situation where
each mi is bounded by a finite positive number or follows a fixed distribution. The
methodologies used to treat the two situations have been different in the literature.
For dense functional data, the conventional approach is to smooth each individual
curve first before further analysis; see Ramsay and Silverman (2005), Hall, Müller
and Wang (2006) and Zhang and Chen (2007). For sparse functional data, limited
information is given by the sparsely sampled observations from each individual
curve and hence it is essential to pool the data in order to conduct inference ef-
fectively; see Yao, Müller and Wang (2005a) and Hall, Müller and Wang (2006).
However, in practice it is possible that some sample curves are densely observed
while others are sparsely observed. Moreover, in dealing with real data, it may
even be difficult to classify which scenario we are faced with and hence to decide
which methodology to use.



UNIFORM CONVERGENCE RATES FOR FUNCTIONAL DATA 3323

This paper is aimed at resolving the issues raised in the previous two paragraphs.
The precise goals will be stated after we introduce the notation in Section 2. In a
nutshell, we will consider uniform rates of convergence of the mean and the covari-
ance functions, as well as rates in the ensuing FPCA, using local-linear smoothers
[Fan and Gijbels (1995)]. The rates that we obtain will address all possible scenar-
ios of the mi ’s, and we show that the optimal rates for dense and sparse functional
data can be derived as special cases.

This paper is organized as follows. In Section 2, we introduce the model and
data structure as well as all of the estimation procedures. We describe the asymp-
totic theory of the procedures in Section 3, where we also discuss the results and
their connections to prominent results in the literature. Some simulation studies
are provided in Section 4, and all proofs are included in Section 5.

2. Model and methodology. Let {X(t), t ∈ [a, b]} be a stochastic process de-
fined on a fixed interval [a, b]. Denote the mean and covariance function of the
process by

μ(t) = E{X(t)}, R(s, t) = cov{X(s),X(t)},
which are assumed to exist. Except for smoothness conditions on μ and R, we do
not impose any parametric structure on the distribution of X. This is a commonly
considered situation in functional data analysis.

Suppose we observe

Yij = Xi(Tij ) + Uij , i = 1, . . . , n, j = 1, . . . ,mi,

where the Xi’s are independent realizations of X, the Tij ’s are random observa-
tional points with density function fT (·), and the Uij ’s are identically distributed
random errors with mean zero and finite variance σ 2. Assume that the Xi ’s, Tij ’s
and Uij ’s are all independent. Assume that mi ≥ 2 and let Ni = mi(mi − 1).

Our approach is based on the local-linear smoother; see, for example, Fan and
Gijbels (1995). Let K(·) be a symmetric probability density function on [0,1] and
Kh(t) = (1/h)K(t/h) where h is bandwidth. A local-linear estimator of the mean
function is given by μ̂(t) = â0, where

(â0, â1) = arg min
a0,a1

1

n

n∑
i=1

1

mi

mi∑
j=1

{Yij − a0 − a1(Tij − t)}2Khμ(Tij − t).

It is easy to see that

μ̂(t) = R0S2 − R1S1

S0S2 − S2
1

,(2.1)

where

Sr = 1

n

n∑
i=1

1

mi

mi∑
j=1

Khμ(Tij − t){(Tij − t)/hμ}r ,
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Rr = 1

n

n∑
i=1

1

mi

mi∑
j=1

Khμ(Tij − t){(Tij − t)/hμ}rYij .

To estimate R(s, t), we first estimate C(s, t) := E{X(s)X(t)}. Let Ĉ(s, t) = â0,
where

(â0, â1, â2)

= arg min
a0,a1,a2

1

n

n∑
i=1

[
1

Ni

∑
k �=j

{YijYik − a0

(2.2)
− a1(Tij − s) − a2(Tik − t)}2

× KhR
(Tij − s)KhR

(Tik − t)

]
,

with
∑

k �=j denoting sum over all k, j = 1, . . . ,mi such that k �= j . It follows that

Ĉ(s, t) = (A1R00 − A2R10 − A3R01)B
−1,

where

A1 = S20S02 − S2
11, A2 = S10S02 − S01S11, A3 = S01S20 − S10S11,

B = A1S00 − A2S10 − A3S01,

Spq = 1

n

n∑
i=1

1

Ni

∑
k �=j

(
Tij − s

hR

)p(
Tik − t

hR

)q

KhR
(Tij − s)KhR

(Tik − t),

Rpq = 1

n

n∑
i=1

1

Ni

∑
k �=j

YijYik

(
Tij − s

hR

)p(
Tik − t

hR

)q

KhR
(Tij − s)KhR

(Tik − t).

We then estimate R(s, t) by

R̂(s, t) = Ĉ(s, t) − μ̂(s)μ̂(t).(2.3)

To estimate σ 2, we first estimate V (t) := C(t, t) + σ 2 by V̂ (t) = â0, where

(â0, â1) = arg min
a0,a1

1

n

n∑
i=1

1

mi

mi∑
j=1

{Y 2
ij − a0 − a1(Tij − t)}2KhV

(Tij − t).

As in (2.1),

V̂ (t) = Q0S2 − Q1S1

S0S2 − S2
1

,(2.4)

where

Qr = 1

n

n∑
i=1

1

mi

mi∑
j=1

KhV
(Tij − t){(Tij − t)/hV }rY 2

ij .
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We then estimate σ 2 by

σ̂ 2 = 1

b − a

∫ b

a
{V̂ (t) − Ĉ(t, t)}dt.

For the problem of mean and covariance estimation, the literature has focused
on dense and sparse functional data. The sparse case roughly refers to the situa-
tion where each mi is essentially bounded by some finite number M . Yao, Müller
and Wang (2005a) and Hall, Müller and Wang (2006) considered this case and
also used local-linear smoothers in their estimation procedures. The difference be-
tween the estimators in (2.1), (2.3) and those considered in Yao, Müller and Wang
(2005a) and Hall, Müller and Wang (2006) is essentially that we attach weights,
m−1

i and N−1
i , to each curve i in the optimizations [although Yao, Müller and

Wang (2005a) smoothed the residuals in estimating R]. One of the purposes of
those weights is to ensure that the effect that each curve has on the optimizers is
not overly affected by the denseness of the observations.

Dense functional data roughly refer to data for which each mi ≥ Mn → ∞ for
some sequence Mn, where specific assumptions on the rate of increase of Mn

are required for this case to have a distinguishable asymptotic theory in the es-
timation of the mean and covariance. Hall, Müller and Wang (2006) and Zhang
and Chen (2007) considered the so-called “smooth-first-then-estimate” approach,
namely, the approach that first preprocesses the discrete functional data by smooth-
ing, and then adopts the empirical estimators of the mean and covariance based on
the smoothed functional data. See also Ramsay and Silverman (2005).

As will be seen, our approach is suitable for both sparse and dense functional
data. Thus, one particular advantage is that we do not have to discern data type—
dense, sparse or mixed—and decide which methodology should be used accord-
ingly. In Section 3, we will provide the convergence rates of μ̂(t), R̂(s, t) and σ̂ 2,
and also those of the estimated eigenvalues and eigenfunctions of the covariance
operator of X. The novelties of our results include:

(a) Almost-sure uniform rates of convergence for μ̂(t) and R̂(s, t) over the entire
range of s, t will be proved.

(b) The sample sizes mi per curve will be completely flexible. For the spe-
cial cases of dense and sparse functional data, these rates match the best
known/conjectured rates.

3. Asymptotic theory. To prove a general asymptotic theory, assume that mi

may depend on n as well, namely, mi = min. However, for simplicity we continue
to use the notation mi . Define

γnk =
(
n−1

n∑
i=1

m−k
i

)−1

, k = 1,2, . . . ,



3326 Y. LI AND T. HSING

which is the kth order harmonic mean of {mi}, and for any bandwidth h,

δn1(h) = [{1 + (hγn1)
−1} logn/n]1/2

and

δn2(h) = [{1 + (hγn1)
−1 + (h2γn2)

−1} logn/n]1/2.

