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Uniform distribution, distan
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tation problemsfor geometri
 features pro
essingXAVIER PENNEC, NICHOLAS AYACHEINRIA, B.P. 93, 2004 route des Lu
ioles, 06902 SOPHIA ANTIPOLIS Cedex, FRANCEXavier.Penne
�sophia.inria.fr
Abstract. Complex geometric features such as oriented points, lines or 3D frames are increasingly used in image
processing and computer vision. However, processing these geometric features is far more difficult than processing

points, and a number of paradoxes can arise. We establish in this article the basic mathematical framework required
to avoid them and analyze more specifically three basic problems: (1) what is a random distribution of features, (2)

how to define a distance between features, (3) and what is the “mean feature” of a number of feature measurements ?

We insist on the importance of an invariance hypothesis for these definitions relative to a group of transformations
that models the different possible data acquisitions. We develop general methods to solve these three problems and

illustrate them with 3D frame features under rigid transformations.

The first problem has a direct application in the computation of the prior probability of a false match in classical
model-based object recognition algorithms. We also present experimental results of the two other problems for

the statistical analysis of anatomical features automatically extracted from 24 three dimensional images of a single

patient’s head. These experiments successfully confirm the importance of the rigorous requirements presented in
this article.

keywords: geometric features, transformation groups, uniform distribution, invariant measure, invariant dis-
tance, expected features, mean features.1. Introdu
tion
Many algorithms in computer vision and object recog-

nition deal with simple geometric features like points,

for example the Iterative Closest Point [4, 31], the ge-

ometric hashing [18, 30, 26], and the alignment algo-

rithm [3, 13]. On the other hand, models of the real

world often lead to the consideration of more com-

plex features: lines [9], planes, oriented points [6],

frames [21, 22], etc. The handling of these features

raises some problems, the first one being their repre-

sentation, and can lead to paradoxes such as Bertrand’s

paradox concerning geometric probabilities. We have

previously shown [23] that additive noise is not suited

for describing the uncertainty of frames and should

be replaced by a “compositive” model of noise. Sev-

eral other examples are presented in this article and

demonstrate the need for particular attention when

dealing with geometric features.

We investigate in this article three basic problems

that often arise when processing geometric features

or in the statistical analysis of these algorithms. The

first one is the quantification of the probability of oc-

currence of an event when some geometric features

are randomly distributed. A direct application is the

quantification of the false positives rate in matching

algorithms. The second problem concerns the dis-

tance between features. This is one of the opera-

tions mostly used in image processing algorithms and

a change in its definition often leads to a different re-

sult. Last but not least, we analyze the notion of a

mean feature, which turns out to be a difficult problem.

For instance, if we want to obtain the mean 3D rota-

tion, we can compute either the mean rotation matrixR = 1nPi Ri, the mean quaternion q = 1nPi qi by

using the unit quaternion representation, or the mean

rotation vector r = 1nPi ri.
These three methods give different and incorrect re-

sults: the two first are not even rotations and none of

them is stable with respect to a reference frame shift.

In order to give a meaningful solution to each of

these problems, we have to consider them in a geomet-

ric framework. Indeed, in order to compare geometric

objects in different locations (for instance, extracted

from images with different view-points), we implic-

itly consider a set a space transformations that allows
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Fig. 1. Comparison of geometric objects: we can say that all three
triangles are similar (relative to similarity transformations); or that
only A and B are congruent (relative to rigid transformations); or
that they are all different (relative to translations).

us to identify these objects. The choice of this set de-

termines the properties of our objects, as in figure (1).

F. Klein formalized this idea in its “Erlangen pro-

gram” [17]: let M be a manifold of elements that we

call points and G a set of operations on these points

forming a group. The geometry of M for the groupG is the set of invariant properties of the manifold for

the group action. A first application of this geometric

framework is given with geometric probabilities (see

[27] and section 3), where we need to define an invari-

ant measure on random features (under the considered

transformation group) in order to obtain a meaningful

result. Similarly, for the distance and the mean fea-

ture, we have to design operators that are compatible

with the action of a given transformation group.

The article is organized as follows. Section 2 fo-

cuses on the nature of geometric features, namely

“points” on a manifold. We investigate transforma-

tion groups (rigid, affine. . . ) that operate on this man-

ifold. In Section 3, we investigate the standard geo-

metric probabilities and, in particular, how to define

an invariant measure on random features. This leads

to the computation of the prior probability of a false

match in recognition algorithms. Section 4 is devoted

to invariant distances and section 5 to their use in the

Fréchet expectation framework in order to provide a

stable definition of the expected and average features.

In the sixth and final section, we present an experimen-

tal application of the theory to the data fusion problem.2. Sets of geometri
 features and sets oftransforms2.1. Geometri
 features: Manifolds and repre-sentations
Geometric features are generally defined as sets of

points in the plane or 3D space, and the set of all

geometric features of a given type can be described

by a parameter p and a function �(p; x) which asso-

ciates the parameter p to the geometric feature (the set

fx 2 IRn = �(p; x) = 0g). The function � describes

a particular type of geometric feature (lines, planes,

curves, triangles. . . ) with a specific representation p.

For instance, 3D oriented planes can be represented byp = (n; d) where n is a unit vector (the normal to the

plane) and d the distance to the origin. The equation

of “plane p” is then:�(p; x) = hn j x i � d = 0
Usual sets of geometric features, such as lines,

curves, surfaces. . . are regular and constitute differen-

tial manifolds. This means that the set is locally dif-

feomorphic to a vector space IRm (i.e there exists,

at each point of the manifold M, a locally differen-

tiable one-to-one mapping from M to IRm); m being

the dimension of the manifold. In the above exam-

ple, we can see that the parameter p is four dimen-

sional with a quadratic constraint (which is differen-

tiable), and planes are then a 3D-manifold equivalent

to S2 � IR+ (S2 is the unit sphere in 3D). Despite the

rather complex mathematical formulation, this simply

means that manifolds are not traditional vector spaces,

but that locally they may be treated as if they were.

Spheres or smooth surfaces are such manifolds, as is

the set of rotation matrices which is equivalent to P3
(the projective space of IR4) by means of unit quater-

nions [22, 2]. Points trivially constitute a manifold

since they already are a vector space. Another inter-

esting type of features is oriented points, which are

points associated with a vector. Such features can be

extracted from a smooth surface, for instance, where

the normal is attached at each point of the surface. A

simple representation is given by u = (x; n) where x
is the position and n a unit vector. The manifold of

oriented points is thus equivalent to IR3 � S2 whereS2 is the unit sphere of the 3D space.

There are often numerous ways to represent a given

manifold, with different properties. For instance, we

can define a manifold as a subspace of IRk with differ-

entiable constraints and a one-to-one correspondence

between features and parameters: this proves that the

set of features is a differential manifold. For other pur-

poses, in particular differentiation, it is necessary to

have a minimal representation (where the dimension

of the parameter is the dimension of the manifold), or

more generally a set of charts forming an atlas of the

manifold, exactly the same way we need several charts

to represent the earth surface in a continuous way ev-

erywhere. Each chart is defined by a one-to-one dif-
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ferentiable map 'i(p) from the representation into the

manifold and an open definition domainDi. The set of

charts must cover the manifold and must overlap each

other so that it is possible to move from one chart to

another. A study of different representations for 2D

and 3D lines, planes and rotations is presented in [2].

