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Abstract

We establish quantitative bounds for rates of convergence and asymptotic variances for
iterated conditional sequential Monte Carlo (i-cSMC) Markov chains and associated particle
Gibbs samplers [1]. Our main findings are that the essential boundedness of potential functions
associated with the i-cSMC algorithm provide necessary and sufficient conditions for the uni-
form ergodicity of the i-cSMC Markov chain, as well as quantitative bounds on its (uniformly
geometric) rate of convergence. Furthermore, we show that the i-cSMC Markov chain cannot
even be geometrically ergodic if this essential boundedness does not hold in many applications
of interest. Our sufficiency and quantitative bounds rely on a novel non-asymptotic analysis of
the expectation of a standard normalizing constant estimate with respect to a “doubly condi-
tional” SMC algorithm. In addition, our results for i-cSMC imply that the rate of convergence
can be improved arbitrarily by increasing N , the number of particles in the algorithm, and
that in the presence of mixing assumptions, the rate of convergence can be kept constant by
increasing N linearly with the time horizon. We translate the sufficiency of the boundedness
condition for i-cSMC into sufficient conditions for the particle Gibbs Markov chain to be geo-
metrically ergodic and quantitative bounds on its geometric rate of convergence, which imply
convergence of properties of the particle Gibbs Markov chain to those of its corresponding
Gibbs sampler. These results complement recently discovered, and related, conditions for the
particle marginal Metropolis–Hastings (PMMH) Markov chain.

Keywords: geometric ergodicity; iterated conditional sequential Monte Carlo; Metropolis-
within-Gibbs; particle Gibbs; uniform ergodicity

1 Introduction

Particle Markov chain Monte Carlo (P-MCMC) methods are a set of recently proposed sampling
techniques particularly well suited to the Bayesian estimation of static parameters in general state-
space models [1], although their scope extends beyond this class of models. At an abstract level,
once the likelihood function and prior are defined, inference for this class of models relies on
a probability distribution π

(

dθ × dx
)

, defined on some measurable space (Θ × X,B(Θ) × B(X)),
where θ is generally a low dimensional static parameter, the static parameter, while x, the hidden
state of the system, is a large vector with a non-trivial dependence structure. Here, B( · ) denotes
the σ-algebra related to the corresponding space. In practice the complexity of such probability
distributions requires the use of sampling techniques to effectively carry out inference. When θ
is known sequential Monte Carlo methods (SMC), or particle filters, are particularly suitable to
carry out inference about x by approximately sampling from the conditional distribution πθ

(

dx
)

.
These algorithms rely on interacting particle systems and their performance and accuracy can be
improved by increasing the number N of such particles. P-MCMC realises the synthesis between
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SMC methods and classical Markov chain Monte Carlo (MCMC) methods, that is it allows the
construction of Markov transition probabilities leaving π

(

dθ × dx
)

at least marginally invariant
and from which it is possible to sample realisations {(θi, Xi), i ≥ 0} with attractive efficiency
properties.

The particle marginal Metropolis–Hastings (PMMH) method is one such algorithm, which
takes advantage of the availability of unbiased estimators of the likelihood function to provide
an exact approximation of an idealized algorithm which computes the likelihood function exactly.
The algorithm simply consists of replacing the true value of the likelihood function required to
implement the standard Metropolis–Hastings (MH) algorithm with estimators, but is nevertheless
guaranteed to be correct in that it leaves the required distribution of interest marginally invariant.
In PMMH, the estimator of the likelihood is a byproduct of a sequential Monte Carlo (SMC)
algorithm, whose accuracy can be improved by increasing N .

In contrast, the particle Gibbs (PGibbs) sampler [1] involves approximating a Gibbs sampler
which consists of constructing a Markov chain {(θi, Xi), i ≥ 0}, by repeatedly sampling from
πθ

(

dx
)

and πx

(

dθ
)

in turn. In practice sampling from πθ

(

dx
)

may be particularly difficult and the

conditional SMC (cSMC) [1] update is a Markov transition probability PN,θ which leaves πθ

(

dx
)

invariant, therefore allowing the implementation of a Metropolis-within-Gibbs algorithm, that is a
Markov transition probability leaving π

(

dθ × dx
)

invariant. The cSMC relies for its construction,
as suggested by its name, on an SMC-like procedure and it is expected that as N increases PN,θ

approaches πθ

(

dx
)

.
While PMMH methods have been studied in a series of papers [4, 5, 16, 28, 11], a theoretical

study of the PGibbs is still missing. Indeed it has been shown that as N increases, performance of
the PMMH approaches that of the exact MH algorithm but the question of the approximation of
the Gibbs sampler by a PGibbs has not been addressed to date. We note however that a study of
one of its components, the cSMC update, has recently been undertaken in [8], in which a coupling
argument is central to their analysis. We refer to the Markov chain obtained by iterating the cSMC
algorithm for a fixed target distribution as iterated i-cSMC here in order to distinguish it from
that of the PGibbs. The present manuscript addresses questions concerning the i-cSMC similar
to those of [8], but our results differ in many respects and complement their findings in several
directions. At a technical level our approach seems to be more straightforward in the scenario
considered, relies on weaker assumptions for uniform convergence which we prove are necessary
and sufficient and lead to quantitative bounds on performance measures in terms of the number
N of particles involved. We additionally transfer sufficient conditions for uniform ergodicity of the
i-cSMC Markov chain into sufficient conditions for geometric ergodicity of the associated PGibbs
Markov chain, the main motivation behind our work. This allows us in particular to show that
under some conditions PGibbs is asymptotically as efficient as the Gibbs sampler as the number
N of particles increases.

Contemporary to the first version of the present manuscript [3], [18] have also provided es-
sentially the same sufficient conditions for the uniform convergence of the i-cSMC Markov chain
(Theorem 1, Section 3) using a different proof technique. Here we have further established that the
aforementioned conditions are also necessary for uniform convergence in general, but also geomet-
ric ergodicity in many realistic scenarios (Section 6). Similarly to us [18] also provide quantitative
bounds and associated scaling properties of the i-cSMC, albeit for a different set of specialised
conditions (a detailed comparison of the assumptions is provided after Theorem 3 at the end of
Section 3). We have also very recently become aware of the contribution [10] to the analysis of the
properties of the cSMC, established using the formalism of [9], but their practical implications are
unclear. Similarly to [8], [18] do not attempt to address the practically important question of how
uniform ergodicity of the i-cSMC can be translated into geometric ergodicity of the PGibbs sam-
pler, an issue we address in Section 7. In Section 8 we contrast the results obtained in this paper
concerning the i-cSMC and PGibbs algorithm with known results concerned with other particle
MCMC methods and draw final conclusions.

Similarly to SMC methods, the cSMC and associated algorithms are complex mathematical
objects which require the introduction of sometimes overwhelming notation which may obscure
the main ideas. In the next section we attempt to remedy this by presenting our results in a
simplified scenario, which captures our main ideas, before moving on to the general scenario.
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2 Statement of our results in a simplified scenario

We first explain our results on a particularly simple instance of the i-cSMC algorithm. This should
provide the reader with the essence of the results proved later on in the general scenario, while its
simple structure will allow us to outline the main idea behind our proof in the general set-up (in
Section 4).

Assume we are interested in sampling from a probability distribution π on some measurable
space

(

X,B
(

X
))

. We define the probability distribution π̃ on {1, . . . , N} × XN

π̃
(

k, dz1:N
)

=
1

N
π(dzk)

N
∏

j=1,j 6=k

M(dzj) , (1)

for some probability distribution M defined on
(

X,B
(

X
))

and such that for any S ∈ B
(

X
)

such
that π(S) > 0 then M(S) > 0. As pointed out in the authors’ discussion reply of [1], in this
simple scenario one can define an MCMC algorithm targeting π by iterating the classical sampling
importance resampling (SIR) procedure. More specifically, we sample alternately from (a) Z1:N\k |
(

K = k, Zk = zk
)

∼
∏N

i=1,i6=k M(zi) and (b) K |
(

Z1:N = z1:N
)

∼ π̃(k|z1:N ), where Z1:N\k :=
(

Z1, Z2, . . . , Zk−1, Zk+1, . . . , ZN
)

. Owing to the fact that this algorithm is a Gibbs sampler on
the distribution above and from the standard interlacing property of the two stage Gibbs sampler,
one can check that the sequence {ZKi

i } defines a Markov chain with invariant distribution π, and
that its transition kernel is for any (x, S) ∈ X× B

(

X
)

PN (x, S) =

ˆ

XN−1

N
∑

k=1

G(zk)
∑N

j=1 G(zj)
I{zk ∈ S}

N
∏

i=2

M(dzi)

with G(x) := π(dx)/M(dx) and the convention z1 = x. Our first results are concerned with
properties of the homogeneous Markov chain with transition probability PN , in terms of Ḡ :=
π − ess supx G(x) and N . We refer to the resulting algorithm as iterated SIR (i-SIR).

We briefly introduce notions that allow us to make quantitative statements about the Markov
chains under study. We use classical Hilbert space techniques for the analysis of reversible Markov
chains. Letting µ

(

·
)

be a probability distribution defined on some measurable space
(

E,B
(

E
))

, we
define the function space

L2(E, µ) :=
{

f : E → R : µ(f2) < ∞
}

,

where the functions are taken to be measurable; hereafter all functions considered are assumed to
be measurable with respect to an appropriate σ-algebra. Let Π : E×B

(

E
)

→ [0, 1] be a µ-reversible
Markov transition kernel and let {ξi, i ≥ 0} be the stationary Markov chain with transition kernel
Π (such that ξ0 ∼ µ). We will use the standard notation for any probability distribution ν on
(

E,B
(

E
))

and measurable function f : E → R,

ν
(

f
)

:=

ˆ

E

f(x)ν(dx) , Πf(x) :=

ˆ

E

f(y)Π
(

x, dy
)

,

for k ≥ 2, by induction,

Πkf(x) :=

ˆ

E

Π
(

x, dy
)

Πk−1f(y) .

We denote νΠkf := ν
(

Πkf
)

and refer to νΠk as either a probability measure or its corresponding

operator on L2(E, µ). For f ∈ L2
(

E, µ
)

, we define the variance of f under µ as varµ(f) := µ(f2)−

µ(f)2 and the “asymptotic variance” of M−1
∑M

i=1 f
(

ξi
)

for stationary realizations {ξi, i ≥ 0}
associated to the homogeneous Markov chain with transition Π as

var(f,Π) := lim
M→∞

var
(

M−1/2
∑M

i=1[f(ξi) − µ(f)]
)

.