We first state the assumptions. In the following hμ,hR and hV are bandwidths,
which are assumed to change with n.

(C1) For some constants mT > 0 and MT < ∞, mT ≤ fT (t) ≤ MT for all t ∈
[a, b]. Further, fT is differentiable with a bounded derivative.

(C2) The kernel function K(·) is a symmetric probability density function on
[−1,1], and is of bounded variation on [−1,1]. Denote ν2 = ∫ 1

−1 t2K(t) dt .
(C3) μ(·) is twice differentiable and the second derivative is bounded on [a, b].
(C4) All second-order partial derivatives of R(s, t) exist and are bounded on

[a, b]2.
(C5) E(|Uij |λμ) < ∞ and E(supt∈[a,b] |X(t)|λμ) < ∞ for some λμ ∈ (2,∞);

hμ → 0 and (h2
μ + hμ/γn1)

−1(logn/n)1−2/λμ → 0 as n → ∞.
(C6) E(|Uij |2λR) < ∞ and E(supt∈[a,b] |X(t)|2λR) < ∞ for some λR ∈ (2,∞);

hR → 0 and (h4
R + h3

R/γn1 + h2
R/γn2)

−1(logn/n)1−2/λR → 0 as n → ∞.
(C7) E(|Uij |2λV ) < ∞ and E(supt∈[a,b] |X(t)|2λV ) < ∞ for some λV ∈ (2,∞);

hV → 0 and (h2
V + hV /γn1)

−1(logn/n)1−2/λV → 0 as n → ∞.

The moment condition E(supt∈[a,b] |X(t)|λ) < ∞ in (C5)–(C7) hold rather gener-
ally; in particular, it holds for Gaussian processes with continuous sample paths
[cf. Landau and Shepp (1970)] for all λ > 0. This condition was also adopted by
Hall, Müller and Wang (2006).

3.1. Convergence rates in mean estimation. The convergence rate of μ̂(t) is
given in the following result.

THEOREM 3.1. Assume that (C1)–(C3) and (C5) hold. Then

sup
t∈[a,b]

|μ̂(t) − μ(t)| = O
(
h2

μ + δn1(hμ)
)

a.s.(3.1)

The following corollary addresses the special cases of sparse and dense func-
tional data. For convenience, we use the notation an � bn to mean an = O(bn).

COROLLARY 3.2. Assume that (C1)–(C3) and (C5) hold.

(a) If max1≤i≤n mi ≤ M for some fixed M , then

sup
t∈[a,b]

|μ̂(t) − μ(t)| = O
(
h2

μ + {logn/(nhμ)}1/2)
a.s.(3.2)
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(b) If min1≤i≤n mi ≥ Mn for some sequence Mn where M−1
n � hμ � (logn/n)1/4

is bounded away from 0, then

sup
t∈[a,b]

|μ̂(t) − μ(t)| = O({logn/n}1/2) a.s.

The proofs of Theorem 3.1, as the proofs of other results, will be given in Sec-
tion 5. First, we give a few remarks on these results.

Discussion.

1. On the right-hand side of (3.1), O(h2
μ) is a bound for bias while δn1(hμ) is a

bound for supt∈[a,b]|μ̂(t) − E(μ̂(t))|. The derivation of the bias is easy to un-
derstand and is essentially the same as in classical nonparametric regression.
The derivation of the second bound is more involved and represents our main
contribution in this result. To obtain a uniform bound for |μ̂(t) − E(μ̂(t))| over
[a, b], we first obtained a uniform bound over a finite grid on [a, b], where
the grid grows increasingly dense with n, and then showed that the difference
between the two uniform bounds is asymptotic negligible. This approach was
inspired by Härdle, Janssen and Serfling (1988), which focused on nonpara-
metric regression. One of the main difficulties in our result is that we need
to deal within-curve dependence, which is not an issue in classical nonpara-
metric regression. Note that the dependence between X(t) and X(t ′) typically
becomes stronger as |t − t ′| becomes smaller. Thus, for dense functional data,
the within-curve dependence constitutes an integral component of the overall
rate derivation.

2. The sparse functional data setting in (a) of Corollary 3.2 was considered by
Yao, Müller and Wang (2005a) and Hall, Müller and Wang (2006). Actually
Yao, Müller and Wang (2005a) assumes that the mi ’s are i.i.d. positive random
variables with E(mi) < ∞, which implies that 0 < 1/E(mi) ≤ E(1/mi) ≤ 1
by Jensen’s inequality; this corresponds to the case where γn1 is bounded
away from 0 and also leads to (3.2). The rate in (3.2) is the classical non-
parametric rate for estimating a univariate function. We will refer to this as
a one-dimensional rate. The one-dimensional rate of μ̂(t) was eluded to in Yao,
Müller and Wang (2005a) but was not specifically obtained there.

3. Hall, Müller and Wang (2006) and Zhang and Chen (2007) address the dense
functional data setting in (b) of Corollary 3.2, where both papers take the ap-
proach of first fitting a smooth curve to Yij ,1 ≤ j ≤ mi , for each i, and then
estimating μ(t) and R(s, t) by the sample mean and covariance functions, re-
spectively, of the fitted curves. Two drawbacks are:
(a) Differentiability of the sample curves is required. Thus, for instance, this

approach will not be suitable for the Brownian motion, which has continu-
ous but nondifferentiable sample paths.



3328 Y. LI AND T. HSING

(b) The sample curves that are included in the analysis need to be all densely
observed; those that do not meet the denseness criterion are dropped even
though they may contain useful information.

Our approach does not require sample-path differentiability and all of the data
are used in the analysis. It is interesting to note that (b) of Corollary 3.2 shows
that root-n rate of convergence for μ̂ can be achieved if the number of obser-
vations per sample curve is at least of the order (n/ logn)1/4 while a similar
conclusion was also reached in Hall, Müller and Wang (2006) for the smooth-
first-then-estimate approach.

4. Our nonparametric estimators μ̂, R̂ and V̂ are based local-linear smoothers, but
the methodology and theory can be easily generalized to higher-order local-
polynomial smoothers. By the equivalent kernel theory for local-polynomial
smoothing [Fan and Gijbels (1995)], higher-order local-polynomial smoothing
is asymptotically equivalent to higher-order kernel smothing. Therefore, apply-
ing higher-order polynomial smoothing will result in improved rates for the bias
under suitable smoothness assumptions. The rate for the variance, on the other
hand, will remain the same. In our sparse setting, if pth order local polynomial
smoothing is applied under suitable conditions, for some positive integer p, the
uniform convergence rate of μ̂(t) will become

sup
t

|μ̂(t) − μ(t)| = O
(
h2([p/2]+1)

μ + δn1(hμ)
)

a.s.,

where [a] denotes the integer part of a. See Claeskens and Van Keilegom (2003)
and Masry (1996) for support of this claim in different but related contexts.

3.2. Convergence rates in covariance estimation. The following results give
the convergence rates for R̂(s, t) and σ̂ 2.

THEOREM 3.3. Assume that (C1)–(C6) hold. Then

sup
s,t∈[a,b]

|R̂(s, t) − R(s, t)| = O
(
h2

μ + δn1(hμ) + h2
R + δn2(hR)

)
a.s.(3.3)

THEOREM 3.4. Assume that (C1), (C2), (C4), (C6) and (C7) hold. Then

σ̂ 2 − σ 2 = O
(
h2

R + δn1(hR) + δ2
n2(hR) + h2

V + δ2
n1(hV )

)
a.s.(3.4)

We again highlight the cases of sparse and dense functional data.