We only assume for the moment that we have a one-to-

one differentiable representation of the manifold, and

we identify this representation with the manifold.2.2. Transformations: Lie groups
There are a number of familiar transformations:

translations, rotations, similarities, affine trans-

forms. . . More generally, a transformation of a set X
is a one-to-one map of X onto X . If g is a transfor-

mation, we denote by g ? x = g(x) the action of the

transformation on an element x 2 X , and by g(-1) the

inverse map. If g1 and g2 are two transformations, the

map g(x) = g2(g1(x)) is also a transformation: the

composition of g1 and g2 (g = g2 Æ g1). The set of

all transformations with these operations is called the

general transformation group of set X , and any sub-

group G is a transformation group of X .

The important class of Lie groups is obtained ifG has a separate topological structure (a Hausdorff

space) and the composition and inversion maps are

differentiable (G is then a differentiable manifold). In

fact, most usual transformation groups are Lie groups

if they are continuous (in the non-discrete sense) and

have reasonable operations. In this article, we use the

3D rigid motion group as an application example. An

element of this group can be defined as the composi-

tion of a rotation with a translation. It can be repre-

sented by f = (R; t), where the translation t belongs

to IR3 and R is a rotation matrix (a 3x3 matrix satis-

fying R:R> = R>:R = Id and det(R) = +1), and

hence belongs to the special orthogonal group SO3.

The inverse and compose maps are easily written (“.”

is the matrix multiplication):f (-1) = (R> ; R>:t)f = f2 Æ f1 = (R2:R1 ; R2:t1 + t2)

2.3. From transformation of the Eu
lidean spa
eto feature transformation
In the case of geometric objects, the transformation

usually applies to the 2D plane or the 3D space (or

more generally IRn), but we wish to work directly

on features and thus must take particular care that

their nature is preserved during transformations. Con-

sider, for instance, that two orthonormal axes are no

longer orthonormal after a general affine transforma-

tion. The first constraint is then for the manifold M to

be globally invariant under the considered transforma-

tion group G. We can then define the image of the

feature p, satisfying �(p; x) = 0, by a transforma-

tion g 2 G as being the feature p0 2 M realizing�(p0; g ? x) = 0. We write: p0 = g ? p. With this def-

inition, the group G is also a transformation group of

the manifoldM. It can be very tricky to make explicit

the action on some geometric features with some rep-

resentations and it can lead to highly non-linear trans-

formations. However, usual cases are generally sim-

ple: in the case of oriented planes presented above un-

der rigid motion, we have�(p; f ? x) = hn j R:x+ t i � d= 
R>:n j x�+ hn j t i � d
which means that f ? p = (R>n; d � hn j t i). Simi-

larly, the action of a rigid transform f on an oriented

point u = (x; n) is:u0 = f ? u = (R:x+ t ; R:n)
For the applications studied in this article, we are

also interested in a third type of feature: frames. A

frame is defined by a point with an orthonormal trihe-

dron. We have already noted that we cannot use the

affine group since orthonormal trihedra would not be

conserved, but rigid motions are appropriate. A par-

ticularity of frames is that they are equivalent to rigid

transformations. Indeed, any frame defines a basis for

3D space so that we can represent each frame by the

rigid transformation which map the canonical basis to

itself. It is easy then to verify that the composition and

the action are equivalent.2.4. Homogeneous features
A special kind of relation between the manifold and

the group turns out to be very important: let O 2 M
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Fig. 2. Chosen origins for frames, oriented points and points, and their transformation by a rigid motion.

be an element called the origin. The manifold M is

transitive or homogeneous for the group G if any other

element of the manifold can be obtained by a transfor-

mation of G, i.e. if G?O = fq = g?O=g 2 Gg =M.

This means that the features we consider have no in-

variants. In fact, we assume that we can split the

features into an invariant part (which we do not con-

sider here) and a variable part under the transforma-

tion group (it is not clear whether it is always possible

but we did not have any problems with the features we

studied).

In the case of homogeneous features, we identify

the manifold with equivalence classes of group ele-

ments in the following way. Let H be the subset of

transforms that leave O invariant:H = fh 2 G = h ?O = Og (1)H is a group and is called the isotropy or stability

group of G at O. The left cosets g Æ H can be iden-

tified with elements of M. Indeed, if g ?O = x, theng Æ H is the set of transformations which map O to x.

We write: Fx = fg 2 G = g ?O = xg (2)

For instance, if we consider point features with ori-

gin O = 0 and rigid transformation, we have H =f(R; 0) = R 2 SO3g and Fx = f(R; x) = R 2 SO3g
where R is any rotation. For frame, taking as the ori-

gin the canonical basis (O = ( Id; 0)), then H and all

its cosets are reduced to a single point: Ff = ffg.

This special case where the manifold is equivalent to

the group leads to important simplifications in the the-

ory. As an intermediate example, we consider oriented

points: we set the origin to O = (0; e3). This origin is

invariant by all rotations Rz around third axis e3. Thus

the isotropy group is: H = fRz 2 SO3 = R:e3 = e3g.

2.5. Ba
k to the representation problem: 3D ve
-torial rotations, frames and points
It is well known that a 3D rotation matrix can be char-

acterized by an angle � around an axis n (unit vec-

tor), but since the coordinates of n are constrained,

this couple is not minimal (the dimension of the rep-

resentation is 4 instead of 3); moreover, the axis is not

defined for the identity transformation. The rotation

vector r = �:n is always defined (in a multiple way

since � is modulo 2�) and differentiable (see [23] for

the equations). In order to define an atlas of rotations,

we need in fact four charts.

Chart 1: Non reflection rotations are represented by

rotations vectors r from the open ball B3(0; �).
Chart 2,3 and 4: Non identity rotations with axis not

orthogonal to the x axis (respectively y, z) are repre-

sented by rotation vectors r from the open half ballB3x+ = fr 2 B3(0; 2�) = rx > 0g (respectively B3y+ ,B3z+).

In theory we need to handle all four charts, but in

practice only the principal chart (the first) is needed

if we take care that, at the boundary of the domain,r = �:n and r0 = ��:n are identical. Let R(r) and

r(R) denote the mappings between rotation vectors

and matrices, we can now write directly the composi-

tion and inversion laws on the representation:r(-1) = r(R(r)>)r2 Æ r1 = r(R(r2):R(r1))
Frames and motions are represented by a rotation vec-

tor and a translation: for convenient notation, we writef = (r; t) and consider it as a column vector. In this

framework, the representation of a point of the Eu-

clidean space is denoted x (the standard coordinates).

