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Uniform. convexity of Banach spaces 1({p;})

by
K. SUNDARESAN (Pittsburgh, Penn.)

The class of Banach sequence spaces I({p;}) studied originally by
Nakano [4] has received attention in some of the recent papers. Klee
[8] studied bounded summability property in the spaces I({p;}) while
Waterman et al. [6] characterized reflexive I({p;}) spaces. In the present
note we sharpen the main theorem in (6] by showing that the hypo-
thesis in that theorem provides a characterization of uniformly convex
U({p;}) spaces and that a reflexive I{{p;}) space is uniformly convex. We
accomplish the proofs of these results withount appealing to the theorem
in [6].

Let {p;} be a sequence of real numbers 1< p; < co. Then I({p;})
iz the set of all real sequences % such that

1
D oy < oo
=5 P
for some a > 0 depending on «. It is verified that with the usual defini-
tion of sum of two sequences and scalar multiple of a sequence the set
L({p;}) is & real vector space. Further if for m<l({p;})

1 -
(*) Mw) = > — lal™,

g; P
then M is a modular on I({p;}). For a detailed account of modulars on
vector spaces we refer o Nakano [4]. If M is & modular on a vector space
the norm induced by the modular M iz given by the formula

1
flel mi{ :
The space I{{p,}) under the norm induced by the modular M defined
in (*) is a Banach space. )
Before proceeding to the main result of this note we recall some
terminology from Nakano [5] concerning modulars and state a theorem
useful in the subsequent discussion,

£>0, M(Em)él}.
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Let M be a modular on & vector space E and let the norm induced
by M be denoted by ||-||. A vector meH is said to be finite if M (i) < oo
for all real valnes of 2. The modular M is said to be findte if every vector
@« Bigfinite. The modular M is said to be uniformly finite (uniformly simple)if

( Inf M{£x) >0)
Mia)=1

sup M (Ex) < o
Miz)<1

for every real number £.

The modular M is said to be uniformly conver if corregponding to
any pair of positive real numbers #, ¢ there exists a & > 0 such that M ()
S MY, Ma—y)=ze=>,

M(”—;r—y) < M (@) + M(T)]— 6.

For a definition of uniformly convex Banach spaces, see Day [2]. The
theorem which is stated below relates the uniform convexity of the mo-
dular M with the uniform convexity of the norm induced by M.

THEOREM (Nakano). If a modular M is uniformly convem, uniformly
fimite and uniformly simple, then the norm induced by M s uniformly
CONVOT .

For a proof see Theorem 3 on p. 2%7 in Nakano [5].

We proceed next to the main theorems of this note. Let P be the
set of positive integers. If @ = P we dencte by M, the function on 7({p,})
defined by

1
- Imn[p" .

My(z) = 2
neQ

We note M, is a econvex function. We further recall the following
Inequalities:

() I£ p>2, then

la+DIP+ la— b7 < 27~ [Jal+ [b}7]
for ‘any two real numbers g, b.
(i) ¥ L <p<2, then
a3 pp—1) | a—b PPla—b[F _ lap- b
2 5 Tl |3 ST 2

with a, b as in (i,).

For a proof of (i;) see Clarkson [1]. (i;) follows from the Taylor
expansion of (1-+t)? for small %

TEEOREM 1. The Banach space L({p;}} is uniformly convew zf and

only if

() 1 <infp < supp; < oo.
izl
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Proof. Let the sequence {p;};., satisfies the inequality stated in (*).
Thus there exist real numbers 4 and B such that 1 < 4 < p; < B < o0. We
proceed to verify that the modular M iz unniformly convex, uniformly
finite and uniformly simple. Let 7, s be two positive numbers and
z, ¥ <l({p;}) such that

Mn<r, My)sr and Mz—y)>-

Let us partition the set of positive integers into sets E, F' defined
by neE if p, > 2 and n < Fif p, < 2. We note that M (s) = Mg (z)+Mp(2)
for all @el({p;}). Thus M (x—y)> & implies either My(z—y) > 2 or
Mp(z—y) = =[2.