COROLLARY 3.5. Assume that (C1)–(C7) hold.

(a) Suppose that max1≤i≤n mi ≤ M for some fixed M . If h2
R � hμ � hR , then

sup
s,t∈[a,b]

|R̂(s, t) − R(s, t)| = O
(
h2

R + {logn/(nh2
R)}1/2)

a.s.(3.5)

If hV + (logn/n)1/3 � hR � h2
V n/ logn, then

σ̂ 2 − σ 2 = O
(
h2

R + {logn/(nhR)}1/2)
a.s.
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(b) If min1≤i≤n mi ≥ Mn for some sequence Mn where M−1
n � hμ,hR,hV �

(logn/n)1/4, then both sups,t∈[a,b]|R̂(s, t) − R(s, t)| and σ̂ 2 − σ 2 are
O({logn/n}1/2) a.s.

Discussion.

1. The rate in (3.5) is the classical nonparametric rate for estimating a surface
(bivariate function), which will be referred to as a two-dimensional rate. Note
σ̂ 2 has a one-dimensional rate in the sparse setting, while both R̂(s, t) and σ̂ 2

have root-n rates in the dense setting. Most of the discussions in Section 3.1
obviously also apply here and will not be repeated.

2. Yao, Müller and Wang (2005a) smoothed the products of residuals instead of
YijYik in the local linear smoothing algorithm in (2.2). There is some evidence
that a slightly better rate can be achieved in that procedure. However, we were
not successful in establishing such a rate rigorously.

3.3. Convergence rates in FPCA. By (C5), the covariance function has the
spectral decomposition

R(s, t) =
∞∑

j=1

ωjψj (s)ψj (t),

where ω1 ≥ ω2 ≥ · · · ≥ 0 are the eigenvalues of R(·, ·) and the ψj ’s are the cor-
responding eigenfunctions. The ψj ’s are also known as the functional principal
components. Below, we assume that the nonzero ωj ’s are distinct.

Suppose R̂(s, t) is the covariance estimator given in Section 2, and it admits the
following spectral decomposition:

R̂(s, t) =
∞∑

j=1

ω̂j ψ̂j (s)ψ̂j (t),

where ω̂1 > ω̂2 > · · · are the estimated eigenvalues and the ψ̂j ’s are the corre-
sponding estimated principal components. Computing the eigenvalues and eigen-
functions of an integral operator with a symmetric kernel is a well-studied problem
in applied mathematics. We will not get into that aspect of FPCA in this paper.

Notice also that ψj(t) and ψ̂j (t) are identifiable up to a sign change. As pointed
out in Hall, Müller and Wang (2006), this causes no problem in practice, except
when we discuss the convergence rate of ψ̂j . Following the same convention as in
Hall, Müller and Wang (2006), we let ψj take an arbitrary sign but choose ψ̂j such
that ‖ψ̂j − ψj‖ is minimized over the two signs, where ‖f ‖ := {∫ f 2(t) dt}1/2

denotes the usual L2-norm of a function f ∈ L2[a, b].
Below let j0 be a arbitrary fixed positive constant.

THEOREM 3.6. Under conditions (C1)–(C6), for 1 ≤ j ≤ j0:
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(a) ω̂j − ωj = O((logn/n)1/2 + h2
μ + h2

R + δ2
n1(hμ) + δ2

n2(hR)) a.s.;
(b) ‖ψ̂j − ψj‖ = O(h2

μ + δn1(hμ) + h2
R + δn1(hR) + δ2

n2(hR)) a.s.;
(c) supt |ψ̂j (t) − ψj(t)| = O(h2

μ + δn1(hμ) + h2
R + δn1(hR) + δ2

n2(hR)) a.s.

Theorem 3.6 is proved by using the asymptotic expansions of eigenvalues
and eigenfunctions of an estimated covariance function developed by Hall and
Hosseini-Nasab (2006), and by applying the strong uniform convergence rate of
R̂(s, t) in Theorem 3.3. In the special case of sparse and dense functional data, we
have the following corollary.

COROLLARY 3.7. Assume that (C1)–(C6) hold. Suppose that max1≤i≤n mi ≤
M for some fixed M . Then the following hold for all 1 ≤ j ≤ j0:

(a) If (logn/n)1/2 � hμ,hR � (logn/n)1/4 then ω̂j − ωj = O({logn/n}1/2) a.s.
(b) If hμ + (logn/n)1/3 � hR � hμ then both of ‖ψ̂j − ψj‖ and supt |ψ̂j (t) −

ψj(t)| have the rate O(h2
R + {logn/(nhR)}1/2) a.s.

If min1≤i≤n mi ≥ Mn for some sequence Mn where M−1
n � hμ,hR � (logn/n)1/4,

then, for 1 ≤ j ≤ j0, all of ω̂j − ωj , ‖ψ̂j − ψj‖ and supt |ψ̂j (t) − ψj(t)| have the
rate O({logn/n}1/2).

Discussion.

1. Yao, Müller and Wang (2005a, 2005b) developed rate estimates for the quan-
tities in Theorem 3.6. However, they are not optimal. Hall, Müller and Wang
(2006) considered the rates of ω̂j − ωj and ‖ψ̂j − ψj‖. The most striking in-
sight of their results is that for sparse functional data, even though the estimated
covariance operator has the two-dimensional nonparametric rate, ψ̂j converges
at a one-dimensional rate while ω̂j converges at a root-n rate if suitable
smoothing parameters are used; remarkably they also established the asymp-
totic distribution of ‖ψ̂j − ψj‖. At first sight, it may seem counter-intuitive
that the convergence rates of ω̂j and ψ̂j are faster than that of R̂, since ω̂j

and ψ̂j are computed from R̂. However, this can be easily explained. For ex-
ample, by (4.9) of Hall, Müller and Wang (2006), ω̂j − ωj = ∫∫

(R̂(s, t) −
R(s, t))ψj (s)ψj (t) ds dt + lower-order terms; integrating R̂(s, t) − R(s, t) in
this expression results in extra smoothing, which leads to a faster convergence
rate.

2. Our almost-sure convergence rates are new. However, for both dense and sparse
functional data, the rates on ω̂j − ωj and ‖ψ̂j − ψj‖ are slightly slower than
the in-probability convergence rates obtained in Hall, Müller and Wang (2006),
which do not contain the logn factor at various places of our rate bounds. This
is due to the fact that our proofs are tailored to strong uniform convergence rate
derivation. However, the general strategy in our proofs is amenable to deriving
in-probability convergence rates that are comparable to those in Hall, Müller
and Wang (2006).
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3. A potential estimator the covariance function R(s, t) is

R̃(s, t) :=
Jn∑

j=1

ω̂j ψ̂j (s)ψ̂j (t)

for some Jn. For the sparse case, in view of the one-dimensional uniform rate
of ψ̂j (t) and the root-n rates of ω̂j , it might be possible to choose Jn → ∞ so
that R̃(s, t) has a faster rate of convergence than does R̂(s, t). However, that
requires the rates of ω̂j and ψ̂j (t) for an unbounded number of j ’s, which we
do not have at this point.

The proof of the theorems will be given in Section 5, whereas the proofs of the
corollaries are straightforward and are omitted.

4. Simulation studies.

4.1. Simulation 1. To illustrate the finite sample performance of the method,
we perform a simulation study. The data are generated from the following model:

Yij = Xi(Tij ) + Uij with Xi(t) = μ(t) +
3∑

k=1

ξikψj (t),

where Tij ∼ Uniform[0,1], ξik ∼ Normal(0,ωj ) and Uij ∼ Normal(0, σ 2) are in-
dependent variables. Let

μ(t) = 5(t − 0.6)2, ψ1(t) = 1,

ψ2(t) = √
2 sin(2πt), ψ3(t) = √

2 cos(2πt)

and (ω1,ω2,ω3, σ
2) = (0.6,0.3,0.1,0.2).