The canonical geometric operations can then be writ-

ten:� Composition: f = f2 Æf1 = (r2 Ær1 ; r2 ?t1+t2)
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Fig. 3. Three methods for computing the probability that a “random” chord of a circle has a length greater than the side of an inscribed

equilateral triangle. From left to right, the methods give a probability of 13 , 12 and 14 .� Inversion: f (-1) = (r(-1) ; r(-1) ? (�t))� Action on a point: x0 = f ? x = r ? x+ t� Cosets of points:Fx = ffx = (r ; x) = R(r) 2 SO3g� Action on a frame: f = f2 ? f1 = f2 Æ f1� Cosets of frames: Ff = ffg.3. Classi
al Geometri
 probabilities
The first class of problems in geometric probabil-

ity is to quantify the probability of occurrence of an

event when some geometric elements are randomly

distributed. Bertrand’s paradox illustrates the need to

consider invariance by a transformation group in or-

der to obtain a single and well defined result. In fact,

the problem lies in the notion of a uniform distribu-

tion (or measure). Some recent results in Lie group

theory provide a mean for computing the left invariant

measure on the group G, which induces the invariant

measure on homogeneous manifolds. An application

is presented with the generalization of the false posi-

tives analysis.3.1. Bertrand's paradox
The problem raised by J. Bertrand in 1907 consists of

finding the probability that a “random” chord of a cir-

cle has a length greater than the side of an inscribed

equilateral triangle. Without loss of generality, we can

fix the radius to 1 and the side length of the triangle is

then
p3. This problem can be tackled by at least three

methods, which are illustrated in figure 3.Method 1: By definition, a chord intersects the cir-

cle in two points, and we may assume that these two

points are equally and independently distributed on the

circle. Assume that one of the points is A in figure 3.

Then the second point has to lie between A0 and A00
in the circle for the chord to be greater than the trian-

gle side. This is just 13 of the circumference and the

searched probability is then 13 .Method 2: A chord is characterized by its distancep to the center (between 0 and 1) and its orientation �
w.r.t. a fixed line (between 0 and 2�). If we draw the

equilateral triangle with a side parallel to the chord, we

can see that the distance d has to be less than 12 in order

to have a chord length greater than
p3. By assuming a

uniform orientation and distance to the origin, we find

a normalized probability of 12 .Method 3: A chord is uniquely defined by the or-

thogonal projection I of the circle center onto it. It

has to lie inside the disc of radius 12 in order to have

a sufficient length. So, assuming I is uniformly dis-

tributed over the interior of the circle, the normalized

probability is 14 .

The above three solutions are correct but they do not

refer to the same notion of uniformity in the way we

choose the chord. Using the (p; �) representation (de-

scribed in the second method), we can compute with

[15] that the probability measures are respectivelyd�1 = dp:d�2�p1�p2 d�2 = dp:d�2� d�3 = p:dp:d��
The solution to this problem is to impose an invari-

ance constraint, or more precisely to define the notion

of uniformity: for instance, uniform on IR means that

the probability for a point to lie on an interval ℄x; x+d[
is the same for all x. This is basically an invariance

by translation. In the same way, and since we can
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only compare geometric objects with a transformation

group, we define the uniform (or invariant) measure

(the infinitesimal volume element) as the measure be-

ing invariant by the action of any fixed element f of the

group. Let dM(x) be such a measure (M stands for

manifold); this means that dM(f ? x) = dM(x) for

any x. The invariant measure can be sought directly on

a given representation [15], but a general formalism is

developed in [27] to extract it from the left-invariant

measure dLG of the group G. In the case of Bertrand’s

paradox, Poincaré showed in 1912 [25] that only the

second measure is invariant under the action of rigid

transformations (rotation and translation), although all

three measures are invariant by rotations. Basically,

this means that the computed probabilities for the first

and third solutions would change if we translate the

reference frame, whereas the second solution would

stay 1/2, which is what was expected.3.2. Left and right invariant measures on a Liegroup (Haar measures)
We can require left invariance (dLG(gÆf) = dLG(f))
for any fixed g 2 G, or right invariance (dRG(f Æ g) =dRG(f)). Since the group acts on the left (the action

of the transformation f on the feature x is f ? x), we

are mainly interested in left-invariance and, from now

on, the left-invariant measure will be referred as the

invariant measure.
To be mathematically correct, we require that for

any continuous real function� on G with compact sup-
port, we have:8g 2 G Zf2G�(g Æ f):dLG(g Æ f) = Zf2G�(f):dLG(f)
If the group is locally compact, then [12] proves that

there exists only one left-invariant measure (up to a

scale factor) that verifies the above properties. This

measure is called the (left) Haar measure of the group.

In a symmetric way, there is also a unique right Haar

measure.

It is interesting to note that the left and right in-

variant measures are generally different; the group is

called unimodular if they are equal. A compact group

is always unimodular, but locally compact groups can

have different left and right Haar measures. For in-

stance, left and right Haar measures are identical onSO3, since the 3D rotation group is compact, and

the 3D rigid motion group is unimodular although the

group is only locally compact due to the introduction

of translations.

The left and right invariant measures can be gener-

ally computed from the Maurer-Cartan equations [27],

but a very interesting theorem allows easy computa-

tion in the case of a minimal representation: assume

that the definition domain of a chart almost covers the

group (since we integrate function and not distribu-

tions, we can “forget” a subset of the group that has

a null measure) and that the Jacobian of the left trans-

lation of the identity JL(f) exists and is continuous

almost everywhere. Then the invariant measure can be

written (see appendix A.1.1):dLG(f) = dfjJL(f)j (3)

withJL(f) = �(f Æ e)�e ����e= Id and jJ j = j det(J)j
The right-invariant measure can be derived in the

same way using the Jacobian JR of the right transla-

tion of the identity. Using this scheme, we can show

[24] that the uniform measure for rotations using the

rotation vector representation isdLG(r) = dRG(r) = sin2(�=2)�2 dr (4)

where � = krk. Thus, with our representation f =(r; t), the invariant measure on rigid transformations

is: dG (f) = dRG (f) = sin2(�=2)�2 dr:dt (5)3.3. Invariant measure on homogeneous mani-folds
We saw in section 2.4 how to identify the homoge-

neous manifold M with the quotient space G=H. We

can find, thanks to the above section, the (left) invari-

ant measures dLG and dLH on G and H, and writedLG = dM:dLH where dM is a measure on the

manifold M (or the quotient space G=H). Santalo

gives in [27] several forms of a necessary and suffi-

cient condition for dM to be an invariant measure (i.e.dM(g ? x) = dM(x)). Let e be an element of the

manifold M. One of them can be stated as follows
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(proof in appendix A.1.2):8h 2 H; ���� �(h ? e)�e ����e=O���� = 1 (6)

This means that the measure of the infinitesimal vol-

ume element at the origin remains unchanged under

any transformation that keeps the origin unchanged. If

this condition is not satisfied, then there is no invariant

measure on the manifold, otherwise we can compute

it (with a minimal representation of the manifold) in a

similar way to what we did for the group. Assume that

the definition domain of a chart almost covers the man-

ifold and that the Jacobian of the translation of the ori-

gin J(f) exists and is continuous almost everywhere.

Then the invariant measure is (the proof is obtained by

replacing (f Æ e) with (f ? e) in appendix A.1.1):dM(x) = dxjJ(fx)j (7)

with J(fx) = �(fx ? e)�e ����e=O and fx 2 Fx3.4. Pra
ti
al use: probability of a false mat
h
Assume that x is a uniform random feature in the first

image (characterized by a set of possible features I1).

What is the probability that this feature is accepted as

a match with feature y in the second image, under a

given global transformation f ?