Case 1. Let My(o—vy) = ¢/2. Since p, < B

r—Y

Further since, for ne ®, p, >
2+
1“5 a1 ("

Now noting that M, is a convex function it is verified using the
above inequalities that

1 &
= 2_3ME(“’-'?/) = BT

2, it follows from the inequality (i,) that

y) < H[ M (o) + M),

T e N e
#+y &
>l g

Case 2. Let Mp(rx—y) 2
of the ne<@ such that

£/2. Let @ be the subset of F consisting

[T — 5.l = O (l,] -+ Y]}
where ¢ = Min(3}, /87). With &, = F ~ @ it is verified that,

Dt < (@ o+ )

nady neGy
20 [C(jay]+ lya) TP
= 2
nnﬂo ‘p'll

2%
< D s lI0m, Pt 1085172

nely P
< 3 M (2ex) + M (2ey)].


GUEST


230 K. Sundaresan

<1and M), M) <r

M 20y M (20y) < dor
Thus 1% is verified that

1
Z ?l%"’ﬂnlp" <2<

neliy "

Sinee 0 < 2¢

since 0 K —

o

Since My (2—y) 2= ¢/2 it follows from the definition of @, that

1
(re) Dt alPe > el

ne@ it

Then from inequality (i,) it follows that

)2

1
(o) 5 [Mg(@)+Maln)] = M, p

Since for ne@, p, < 2 it is verified

m—_
ol

But from (=) it follows that

1
ZMa(m‘?/)-

2y €
Ml—| = —.
"( 2 )/ 16
Thus ineguality (s} yields

(4-—1)ee
32

( zt+y

1
3 [My(a)+ Ma(y)] = Mg 5

)+

Noting that the funetion M, is convex it is deduced from the above

inequality that

1
g[M(w)+M(y)]>M ( +y)+MP~G(-’ﬂ;y)+ (A;;)ca

_ 2ty (A—1)ece
“”M( 2 )"“ 3z '

where P is the set of posltlve integera.
Thus ehoosing

; e (A—1)ee
b = Min g, 1)

it iy verified that the modular M ig unifo_rmly GONYex.

cm

Uniform convewily 231

The modular M is uniformly finite for if § iz the function defined

on the real line by setting 8(&) = |&F it |&] = 1 and §(&) = [&1*if [¢] <1
it is verified that M (&x) < 8(&) M (z). Thus Sup M(&x) < S(&).
H@<1

Next we proceed to verify that M is uniformly mmple Let L be
the function defined on the real Line by setting L(&) = |&* if ¢ =
and L(&) = |#® if |&| <1. Then it follows thab M(fx)>1}(§) (m)
Hence M is uniformly simple. Thus it follows from Nakano’s theorem
that the norm induced by M is uniformly convex.

We next proceed to the Converse of the above theorem.

TamoREM 2. If I({p;}) is uwiformly conves, then 1 <lim infp;
< limsupp; < oo,

Proof. If possible let 1({p,}) be uniformly convex aud liminfp, = 1.
Thus there exists an infinite subsequence {p} of {p;} such that p, — 1.
By considering the vectors z<I({p;}) such that a, =01 n =4 for some
j it is seen that the Banach space I{ {ph}) is 1some’or10a]lv 1somorphlc
with a subspace of I{{p,}). Thus I({p;}) is uniformly convex. Hence it
is a reflesive Banach space. However, since p; —>1 by Theorem 2 in
Nakano [4] the weak sequential convergence a.nd norn, convergence
coincide in I( {p . Since l({p 1) is reflexive the unit cell in I( {pl 1) is
weakly compact Thus it fo]lows readily from Eberlein theorem (seo
[2], p- 51) that the unit cell in I({p;, }) is compact in the norm topology.
Henee 1{ {pl} is finite dimensional contra.d.wtmg that {p1} iz an infinite
sequence. Hence 1 < infp,;. If imsupp; = oo it ig verified as in Lemma 1
in [6] that {({p;}) contains a subspace isomorphic to I* contradicting
that the space I({p;}} is reflexive. The proof of Theocrem 2 is complete.

In conclusion ‘we note that from Theorem 1 and proof of Theorem
2 in this note it is readily inferred that the Banach space I{{p,}) iz uniformly
convex if and only if it is reflexive.
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