We let n = 200 and mi = m for all i. In each simulation run, we generated 200
trajectories from the model above, and then we compared the estimation results
for m = 5, 10, 50 and ∞. When m = ∞, we assumed that we know the whole
trajectory and so no measurement error was included. Note that the cases of m = 5
and m = ∞ may be viewed as representing sparse and complete functional data,
respectively, whereas those of m = 10 and m = 50 represent scenarios between the
two extremes. For each m value, we estimated the mean and covariance functions
and used the estimated covariance function to conduct FPCA. The simulation was
then repeated 200 times.

For m = 5,10,50, the estimation was carried out as described in Section 2.
For m = ∞, the estimation procedure was different since no kernel smoothing is
needed; in this case, we simply discretized each curve on a dense grid, then the
mean and covariance functions were estimated using the gridded data.

Notice that m = ∞ is the ideal situation where we have the complete informa-
tion of each curve, and the estimation results under this scenario represent the best
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TABLE 1
Bandwidths in simulation 1

hμ hR hV

m = 5 0.153 0.116 0.138
m = 10 0.138 0.103 0.107
m = 50 0.107 0.077 0.084

we can do and all of the estimators have root-n rates. Our asymptotic theory shows
that m → ∞ as a function of n, and if m increases with a fast enough rate, the
convergence rates for the estimators are also root-n. We intend to demonstrate this
based on simulated data.

The performance of the estimators depends on the choice of bandwidths for
μ(t), C(s, t) and V (t), and the best bandwidths vary with m. The bandwidth se-
lection problem turns out to be very challenging. We have not come across a data-
driven procedure that works satisfactorily and so this is an important problem for
future research. For lack of a better approach, we tried picking the bandwidths by
the integrated mean square error (IMSE); that is, for each m and for each func-
tion above, we calculated the IMSE over a range of h and selected the one that
minimizes the IMSE. The bandwidths picked that way worked quite well for the
inference of the mean, covariance and the leading principal components, but less
well for σ 2 and the eigenvalues. After experimenting with a number of bandwidths,
we decided to used bandwidths that are slightly smaller than the ones picked by
IMSE. They are reported in Table 1. Note that undersmoothing in functional prin-
cipal component analysis was also advocated by Hall, Müller and Wang (2006).

The estimation results for μ(·) are summarized in Figure 1, where we plot the
mean and the pointwise first and 99th percentiles of the estimator. To compare
with standard nonparametric regression, we also provide the estimation results for
μ when m = 1; note that in this case the covariance function is not estimable
since there is no within-curve information. As can be seen, the estimation result
for m = 1 is not very different from that of m = 5, reconfirming the nonparametric
convergence rate of μ̂ for sparse functional data. It is somewhat difficult to describe
the estimation results of the covariance function directly. Instead, we summarize
the results on ψk(·) and ωk in Figure 2, where we plot the mean and the pointwise
first and 99th percentiles of the estimated eigenfunctions. In Figure 3, we also show
the empirical distributions of ω̂k and σ̂ 2. In all of the scenarios, the performance
of the estimators improve with m; by m = 50, all of the the estimators perform
almost as well as those for m = ∞.

4.2. Simulation 2. To illustrate that the proposed methods are applicable even
to the cases that the trajectory of X is not smooth, we now present a second
simulation study where X is standard Brownian motion. Again, we set the time
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FIG. 1. Estimated mean function in simulation 1. In each panel, the solid line is the true mean
function, the dashed line is the pointwise mean and the two dotted lines are the pointwise 1% and
99% percentiles of the estimator of the mean function based on 200 runs.

window [a, b] to be [0,1]. It is well known that the covariance function of X is
R(s, t) = min(s, t), s, t ∈ [0,1], which has an infinite spectral decomposition with

ωk = 4/{(2k − 1)2π2}, ψk(t) = √
2 sin{(k − 1/2)πt}, k = 1,2, . . . .

Again, let the observation times be Tij ∼ Uniform[0,1], Yij = Xi(Tij ) + Uij ,
Uij ∼ Normal(0, σ 2). We let σ 2 = 0.12, which is comparable to ω3.

Since X is not differentiable with probability one, smoothing individual trajec-
tories is not sensible even for large m values. Also, R(s, t) is not differentiable on
the diagonal {s = t}, and therefore the smoothness assumption in our theory is not
satisfied. Nevertheless, as we will show below, the proposed method still works
reasonably well. The reason is that the smoothness assumption on R(s, t) in our
theory is meant to guarantee the best convergence rate for the R̂(s, t). When the
assumption is mildly violated, the estimator may still perform well overall but may
have a slower convergence rate at the nonsmooth points. A similar phenomenon
was observed in Li et al. (2007), which studied kernel estimation of a stationary
covariance function in a time-series setting.

We set n = 200 and m = 5, 10 or 50 in our simulations. The estimation results
for the first three eigenfunctions are presented in Figure 4. Again, we plot the mean
and the pointwise first and 99th percentiles of the estimated eigenfunctions. As can
be seen, it is in general much harder to estimate the higher-order eigenfunctions,
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FIG. 2. Estimated eigenfunctions in simulation 1. In each panel, the solid line is the eigenfunction,
the dashed line is the pointwise mean and the two dotted lines are the pointwise 1% and 99% per-
centiles of the estimator of the eigenfunction in 200 runs. The three rows correspond to ψ1, ψ2 and
ψ3; different columns correspond to different m values.

and the results improve as we increase m. The empirical distribution of the esti-
mated eigenvalues as well as σ̂ 2 are summarized in Figure 5. The estimated eigen-
values should be compared with the true ones, which are (0.405,0.045,0.016).
When m is large, the estimated eigenvalues are very close to the true values.

5. Proofs.

5.1. Proof of Theorem 3.1. The proof is an adaptation of familiar lines of
proofs established in nonparametric function literature; see Claeskens and Van
Keilegon (2003) and Härdle, Janssen and Serfling (1988). For simplicity, through-
out this subsection, we abbreviate hμ as h. Below, let t1 ∧ t2 = min(t1, t2) and t1 ∨
t2 = max(t1, t2). Also define K(�)(t) = t�K(t) and Kh,(�)(v) = (1/h)K(�)(v/h).

LEMMA 1. Assume that

E

(
sup

t∈[a,b]
|X(t)|λ

)
< ∞ and E|U |λ < ∞ for some λ ∈ (2,∞).(5.1)
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FIG. 3. Box plots for ω̂1, ω̂2, ω̂3 and σ̂ 2 in simulation 1.

Let Zij = Xi(Tij ) or Uij for 1 ≤ i ≤ n,1 ≤ j ≤ mi . Let cn be any positive se-
quence tending to 0 and βn = c2

n+cn/γn1. Assume that β−1
n (logn/n)1−2/λ = o(1).

Let

Gn(t1, t2) = 1

n

n∑
i=1

{
1

mi

mi∑
j=1

Zij I (Tij ∈ [t1 ∧ t2, t1 ∨ t2])
}
,

(5.2)
G(t1, t2) = E{Gn(t1, t2)}

and

Vn(t, c) = sup
|u|≤c

|Gn(t, t + u) − G(t, t + u)|, c > 0.