If we characterize the possible matches for y by an

“error volume” Z(y) around y, we can write this prob-

ability as the conditional probabilityP (f ? x$ y) = P ((f ? x) 2 Z(y)jx 2 I1)P (f ? x$ y) = R(f?I1)\Z(y) dM(x)RI1 dM(x)= V ((f ? I1) \ Z(y))V(I1)
where V(X) is the “volume” of the set X . With the as-

sumption that the volumeV(Z(y)) is sufficiently small

with respect to the volume of the image, we can con-

sider that the transformed image I1 either contains the

whole set Z(y) or does not intersect it at all. This al-

lows us to approximate the above probability by

P (f ? x$ y) = "V (Z(y))V(I1)
with " = � 1 if f (-1) ? y 2 I10 otherwise

A desirable property for our “error volume” Z(y) is

that it should be comparable at every point (as we usu-

ally fix the same bound for error on all the points):

this means that, for any pair of points y and y0 on

the manifold, there exists a transformation f such thatf ? y = y0 and Z(y0) = f ? Z(y) (the error volume

is said to be homogeneous). A stronger hypothesis is

that for every transformation f , the error volume on

the transformed point is the transformation of the er-

ror volume: Z(f?y) = f?Z(y). The volume is said to

be isotropic in this case, and is completely determined

by its shape around the origin (see [24] for an analy-

sis of noise models). In both cases (homogeneity and

isotropy), the volume of the error volume is invariant:V (Z(y)) = V (Z(O)) = V0. The basic probability of

a false match P (f ? x $ y) = ":V0=V(I1) can now

be applied as usual in an analysis of the frequency of

false positives [10, 19, 11, 20].

As a practical example, we considered in [21] that

two frames are matched if the distance between their

origin is less than a threshold d0 and if the rotation

needed to adjust their trihedra has an angle less than

a threshold �0 (this angle is � = kr(-1)x Æ ryk), which,

in fact, is a bound on an invariant distance (see section

4.6). Thus the volume is invariant and can be com-

puted at the origin: a frame f = (r; t) is in the error

volume Z( Id) if � = krk < �0 and ktk < d0. Using

the invariant measure of equation (5), we can compute

the volume of the error zone:V0 = Z�<�0 Zktk<d0 dM(r; t)= �Z�<�0 sin2(�=2)�2 dr� : Zktk<d0 dt!V0 = [2�(�0 � sin(�0)℄ : �4�3 d30�
If we assume a cubic image of side l (256 for instance)

this gives a Euclidean volume VI = l3 for points in
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Fig. 4. Basic probability of a false match for trihedrons with a
bound on the angle for the adjustment rotation of theta. Since the
formula of the selectivity is multiplicative for frames, this curve is
also the gain in selectivity when using frames instead of just points.

which trihedrons are not constrained: the rotation vol-

ume is 2�2. Finally, we obtain the basic probability of

a false match:P (f ? x$ y) = ��0 � sin(�0)� � :"4�3 �d0l �3# "
We have isolated in the first term the probability of

a false match due to trihedra only, which reflects the

gain in selectivity when using frames instead of points.

This function is plotted in figure 4 and shows very in-

teresting results: even for a bound of �0 = �=2 =90 deg, more than 80% of the random matches are re-

jected. For a bound of �0 = �=10 = 18 deg, the prob-

ability of a false match drops to 0.0016: we would

have to divide the bound on the position by 10 to ob-

tain an equivalent selectivity using points only.4. Invariant Distan
es
The distance between two points is often used in ge-

ometric algorithms: the Iterative Closest Point algo-

rithm, developed in [4, 31] is the best example. An-

other classical example is the least-squares solution

for registration between two sets of matched points

(see section 4.2). All these algorithms can be extended

to homogeneous features in a straightforward way us-

ing a distance between features. However, it is highly

desirable that the results of these algorithms do not

rely on the chosen representation nor on the reference

frame of the physical space, as illustrated by the para-

dox of section (4.1).

Defining a distance directly on the manifold solves

for the representation problem, but only the use of an

invariant distance guarantees the stability of the results

with respect to the action of the transformation group.

We characterize in this section the properties of such

invariant distances for the transformation group and

the manifold. We give a general method to generate

X

Y d1d2

d3

0 1-1-2-4

1

Fig. 5. Three lines in the plane.

an invariant distance on the manifold from a metric on

the transformation space.4.1. The paradox of the 
losest line
With the paradox of Bertrand, we saw different rep-

resentations of 2D lines. In this section, we use an-

other minimal representation based on the line equa-

tion [2]: the equation of a 2D line is a:x+b:y+
 = 0.

In order to obtain a minimal representation, we need

to eliminate one parameter:� Chart 1: lines that are not parallel to the X axis

are represented by d = (a; p) 2 IR2 and have

equation: a:x+ y + p = 0.� Chart 2: lines that are not parallel to the Y axis

are represented by d0 = (a0; p0) 2 IR2 and have

equation: x+ a0:y + p0 = 0.

In the first chart, the line d = (a; p) cuts the Y axes

at the point (0;�p) and has a director vector (1;�a).
This is symmetric in the second chart: the line d0 =(a0; p0) cuts the X axes at the point (�p0; 0) and has a

director vector (�a0; 1).
We draw in figure 5 three lines. The problem is

to choose which line d2 or d3 is the closest one tod1. A definition of the distance that seems to be rea-

sonable is dist(d1; d2) =p(a1 � a2)2 + (p1 � p2)2.

The coordinates of the three lines in the first chart ared1 = (�1=2;�1), d2 = (�1;�1), d3 = (�1=4;�1),
and the distance between the lines d1 and d2 turns out

to be greater than the distance between the lines d1 andd3:

dist(d1; d2) = 1=2 and dist(d1; d3) = 1=4
Now if we consider the lines in the second chart, their

coordinates are d1 = (�2 ; 2), d2 = (�1 ; 1), d3 =(�4 ; 4) and the distances are
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dist(d1; d2) = p2 and dist(d1; d3) = 2p2
We have then the following paradox: d3 is the clos-

est line to d1 in one chart, and d2 is the closest one in

the second chart. Which chart gives the most reason-

able result ? In fact, visually, the line d3 is the closest

one: there is an angle of 12:5o between d1 and d3 ver-

sus an angle of 18:5o between d1 and d2.4.2. Using an invariant distan
e
Part of the above paradox can be raised by using a true

distance on the feature manifold M, and not a set of

distances in different charts. This means that the dis-

tance verifies the following axioms:� symmetry:8(x; y) 2 M2 dist(x; y) = dist(y; x)� positivity:8(x; y) 2 M2 dist(x; y) � 0� definite character:8(x; y) 2 M2 ( dist(x; y) = 0), (x = y)� triangular inequality: 8(x; y; z) 2M3
dist(x; y) + dist(y; z) � dist(x; z)

However, if such a distance on the manifold is in-

dependent of the considered chart, this is not suffi-

cient to ensure the stability of most results with re-

spect to a change of the reference frame of the physical

space (the action of a transformation on our features).

The solution to this problem is to choose a distance

which is invariant under the action of any transforma-

tion g 2 G: dist(x; y) = dist(g ? x; g ? y).
Consider for instance the classical method of com-

puting the transformation that maps a set of features xi
in one image to a set of features yi in another image:

this is the transformation that minimizes the sum of

squared distances C(f) =Pi dist2(f ?xi; yi). Let F
be the transformation minimizing this least square cri-

terion (we can assume for simplicity that it is unique,

but the same results hold for a set F of minima).