Some of our results involve norms of signed measures. As in, e.g., [24], for any signed measure ν
on
(

E,B
(

E
))

we let

‖ν‖TV :=
1

2
sup

f :E→[−1,1]

ν
(

f
)

3



denote the total variation distance and for ν ≪ µ,

‖ν‖2L2(E,µ) :=

ˆ

E

∣

∣

∣

∣

dν

dµ

∣

∣

∣

∣

2

dµ = sup
f∈L2

(

E,µ
)

, ‖f‖µ>0

|ν(f)|

‖f‖µ
. (2)

denote the L2(E, µ) norm.
Our results can be summarized as follows

1. PN is reversible with respect to π and positive, that is the i-SIR Markov chain has non-
negative stationary autocorrelations.

2. If Ḡ < ∞, and N ≥ 2, the i-SIR Markov chain is uniformly ergodic with for any x ∈ X,

‖Pn
N(x, ·) − π(·)‖TV ≤

(

1 −
N − 1

2Ḡ + N − 2

)n

.

3. If Ḡ < ∞, then for any f ∈ L2(X, π),

varπ(f) ≤ var(f, PN ) ≤

[

2

(

1 +
2Ḡ− 1

N − 1

)

− 1

]

varπ(f) .

4. If Ḡ = ∞ then the i-SIR Markov chain cannot be geometrically ergodic for any finite N .

The second and third points provide quantitative bounds on standard measures of performance for
MCMC algorithms, where the second provides a bound on the uniform (or equivalently uniformly
geometric) rate of convergence of the Markov chain. Interest in algorithms such as i-SIR is moti-
vated empirically from observed behaviour in line with the above bounds, as performance improves
as N increases, and part of our purpose here is to confirm and quantify theoretically such empirical
successes. Moreover, this improvement can often be obtained with little extra computational effort,
since on a parallel architecture one can sample from M and evaluate G in parallel, a characteristic
of SMC algorithms more generally [17].

While i-SIR can be used alone to sample from fairly general distributions, it can also be used
as a constituent element of more elaborate MCMC schemes. Assume now that we wish to sample
from a distribution π defined on some measurable space

(

Θ × X,B(Θ) × B
(

X
))

, often defined for
some S ∈ B(Θ) × B(X) via (note the different nature of π as compared to earlier)

π(S) :=

´

S Gθ(x)Mθ(dx)̟(dθ)
´

Θ×X
Gθ(x)Mθ(dx)̟(dθ)

,

where {Gθ, θ ∈ Θ} is a collection of non-negative potential functions and {Mθ, θ ∈ Θ} a collection
of probability measures which define for each θ ∈ Θ the conditional distributions πθ

(

dx
)

:=

Mθ

(

dx
)

Gθ(x)/γθ with

γθ :=

ˆ

X

Gθ(x)Mθ(dx) .

The interpretation in a statistical context is that ̟ is the prior distribution for some parameter θ of
interest, whilst γθ is the likelihood function associated with some observed data and x corresponds
to the so-called latent variable(s). The form of γθ is often derived from the data being explained
by the latent variable x whose a priori distribution conditional upon θ is Mθ and the likelihood
function given the data and x is Gθ(x). Assume here that we are able to sample from πx, the
conditional distribution of θ given X = x. For any θ ∈ Θ one can define the i-SIR kernel for any
(x, S) ∈ X× B

(

X
)

via

PN,θ(x, S) =

ˆ

XN−1

N
∑

k=1

Gθ(zk)
∑N

j=1 Gθ(zj)
I{zk ∈ S}

N
∏

i=2

Mθ(dzi) ,

with z1 = x, so that the invariant distribution associated with PN,θ is πθ, the conditional distribu-
tion of X given θ. One can sample from π(dθ × dx) with the following Markov transition, defined
for any

(

θ0, x, S
)

∈ Θ × X×
(

B(Θ) × B(X)
)

via

ΦN (θ0, x;S) :=

ˆ

S

PN,θ(x, dy)πx(dθ) ,

4



which can be viewed as an exact approximation of the Gibbs sampler defined via

Γ(θ0, x;S) :=

ˆ

S

πθ(dy)πx(dθ) .

The term exact approximation refers to the fact that while PN,θ can be thought of as an approxi-
mation of the conditional distribution πθ the resulting algorithm converges to π and can be made
arbitrarily close to Γ as we increase N as explained below – we will refer to this algorithm and
its generalisation as the particle Gibbs (PGibbs) sampler. Throughout the paper we will use the
following convention: we will say f ∈ L2

(

E, π
)

with E = Θ (resp. E = X) to mean that f : E → R

is square integrable under the relevant marginal of π, or f : Θ × X → R does not depend on x
(resp. θ) and is square integrable under the relevant marginal of π. This should not lead to any

possible confusion. Letting Ḡ := π − ess supθ,x
Gθ(x)
γθ

, our results for the PGibbs sampler, are as
follows

1. Assume the Γ Markov chain is such that there exists β ∈ (0, 1] such that for any f : X →
[−1, 1] and ν ≪ π

|νΓn(f) − π(f)| ≤ ‖ν − π‖L2(X,π) (1 − β)
n

.

If Ḡ < ∞, and N ≥ 2, then for any f : X → [−1, 1] and ν ≪ π

|νΦn
N (f) − π(f)| ≤ ‖ν − π‖L2(X,π) (1 − β′

N )
n

,

where β′
N satisfies

β′
N ≥

N − 1

2Ḡ + N − 2
β .

2. For any f ∈ L2(X, π) and N ≥ 2, the asymptotic variance var(f,ΦN ) satisfies

var
(

f,Γ
)

≤ var(f,ΦN ) ≤
2Ḡ− 1

N − 1
varπ(f) +

(

1 +
2Ḡ− 1

N − 1

)

var(f,Γ) .

3. For any f ∈ L2
(

Θ, π
)

and N ≥ 2, the asymptotic variance var(f,ΦN ) satisfies

var
(

f,Γ
)

≤ var(f,ΦN ) ≤

(

1 +
2Ḡ− 1

N − 1

)

var
(

f,Γ
)

−

(

2Ḡ− 1

N − 1

)

varπ(f) .

In the sequel, we prove similar results in the more general (and complex) scenario where PN,θ is
defined by a general cSMC algorithm with multinomial resampling, but the key ideas and results
are similar (Section 3). The results concerning the general form of the PGibbs sampler, from which
its convergence in the sense of points 1–3 above follows, can be found in Section 7.

3 The i-cSMC and its properties

We mostly follow the notation of [9] and use the following conventions for lists, indices and su-
perscripts. For N ∈ N, we denote [N ] :=

{

1, . . . , N
}

, and for any p ∈ N, k, l ∈ [N ]p and
ul
k : N2 → E (for a generic set E dependent on the context) we will use the notation ul

k
to mean

(

ul1
k1
, ul2

k2
, . . . , u

lp
kp

)

, and whenever there is no dependence on l (resp. k) of ul
k we simply ignore

this superscript (resp. this index). We will also use the notation, for k, l ∈ N such that l ≥ k,
k : l :=

(

k, k + 1, . . . , l
)

. Let
(

Z,B
(

Z
))

be a measurable space and for some T ≥ 1 define a family

of Markov transition probabilities on this space
{

Mt

(

·, ·
)

, t ∈ [T ]
}

with the convention that for
t = 1 and any z ∈ Z, M1(z, du) = M1(du) and a family of measurable non-negative functions,
the potentials Gt : Z → [0,∞), again for t ∈ [T ]. We first define an inhomogeneous Markov chain
{Z1, . . . , ZT } on X := ZT endowed with the product σ−algebra B

(

X
)

= B(Z)T and with probabil-

ity distribution P
(

·
)

and associated expectation E
(

·
)

such that for t = 1, the initial distribution is
P (Z1 ∈ dz1) := M1(dz1), and for t = 2, . . . , T the transition probability is given by Mt, i.e.

P (Zt ∈ dzt|Zt−1 = zt−1) := Mt(zt−1, dzt) .

5



We define for p ∈ [T ] and fp : Zp → R

γp(fp) := E

(

fp(Z1, . . . , Zp)

p
∏

t=1

Gt

(

Zt

)

)

,

and can define for any S ∈ B(X) the probability distribution π (which will be the target distribution
of interest)

π(S) :=
γT (I

{

· ∈ S
}

)

γT
, (3)

where I
{

·
}

denotes the indicator function and γT := γT
(

1
)

. For l > k ≥ 0, we define

Mk,l(zk, dzk+1:l) :=

l
∏

t=k+1

Mt(zt−1, dzt) .

Note in particular that with the convention above, for any l ≥ 2 and z0 ∈ Z, M0,l

(

z0, dz1:l
)

:=

M1(dz1) ×M1,l

(

z1, dz2:l
)

.
The iterated conditional SMC (i-cSMC) is a family of homogeneous Markov chains, with state-

space
(

X,B
(

X
))

, indexed by N ∈ N (the concrete meaning of N shall become clearer below).

We denote by PN

(

·, ·
)

: X × B
(

X
)

→ [0, 1] the corresponding Markov transition kernels, which
we now define. To that end, we first detail for any N ∈ N the probability distribution of the
conditional SMC (cSMC) algorithm, which corresponds to a process defined on the extended space

W :=
(

ZN × [N ]N
)T−1

× ZN × [N ] endowed with the corresponding product σ−algebra B
(

W
)

, of
which PN is a simple by-product. Our focus is on a particular implementation of the algorithm
corresponding to “multinomial resampling”–other schemes are considered in [8]. For any x ∈ X

and with 1 ∈ {1}T we define the process {Zt, At, t = 1, . . . , T } on W through

P
N
1,x (Z1 ∈ dz1) : = δx1

(dz11)
N
∏

i=2

M1(dzi1) (4)

and for t ∈ {2, . . . , T }

P
N
1,x

(

Zt ∈ dzt, At−1 = at−1

∣

∣Z1:t−1 = z1:t−1, A1:t−2 = a1:t−2

)

= P
N
1,x (Zt ∈ dzt, At−1 = at−1 |Zt−1 = zt−1 )

= δxt
(dz1t )I{a1t−1 = 1}

N
∏

i=2

(

N
∑

k=1

Gt−1(zkt−1)
∑N

j=1 Gt−1(zjt−1)
I
{

ait−1 = k
}

Mt(z
k
t−1, dz

i
t)

)

, (5)

where we keep k to emphasize that we are sampling from that mixture. For the last iteration
we only require one index and point out that whereas At ∈ [N ]N for t = 1, . . . , T − 1, we have
AT ∈ [N ] following

P
N
1,x (AT = k |ZT = zT ) =

GT (zkT )
∑N

j=1GT (zjT )
.