Then

sup
t∈[a,b]

Vn(t, cn) = O(n−1/2{βn logn}1/2) a.s.(5.3)

PROOF. We can obviously treat the positive and negative parts of Zij sep-
arately, and will assume below that Zij is nonnegative. Define an equally-
spaced grid G := {vk}, with vk = a + kcn, for k = 0, . . . , [(b − a)/cn], and
v[(b−a)/cn]+1 = b, where [·] denotes the greatest integer part. For any t ∈ [a, b]
and |u| ≤ cn, let vk be a grid point that is within cn of both t and t + u, which
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FIG. 4. Estimated eigenfunctions in simulation 2. In each panel, the solid line is the eigenfunction,
the dashed line is the pointwise mean and the two dotted lines are the pointwise 1% and 99% per-
centiles of the estimator of the eigenfunction in 200 runs. The three rows correspond to ψ1, ψ2 and
ψ3; different columns correspond to different m values.

exists. Since

|Gn(t, t + u) − G(t, t + u)| ≤ |Gn(vk, t + u) − G(vk, t + u)|
+ |Gn(vk, t) − G(vk, t)|,

we have

|Gn(t, t + u) − G(t, t + u)| ≤ 2 sup
t∈G

Vn(t, cn).

Thus,

sup
t∈[a,b]

Vn(t, cn) ≤ 2 sup
t∈G

Vn(t, cn).(5.4)
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FIG. 5. Box plots for ω̂1, ω̂2, ω̂3 and σ̂ 2 in simulation 2.

From now on, we focus on the right-hand side of (5.4). Let

an = n−1/2{βn logn}1/2 and Qn = βn/an,(5.5)

and define G∗
n(t1, t2),G

∗(t1, t2) and V ∗
n (t, cn) in the same way as Gn(t1, t2),

G(t1, t2) and Vn(t, cn), respectively, except with Zij I (Zij ≤ Qn) replacing Zij .
Then

sup
t∈G

Vn(t, cn) ≤ sup
t∈G

V ∗
n (t, cn) + An1 + An2,(5.6)

where

An1 = sup
t∈G

sup
|u|≤cn

(
Gn(t, t + u) − G∗

n(t, t + u)
)
,

An2 = sup
t∈G

sup
|u|≤cn

(
G(t, t + u) − G∗(t, t + u)

)
.

We first consider An1 and An2. It follows that

a−1
n Q1−λ

n = {β−1
n (logn/n)1−2/λ}λ/2 = o(1).(5.7)

For all t and u, by Markov’s inequality,

a−1
n

(
Gn(t, t + u) − G∗

n(t, t + u)
)

≤ a−1
n

1

n

n∑
i=1

{
1

mi

mi∑
j=1

Zij I (Zij > Qn)

}
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≤ a−1
n Q1−λ

n

1

n

n∑
i=1

{
1

mi

mi∑
j=1

Z λ
ij I (Zij > Qn)

}

≤ a−1
n Q1−λ

n

1

n

n∑
i=1

{
1

mi

mi∑
j=1

Z λ
ij

}
.

Consider the case Zij = Xi(Tij ), the other case being simpler. It follows that

1

mi

mi∑
j=1

Z λ
ij ≤ Wi where Wi = sup

t∈[a,b]
|Xi(t)|λ.

Thus,

a−1
n

(
Gn(t, t + u) − G∗

n(t, t + u)
) ≤ a−1

n Q1−λ
n

1

n

n∑
i=1

Wi.(5.8)

By the SLLN, n−1 ∑n
i=1 Wi

a.s.−→ E(supt∈[a,b] |X(t)|λ) < ∞. By (5.7) and (5.8),

a−1
n An1

a.s.−→ 0. By (5.7) and (5.8) again, a−1
n An2 = 0, and so we have proved

lim
n→∞(An1 + An2) = o(an) a.s.(5.9)

To bound V ∗
n (t, cn) for a fixed t ∈ G , we perform a further partition. Define

wn = [Qncn/an + 1] and ur = rcn/wn, for r = −wn,−wn + 1, . . . ,wn. Note that
G∗

n(t, t + u) is monotone in |u| since Zij ≥ 0. Suppose that 0 ≤ ur ≤ u ≤ ur+1.
Then

G∗
n(t, t + ur) − G∗(t, t + ur) + G∗(t, t + ur) − G∗(t, t + ur+1)

≤ G∗
n(t, t + u) − G∗(t, t + u)

≤ G∗
n(t, t + ur+1) − G∗(t, t + ur+1) + G∗(t, t + ur+1) − G∗(t, t + ur),

from which we conclude that

|G∗
n(t, t + u) − G∗(t, t + u)| ≤ max(ξnr , ξn,r+1) + G∗(t + ur, t + ur+1),

where

ξnr = |G∗
n(t, t + ur) − G∗(t, t + ur)|.

The same holds if ur ≤ u ≤ ur+1 ≤ 0. Thus,

V ∗
n (t, cn) ≤ max−wn≤r≤wn

ξnr + max−wn≤r≤wn

G∗(t + ur, t + ur+1).

For all r ,

G∗(t + ur, t + ur+1) ≤ QnP(t + ur ≤ T ≤ t + ur+1)

≤ MT Qn(ur+1 − ur) ≤ MT an.
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Therefore, for any B ,

P{V ∗
n (t, cn) ≥ Ban} ≤ P

{
max−wn≤r≤wn

ξnr ≥ (B − MT )an

}
.(5.10)

Now let Zi = m−1
i

∑mi

j=1 Zij I (Zij ≤ Qn)I (Tij ∈ (t, t + ur ]) so that ξnr = | 1
n

×∑n
i=1{Zi − E(Zi)}|. We have |Zi − E(Zi)| ≤ Qn, and

n∑
i=1

var(Zi) ≤
n∑

i=1

EZ2
i ≤ M

n∑
i=1

(c2
n + cn/mi) ≤ Mnβn

for some finite M . By Bernstein’s inequality,

P{ξnr ≥ (B − MT )an} ≤ exp
{
− (B − MT )2n2a2

n

2
∑n

i=1 var(Zi) + (2/3)(B − MT )Qnnan

}

≤ exp
{
− (B − MT )2n2a2

n

2Mnβn + (2/3)(B − MT )nβn

}
≤ n−B∗

,

where B∗ = (B−MT )2

2M+(2/3)(B−MT )
. By (5.10) and Boole’s inequality,

P

{
sup
t∈G

V ∗
n (t, cn) ≥ Ban

}
≤

([
b − a

cn

]
+1

)(
2
[
Qncn

an

+1
]
+1

)
n−B∗ ≤ C

Qn

an

n−B∗

for some finite C. Now Qn/an = βn/a
2
n = n/ logn. So P{V ∗

n (t, cn) ≥ Ban} is sum-
mable in n if we select B large enough such that B∗ > 2. By the Borel–Cantelli
lemma,

sup
t∈G

V ∗
n (t, cn) = O(an) a.s.(5.11)

Hence, (5.3) follows from combining (5.4), (5.6), (5.9) and (5.11). �

LEMMA 2. Let Zij be as in Lemma 1 and assume that (5.1) holds. Let
h = hn be a bandwidth and let βn = h2 + h/γn1. Assume that h → 0 and
β−1

n (logn/n)1−2/λ = o(1) For any nonnegative integer p, let

Dp,n(t) = 1

n

n∑
i=1

[
1

mi

mi∑
j=1

Kh,(p)(Tij − t)Zij

]
.

Then we have

sup
t∈[a,b]

√
nh2/(βn logn)|Dp,n(t) − E{Dp,n(t)}| = O(1) a.s.