Assuming that the features xi are transformed by a

transformation g (x0i = g ? xi), the criterion becomesC 0(f) =Pi dist2(f ? x0i; yi)=Pi dist2((f Æ g) ? xi; yi)= C(f Æ g)
With or without the invariance constraint, the new re-

sult is F 0 = F Æ g. Now if we assume that the fea-

tures of the second image are globally transformed:y0i = g ? yi, then the criterion isC 00(f) =Pi dist2(f ? xi; y0i)=Pi dist2(f ? xi; g ? yi)
Here, we need the invariance property of the distance

to concludeC 00(f) =Pi dist2 ((g(-1) Æ f) ? xi; yi)= C(g(-1) Æ f)
This means that the new minimum is F 00 = g(-1) Æ F ,

which gives the expected result F = gÆF 00. The same

experiment can be done if both images are transformed

by the same transformation g (which means a global

change of the reference frame), and the invariance of

the distance is required to prove that the transforma-

tion found is F 000 = g(-1) Æ F Æ g, i.e. only the change

of the reference frame.4.3. Invariant distan
e on a manifold
Let x; y 2 M and g 2 G. The distance is invariant

if dist(x; y) = dist(g ? x; g ? y). This means in par-

ticular that this distance is completely defined by the

distance N(x) of a feature x with the origin: if we use

transformation f (-1)y or f (-1)x , we have

dist(x; y) = dist(f (-1)y ? x;O)= N(f (-1)y ? x) = N(f (-1)x ? y) (8)

The axioms of the distance are translated, under the

invariance assumption, into the three following prop-

erties:� 8fx 2 Fx : N(f (-1)x ?O) = N(x)
and thus 8h 2 H : N(h ? x) = N(x)� N(x) � 0 and (N(x) = 0), (x = O).� 8fx 2 Fx; fy 2 Fy :N(x) +N(y) � N(f (-1)y ? x) = N(f (-1)x ? y)

These properties are very close to those required in or-

der to define a norm on a vector space (without the

positive linearity). Thus we call N the “norm” of the

manifold. Note that we have so far defined the “norm”

on the manifold and not in a particular chart. In prac-

tice, we use a “principal chart”, centered around the

origin and covering almost the manifold. The “norm”N is defined in this chart, and when we have to use the

distance dist(x; y), we compute N(f (-1)y ? x).
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es on a Lie group
Assume that we work now on the transformation groupG. We can require the distance to be either left or

right invariant. As above, an invariant distance is de-

termined by a “norm” Ng on the group, satisfying the

following properties:� Ng(f (-1)) = Ng(f).� Ng(f) � 0 and (Ng(f) = 0), (f = Id).� Ng(f) +Ng(g) � Ng(g(-1) Æ f) = Ng(f (-1) Æ g).
The triangular inequality becomesNg(f) +Ng(g) � Ng(g Æ f (-1)) = Ng(f Æ g(-1))
for a right invariant distance. The corresponding left

and right invariant distances are

distL(f; g) = Ng(g(-1) Æ f) = Ng(f (-1) Æ g)
distR(f; g) = Ng(g Æ f (-1)) = Ng(f Æ g(-1))

We are interested here only in the left-invariant dis-

tance since it induces an invariant distance on an ho-

mogeneous manifold.4.5. Distan
e indu
ed on the manifold by thegroup distan
e
Let Ng be a norm on the group G. We define the in-

duced “semi-norm” on the homogeneous manifoldM
as N(x) = inf(h2H; fx2Fx) (Ng(h Æ fx))= inf(h1;h2)2H2 (Ng(h1 Æ fx Æ h2)) (9)

If the infimum of Ng(h1 Æ f Æ h2)) is reached for

every transformation f by (h1; h2) 2 H2, then the

semi-norm is separable and is thus a norm (see proofs

in appendix A.2). This property is always true if the

isotropy group H is compact but is not automatically

verified otherwise (for instance, there is no norm in-

duced on points by the similarities or affine transfor-

mations).

Assuming that we have a norm, the distance associ-

ated with this norm is automatically invariant and sat-

isfies

d(x; y) = infffx2Fx ; fy2Fyg ( distL(fx; fy))= inff(h1;h2)2H2g (Ng(h1 Æ f (-1)x Æ fy Æ h2))

When a norm is chosen on the transformation space,

we automatically have an invariant distance on the

manifold. Since features are usually objects abstracted

from an Euclidean space, a reasonable requirement to

make is that the distance induced on points of the orig-

inal space is the canonical distance of the space (pos-

sibly up to a scale factor). We have then the guarantee

of reasonable invariant distances on all the features we

consider.4.6. Pra
ti
al use on rigid transformations
The Euclidean distance on IR3 is induced by the L2
norm: dt(x; y) = kx � yk. On the other hand, it can

be shown [1] that the angle � of a rotation is a “norm”

that induces a left and right invariant distance on SO3,

the rotation group. With the rotation vector represen-

tation, we have then d�( Id; r) = krk = � and thusd�(r1; r2) = kr(-1)2 Æ r1k = kr1 Æ r(-1)2 k (the last term of

the equality comes from the right invariance).

We define the “norm” on the rigid motion group as

(see appendix A.3):N�(f) = N�((r; t)) = kfk =p�2 krk2 + ktk2
where � is a fixed parameter that allows to tune the im-

portance of the trihedron (rotation part) with respect

to the position (or translation part). Indeed, the an-

gle of rotation � is in radian (or degrees,. . . ) and the

translation in millimeters, kilometers or inches. . . We

usually scale each of the two terms by the inverse of

their variation domain (� for � and the diameter l0
of the image or the interest object for the translation:� = l0=�). When we have information about the noise

level (i.e. standard deviations �� and �t), we can also

use � = �t=��.

We can check that the distance induced by this norm

on the original space is the Euclidean distance (see ap-

pendix A.3.1). Thus the left-invariant distance is

distL(f1; f2)2 = kf (-1)2 Æ f1k2= �2kr(-1)2 Æ r1k2 + kt1 � t2k2
whereas the right invariant distance is

distR(f1; f2)2 = kf1 Æ f (-1)2 k2= �2kr1 Æ r(-1)2 k2 + kt1 � (r1 Æ r(-1)2 ) ? t2k2
Although the rigid motion group is unimodular (and

thus left and right invariant measures are identical), the
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left and right invariant distances are obviously differ-

ent.4.7. Dis
ussion
From a (left) invariant distance on the transformation

group, we can determine an induced invariant distance

on the feature manifold. However, if we have a suf-

ficient condition for its existence, this condition does

not seem to be necessary and is moreover difficult to

handle. The second problem in this approach is that

we need to know a left invariant distance on the trans-

formation group, and nothing helps us to construct it.

We reserve a forthcoming article to a Riemannian ap-

proach of this problem that gives necessary and suf-

ficient conditions for the existence of such distances

and a way to construct them via geodesics (see how-

ever [24]).5. Expe
tation and mean of random fea-tures
Uncertainty on geometric features (and more gen-

erally on measurements) is usually characterized by

a probability density function for which the expected

value corresponds to the exact value. From a compu-

tational point of view, however, we need to keep only

a few number of parameters characterizing this pdf.