The stochastic process defined by P
N
1,x is referred to as the conditional SMC algorithm because

it is closely related to a standard SMC algorithm, but where x is a “fixed path” with lineage 1.
However, as remarked in [1], P

N
1,x is not a conditional distribution of P

N
(

·
)

, the standard SMC
algorithm whose definition here is deferred to [2, Appendix F]. We note further that in order
to simplify presentation we have focused here on the scenario where the lineage of x was 1 but
that we could also use, as in [2], the cSMC with k ∈ [N ]T (with associated symbol P

N
k,x and

E
N
k,x) corresponding to the process above, but where δxt

(dz1t )I{a1t−1 = 1} in (5) is replaced with

δxt
(dzkt

t )I{akt

t−1 = kt−1} and δx1
(dz11) with δx1

(dzk1

1 ) in (4).

For any i :=
(

i1, i2, . . . , iT
)

∈ [N ]T , z1:T ∈
(

ZN
)T

, a1:T := (a1, . . . , aT ) ∈
(

[N ]N
)T−1

× [N ] and

S ∈ B
(

X
)

define

Ii
(

z1:T , a1:T , S
)

:= I{zi1:T ∈ S, iT = aT }
T−1
∏

t=1

I{it = a
it+1

t } . (6)
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Then the transition kernel of the iterated conditional SMC (i-cSMC), in the multinomial sampling
scenario, is given for any x ∈ X and S ∈ B (X) by

PN (x, S) := E
N
1,x

[

∑

i∈[N ]T Ii
(

Z1:T , A1:T , S
)

]

, (7)

that is, conditional upon x we consider the probability distribution of those trajectories Z i

1:T

generated by the cSMC which form a lineage compatible with the lineages defined by the random
variables A1:T . Our main results concerning the i-cSMC algorithm are the following (our results
concerning the particle Gibbs sampler are provided in Section 7). We will denote by πt the
corresponding marginal distribution of π (see (8) for a precise definition).

Theorem 1. For N ≥ 2 the i-cSMC algorithm with kernel PN

(a) is reversible with respect to π and defines a positive operator,

(b) if for all t ∈ {1, . . . , T } πt − ess supzt Gt(zt) < ∞ then there exists ǫN > 0 such that

(i) for any (x, S) ∈ X× B
(

X
)

,
PN (x, S) ≥ ǫNπ(S) ,

where 1 − ǫN = O(1/N),

(ii) for any probability distribution ν ≪ π on
(

X,B(X)
)

and k ≥ 1

‖νP k
N

(

·
)

− π
(

·
)

‖L2(X,π) ≤ ‖ν − π‖L2(X,π)(1 − ǫN )k ,

(iii) for any x ∈ X

‖δxP
k
N

(

·
)

− π
(

·
)

‖TV ≤ (1 − ǫN )k ,

(iv) for any f ∈ L2
(

X, π
)

varπ(f) ≤ var(f, PN ) ≤
[

2ǫ−1
N − 1

]

varπ(f) .

(c) if πt-ess supzt Gt(zt) = ∞ for some t ∈ [T ], then, the i-cSMC kernel PN is not uniformly
ergodic for any N ∈ N,

(d) if πt-ess supzt Gt(zt) = ∞ for some t ∈ [T ] then, the i-cSMC kernel PN cannot be geo-
metrically ergodic for any N ∈ N if π is equivalent to a Lebesgue or counting measure on
X.

Remark 2. From Lemma 22, statement (d) holds under a more abstract assumption, but we have
chosen this explicit simplified statement for clarity at this point. In fact we suspect that (d) holds
under the assumption πt−ess supzt Gt(zt) = ∞ for some t ∈ [T ] only, that is essential boundedness
is a necessary condition for geometric ergodicity; see Conjecture 24.

With additional conditions on {Mt, Gt, t = 1, . . .} one can characterize ǫN in Theorem 1(b)
further, and in particular characterize the rate at which N should grow in terms of T in order to
maintain a set level of performance. This also requires additional notation and following [9] we
define for any z ∈ Z, p, q ∈ N, p ≤ q and fq : Z → R,

Qp,q

(

fq
)(

z
)

:= E



fq
(

Zq

)

q−1
∏

k=p

Gk

(

Zk

)

∣

∣

∣

∣

∣

Zp = z



 ,

and with the convention Q0,p(fp)(x) = M1Q1,p(fp) for any fp : Z → R, and

ηp(fp) :=
Q0,p(fp)

Q0,p(1)

and M̄p,p+1

(

z, ·
)

= Mp+1

(

z, ·
)

and for q > p ≥ 0 we have the recursive definition, for any zp ∈ Z,

M̄p,q

(

zp, ·
)

=

ˆ

Mp+1(zp, dzp+1)M̄p+1,q

(

zp+1, ·
)

.

The first condition is rather abstract, and can be viewed as a condition on the h-functions inves-
tigated in [29] in the context of stability properties of standard SMC algorithms.
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(A1) There exists a constant α > 0 such that for any p, k ∈ N,

sup
z∈Z

Qp,p+k(1)(z)

ηpQp,p+k(1)
≤ α .

One can however show that (A1) is implied by the following stronger assumption (see Lemma 16).

(A2) [Strong mixing conditions] There exists m ∈ Z+ such that

(a) There exists a constant 1 ≤ β < ∞ such that for any p ≥ 1 and any (z, z′) ∈ Z and
S ∈ B(Z),

M̄p,p+m(z, S) ≤ βM̄p,p+m(z′, S) .

(b) The potential functions Gp satisfy, for some δ < ∞,

1 ≤ sup
z,z′∈Z2,p∈{1,...,T}

Gp(z)

Gp(z′)
≤ δ1/m .

Theorem 3. Assume that for all t ∈ N πt − ess supzt Gt(zt) < ∞ and (A1) (or the stronger
assumption (A2)) holds. Then with ǫN as in Theorem 1(b) for any N ≥ 2, there exists C, ε > 0
such that with N = C × T , then for any T ≥ 1, ǫN ≥ ε > 0.

Remark 4. Similar results for the PGibbs sampler are provided in Section 7.

Proof of Theorem 1 . The proofs of the various results are the subject of the following sections.
More specifically, statement

(a) follows from Lemma 8 (the latter property was established in [8] and the former noted/proved
in [1, 8]),

(b) all parts follow from Corollary 12 and [2, Proposition 31], which gathers generic results on
π−invariant Markov chains satisfying (b)(i),

(c) follows from Proposition 17,

(d) follows from Proposition 20 and Lemma 22; Remark 23.

Proof of Theorem 3 . Follows from Proposition 13, Corollary 14 and Lemma 16.

As pointed out in the introduction, soon after completing this work we have become aware
of [18], where a subset of our results have also been independently discovered. This motivates the
following comparison. Result (b)(i) of Theorem 1 is identical to Theorem 1 of [18], but relies on
a different proof. Results (b)(ii)–(iv) rely on standard arguments, although (iv) does not seem
to be well known and establishes informative quantitative bounds. The study of the necessity of
our conditions to imply uniform or geometric ergodicity is not addressed in [18]. The result of
Theorem 3 corresponds to Proposition 5 of [18]. The conditions under which Theorem 3 holds
are rather stringent for some applications, in particular in the state-space model scenario. As
discussed by [18] in that scenario (A2) will essentially only hold in the case where X is compact.
The condition (A1) is weaker and more natural in our analysis, but is not currently easy to verify
in applications except through (A2).

In an attempt to relax (A2), the authors of [18] investigate another set of specialised assumptions
guaranteeing that the result of Theorem 3 holds even in some non-compact scenarios provided the
number of particles N grows at a rate T 1/γ for any γ ∈ (0, 1), a result in line with what is obtained
with the stronger assumption (A2), for which γ = 1 is permissible. This requires the specification of
a “moment assumption” which aims at controlling the variations of the various quantities involved
under the law of the observation process {Yt, t ≥ 0}. Their approach, however, does not seem to
allow one to consider the scaling properties of the PGibbs sampler (i.e. not just the i-cSMC); see
their Theorem 6 and Remark 7. More importantly we note that their results require the law of
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the data to coincide with that of the specified model for some θ⋆ ∈ Θ which, although suggestive
of what may happen in practice, is always an idealization. This delicate work is the main focus of
the remainder of their investigation while here, in addition to establishing the necessity of some of
the conditions, we have focused on the transference of the results obtained for the i-cSMC to the
PGibbs sampler (Section 7) with the aim of showing that the PGibbs has performance inferior to
that of the Gibbs sampler, but arbitrarily close if we increase N .

4 Establishing the uniform minorization condition

Before proceeding we turn to the i-SIR which is particularly simple to analyze. The reason for
detailing the short analysis of this simple scenario is to provide the reader with an overview of
the developments which are to follow – the remainder of the paper essentially replicates the key
steps of the argument below, albeit in the more complex SMC framework. Notice that in this
scenario X = Z since T = 1. We let G(x) := π(dx)/M(dx) for any x ∈ X and assume that
Ḡ := supx∈X G(x) < ∞. Then for (x, S) ∈ X× B

(

X
)

we can rewrite

PN (x, S) =

N
∑

k=1

ˆ

XN

π(dzk)/M(dzk)
∑N

j=1 G(zj)
I
{

zk ∈ S
}

(

δx(dz1)
∏N

i=2M(dzi)
)

=

ˆ

XN

1
∑N

j=1 G(zj)

π(dz1)

M(dz1)
I
{

z1 ∈ S
}

(

δx(dz1)
∏N

i=2M(dzi)
)

+

N
∑

k=2

ˆ

XN

1
∑N

j=1 G(zj)
I
{

zk ∈ S
}

π(dzk)
(

δx(dz1)
∏N

i=2,i6=kM(dzi)
)

=

N
∑

k=1

ˆ

X

E1,x,k,y

[

I
{

y ∈ S
}

∑N
j=1 G(Zj)

]

(

I{k = 1}
π(dx)

M(dx)
δx(dy) + I{k 6= 1}π(dy)

)

,

where E1,x,k,y

(

·
)

defines an expectation for the random variables Z1, . . . , ZN associated to the
probability distribution

δx(dz1)
∏N

i=2M(dzi)

for k = 1 and x = y ∈ X, and

δx,y(dz1 × dzk)
∏N

i=2,i6=kM(dzi)

for k 6= 1 and x, y ∈ X. This auxiliary process turns out to be central to our analysis, and will be
generalised to the general scenario and called “doubly” cSMC (c2SMC). Indeed, omitting the term
k = 1 in the representation of PN and by application of Jensen’s inequality to the convex mapping
x 7→ (x + a)−1 for x, a ∈ R+ we obtain

PN (x, S) ≥
N
∑

k=2

ˆ

X

I
{

y ∈ S
}

E1,x,k,y

[

1

G(x) + G(y) +
∑N

j=2,j 6=k G(Zj)

]

π(dy)

≥
N
∑

k=2

ˆ

X

I
{

y ∈ S
}

G(x) + G(y) + N − 2
π(dy)

≥
N − 1

2Ḡ + N − 2
π(S) .