PROOF. Since both K and tp are bounded variations, K(p) is also a bounded
variation. Thus, we can write K(p) = K(p),1 − K(p),2 where K(p),1 and K(p),2 are
both increasing functions; without loss of generality, assume that K(p),1(−1) =
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K(p),2(−1) = 0. Below, we apply Lemma 1 by letting cn = 2h. It is clear that the
assumptions of Lemma 1 hold here. Write

Dn(t) = 1

n

n∑
i=1

{
1

mi

mi∑
j=1

Kh,(p)(Tij − t)Zij

}

= 1

n

n∑
i=1

{
1

mi

mi∑
j=1

Zij I (−h ≤ Tij − t ≤ h)

∫ Tij−t

−h
dKh,(p)(v)

}

=
∫ h

−h

1

n

n∑
i=1

{
1

mi

mi∑
j=1

Zij I (v ≤ Tij − t ≤ h)

}
dKh,(p)(v)

=
∫ h

−h
Gn(t + v, t + h)dKh,(p)(v),

where Gn is as defined in (5.2). We have

sup
t∈[a,b]

|Dp,n(t) − E{Dp,n(t)}|

≤ sup
t∈[a,b]

Vn(t,2h)

∫ h

−h

∣∣dKh,(p)

∣∣(5.12)

≤ {
K(p),1(1) + K(p),2(1)

}
h−1 sup

t∈[a,b]
Vn(t,2h),

and the conclusion of the lemma follows from Lemma 1. �

PROOF OF THEOREM 3.1. Define

R∗
r = Rr − μ(t)Sr − hμ(1)(t)Sr+1.

By straightforward calculations, we have

μ̂(t) − μ(t) = R∗
0S2 − R∗

1S1

S0S2 − S2
1

,(5.13)

where S0, S1, S2 are defined as in (2.1). Write

R∗
r = 1

n

∑
i

[
1

mi

mi∑
j=1

Kh(Tij − t){(Tij − t)/h}r{Yij − μ(t) − μ(1)(t)(Tij − t)
}]

= 1

n

∑
i

[
1

mi

mi∑
j=1

Kh(Tij − t){(Tij − t)/h}r

× {
εij + μ(Tij ) − μ(t) − μ(1)(t)(Tij − t)

}]
.
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By Taylor’s expansion and Lemma 2, uniformly in t ,

R∗
r = 1

n

∑
i

1

mi

∑
j

Kh(Tij − t){(Tij − t)/h}rεij + O(h2),(5.14)

and it follows from Lemma 2 that

R∗
i = O

(
h2 + δn1(h)

)
a.s.(5.15)

Now, at any interior point t ∈ [a + h,b − h], since f has a bounded derivative,

E{S0} =
∫ 1

−1
K(v)f (t + hv)dv = f (t) + O(h),

E{S1} = O(h), E{S2} = f (t)ν2 + O(h),

where ν2 = ∫
v2K(v)dv. By Lemma 2, we conclude that, uniformly for t ∈ [a +

h,b − h],
S0 = f (t) + O

(
h + δn1(h)

)
, S1 = O

(
h + δn1(h)

)
,

(5.16)
S2 = f (t)ν2 + O

(
h + δn1(h)

)
.

Thus, the rate in the theorem is established by applying (5.13). The same rate can
also be similarly seen to hold for boundary points. �

5.2. Proofs of Theorems 3.3 and 3.4.

LEMMA 3. Assume that

E

(
sup

t∈[a,b]
|X(t)|2λ

)
< ∞ and E|U |2λ < ∞ for some λ ∈ (2,∞).(5.17)

Let Zijk be X(Tij )X(Tik), X(Tij )Uik or UijUik . Let cn be any positive sequence
tending to 0 and βn = c4

n + c3
n/γn1 + c2

n/γn2. Assume that β−1
n (logn/n)1−2/λ =

o(1). Let

Gn(s1, t1, s2, t2)

= 1

n

n∑
i=1

{
1

Ni

∑
k �=j

ZijkI (Tij ∈ [s1 ∧ s2, s1 ∨ s2],(5.18)

Tik ∈ [t1 ∧ t2, t1 ∨ t2])
}
,

G(s1, t1, s2, t2) = E{Gn(s1, t1, s2, t2)} and

Vn(s, t, δ) = sup
|u1|,|u2|≤δ

|Gn(s, t, s + u1, t + u2) − G(s, t, s + u1, t + u2)|.

Then

sup
s,t∈[a,b]

Vn(s, t, cn) = O(n−1/2{βn logn}1/2) a.s.
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PROOF. The proof is similar to that of Lemma 1, and so we only outline the
main differences. Let an,Qn be as in (5.5). Let G be a two-dimensional grid on
[a, b]2 with mesh cn, that is, G = {(vk1, vk2)} where vk is defined as in the proof
of Lemma 1. Then we have

sup
s,t∈[a,b]

Vn(s, t, cn) ≤ 4 sup
(s,t)∈G

Vn(s, t, cn).(5.19)

Define G∗
n(s1, t1, s2, t2),G

∗(s1, t1, s2, t2) and V ∗
n (s, t, δ) in the same way as

Gn(s1, t1, s2, t2), G(s1, t1, s2, t2) and Vn(s, t, δ) except with ZijkI (Zijk ≤ Qn)

replacing Zijk . Then

sup
(s,t)∈G

Vn(s, t, cn) ≤ sup
(s,t)∈G

V ∗
n (s, t, cn) + An1 + An2,(5.20)

where

An1 = sup
(s,t)∈G

sup
|u1|,|u2|≤cn

|Gn(s, t, s + u1, t + u2) − G∗
n(s, t, s + u1, t + u2)|,

An2 = sup
(s,t)∈G

sup
|u1|,|u2|≤cn

|G(s, t, s + u1, t + u2) − G∗(s, t, s + u1, t + u2)|.

Using the technique similar to that in the proof of Lemma 1, we can show An1
and An2 is o(an) almost surely. To bound V ∗

n (s, t, cn) for fixed (s, t), we create
a further partition. Put wn = [Qncn/an + 1] and ur = rcn/wn, r = −wn, . . . ,wn.
Then

V ∗
n (s, t, cn) ≤ max−wn≤r1,r2≤wn

ξn,r1,r2

+ max−wn≤r1,r2≤wn

{G∗(s, t, s + ur1+1, t + ur2+1)

− G∗(s, t, s + ur1, t + ur2)},
where

ξn,r1,r2 = |G∗
n(s, t, s + ur1, t + ur2) − G∗(s, t, s + ur1, t + ur2)|.

It is easy to see that var(ξn,r1,r2) ≤ Mnβn for some finite M , and the rest of the
proof completely mirrors that of Lemma 1 and is omitted. �

LEMMA 4. Let Zijk be as in Lemma 3 and assume that (5.17) holds. Let
h = hn be a bandwidth and let βn = h4 + h3/γn1 + h2/γn2. Assume that h → 0
and β−1

n (logn/n)1−2/λ = o(1). For any nonnegative integers p,q , let

Dp,q,n(s, t) = 1

n

n∑
i=1

[
1

Nj

∑
k �=j

ZijkKh,(p)(Tij − s)Kh,(q)(Tik − t)

]
.

Then, for any p,q ,

sup
s,t∈[a,b]

√
nh4/(βn logn)|Dp,q,n(s, t) − E{Dp,q,n(s, t)}| = O(1) a.s.
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PROOF. Write

Dp,q,n(s, t)

=
n∑

i=1

[
1

Ni

∑
k �=j

ZijkI (Tij ≤ s + h)I (Tik ≤ t + h)

× Kh,(p)(Tij − s)Kh,(q)(Tik − t)

]

=
∫ ∫

(u,v)∈[−h,h]2

1

n

n∑
i=1

[
1

Ni

∑
k �=j

Zijk

× I (Tij ∈ [s + u, s + h])

× I (Tik ∈ [t + v, t + h])
]
dKh,(p)(u) dKh,(q)(v)

=
∫ ∫

(u,v)∈[−h,h]2
Gn(s + u, t + v, s + h, t + h)dKh,(p)(u)dKh,(q)(v),

where Gn is as in (5.18). Now,

sup
(s,t)∈[a,b]2

|Dp,q,n(s, t) − E{Dp,q,n(s, t)}|

≤ sup
s,t∈[a,b]

Vn(s, t,2h)

∫ ∫
(u,v)∈[−h,h]2

∣∣d{
Kh,(p)(u)

}∣∣∣∣d{
Kh,(q)(v)

}∣∣
= O[{βn logn/(nh4)}1/2] a.s.

by Lemma 3, using the same argument as in (5.12). �

PROOF OF THEOREM 3.3. Let Spq,Rpq,Ai and B be defined as in (2.3).
Also, for p,q ≥ 0, define

R∗
pq = Rpq − C(s, t)Spq − hRC(1,0)(s, t)Sp+1,q − hRC(0,1)(s, t)Sp,q+1.