The usual way ([5, 2, 32]) is to consider the represen-

tation of the random feature as a random vector and,

assuming that the pdf is quasi-Gaussian, approximate

it up to the second order by its expectation and covari-

ance matrix. We focus in the sequel on the expectation�x and its statistical measurement: the empirical mean

(in the following, the term expectation refers to the

expectation of a random feature of pdf px, whereas a

mean feature denotes the empirical mean of a set of

measured features). The classical definition is, for a

pdf px (in the parameter space) and a set of measured

features fxig:�x = E(x) = ZD y:px(y):dyM(fxig) = 1nXi xi
We claim that these operators are not properly de-

fined. In particular, the result of the integral or the sum

is not ensured to be in the definition domain and de-

fines not necessarily a feature: for instance, the arith-
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Fig. 6. Left: Original pdf �0(�) = 2 
os(�=2)2 . Expectation is��(0) = 0. Middle: pdf after a rotation of angle � = �. The

expectation ��(�) is also 0, whereas the rotated expectation is �� =�.

metic mean of several rotation matrices is generally

not an orthogonal matrix and is therefore not a rotation

itself (particularly for large deviations). The second

reason, is that the expectation does not commute in

general with the action of a fixed transformation (see

example below). This means that the mean value of a

pdf depends on the chosen reference frame, which is

unacceptable.5.1. Standard expe
tation of a 2D random line
We consider for this example 2D oriented vector lines,

which can be represented by a point on the unit circle,

and therefore an angle � with a given axis. We fix the

domain of � to be D =℄ � �; �℄. The action of a ro-

tation of angle � is simply the addition (modulo 2�).

We can define an uncertain line by its probability den-

sity function �(�), and the classical way to obtain the

expected value is to integrate in the parameter space:�� = E(�) = ZD �:�(�) d�2�
where the term 2� is a normalization factor. We note

that d� is the uniform measure for lines under rota-
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Fig. 7. Comparison of the expectation of the rotated line and the
rotation of the expected line.
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tion. Let �0(�) = 2 
os(�=2)2 be such a pdf (drawn

in figure 6). It is normalized and its expectation is��0 = 0. If we now change the reference frame, i.e.

apply a rotation of angle �, we obtain the new pdf��(�) = �0(� � �), and the expected value is now��(�) = ZD �:�0(� � �) d�2� = 2 sin(�=2) 
os(�=2)
which is different from the rotated expectation �(�) =�. In particular, for a rotation of � = �, we find that�� = � and ��� = 0.

To avoid this kind of problem, the first idea is to

“center” the definition domain of the chart around the

expected feature. If this can be easy in the case of

a circle, as above, it may be more problematical for

some other features such as 3D lines or frames, where

the manifold is more complex. The question is simi-

lar for the mean value, especially with scattered mea-

surements. Last, but not least, if the chart is centered

around the expected (or the mean) feature, then the

problem is already solved. The Fréchet expectation

is a well-posed formalism to implement this idea: the

“centrality” of a feature is based on its distance with

other measurements, and the mean or expected values

are the features that optimize the “centrality”.5.2. Fr�e
het expe
tation of a random feature
Let v be a random vector in IRn. Fréchet [8] observed

that the variance �2v(x) = E(dist(v; x)2) is minimized

at the expected value �v. The second point is that if the

expectation of the representation of a feature (a vecto-

rial integral) is not well defined (because features are

not vectors), the expectation of a real mapping (a pos-

itive function of the random feature, for instance) is

properly defined. In particular, the expectation of the

squared distance between features is properly defined.

Let dist be an invariant distance on the manifoldM
under the group G, and x a random feature of pdf px
(in the parameter space). The expected square distance

of a deterministic feature y with the random feature x
is defined by�2x(y) = E( dist(y; x)2)= ZD dist(y; x0)2:px(x0):dx (10)

If �2x(y) is finite for all y, we call every feature �x
minimizing �2x an expected feature, and we denote byIE(x) the set of all expected features of the random

feature x. Thus we haveIE(x) = arg miny2M �E( dist(y; x)2)� (11)

If there is at least one expected feature �x, then �x =�x(�x) is called the standard deviation of x and �2x
the variance. In general, there can be several ex-

pected values. However, Karcher [14] and Kendall

[16] show, under some strong conditions, the existence

and uniqueness of the expected value.

In a very similar way, we can define the set of em-

pirical means of features fxig byIM(fxig) = arg miny2M Xi dist(y; xi)2! (12)

and if there is at least one mean �y, we call s =q 1nPi dist(y; xi)2 the empirical standard deviation

and s2 the empirical variance.

Other types of central values can be defined in this

framework: we define more generally the “mean devi-

ation” at order � by��(y) = (E( dist(y; x)�)1=�= �RM dist(y; x0)�:px(x0):dx0�1=� (13)

If this function is finite over M, the features �x� min-

imizing it are called central features of order �. To

be more practical, we obtain the modes of the pdf for� = 0, the median features for � = 1, of course

the mean or expected features for � = 2, and the

“barycenter” of the support of the pdf (which is a com-

pact set) if the mean deviation is finite for � = 1.

This can also be applied to define the empirical central

features at any order.

The nice properties of the Fréchet expectation and

mean features are, in our case, due to the invariant dis-

tance (see appendix A.4 for proofs); these sets are sta-

ble under the transformation group:IE(g ? x) = g ? IE(x)IM(fg ? xig) = g ? IM(fxig) (14)

Since the distance we use does not depend on the rep-

resentation, the results of all minimization are ensured

to be also independent of the representation. Thus we

have obtained a stable definition (and a mean of com-

putation via optimization) for the expected features of

a pdf and for the empirical mean features.
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ation: the mean frame
Assume that we have a set of frame measurementsfi = (ri; xi). We are looking for the mean framef = (r; x) in the Fréchet sense. Since the distance

from f to fi is

dist(f; fi) = N�(f (-1) Æ fi) = N�(f (-1)i Æ f)
with f (-1)i Æ f = (r(-1)i Æ r ; r(-1)i ? (x� xi)) , the least

squares criterion reduces toC�(f) = �2Xi kr(-1)i Æ rk2 +Xi kx� xik2
We can thus minimize independently for the position

and the orientation. Moreover, the solution is indepen-

dent of the parameter �.

The position is given by the barycenter of the frame

positions and the orientation is obtained by an iterative

gradient descent (equations can be found in [22]). The

gradient descent can be repeated for several starting

points to verify that the global minimum is obtained

an to test its uniqueness. Another method following

the same principles but incorporating second order in-

formations (covariance matrices) was also proposed in

[22].

We can now come back to the mean rotation prob-

lem raised in introduction : the mean rotation matrixR = 1nPiRi is generally not a rotation matrix, nor is

the mean unit quaternion q = 1nPi qi a unit quater-

nion. These two solutions have thus to be discarded.

The standard mean rotation vector r = 1nPi ri is

always a rotation vector, but the results is not coher-

ent with the action of rotations. On the contrary, the

Fréchet expectation is always correctly (but not always

uniquely) defined, as illustrated in figure (8).6. Experiments: a data fusion problem
We presented in [22] an algorithm for the registration

based on 3D frames which also quantifies the uncer-

tainty on both the data and the transformation. We

used it to register medical images and showed that the

accuracy of the registration is far below both the voxel

size and the uncertainty of the individual features. In

this method, only the most stable features are used to

compute the registration, and a lot of matches are dis-

carded due to their large uncertainty.