This is a uniform minorization condition which immediately implies uniform geometric convergence
(see the outline of our results in Section 1), but in the present situation the result is even stronger in
that, in particular, it provides us with quantitative bounds on the dependence of the performance
of the algorithm on N . Indeed it is a standard result that the minorization constant

ǫN =
N − 1

2Ḡ + N − 2
= 1 −

2Ḡ− 1

2Ḡ + N − 2
,

provides the upper bound 1−ǫN on the (geometric) rate of convergence of the algorithm, which here
vanishes at an asymptotic rate N−1 as N increases. As we shall see the fact that the minorization
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measure is the invariant distribution leads to a direct lower bound on associated Dirichlet forms
associated to PN which in turn provide quantitative bounds on the spectral gap and the associated
asymptotic variance. In the remainder of the section we generalize the representation of PN in
terms of the c2SMC algorithm and “the estimator of the normalizing constant” which suggests
applying Jensen’s inequality as above. This requires us to consider estimates of the resulting
expectation in Section 5.

In order to proceed further it is required to define the c2SMC process, which is essentially
similar to the cSMC process but where conditioning is now upon two trajectories x, y ∈ X. The
definition is therefore similar, but for reasons which will become clearer below the second fixed
trajectory is set to have a lineage of the general form k := k1:T ∈ [N ]T . We will use below the
convention that δa,b

(

dz1 × dzk
)

reduces to δa(dz1) whenever k = 1. The definition of this process
is similar to that of the cSMC algorithm and the distributions involved are defined for x, y ∈ X

and k ∈ [N ]T as follows

P
N
1,x,k,y (Z1 ∈ dz1) = δx1,y1

(

dz11 × dzk1

1

)

N
∏

i=2,i6=k1

M1(dzi1) ,

and for t = 2, . . . , T − 1 (with the convention ak,lt−1 := (akt−1, a
l
t−1))

P
N
1,x,k,y (Zt ∈ dzt, At−1 = at−1 |Zt−1 = zt−1 ) = δxt,yt

(

dz1t × dzkt

t

)

× I{a1,kt

t−1 = (1, kt−1)}
N
∏

i=2,i6=kt

(

N
∑

l=1

Gt−1(zlt−1)
∑N

j=1 Gt−1(zjt−1)
I
{

ait−1 = l
}

Mt(z
l
t−1, dz

i
t)

)

and

P
N
1,x,k,y (AT = l |ZT = zT ) =

GT (zlT )
∑N

j=1GT (zjT )
.

We note that although the transitions and the initial distributions are, by the convention, well
defined for kt = 1 and xt 6= yt the distribution above will never be used in such a context. Just
as P

N
1,x is not a conditional distribution of PN

(

·
)

, the law of the SMC algorithm, the same holds

between P
N
1,x,k,y

(

·
)

and P
N
1,x

(

·
)

. However we now provide an important property relating these two
probability distributions, which together with (7) will allow us to decompose this transition into
key quantities and establish the sought minorization condition. The proof of the following Lemma
is in [2, Appendix A].

Lemma 5. For i ∈ {2, . . . , N}T and x ∈ X,

E
N
1,x

[

Ii
(

Z1:T , A1:T , S
)]

=
γT
NT

ˆ

X

π(dy) × I{y ∈ S} × E
N
1,x,i,y

[

1
∏T

t=1
1
N

∑N
j=1Gt(Z

j
t )

]

.

As we shall see the concentration properties of the “estimator of the normalizing constant”

plays a central role for any z1:T ∈
(

ZN
)T

γ̂N
T

(

z1:T
)

:=

T
∏

t=1

1

N

N
∑

j=1

Gt(z
j
t ) .

We first obtain a uniform minorization condition for the cSMC transition probability. This simple
result establishes the expectation of γ̂N

T

(

Z1:T

)

with respect to a c2SMC algorithm as a key quantity
of interest, and motivates the non-asymptotic analysis and bounds of Section 5.

Proposition 6. For any (x, S) ∈ X× B
(

X
)

and N ≥ 2 we have

PN (x, S) ≥

ˆ

S

γT × (1 − 1/N)T

EN
1,x,2,y

[

γ̂N
T

(

Z1:T

)]π(dy) .
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Proof. Using (7), we only keep the trajectories for which there is no coalescence with the first
trajectory, i.e., we exclude terms such that it = 1 for some t ∈ [T ] and obtain

PN (x, S) ≥
∑

i∈{2,...,N}T

E
N
1,x

[

Ii
(

Z1:T , A1:T , S
)]

.

Consequently, using Lemma 5,

PN (x, S) ≥
∑

i1:T ∈[2:N ]T

γT
NT

ˆ

X

π(dy) × I{y ∈ S} × E
N
1,x,i,y

[

1
∏T

t=1
1
N

∑N
j=1Gt(Z

j
t )

]

=
γT (N − 1)T

NT

ˆ

S

E
N
1,x,2,y

[

1
∏T

t=1
1
N

∑N
j=1Gt(Z

j
t )

]

π(dy1:T ) ,

using invariance by permutation of i1, . . . , iT of the expectations. We conclude by application of
Jensen’s inequality for the convex function u 7→ 1/u for u ∈ R+.

Corollary 7. Let N ≥ 2 and assume that

ǫN :=
γT × (1 − 1/N)T

supx,y∈X E
N
1,x,2,y

[

γ̂N
T

(

Z1:T

)] > 0 ,

then for any (x, S) ∈ X×B
(

X
)

, PN (x, S) ≥ ǫNπ(S) and from Proposition 6 all the properties of [2,
Proposition 31] apply to the i-cSMC with ε = ǫN .

The next section is dedicated to finding a useful expression for the expectation E
N
1,x,2,y

[

γ̂N
T

(

Z1:T

)]

and establishing explicit bounds on this quantity, and therefore ǫN in Corollary 7, under additional
assumptions.

Before proceeding to novel analysis, for completeness we gather two known properties of the
i-cSMC (in the general set-up) in the following lemma which will be exploited throughout the
remainder of the paper. Both results are immediate upon noticing that the i-cSMC is a two
stage Gibbs sampler on an artificial joint distribution (see (14) in [2, Appendix B], which is a
generalization of (1)). The results have also been shown in detail in [8]. A proof is included in [2,
Appendix B] for completeness.

Lemma 8. PN , viewed as an operator on L2
(

X, π
)

, is self-adjoint and positive.

5 Quantitative bounds for the doubly conditional i-cSMC

expectation

In this section we first find an exact expression for E
N
1,x,2,y

[

γ̂N
T

(

Z1:T

)]

in terms of quantities
underpinning the definition of π given in Section 3 and then move on to provide various estimates
of the conditional expectation involved in the minorization established in Proposition 6, under
various assumptions on the aforementioned quantities. Throughout we use the usual convention
that

∑

∅ = 0 and
∏

∅ = 1. We let Gp,q(z) := Qp,q(1)(z) and G1+2
p,q := Gp,q

(

xp

)

+ Gp,q

(

yp
)

. We
note that Gp,p+1(z) = Gp(z) for p ∈ [T ] and we use the convention throughout that for any z ∈ Z,
G0(z) = 1 and Q0,p

(

fp
)

(z) := M1 (Q1,p(fq)). We write G0,p := M1 (Q1,p(1)) since G0,p(z) is
independent of z. Our first result, whose proof can be found in [2, Appendix D], is

Proposition 9. Let x, y ∈ X and N ≥ 2. Then,

E
N
1,x,2,y

[

γ̂N
T

(

Z1:T

)]

=
1

NT

T+1
∑

s=1

(N − 2)T+1−s
∑

i∈IT+1,s

G0,i1CT,s

(

i, x, y
)

,

where for any s = 1, . . . , k,

Ik,s := {i1, . . . , is ∈ N
s : T − k + 1 < i1 · · · < is = T + 1} ,
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and for i ∈ Ik,s

Ck,s

(

i, x, y
)

:=

s−1
∏

m=1

[

Gim,im+1

(

xim

)

+ Gim,im+1

(

yim)
]

.

Remark 10. While the expectation of interest here has been hitherto uninvestigated, the form of
Proposition 9 is reminiscent of non-asymptotic results in [7], in which second moments of γ̂N

T

(

Z1:T

)

are analyzed with respect to the law of a standard SMC algorithm.

We now turn to estimates of the expectation above, starting with very minimal assumptions
which allow us to establish the minorization condition required to apply [2, Proposition 31] and
deduce most of our results, without the need for assumptions on the dynamic of the system—the
number of particles is however required to grow exponentially in order to maintain a set level of
performance. We show subsequently that with stronger assumptions on {Mt, Gt}Tt=1 it is possible
to show that N should grow linearly with T to ensure that a set level of performance is maintained.

Proposition 11. Assume that for all t ∈ {1, . . . , T }, Ḡt := supz∈ZGt(z) < ∞, then for any N ≥ 2

E
N
1,x,2,y

[

γ̂N
T

(

Z1:T

)]

≤ γT

{

1 +

[

1 −

(

1 −
2

N

)T
][

∏T
t=1 Ḡt

γT
− 1

]}

.

Proof. The assumption on the potentials implies that for any p, q ∈ N with p < q we have Gp,q ≤
∏q−1

k=p Ḡk, and from Proposition 9 we have

E
N
1,x,2,y

[

γ̂N
T

(

Z1:T

)]

=

T+1
∑

s=1

(

N − 2

N

)T+1−s
2s−1

Ns−1

∑

IT+1,s

G0,i1

s−1
∏

m=1

1

2
G1+2

im,im+1

≤ γT

(

N − 2

N

)T

+

T
∏

k=1

Ḡk ×
T+1
∑

s=2

(

T

s− 1

)(

N − 2

N

)T+1−s
2s−1

Ns−1

= γT

(

N − 2

N

)T

+

[

1 −

(

N − 2

N

)T
]

T
∏

k=1

Ḡk ,

and the result follows.