By straightforward algebra, we have

(Ĉ − C)(s, t) = (A1R
∗
00 − A2R

∗
10 − A3R

∗
01)B

−1.(5.21)

By standard calculations, we have the following rates uniformly on [a + hR,b −
hR]2:

E(S00) = f (s)f (t) + O(hR), E(S01) = O(hR),

E(S10) = O(hR), E(S02) = f (s)f (t)ν2 + O(hR),

E(S20) = f (s)f (t)ν2 + O(hR), E(S11) = O(hR).
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By these and Lemma 4, we have the following almost sure uniform rates:

A1 = f 2(s)f 2(t)ν2
2 + O

(
hR + δn2(hR)

)
,

A2 = O
(
hR + δn2(hR)

)
,

(5.22)
A3 = O

(
hR + δn2(hR)

)
,

B = f 3(s)f 3(t)ν2
2 + O

(
hR + δn2(hR)

)
.

To analyze the behavior of the components of (5.21), it suffices now to analyze
R∗

pq . Write

R∗
00 = 1

n

n∑
i=1

[
1

Ni

∑
k �=j

{
YijYik − C(s, t)

− C(1,0)(s, t)(Tij − s)

− C(0,1)(s, t)(Tik − t)
} × KhR

(Tij − s)KhR
(Tik − t)

]
.

Let ε∗
ijk = YijYik − C(Tij , Tik). By Taylor’s expansion,

YijYik − C(s, t) − C(1,0)(s, t)(Tij − s) − C(0,1)(s, t)(Tik − t)

= YijYik − C(s, t) − C(Tij , Tik) + C(Tij , Tik)

− C(1,0)(s, t)(Tij − s) − C(0,1)(s, t)(Tik − t)

= ε∗
ijk + O(h2

R) a.s.

It follows that

R∗
00 = 1

n

n∑
i=1

1

Ni

∑
k �=j

ε∗
ijkKhR

(Tij − s)KhR
(Tik − t) + O(h2

R).(5.23)

Applying Lemma 4, we obtain, uniformly in s, t ,

R∗
00 = O

(
δn2(hR) + h2

R

)
a.s.(5.24)

By (5.22),

A1B
−1 = [f (s)f (t)]−1 + O

(
hR + δn2(hR)

)
.(5.25)

Thus, R∗
00A1B−1 = O(δn2(hR)+h2

R) a.s. Similar derivations show that R∗
10A2 ×

B−1 and R∗
01A3B−1 are both of lower order. Thus, the rate in (3.3) is obtained

for s, t ∈ [a + hR,b − hR]. As for s and/or t in [a, a + h) ∪ (b − h,b], similar
calculations show that the same rate also holds. The result follows by taking into
account of the rate of μ̂. �
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PROOF OF THEOREM 3.4. Note that

σ̂ 2 − σ 2 = 1

b − a

∫ b

a
{V̂ (t) − V (t)}dt − 1

b − a

∫ b

a
{Ĉ(t, t) − C(t, t)}dt.

To consider V̂ (t) − V (t) we follow the development in the proof of Theorem 3.1.
Recall (2.4) and let Q∗

r = Qr − V (t)Sr − hV (1)(t)Sr+1. Then, as in (5.13), we
obtain

V̂ (t) − V (t) = Q∗
0S2 − Q∗

1S1

S0S2 − S2
1

.

Write

Q∗
r = 1

n

n∑
i=1

1

mi

mi∑
j=1

KhV
(Tij − t){(Tij − t)/hV }r{Y 2

ij − V (t) − V (1)(t)(Tij − t)
}

= 1

n

n∑
i=1

1

mi

mi∑
j=1

KhV
(Tij − t){(Tij − t)/h}r{Y 2

ij − V (Tij )} + O(h2
V ),

which, by Lemma 1, has the uniformly rate O(h2
V + δn1(hV )) a.s. By (5.16), we

have

V̂ (t) − V (t) = 1

f (t)n

∑
i

1

mi

mi∑
j=1

Kh(Tij − t){Y 2
ij − V (Tij )}

+ O
(
h2

V + δ2
n1(hV )

)
a.s.

Thus,∫ b

a
{V̂ (t) − V (t)}dt = 1

n

n∑
i=1

1

mi

mi∑
j=1

{Y 2
ij − V (Tij )}

∫ b

a
KhV

(Tij − t)f −1(t) dt

+ O
(
h2

V + δ2
n1(hV )

)
a.s.

Note that ∣∣∣∣∫ b

a
KhV

(Tij − t)f −1(t) dt

∣∣∣∣ ≤ sup
t

f −1(t).

By Lemma 5 below in this subsection,∫ b

a
{V̂ (t) − V (t)}dt = O

(
(logn/n)1/2 + h2

V + δ2
n1(hV )

)
a.s.(5.26)

Next, we consider Ĉ(t, t) − C(t, t). We apply (5.21) but will focus on
R∗

00A1B−1 since the other two terms are dealt with similarly. By (5.23)–(5.25),

R∗
00A1B

−1 = 1

f (s)f (t)n

n∑
i=1

1

Ni

∑
k �=j

ε∗
ijkKhR

(Tij − s)KhR
(Tik − t)

(5.27)
+ O

(
h2

R + δ2
n2(hR)

)
a.s.
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Thus, ∫ b

a
{Ĉ(t, t) − C(t, t)}dt

= 1

n

n∑
i=1

1

Ni

∑
k �=j

ε∗
ijk

∫ b

a
KhR

(Tij − t)KhR
(Tik − t)f −2(t) dt

+ O
(
h2

R + δ2
n2(hR)

)
a.s.

Write ∫ b

a
KhR

(Tij − t)KhR
(Tik − t)f −2(t) dt

=
∫ 1

−1
K(u)KhR

(
(Tik − Tij ) + uhR

)
f −2(Tij − uhR)du.

A slightly modified version of Lemma 1 leads to the “one-dimensional” rate:

sup
u∈[0,1]

∣∣∣∣∣1

n

n∑
i=1

1

Ni

∑
k �=j

ε∗
ijkKhR

(
(Tik − Tij ) + uhR

)
f −2(Tij − uhR)

∣∣∣∣∣
= O(δn1(hR)) a.s.

It follows that∫ b

a
{Ĉ(t, t) − C(t, t)}dt = O

(
h2

R + δn1(hR) + δ2
n2(hR)

)
a.s.(5.28)

The theorem follows from (5.26) and (5.28). �

LEMMA 5. Assume that ξni,1 ≤ i ≤ n, are independent random variables
with mean zero and finite variance. Also assume that there exist i.i.d. random vari-
ables ξi with mean zero and finite δth moment for some δ > 2 such that |ξni | ≤ |ξi |.
Then

1

n

n∑
i=1

ξni = O
(
(logn/n)1/2)

a.s.

PROOF. Let an = (logn/n)1/2. Assume that ξni ≥ 0. Write

ξni = ξni� + ξni≺ := ξniI (|ξni | > a−1
n ) + ξniI (|ξni | ≤ a−1

n ).