The aim of the present experiments is to fuse to-

gether several registered images of a single patient in

order to construct an average model based on extremal

points. We are interested here in both the “topologi-

cal” stability of the model features (their probability of

observation) and their geometric stability, i.e. their de-

viation from the model in different observation. Thus

the selectivity of the features (section 3.4) is of the up-

per importance. Such a study on several patients will

eventually lead to identify the most stable anatomical

features (landmarks), and will allow to reduce better

the complexity while increasing the robustness of the

registration task.

The key point is to be able to compute the “mean

feature” even in the presence of large deviations. We

saw for instance in section 3.4 that the selectivity of

a trihedron match remains high even for a large error

bound: it is most interesting to keep in our model the

mean frames and not only the mean points. In such a

case, the Fréchet expectation we defined in section 5.2

is particularly well suited. We use more precisely the

mean feature (equation 12), defined with the invariant

distance on rigid transformations (see 4.6 and section

5.3 for the algorithm).6.1. 3D medi
al images
We present results from an experiment performed us-

ing 3D Magnetic Resonance images (MRI) in col-

laboration with Dr. R. Kikinis and Dr C. Guttmann

from the Brigham and Woman’s Hospital. These im-

ages are part of an extensive study of the evolution

of the Multiple Sclerosis (MS) disease. The same

patient gets a complete 3D MR examination several

times during one year (typically 24 different 3D ac-

quisitions). The aim is to register precisely in 3D all

those images in order to segment the lesions and eval-

uate very accurately their evolution. The images are

first echo, 256 � 256 � 54 voxels, the voxel size is1mm� 1mm� 3mm.6.2. Extremal points and frames
Our registration algorithm relies on the extraction of

feature points in 3D medical images, defined with dif-

ferential geometry criteria: the Extremal Points (de-

fined in [29]). These are points on the object sur-

face for which both principal curvatures are extremal.

The interesting thing is that not only do we get some
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(a) Standard and Fréchet expectations are identical at the origin. (b) When the Fréchet expectation is near the origin, the standard
expectation can be considered as a first order approximation.
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fxig)E(fxig)
(c) Near the Domain boundary, standard and Fréchet expectations

greatly differ. We note that with this relatively small noise, it would
be possible to detect the boundary effect.

(d) With a greater amount of noise, it is no longer possible to guess
the correct clustering to avoid the boundary effect.

Fig. 8. Behavior of expected rotations and their covariance matrices: projection of the measured rotation vectors, their standard and Fréchet

expectation and the corresponding uncertainty ellipsoid at �2 = 15 onto the (rx; ry) plane. The circle represent the domain boundary for

the rotation vector (� = krk = �). Remember that when we cross this boundary on one side at point r = �:n, we reenter the domain at the

symmetric point r0 = ��:n.

invariant measurements associated with those points

(the principal curvatures), which are used to reduce

the complexity of the matching process, but we get

also the principal directions, which form, with the nor-

mal to the surface and the extremal point itself, an or-

thonormal basis, that is, a frame.

Typically, we extract about 3000 extremal points

from a 3.5 million voxels image. Our matching al-

gorithm produces about 600 pairs of associated ex-

tremal points between two images with a residual

mean square error (RMS) of about 1mm, and about

1000 additional matches with a RMS around 5mm.6.3. Building a model
Among the 24 images of a patient, one is considered as

the reference for registration: the algorithm presented

in [22] registers the 23 others using the 600 most ge-

ometrically stable frames. The accuracy obtained for

the transformation is sufficiently small (compared to

the large deviations on frames that we want to handle)

to consider that the transformations are exact.

Then we regroup the frames that we can match with-

out ambiguity in several images. We consider that two

frames f1 = (r1; x1) and f2 = (r2; x2) are matched

without ambiguity if the distance between them is

less than a given threshold (more exactly a threshold�0 ' 20o on kr(-1)1 Ær2k for the orientation and a thresh-

old d0 = 0:8mm on kx1�x2k for the position), and if

there is no other frame that can be matched with any of

the two frames within these bounds. To find matched

frames among multiple images, we compute matches

between each pair of images, and look for maximal

cliques of correspondences between the whole set of

images. This process is rather time consuming and

can certainly be improved. However, the high selectiv-
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ity of frames keeps the algorithm complexity at a rea-

sonable level, which would not be the case with only

points (see section 3.4).

For each group of matched frames, we compute the

Fréchet mean frame (section 5.3) using the invariant

distance of section 4.6. To build a interesting model,

we add to this mean frame its variance and more pre-

cisely the variance �� on the orientation and the vari-

ance �x on the position. Let �f = (�r; �x) be the mean

frame; these variances are computed with:�2� =Xi k�r(-1) Æ rik2 and �2x =Xi kxi � �xk2
This characterizes the geometric stability of this fea-

ture. To characterize its “topological” stability, we add

also its probability of observation, i.e. the number of

images where it is observed divided by the total num-

ber of images (here 24).

6.4. Results
In figure 9 we present the surface of the brain and

the crest lines extracted from the first image and the

most stable frames from the model. Remember that

those frames do not exist in any of the 24 images: they

are mean frames. We observed that about 30 frames

are extremely well preserved, both geometrically and

topologically, and 70 others are observed in more than

80% of the images.

An interesting result is that the most stable extremal

points are located on the surface of the brain and not

on the skin nor on the skull. Since the images come

from the magnetic resonance modality, the skull is in-

deed not very visible. This points out the fact that the

registration is mainly done on the surface of the brain,

as expected.

The probability of observation of frames is linked

with the choice of the error bound for the multiple

matching step. The above figures where obtained with            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Fig. 9. The surface of the brain is displayed along with the crest lines extracted from the first image. Spheres represent the model extremal
points computed as the mean over the 24 images. Their size is inversely proportional to their stability. Top line from left to right: front and rear
views of the head. Bottom line: left and right views.
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are observed in more than 80% of the cases, these

bounds seem to be quite restrictive. Thus we have re-

made the experiment with larger bounds (�0 ' 30o
and d0 = 1:4mm) and 200 frames are now observed

at 80% (figure 10). However, the multiple matching

step is in this case much longer and less reliable.

In order to obtain more accurate statistics, we plan

to adapt automatically the error bound for each group

of matched feature in order to maximize for each

model feature the number of non ambiguous matches.

This should allow to compute even more robustly the

stable features. At the current stage, we did not ob-

serve correlation between the probability of observa-

tion and the geometrical stability of the frames (vari-

ances �� and �x). We believe that a more thorough

analysis with an automatic choice of the error bounds

should allow to detect interesting correlations.

This kind of statistical model comprising second

order informations characterizes the features that are

geometrically and topologically stable in one object

(here the head of a patient). It can thus be considered

as a reference for the evaluation of feature selection

criterions. For instance, we plan to compare several

multi-scale criterions for selecting extremal points [7]

with this model in order to select the best ones and val-

idate them. Another interesting experiment would be

to compute the models of several patients and compare

them to characterize the anatomically stable extremal

points. The results could then be incorporated into

an anatomical atlas (see for instance [28]). The prob-

lem is more complex since transformations are not any

more rigid.
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Fig. 10. Extremal points matched in more than 80% of the 24 im-
ages with a larger error bound.

7. Con
lusion
We show in this paper that a wide range of para-

doxes arise when we try to generalize to geometric

features the classical algorithms used for points, and

we demonstrate, in the case of homogeneous features,

that they can be avoided by the careful definition of

basic operators which respect the following rules:� Independence of the representation.� Invariance or “commutativity” with respect to the

action of the associated transformation group.