Corollary 12. Propositions 6 and 11 together imply that for any x, S ∈ X× B(X),

PN (x, S) ≥ ǫNπ(S) with ǫN =
(1 − 1/N)T

1 +
[

1 −
(

1 − 2
N

)T
] [∏

T
t=1

Ḡt

γT
− 1
]

and limN→∞ ǫN = 1.

It should be clear that despite Corollary 12, the term
∏T

t=1 Ḡt/γT typically grows exponentially
fast with T whenever the potentials are not constant functions. Therefore, Proposition 11 suggests
that the number of particles N should grow exponentially with T in general. However, stronger
assumptions on the system under consideration will allow us to maintain a given lower bound on
ǫN by increasing N only linearly with T . We first state our main result using the abstract condition
(A1) and then show that classical strong mixing conditions (A2) imply (A1).

Proposition 13. Assume (A1), then for any N ≥ 2

E
N
1,x,2,y

[

γ̂N
T

(

Z1:T

)]

≤ γT

(

1 +
2(α− 1)

N

)T

.

Proof. First notice that for any 1 ≤ k ≤ n

Q0,n(1) = Q0,k(1)
Q0,n(1)

Q0,k(1)
= Q0,k(1)ηkQk,n(1) ,
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and therefore for any s ∈ {1, . . . , T } and 0 < i1 < · · · < is−1 < is = T + 1 with the notation
defined earlier,

Q0,T (1) = Q0,i1(1)

s−1
∏

k=1

ηikQik,ik+1
(1) = G0,i1

s−1
∏

k=1

ηikGik,ik+1
,

and from (A1), with Ḡp,q := supz∈Z Gp,q(z), and applying Proposition 9 yields the following upper
bound for E

N
1,x,2,y

[

γ̂N
T

(

Z1:T

)]

:

T+1
∑

s=1

(

N − 2

N

)T+1−s
2s−1

Ns−1

∑

0<i1<···<is−1<is=T+1

G0,i1

s−1
∏

m=1

1

2
G1+2

im,im+1

≤ γT

(

N − 2

N

)T

+ γT

T+1
∑

s=2

(

N − 2

N

)T+1−s
2s−1

Ns−1

∑

IT+1,s

G0,i1

G0,i1

s−1
∏

m=1

Ḡim,im+1

ηikGik,ik+1

≤ γT

T+1
∑

s=1

(

T

s− 1

)(

N − 2

N

)T+1−s
2s−1

Ns−1
αs−1 ,

and we conclude by an application of the binomial theorem.

Corollary 14. Propositions 6 and 11 together imply that for any (x, S) ∈ X× B(X),

PN (x, S) ≥ ǫNπ(S) with ǫN =

(

1 − 1/N

1 + 2(α−1)
N

)T

.

Now, let N − 1 ≥ CT for some C > 0. Then ǫN ≥ exp
(

− 2α−1
C

)

.

Proof. Propositions 6 and 13 together imply that

ǫN ≥

(

1 +
2α− 1

N − 1

)−T

.

Since (N − 1) ≥ CT for some C > 0, and log(1 + x) ≤ x for all x ≥ 0,

(

1 +
2α− 1

N − 1

)T

≤

(

1 +
2α− 1

CT

)T

≤ exp

(

2α− 1

C

)

.

Remark 15. The combination of the upper bound of var(f, PN ) in Theorem 1 with Corollary 14
suggests a rough rule of thumb to select N for the i-cSMC Markov kernel. In particular, there is
generally a tradeoff between iterating a less computationally intensive Markov kernel more times
and iterating a more computationally intensive expensive fewer times. This suggests that one
should minimize the function f(N) := Nvar(f, PN ). While an analytic expression for var(f, PN )
is not available we can minimize its upper bound

(CT + 1)

{

2 exp

(

2α− 1

C

)

− 1

}

,

with respect to C. Assuming that we are in the scenario where N ≫ 1 and therefore CT +1 ≈ CT
one then finds the unique minimum

C∗ =
2α− 1

LambertW(− 1
2 exp(1) ) + 1

≈ 1.302 (2α− 1) ,

(where LambertW is the principal branch of the Lambert W function) or correspondingly

ǫ∗N ≈ 0.464 .
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Hence, under (A1) it is only required for N to scale linearly with T in order to maintain a non-
vanishing ergodicity rate. Following, e.g., [9, 7] we make the following assumptions on {Mt} and the
potentials {Gt} which combined define an m-step “strong mixing” condition which automatically
implies (A1). The following result relies on classical arguments [9, 7, Lemma 4.3]

Lemma 16. Assume (A2). Then for any k ∈ Z+ we have

sup
z,z′∈Z2

Qp,p+k(1)(z)

Qp,p+k(1)(z′)
≤ βδ ,

i.e., (A1) is satisfied.

6 Necessity of the boundedness assumption and a conjec-

ture

Proposition 11 showed that the i-cSMC kernel is uniformly ergodic if the potentials are bounded.
We study here the opposite case, where at least one of the potentials is unbounded. We discover that
then the algorithm cannot be uniformly ergodic (Proposition 17), and in many cases the algorithm
cannot be geometrically ergodic (Proposition 20 and Lemma 22; Remark 23). We believe that
the latter holds in general (Conjecture 24), but a proof has remained elusive. This dichotomy of
algorithms which are uniformly ergodic and sub-geometrically ergodic would be in perfect analogy
with the behaviour of the independent Metropolis–Hastings [20, Theorem 2.1].

We will denote hereafter the marginal densities of π by

πt:u(A) := π(Zt−1 ×A× Z
T−u) for A ∈ B(Zu−t+1), (8)

where 1 ≤ t ≤ u ≤ T and we use the shorthand πt(A) := πt:t(A).
In this section, we will assume that S ∈ B(Z)T is a fixed set such that for all x ∈ S,

∏T
t=1 Gt(xt) > 0 and π(S) = 1. Further, S contains all possible starting points of the algorithm,

that is, we assume that the state space of the i-cSMC is S. In the discrete case, the minimal S
consists of the points of positive π-measure, and in the continuous case where π admits a density,
the set S can be taken as the set where the density is positive.

Further, we will assume that π1 is not concentrated on a single point. We can do this without
loss of generality, because if π1, . . . , πt were concentrated on single points of the state space, the
algorithm would be deterministic until πt+1 and we could consider the i-cSMC for π′ = πt+1:T .

Proposition 17. Suppose πt-ess supxt
Gt(xt) = ∞ for some t ∈ [T ]. Then, the i-cSMC kernel PN

is not uniformly ergodic for any N ∈ N.

Proof. If the i-cSMC kernel is uniformly ergodic, then there exist K < ∞ and ρ ∈ (0, 1) such that

sup
x∈S

‖Pn
N(x, · ) − π( · )‖TV ≤ Kρn for all n ∈ N.

Fix ǫ′ > 0 and let n ∈ N be such that Kρn ≤ ǫ′. We will prove that there exists a set Bǫ′ ∈ B(Z)
such that π1(Bǫ′) > 0 and infx∈Bǫ′

Pn
N (x, {x1} × ZT−1) ≥ 1 − ǫ′. For all x ∈ Bǫ′ , we have

|Pn
N (x, {x1} × ZT−1) − π1({x1})| ≤ Kρn ≤ ǫ′. This, with ǫ′ > 0 small enough, will contradict

π1({x1}) < 1.
Lemma 18 shows that there exists φ : R+ → R+ such that limg→∞ φ(g) = 0, and

PN (x, {x1}
∁ × Z

T−1) ≤ φ(G(xt)).

Denote the level set Lt(G) := {xt ∈ Z : Gt(xt) ≤ G}. Lemma 18 shows that there exists
c2 = c2(N) ∈ [1,∞) such that for Gt(xt) ≥ G

PN (x,Zt−1 × Lt(G) × Z
T−t) ≤ c2G/Gt(xt).

Let ǫ ∈ (0, 1) and define δ := ǫ/c2 and let G∗ be large enough so that φ(δnG∗) ≤ ǫ. Define the
(sub-probability) kernels µḠ(x, dy) := PN (x, dy)δx1

(y1)I
{

Gt(yt) ≥ Ḡ
}

on (S,B(S)) for any Ḡ > 0
and observe that we may estimate

I {Gt(xt) ≥ G∗}P
n
N (x, {x1} × Z

T−1)
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≥ I {Gt(xt) ≥ G∗}

ˆ

µδG∗
(x, dy(2))

ˆ

µδ2G∗
(y(2), dy(3)) · · ·

ˆ

µδn−1G∗
(y(n−1), dy(n)).

We may estimate for any i ∈ [n] and all x ∈ S such that Gt(xt) ≥ δi−1G∗,

ˆ

µδiG∗
(x, dy) ≥ 1 − PN (x, {x1}

∁ × Z
T−1) − PN (x,Zt−1 × Lt(δ

iG∗) × Z
T−t)

≥ 1 − 2ǫ.

We conclude that for x ∈ S such that Gt(xt) ≥ G∗,

Pn
N (x, {x1} × Z

T−1) ≥ (1 − 2ǫ)n.

This proves the claim, as ǫ > 0 was arbitrary.

Lemma 18. For all x ∈ S and all G ∈ R+,

1. PN (x, {x1}∁ × ZT−1) ≤ φ(G(xt)),

2. PN (x,Zt−1 × Lt(G) × ZT−t) ≤ (N − 1)2G/Gt(xt) whenever Gt(xt) ≥ G.

where φ : R+ → R+ is a function such that limg→∞ φ(g) = 0.

Proof. In both cases, we consider the case t < T ; the special case t = T can be treated similarly.
In order to facilitate the theoretical analysis, we introduce a non-standard implementation of
the cSMC which relies on the remark that at any time instant a given particle can only have a
maximum number N of children. Hence when implementing the cSMC it is always possible to
draw N children first and then decide who is carried forward according to the standard selection
mechanism. It is in fact possible to push this idea further and, given a fixed x ∈ S, to sample the
following N -ary tree of random variables first

Ẑ1
1 = x1, Ẑi

1 ∼ M1(·), i ∈ [N ] \ {1}

Ẑ1,1
2 = x2, Ẑi,j

2 ∼ M2(Ẑi
1, ·), (i, j) ∈ [N ]2 \ {(1, 1)}

...