Then∣∣∣∣∣ 1

ann

n∑
i=1

ξni�
∣∣∣∣∣ ≤ 1

ann

n∑
i=1

|ξni�|δ|ξni�|1−δ ≤ aδ−2
n

1

n

n∑
i=1

|ξi |δ → 0 a.s.
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by the law of large numbers. The mean of the left-hand side is also tending to
zero by the same argument. Thus, n−1 ∑n

i=1(ξni� − E{ξni�}) = o(an). Next, by
Bernstein’s inequality,

P

(
1

n

n∑
i=1

(ξni≺ − E{ξni≺}) > Ban

)
≤ exp

{
− B2n2a2

n

2nσ 2 + (2/3)Bn

}

= exp
{
− B2 logn

2σ 2 + (2/3)B

}
,

which is summable for large enough B . The result follows from the Borel–Cantelli
lemma. �

5.3. Proof of Theorem 3.6. Let � be the integral operator with kernel R̂ − R.

LEMMA 6. For any bounded measurable function ψ on [a, b],
sup

t∈[a,b]
|(�ψ)(t)| = O

(
h2

μ + δn1(hμ) + h2
R + δn1(hR) + δ2

n2(hR)
)

a.s.

PROOF. It follows that

(�ψ)(t) =
∫ b

s=a
(Ĉ − C)(s, t)ψ(s) ds −

∫ b

s=a
{μ̂(s)μ̂(t) − μ(s)μ(t)}ψ(s) ds

=: An1 − An2.

By (5.21),

An1 =
∫ b

s=a
(A1R

∗
00 − A2R

∗
10 − A3R

∗
01)B

−1ψ(s) ds.

We focus on
∫ b
s=a A1R

∗
00B

−1ψ(s) ds since the other two terms are of lower order
and can be dealt with similarly. By (5.23) and (5.25),∫ b

s=a
A1R

∗
00B

−1ψ(s) ds

= 1

f (t)n

n∑
i=1

1

Ni

∑
k �=j

ε∗
ijkKhR

(Tik − t)

∫ b

s=a
KhR

(Tij − s)ψ(s)f (s)−1 ds

+ O
(
h2

R + δ2
n2(hR)

)
.

Note that∣∣∣∣∫ b

s=a
KhR

(Tij − s)ψ(s)f (s)−1 ds

∣∣∣∣ ≤ sup
s∈[a,b]

(|ψ(s)|f (s)−1)

∫ 1

u=−1
K(u)du.
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Thus, Lemma 1 can be easily improvised to give the following uniform rate over t :

1

f (t)n

n∑
i=1

1

Ni

∑
k �=j

ε∗
ijkKhR

(Tik − t)

∫ b

s=a
KhR

(Tij − s)ψ(s)f (s)−1 ds

= O(δn1(hR)) a.s.

Thus, ∫ b

s=a
A1R

∗
00B

−1ψ(s) ds = O
(
δn1(hR) + h2

R + δ2
n2(hR)

)
a.s.,

which is also the rate of An1. Next, we write

An2 = μ̂(t)

∫ b

s=a
{μ̂(s) − μ(s)}ψ(s) ds − {μ̂(t) − μ(t)}

∫ b

s=a
μ(s)ψ(s) ds,

which has the rate O(h2
μ + δn1(hμ)) by Theorem 3.1. �

PROOF OF THEOREM 3.6. We prove (b) first. Hall and Hosseini-Nasab (2006)
give the L2 expansion

ψ̂j − ψj = ∑
k �=j

(λj − λk)
−1〈�ψj,ψk〉φk + O(‖�‖2),

where ‖�‖ = (
∫∫ {R̂(s, t) − R(s, t)}2 ds dt)1/2, the Hilbert–Schmidt norm of �.

By Bessel’s inequality, this leads to

‖ψ̂j − ψj‖ ≤ C(‖�ψj‖ + ‖�‖2).

By Lemma 6 and Theorem 3.3,

‖�ψj‖ = O
(
h2

μ + δn1(hμ) + h2
R + δn1(hR) + δ2

n2(hR)
)
,

‖�‖2 = O
(
h4

μ + δ2
n1(hμ) + h4

R + δ2
n2(hR)

)
a.s.

Thus,

‖ψ̂j − ψj‖ = O
(
h2

μ + δn1(hμ) + h2
R + δn1(hR) + δ2

n2(hR)
)

a.s.,

proving (b).
Next, we consider (a). By (4.9) in Hall, Müller and Wang (2006),

ω̂j − ωj =
∫ ∫

(R̂ − R)(s, t)ψj (s)ψj (t) ds dt + O(‖�ψj‖2)

=
∫ ∫

(Ĉ − C)(s, t)ψj (s)ψj (t) ds dt

−
∫ ∫

{μ̂(s)μ̂(t) − μ(s)μ(t)}ψj(s)ψj (t) ds dt + O(‖�ψj‖2)

=: An1 − An2 + O(‖�ψj‖2).
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Now,

An1 =
∫ ∫

(A1R
∗
00 − A2R

∗
10 − A3R

∗
01)B

−1ψj(s)ψj (t) ds dt.

Again it suffices to focus on
∫∫

A1R
∗
00B

−1ψj(s)ψj (t) ds dt . By (5.23) and (5.25),∫ ∫
A1R

∗
00B

−1ψj(s)ψj (t) ds dt

= 1

n

n∑
i=1

1

mi(mi − 1)

∑
k �=j

ε∗
ijk

∫ ∫
KhR

(Tij − s)KhR
(Tik − t)

× ψj(s)ψj (t){f (s)f (t)}−1 ds dt

+ O
(
h2

R + δ2
n2(hR)

)
a.s.,

where the first term on the right-hand side can be shown to be O((log /n)1/2) a.s.
by Lemma 5. Thus,

An1 = O
(
(log/n)1/2 + h2

R + δ2
n2(hR)

)
.

Next, write

An2 =
∫

{μ̂(s) − μ(s)}ψj(s) ds

∫
μ̂(t)ψj (t) dt

+
∫

μ(s)ψj (s) ds

∫
{μ̂(t) − μ(t)}ψj(t) dt,

and it can be similarly shown that

An2 = O
(
(log/n)1/2 + h2

μ + δ2
n1(hμ)

)
a.s.

This establishes (a).
Finally, we consider (c). For any t ∈ [a, b],

ω̂j ψ̂j (t) − ωjψj (t)

=
∫

R̂(s, t)ψ̂j (s) ds −
∫

R(s, t)ψj (s) ds

=
∫

{R̂(s, t) − R(s, t)}ψj(s) ds +
∫

R̂(s, t){ψ̂j (s) − ψj(s)}ds.

By the Cauchy–Schwarz inequality, uniformly for all t ∈ [a, b],∣∣∣∣∫ R̂(s, t){ψ̂j (s) − ψj(s)}ds

∣∣∣∣ ≤
{∫

R̂2(s, t) ds

}1/2

‖ψ̂j − ψj‖

≤ |b − a|1/2 sup
s,t

|R̂(s, t)| × ‖ψ̂j − ψj‖

= O(‖ψ̂j − ψj‖) a.s.
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Thus,

ω̂j ψ̂j (t) − ωjψj (t) = O
(
h2

μ + δn1(hμ) + h2
R + δn1(hR) + δ2

n2(hR)
)

a.s.

By the triangle inequality and (b),

ωj |ψ̂j (t) − ψj(t)|
= |ω̂j ψ̂j (t) − ωjψj (t) − (ω̂j − ωj )ψ̂j (t)|
≤ |ω̂j ψ̂j (t) − ωjψj (t)| + |ω̂j − ωj | sup

t
|ψ̂j (t)|

= O
(
(logn/n)1/2 + h2

μ + δn1(hμ) + h2
R + δn1(hR) + δ2

n2(hR)
)

a.s.

Note that (logn/n)1/2 = o(δn1(hμ)). This completes the proof of (c). �
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