We develop general methods that allow to define three

basic operators following these rules: the invariant

measure, invariant distances and stable expectation

and mean features. These methods are illustrated with

frame features under the rigid transformation group,

and an application to the data fusion problem is pre-

sented.

We believe that the application of these two basic

rules to a large number of geometrical problems can

lead to a proper mathematical framework that will give

reasonable and robust results in any situation without

the need to design ad-hoc heuristics. We are currently

working on a theory of uncertainty on geometric fea-

tures continuing the formalism introduced in this pa-

per. A further interesting development will concern

the invariants and their relationship with the statistical

theory of shapes.AppendixA.1. Proofs for 
lassi
al geometri
 proba-bilitiesA.1.1. Invariant measures on a group
Let dLG(f) be the following measure:dLG(f) = dfjJL(f)j with JL(f) = �(f Æ e)�e ����e= Id
where jJ j = j det(J)j. We want to show that it is left

invariant. We have:
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 features 65dLG(g Æ f) = d(g Æ f)���� �((gÆf)Æe)�e ���e= Id ����d(g Æ f) = det��(g Æ f)�f � df
and we get by the chain rule:�((g Æ f) Æ e)�e ����e= Id = �(g Æ f)�f : (f Æ e)e ����e= Id
Since det(A:B) = det(A): det(B) for square matri-

ces, we can conclude that dLG(g Æ f) = dLG(f). The

proof for the right invariance of the proposed measuredRG(f) is analogous.A.1.2. Invariant measure on an homogeneousmanifold
Let dM(x) be the following measure:dM(x) = dxjJ(fx)j
with:J(fx) = �(fx ? e)�e ����e=O and fx 2 Fx
The condition (6):8h 2 H; ���� �(h ? e)�e ����e=O���� = 1

is indeed required for dM(x) to be invariant with re-

spect to the choice of fx 2 Fx. Let fx and f 0x = fxÆh
(with h 2 H) be two transformations of Fx. By the

chain rule, we can write:J(f 0x) = �(fx?(h?e))�e ���e=O= �(fx?e0)�e0 ���e0=O : �(h?e)�e ���e=O= J(fx): �(h?e)�e ���e=O
and we have jJ(fx)j = jJ(f 0x)j if and only if��� �(h?e)�e ���e=O��� = 1. The proof of the invariance of the

measure dM(x) is then very similar to the proof for

the group measure (and can be obtained by replacing(f Æ e) by (f ? e)).

A.2. Norm indu
ed on the manifold bythe group
Let Ng be a norm on the group G. We define the in-

duced semi-norm on the homogeneous manifold M
as N(x) = inf(h2H; fx2Fx) (Ng(h Æ fx))= inf(h1;h2)2H2 (Ng(h1 Æ fx Æ h2)) (A1)

The positivity of N follows immediately from the

positivity of Ng . The symmetry comes from the sym-

metry of the norm on the transformation space and the

symmetry of the norm definition:N(f (-1)x Æ O) = inf(h1;h2)2H2 (Ng(h1 Æ f (-1)x Æ h2))= inf(h01;h02)2H2 (Ng(h01 Æ f (-1)x Æ h02))= N(x)
The triangular inequality is preserved by the infi-

mum:inf(h1;h2)2H2 �Ng(h(-1)1 Æ f (-1)x Æ fy Æ h2)�� infh12H fNg(fx Æ h1)g+ infh12H fNg(fy Æ h2)g� infh1;h2 (Ng(h1 Æ fx Æ h2)) + infh1;h2 (Ng(h1 Æ fy Æ h2))
and we eventually get N(f (-1)x ? y) � N(x) +N(y).

Now the definiteness: if the infimum of Ng(h1 Æf Æ h2)) is reached for every transformation f by(h1; h2) 2 H2, then the semi-norm is separable and
is thus a norm (this is in particular always true if the
isotropy group H is compact):N(x) = 0 , 9(h1; h2) 2 H2 = Ng(h1 Æ fx Æ h2) = 0, 9(h1; h2) 2 H2 = fx = h1 Æ h2, fx 2 H , Fx = H = FO, x = OA.3. Norm on rigid transformations
The “norm” definition is (� is a fixed parameter):N�(f)2 = N�((r; t))2 = kfk2 = �2 krk2 + ktk2

This “norm” is positive and null only for krk =ktk = 0, that is for identity. If f = (r; t), we have
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hef (-1) = (r(-1); r(-1) ? (�t)) (see [23] for equations on ro-

tations and frames) and since � = krk is a “norm” on

rotations:N�(f (-1))2 = �2 kr(-1)k2 + k �R>:tk2 = N�(f)2
The triangular inequality follows from triangular in-

equalities on the rotation and translation “norms”: letf1 = (r1; t1) and f2 = (r2; t2) be two frames. We

have f (-1)1 Æ f2 = (r(-1)1 Æ r2 ; r(-1)1 ? (t2 � t1))
and thus N�(f (-1)1 Æf2)2 = �2 kr(-1)1 Æ r2k2+kR>1 :(t2�t1)k2. The triangular inequality on rotations ensures

that �(r(-1)1 Æ r2) � �1 + �2 (where �i = krik) and

we have on vectors kt2 � t1k2 = kt1k2 + kt1k2 �2 h t1 j t2 i. Hence:N�(f (-1)1 Æ f2)2 � �21 + �22 + 2�1�2 + kt1k2 + kt1k2
Since �21�22 � (�21+kt1k2)(�22+kt2k2), we obtain thatN�(f (-1)1 Æ f2)2 � (�21 + kt1k2) + (�22 + kt2k2)+2:p(�21 + kt1k2)(�22 + kt2k2)� �p�21 + kt1k2 +p�22 + kt2k2�2

Taking the root-square, we obtain the requested in-

equality N�(f (-1)1 Æ f2) � N�(f1) +N�(f2)A.3.1. Metri
 indu
ed on points
The norm induced on points is defined byN(x) = inf(h2H; fx2Fx) (Ng(h Æ fx))= inf(h1;h2)2H2 (Ng(h1 Æ fx Æ h2))

Let fx = (0; x) 2 Fx and h1 = (r1; 0), h2 =(r2; 0) 2 H. We have thus h1ÆfxÆh2 = (r1Ær2; r1?x)
and the (squared) norm of this transformation is sim-

ply N2�(h1 Æ fx Æ h2) = �kr1 Æ r2k2 + kxk2

The infimum is reached for r1 = r(-1)2 and we haveN(x) = kxk. We note that in this case the isotropy

group H is reduced to the rotation group SO3, which

is compact.A.4. Stability of the expe
ted and meanfeatures
Assume that z = g ? x is the random feature obtained

by the transformation of the random feature x by g:�2z(y) = E �
dist(g ? x; y)2�= E �
dist(x; g(-1) ? y)2�= �2x(g(-1) ? y)

thanks to the invariance of the distance. �x 2 IE(x)
implies that �z = g ? �x 2 IE(z). Eventually, we getIE(z) = g ? IE(x) and �z = �x (A2)

The same argument holds for the stability of cen-

tral features of any order and in particular the mean

features of a set xi. If zi = g ? xi, we haveIM(fzig) = g ? IM(fxig) and sz = sxA
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