Ẑ1

T = xT , Ẑi1,...,iT
T ∼ MT (Ẑ

i1,...,iT−1

T−1 , ·), (i1, . . . , iT ) ∈ [N ]T \ {1} ,

and then prune the tree using the selection mechanism of the cSMC algorithm with fixed path
x ∈ S. As a result, each Zj

t in the cSMC is associated with some Ẑi
t . The construction above

permits the bound

U :=
∑

i∈[N ]t

Gt(Z
it
t )I {i1 6= 1}

t
∏

p=2

I

{

ip−1 = A
ip
p−1

}

≤
∑

i∈{2,...,N−1}t

Gt(Ẑ
i

t) =: V,

where U corresponds to the sum of potentials associated with those Zj
t whose ancestral lineage

does not contain the value 1. It therefore follows that

PN (x, {x1}
∁ × Z

T−1) = E
N
1,x

[

U

Gt(xt) +
∑N

j=2 Gt(Z
j
t )

]

≤ E
N
1,x

[

U

Gt(xt) + U

]

≤ E
N
1,x

[

V

Gt(xt) + V

]

,

because u 7→ u/(g+ u) is increasing. Now, V is a finite non-negative random variable independent
of x. We may define

φ(g) := E
N
1,x

[

V

g + V

]

which satisfies limg→∞ φ(g) = 0 by the monotone convergence theorem.
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For the second inequality, we can show similarly that for Gt(xt) ≥ G

P
N
1,x

[

Gt(Z
Ai

t

t ) ≤ G
]

= E
N
1,x

[

∑N
k=2 Gt(Z

k
t )I
{

Gt(Z
k
t ) ≤ G

}

Gt(xt) +
∑N

k=2 Gt(Zk
t )

]

≤
(N − 1)G

Gt(xt)

and so

PN (x,Zt−1× Lt(G) × Z
T−t)≤

N
∑

i=2

P
N
1,x

[

Gt(Z
Ai

t

t ) ≤ G
]

=(N − 1)PN
1,x

[

Gt(Z
Ai

t

t ) ≤ G
]

.

To establish that PN cannot be even geometrically ergodic whenever πt-ess supxt
Gt(xt) = ∞

for some t ∈ [T ] in many settings, we use Proposition 19. This allows for the developments of
Proposition 20 and Lemma 22, leading to the desired result under assumptions satisfied in many
applications; see Remark 23.

Proposition 19. Suppose P is an ergodic Markov kernel on a state space
(

X,B(X)
)

with invariant
distribution π. Suppose that for any ǫ, δ > 0 there exists a set A ∈ B(X) such that π(A) ∈ (0, δ)
and infx∈A P (x,A) ≥ 1 − ǫ. Then P is not geometrically ergodic.

Proof. The result follows directly by following the proof of [26, Theorem 3.1], or by a conductance
argument [16, Theorem 1].

Proposition 20. Assume that for at least one t ∈ [T ]

π-ess sup
x

E
N
1,x

[

Gt(xt)
∑N

k=1 Gt(Zk
t )

]

= 1. (9)

Then PN cannot be geometrically ergodic.

Proof. Because of Proposition 19 it suffices to establish that

π1:t-ess sup
x1:t∈S

{

inf
xt+1:T

PN

(

x1:T ; {x1:t} × Z
T−t
)

}

= 1. (10)

We note that

inf
xt+1:T

PN

(

x1:T , {x1:t} × Z
T−t
)

≥ P
N
1,x

(

A1:N
t = 1

)

≥ 1 −
N
∑

i=2

P
N
1,x

(

Ai
t 6= 1

)

,

because A1
t = 1 by construction. We emphasize that Ai

t are independent of xt+1:T . Now (10)
follows directly from (9) because for i ∈ {2, . . . , N},

P
N
1,x

(

Ai
t = 1

)

= E
N
1,x

[

Gt(xt)
∑N

j=1 Gt(Z
j
t )

]

.

Lemma 21. Assume that for any ǫ > 0

π-ess inf
x

P
N
1,x

(

Gt(Z
2
t )

Gt(xt)
≥ ǫ

)

= 0.

Then, (9) holds.

Proof. For any ǫ, δ > 0 there exists Aǫ,δ such that π(Aǫ,δ) > 0 and for x ∈ Aǫ,δ

P
N
1,x

(

Gt(Z
2
t )

Gt(xt)
≥ ǫ

)

< δ.
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Because of exchangeability, for any x and 2 ≤ k ≤ N ,

P
N
1,x

(

Gt(Z
k
t )

Gt(xt)
≥ ǫ

)

= P
N
1,x

(

Gt(Z
2
t )

Gt(xt)
≥ ǫ

)

.

Denote B =
{

∑N
k=2

Gt(Z
k
t )

Gt(xt)
≥ (N − 1)ǫ

}

, then for x ∈ Aǫ,δ also

P
N
1,x(B) ≤

N
∑

k=2

P
N
1,x

(

Gt(Z
k
t )

Gt(xt)
≥ ǫ

)

< (N − 1)δ.

We may bound for any x ∈ Aǫ,δ,

E
N
1,x

[

Gt(xt)
∑N

k=1 Gt(Zk
t )

]

≥ E
N
1,x

[

I

{

B∁
} Gt(xt)
∑N

k=1 Gt(Zk
t )

]

≥ E
N
1,x

[

{

B∁
} 1

1 + (N − 1)ǫ

]

≥
1 − (N − 1)δ

1 + (N − 1)ǫ
.

Letting ǫ, δ → 0 completes the proof.

Lemma 22. Assume that there exists t ∈ [T ] such that πt-ess supxt
Gt(xt) = ∞, and if t ≥ 2,

suppose also that for any A ∈ B(Z1:t−1) and B ∈ B(Z),

π1:t−1(A) > 0 and πt(B) > 0 =⇒ π1:t(A×B) > 0.

Then, the assumption of Lemma 21 and consequently (9) holds for t.

Proof. Assume that t ∈ {2, . . . , T }, and for any x1:t−1 ∈ Zt−1 let µx1:t−1
denote the distribution

of Gt(Z
2
t ) under P

N
1,x1:t−1

. By [2, Lemma 34], there exists A ∈ B(Zt−1) such that π1:t−1(A) ≥ 1/2

and the family {µx1:t−1
}x1:t−1∈A is tight. Therefore, for any ǫ, δ > 0 there exists Ḡt < ∞ such

that P
N
1,x(Gt(Z

2
t )/Ḡt ≥ ǫ) < δ for all x1:t−1 ∈ A. Because πt-ess supxt

Gt(xt) = ∞, the set

A × {xt : Gt(xt) ≥ Ḡt} × ZT−t−1 is of positive π-measure. The case t = 1 follows similarly
because the distribution of G1(Z2

1 ) is independent of x.

Remark 23. An immediate implication of Propositions 20 and 11 and Lemma 22 is that if π is
equivalent to a Lebesgue or counting measure on X then PN is geometrically ergodic for any N ≥ 2
if and only if πt-ess supxt

Gt(xt) < ∞ for all t ∈ [T ]. This covers many applications in statistics,
where often the potentials Gt are strictly positive and for any xt ∈ Z, the Markov kernel Mt(xt, ·)
is equivalent to a Lebesgue or counting measure on Z.

Proposition 20 does not characterize all situations in which PN fails to be geometrically ergodic.
Indeed, in the following example (9) does not hold, and PN still fails to be geometrically ergodic.

Example. Let Z = N, T = 2, G1(z) ≡ 1 and M1(z1) be any probability distribution supported
on N (e.g., a Poisson distribution). Define M2(z1, z2) = 1

2δ2z1(z2) + 1
2δ2z1+1(z2) and G2(z2) = z2.

It is not difficult to see that this example does not satisfy (9), but π2-ess supz2 G2(z2) = ∞. It
is easy to observe as well that the sets An := {(n, 2n), (n, 2n + 1)} satisfy π(An) > 0 and that
infx∈A PN (x,An) ≥ 1 − δn where δn → 0 as n → ∞.

Our findings above suggest that the essential boundedness of the potentials could in fact be a
necessary condition for geometric ergodicity. We have considered also various other examples, and
it seems that in any specific scenario it is easy to identify “sticky” sets and conclude by Lemma 19.
However, we have yet to identify such sets in general, and so have resorted to stating the following.

Conjecture 24. Suppose πt-ess supxt
Gt(xt) = ∞ for some t ∈ [T ]. Then, the i-cSMC kernel is

not geometrically ergodic for any N ∈ N.
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7 The particle Gibbs sampler

In numerous situations of practical interest one is interested in sampling from a probability dis-
tribution π

(

dθ × dx
)

defined on some measurable space
(

Θ × X,B(Θ) × B(X)
)

for which direct
sampling is difficult, but sampling from the associated conditional probability distributions πθ(dx)
and πx(dθ) for any (θ, x) ∈ Θ × X turns out to be easier. In fact when sampling exactly from
these conditionals is possible one can define the two stage Gibbs sampler [23] which alternately
samples from these conditional distributions. More precisely, let us define, for any (θ, x) ∈ Θ × X

and S ∈ B(Θ) × B(X),

Γ
(

θ, x;S
)

:=

ˆ

S

πx

(

dϑ
)

πϑ(dy) . (11)

This can be interpreted as a Markov transition probability, and is precisely the Markov kernel
underpinning the standard two stage Gibbs sampler. The corresponding Markov chain {(θi, Xi), i ≥
0} on Θ×X leaves π invariant and is ergodic under fairly general and natural conditions. In fact it
can be shown that {Xi, i ≥ 0} and {θi, i ≥ 0} are themselves Markov chains leaving the marginals
π
(

dx
)

and π(dθ) invariant respectively. For reasons which will appear clearer below, we define for

any (x0, S) ∈ X×B
(

X
)

the Markov transition probability Γx

(

x0, S
)

:= Γ
(

x0,Θ×S
)

corresponding
to the Markov chain {Xi, i ≥ 0} (we point out that the index x in this notation is a name, not
a variable). In some situations, however, while sampling from the conditional distribution πx

(

dθ
)

may be routine, sampling from πθ(dx) may be difficult and this step is instead replaced by a Markov
transition probability Πθ(x, dy) leaving πθ(dx) invariant for any θ ∈ Θ. The resulting algorithm,
whose transition kernel Φ is given below, is often referred to as “Metropolis-within-Gibbs” in the
common situation where Πθ is a Metropolis–Hastings transition kernel—we will however use this
name in order to refer to the general scenario. In the particular situation where Πθ is a cSMC
transition kernel the resulting algorithm is known as the particle Gibbs (PGibbs) sampler [1]. We
note that in the general scenario, for any (θ0, x, S) ∈ Θ × X×

(

B(Θ) × B(X)
)

Φ(x, S) = Φ(θ0, x;S) : =

ˆ

S

πx

(

dθ
)

Πθ(x, dy) . (12)

Similarly to above one can show that {Xi, i ≥ 1} defines a Markov chain, with transition kernel,
for (x0, S) ∈ X×B

(

X
)

, Φx(x0, S) := Φ(x0,Θ× S) which is π
(

dx
)

−reversible, and positive as soon

as Πθ defines a positive operator for any θ ∈ Θ. Indeed since for any f, g ∈ L2
(

X, π
)

,

ˆ

X

f(x)π(dx)

ˆ

Θ×X

πx

(

dθ
)

Πθ(x, dy)g(y) =

ˆ

Θ

π(dθ)

ˆ

X2

f(x)g(y)πθ

(

dx
)

Πθ(x, dy)

=

ˆ

Θ

π(dθ)

ˆ

X2

f(x)g(y)πθ

(

dy
)

Πθ(y, dx) ,

we deduce the reversibility from the choice f(x) = I{x ∈ S1} and g(x) = I{x ∈ S2} for S1, S2 ∈
B
(

X
)

and the positivity by letting g = f . This motivates the following simple result, which
again draws on the standard Hilbert space techniques outlined in [2, Appendix C], and is to the
best of our knowledge not available in the literature. We naturally remark that Γ is a particular
instance of Φ corresponding to the case where for any (θ, x) ∈ Θ × X, Πθ(x, ·) = πθ(·), therefore
also implying that Γx is self-adjoint. Our first result, Theorem 25, takes advantage of the fact
that Γx is reversible, and therefore focuses on the asymptotic variance of functions f ∈ L2

(

X, π
)

.
Corollary 26 follows from this result, providing a sufficient condition for geometric ergodicity of
the PGibbs Markov chain. Our second result, Theorem 27, focuses on functions g ∈ L2

(

Θ, π
)

, but
the same technique is not directly applicable in this scenario. Some of our results concern Dirichlet
forms: for a generic µ-reversible Markov kernel and a function f ∈ L2(E, µ) we define the Dirichlet
form EΠ(f) := 〈f, (I − Π)f〉µ.

Theorem 25. Let π be a probability distribution defined on
(

Θ×X,B(Θ)×B(X)
)

and let {Πθ, θ ∈ Θ}
be a family of Markov transition probabilities {Πθ, θ ∈ Θ} such that for any θ ∈ Θ the Markov kernel
Πθ is reversible with respect to πθ, and let Γ and Φ be as in (11) and (12). Define

̺ : = inf
f∈L2

(

X,π
)

´

Θ π(dθ)varπθ
(f) Gap

(

Πθ

)

´

Θ
π(dθ)varπθ

(f)
. (13)
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Then, for any f ∈ L2(X, π) we have the following inequalities,

(a) for the Dirichlet forms,

2EΓx
(f) ≥ EΦx

(f) ≥ ̺× EΓx
(f) ,

(b) for the right spectral gaps

2Gap (Γx) ≥ Gap
(

Φx

)

≥ ̺× Gap (Γx) ,

(c) if the asymptotic variances,

0 ≤
var
(

f,Γx

)

− varπ(f)

2
≤ var

(

f,Φx

)

≤ (̺−1 − 1)varπ(f) + ̺−1var (f,Γx) ,

where the latter inequality holds for ̺ > 0.

(d) In addition if

(i) there exist ǫ > 0 such that for all θ ∈ Θ and all (x,B) ∈ X × B
(

X
)

, the minorisation

inequality Πθ

(

x,B
)

≥ ǫπθ

(

B
)

holds, then for any f ∈ L2(X, π)

var
(

f,Γx

)

− (1 − ǫ)varπ(f)

(2 − ǫ)
≤ var

(

f,Φx

)

,

(ii) for all θ ∈ Θ, Πθ is a positive operator then for any f ∈ L2(X, π)

var
(

f,Γx

)

≤ var
(

f,Φx

)

.

Proof. We prove the first point. Without loss of generality we consider any f ∈ L2
0

(

X, π
)

and
notice that

EΦx
(f) =

ˆ

Θ

π(dθ)EΠθ

(

f
)

,

since
ˆ

Θ×X2

π(dx)πx(dθ)Πθ(x, dy) [f(x) − f(y)]2 =

ˆ

Θ

π(dθ)

ˆ

X2

πθ(dx)Πθ(x, dy) [f(x) − f(y)]2 .

Now using that EΓx
(f) = 1

2

´

Θ×X2 π(dx)πx(dθ)πθ(dy) [f(x) − f(y)]
2

=
´

Θ π(dθ)varπθ
(f) and let-

ting f̄θ := f − πθ(f) for any θ ∈ Θ, we obtain

EΦx
(f) =

ˆ

Θ

π(dθ)varπθ
(f)

´

Θ π(dθ)EΠθ

(

f
)

´

Θ π(dθ)varπθ
(f)

= EΓx
(f) ×

´

Θ π(dθ)I{varπθ
(f) > 0}varπθ

(f)
EΠθ

(

f̄θ

)

varπθ(f̄θ)
´

Θ
π(dθ)varπθ

(f)

≥ EΓx
(f) ×

´

Θ
π(dθ)varπθ

(f) Gap
(

Πθ

)

´

Θ
π(dθ)varπθ

(f)

≥ EΓx
(f) × inf

g∈L2
0

(

X,π
)

´

Θ
π(dθ)varπθ

(g) Gap
(

Πθ

)

´

Θ π(dθ)varπθ
(g)

,

where we have used that for any g ∈ L2
0

(

X, π
)

, EΠθ

(

g
)

≤ 2varπθ
(g) and that the set A :=

{

θ ∈

Θ : varπθ
(f̄θ) = ∞

}

satisfies π
(

A × X
)

= 0. The latter result follows from varπ(f) < ∞ and the
variance decomposition identity: ‖f‖2π = ‖f− f̄θ‖2π+‖f̄θ‖2π. We deduce (a) from the last inequality.
Points (b) and (c) then follow from [2, Lemma 32].
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We next turn into (d). As above, we find that

EΦx
(f) ≤ EΓx

(f) ×

´

Θ π(dθ)I{varπθ
(f) > 0}varπθ

(f) supg∈L2
0
(X,πθ)

EΠθ

(

g
)

varπθ
(g)

´

Θ
π(dθ)varπθ

(f)
.

Under the uniform minorisation condition, we have EΠθ

(

g
)

≤ (2 − ǫ)varπθ
(g) [2, Proposition 31],

and consequently EΦx
(f) ≤ (2 − ε)EΓx

(f). When Πθ is a positive operator for any θ ∈ Θ, we have
EΠθ

(

g
)

≤ varπθ
(g) and consequently EΦx

(f) ≤ EΓx
(f).

Remark 26. In relation to Theorem 25 :

(a) it may be easier in practice to use the lower bound ̺ := infθ∈Θ Gap
(

Πθ

)

≤ ̺ which leads to

Gap
(

Φx

)

≥ ̺× Gap (Γx) and var
(

f,Φx

)

≤ (̺−1 − 1)varπ(f) + ̺−1var (f,Γx) when ̺ > 0,

(b) one could suggest iterating Πθ sufficiently many times, say kθ times, in order to ensure that
Πkθ

θ satisfies the uniform in θ properties of the type suggested above. This would require
however a computable quantitative bound on the spectral gap of Πθ ,

(c) the lower bound in (c) is motivated by the fact that {Πθ, θ ∈ Θ} may be a family with
non-positive elements, which may introduce negative correlations. On the contrary in the
situation where {Πθ, θ ∈ Θ} is a collection of positive operators (e.g. cSMC kernels) then
(b) implies that Φx is geometrically ergodic as soon as Γx is geometrically ergodic and ̺ > 0
(and of course Γx is always positive) and (d)(ii) that Φx is always inferior to Γx in terms of
asymptotic variance. In the context of the PGibbs sampler the latter result parallels what is
known for pseudo-marginal algorithms [5],

(d) we note that from [25, Theorem 1; Proposition 1] Φ is geometrically ergodic as soon as Φx is
geometrically ergodic.

Now we show how these results can be transferred to the {θi} chain.

Theorem 27. Let the notation be as in Theorem 25. Then,

(a) assume that for some class of functions G ⊂ {g : X → R : π(|g|) < ∞} there exists a function
|·|G : G → [0,∞] and ρ ∈ [0, 1) such that for any probability distribution ν on

(

X,B(X)
)

there
exist Wν ∈ [0,∞] such that for all g ∈ G and any k ≥ 1

∣

∣νΦk
x(g) − π(g)

∣

∣ ≤ |g|G Wνρ
k ,

then for any f : Θ → R such that f̄(x) := πx

(

f
)

∈ G and any k ≥ 2

∣

∣νΦk(f) − π(f)
∣

∣ ≤
∣

∣f̄
∣

∣

G
Wνρ

k−1 ,

(b) for any f ∈ L2
(

Θ, π
)

, letting for any x ∈ X f̄(x) := πx

(

f
)

∈ L2
(

X, π
)

, we have for any k ≥ 1

〈

f,Φkf
〉

π
=
〈

f̄ ,Φk−1
x f̄

〉

π

and
var
(

f,Φ
)

= varπ
(

f
)

+ varπ
(

f̄
)

+ var(f̄ ,Φx) ,

(c) if ̺ > 0 defined in 13, then for f ∈ L2
(

Θ, π
)

var(f,Φ) ≤varπ
(

f
)

+ ̺−1varπ
(

f̄
)

+ ̺−1var
(

f̄ ,Γx

)

≤(1 − ̺−1)varπ
(

f
)

+ ̺−1var
(

f,Γ
)

,

(d) if for all θ ∈ Θ, Πθ is a positive operator, then for f ∈ L2
(

Θ, π
)

var(f,Φ) ≥ var(f,Γ).
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Proof. We remark that without loss of generality we can let f ∈ L2
0(Θ, π) throughout. First note

that for f ∈ L2
0

(

Θ, π
)

and any
(

θ, x0

)

∈ Θ × X

Φ
(

θ, x0; f
)

= Φ(x0; f) = πx0

(

f
)

= f̄(x0) ,

and for g ∈ L2
(

X, π
)

and any p ≥ 1, Φp(θ, x0; g) = Φp
x(x0; g). The first result is straightforward

upon remarking that for k ≥ 1

Φk+1(x0, f) − π(f) = Φk
x(x0, f̄) − π(f̄) .

For the second and third point, using the remarks above, for f ∈ L2
0

(

Θ, π
)

and k ≥ 1
〈

f,Φkf
〉

π
=
〈

f,Φk−1f̄
〉

π
=
〈

f̄ ,Φk−1
x f̄

〉

π
.

Now ‖f‖2π =
〈

f − f̄ + f̄ , f − f̄ + f̄
〉

π
= ‖f̄‖2π + ‖f − f̄‖2π, which is the variance decomposition

identity and by noting that π
(

f̄
)

= 0 lets us deduce that f ∈ L2
0

(

Θ, π
)

implies that f̄ ∈ L2
0

(

X, π
)

.
Now,

var(f,Φ) = ‖f‖2π + 2

∞
∑

k=1

〈

f,Φkf
〉

π
= ‖f‖2π + 2

∞
∑

k=1

〈

f̄ ,Φk−1
x f̄

〉

π

= ‖f‖2π + 2‖f̄‖2π + 2

∞
∑

k=1

〈

f̄ ,Φk
xf̄
〉

π
= ‖f‖2π + ‖f̄‖2π + var

(

f̄ ,Φx

)

.

We conclude by noting that for f ∈ L2
(

X, π
)

then varπ
(

f
)

= ‖f − π(f)‖2π and varπ
(

f̄
)

= ‖f̄ −

π(f)‖2π = ‖f − π(f)‖2π. We will also use the equality above for Γ and Γx, since again the latter
corresponds to a particular instance of the above. We can now use the bound from Theorem 25,
which leads, for f ∈ L2

0

(

Θ, π
)

, to

var(f,Φ) ≤ ‖f‖2π + ‖f̄‖2π + (̺−1 − 1)‖f̄‖2π + ̺−1var
(

f̄ ,Γx

)

= ‖f‖2π + ̺−1‖f̄‖2π + ̺−1var
(

f̄ ,Γx

)

.

From the remark above we deduce that

‖f‖2π + ̺−1‖f̄‖2π + ̺−1var
(

f̄ ,Γx

)

≤ ‖f‖2π + ̺−1‖f̄‖2π + ̺−1
[

var(f,Γ) − ‖f‖2π − ‖f̄‖2π
]

= (1 − ̺−1)‖f‖2π + ̺−1var(f,Γ) .

We conclude as above. The final statement follows from var
(

f̄ ,Φx

)

≥ var
(

f̄ ,Γx

)

(see Theorem 25)
and the equality established above for Φ and Φx and Γ and Γx.

Corollary 28. Consider the PGibbs sampler with N ≥ 2 particles with kernel ΦN defined as in
(12) such that for any θ ∈ Θ, Πθ = Pθ,N is the i-cSMC kernel as defined in Section 3 for the
families {Mθ,t}and {Gθ,t} of kernels and potentials on Z×B

(

Z
)

and Z respectively. For any θ ∈ Θ
we let γθ,T be the corresponding normalizing constant as defined below (3). Then, the results of
Theorems 25 and 27 hold as follows:

(a) if

π − ess sup
θ

∏T
t=1 Ḡθ,t

γθ,T
< ∞ ,

then ̺ ≥ ǫN as defined in Corollary 12,

(b) or we have the uniform mixing condition, for some 0 ≤ α < ∞,

π − ess sup
θ,z

Qθ,p,p+k(1)(z)

ηθ,pQθ,p,p+k(1)
≤ α ,

then ̺ ≥ ǫN as defined in Corollary 14.

In particular, in both cases ̺ convergences to one as N → ∞, implying that the spectral gaps and
the asymptotic variances associated with the PGibbs sampler converge to those of the related Gibbs
sampler.

Remark 29. It is worth noting that terms related to γθ,T appear in all these bounds. So, for
example in the first part it is not sufficient that our potentials {Gθ,t} are essentially bounded, but
it is sufficient if, for all t ∈ [T ], πt − ess supθ,xt

Gθ,t(xt)/ηθ,t(Gt) is bounded.
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8 Discussion

The developments above go some way in characterizing the behaviour of i-cSMC and associated
PGibbs Markov chains, and raise a number of possible future directions for research. We have
already embarked upon investigating some potentially practical uses of the minorization conditions
and spectral properties for these chains. Of particular interest in practice is how to choose N in
the i-cSMC algorithm so as to balance the trade off between mixing properties of PN and the total
number of iterations that can be performed with limited computational resources. Remark 15, for
example, can be used to find approximately good values of N in this spirit, but can only serve as
a heuristic. In particular, while Proposition 6 may provide a fairly accurate bound in the large
N regime, it is unclear how much is lost in applying Jensen’s inequality, and consequently how
accurate estimates such as those in Remark 15 can be. It is possible that results such as those
in [6] may provide a way to exploit additional structure often found in statistical applications.

The results for the i-cSMC and PGibbs Markov chains developed here can be compared and con-
trasted with similar results for the Particle Independent Metropolis–Hastings (PIMH) and PMMH
Markov chains [1]. We summarize here the detailed comparison provided in [2, Appendix F].
Like i-cSMC, PIMH is an exact approximation of an independent sampler but PMMH is an exact
approximation of an idealized Metropolis–Hastings kernel, rather than a Gibbs sampler. Just as i-
cSMC can be viewed as a constituent element of PGibbs, PIMH can be viewed as playing the same
role within PMMH. Central to the analysis of PIMH is the essential supremum of the normalizing
constant estimate γ̂N

T

(

Z1:T

)

introduced in Section 4 with respect to the law of a standard SMC al-
gorithm and indeed the PIMH Markov chain is (uniformly) geometrically ergodic if and only if this
supremum is finite as a consequence of the characterisation of independent Metropolis–Hastings
chains in [20]. However, it can also be seen that the rate of convergence of PIMH will typically
not improve as N increases, in contrast with the convergence for the i-cSMC (see Propositions 11
and 13).

For PMMH, [5] show that if the essential supremum of the relative normalizing constant es-
timate γ̂N

θ,T

(

Z1:T

)

/γθ,T is moreover bounded essentially uniformly in θ then the existence of a
spectral gap of the idealized Metropolis–Hastings Markov kernel it approximates is inherited by
PMMH. However, the rate of convergence of the PMMH Markov chain when this occurs does
not improve in general as N increases, in contrast to our results for PGibbs Markov chains. In
this context, weak convergence in N of the asymptotic variance of estimates of π(f) to the cor-
responding asymptotic variance of the Metropolis–Hasting kernel is nevertheless provided by [5,
Proposition 19] for all f ∈ L2(Θ, π) but this can be contrasted with quantitative bounds obtained
in Theorem 27.

The one step uniform minorization condition in Corollary 7, where the minorization measure is
the invariant distribution of the Markov chain, suggests that it may be possible to apply coupling
from the past techniques (see, e.g., [22, 21, 12]) in order to produce samples from exactly this
distribution. It is, however, not clear how to implement such an algorithm in general, although [15]
provides a perfect simulation algorithm motivated by Theorem 1. Finally, our analysis has focused
mainly on the case where the essential boundedness condition holds. However, a refined analysis
may permit characterization of the i-cSMC and hence the PGibbs Markov chains even in the
absence of this condition, with parallels to [5].

Acknowledgement. CA’s research was supported by EPSRC EP/K009575/1 Bayesian Inference for
Big Data with Stochastic Gradient Markov Chain Monte Carlo and EP/K014463/1 Intractable
Likelihood: New Challenges from Modern Applications (ILike). MV was supported by Academy
of Finland grant 250575.
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Supplementary material

A Proof of Lemma 5

The proof of Lemma 5 is a simple consequence of Lemma 30 (b). We introduce the set of indices

JT :=
⋃T

m=0{1}m × {2, . . . , N}T−m, which will allow us to define the lineages coalescing with
1 ∈ {1}T at some point in the past, and mi := max{k : ik = 1} (with the convention that
max ∅ = 0) the time at which coalescence occurs.

Lemma 30. For any x ∈ X, z1:T ∈ XT and a1:T ∈ [N ]N(T−1) × [N ],

(a) for any y2:T ∈ ZT−1 and k = k1:T ∈ [N ]T such that k1 6= 1

P
N
1,x (Z1 ∈ dz1) =

ˆ

Z

M1

(

dy1
)

P
N
1,x,k,y (Z1 ∈ dz1) ,

and for t ∈ {2, . . . , T }, any (y1, . . . , yt−1, yt+1, . . . , yT ) ∈ Z
T−1, k ∈ [N ]T such that kt 6= 1

and akt

t−1 = kt−1

P
N
1,x (Zt ∈ dzt, At−1 = at−1 |Zt−1 = zt−1 ) =

ˆ

Z

Gt−1

(

z
kt−1

t−1

)

∑N
j=1 Gt−1

(

zjt−1

)
Mt

(

z
kt−1

t−1 , dyt
)

× P
N
1,x,k,y (Zt ∈ dzt, At−1 = at−1 |Zt−1 = zt−1 ) .

(b) for i ∈ JT and y1:mi
= x1:mi

we have

E
N
1,x

[

Ii
(

Z1:T , A1:T , S
)]

=

ˆ

ZT−m
i

Mmi,T (xmi
, dymi+1:T ) × E

N
1,x,i,y

[

∏T
t=mi

Gt(yt) × I{y ∈ S}
∏T

t=mi

∑N
j=1Gt(Z

j
t )

]

.

(c) for i /∈ JT , EN
1,x

[

Ii
(

Z1:T , A1:T , S
)]

= 0.

We note that the above is well defined for mi = 0 from the definition of Mp,l in Section 3 and
associated remark, and the convention that x1:0 = y1:0 should be ignored in this case.

Proof of Lemma 30. In order to alleviate notation we omit Zt ∈ ·, Zt−1 = · and At−1 = · and set
Gk

t := Gt

(

zkt
)

. For the first point we note the independence on (y2, . . . , yT ) ∈ ZT−1 of

P
N
1,x,k,y (dz1) = δx1,y1

(

dz11 × dzk1

1

)

N
∏

i=2,i6=k1

M1(dz
i
1) ,

and then since k1 6= 1,

ˆ

Z

M1

(

dy1
)

δx1,y1

(

dz11 × dzk1

1

)

N
∏

i=2,i6=k1

M1(dzi1) = δx1

(

dz11
)

N
∏

i=2

M1(dzi1)

and conclude from (4). Similarly we note the independence on (y1, . . . , yt−1, yt+1, . . . , yT ) ∈ Z
T−1

of

δxt,yt

(

dz1t × dzkt

t

)

× I{a1,kt

t−1 = (1, kt−1)}
N
∏

i=2,i6=kt

G
ai
t−1

t−1
∑N

j=1 G
j
t−1

Mt(z
ai
t−1

t−1 , dzit)

(we note however that we will have P1,x,k,y

(

Z
kt−1

t−1 ∈ dyt−1

)

= 1) and since kt 6= 1

I{a1,kt

t−1 = (1, kt−1)}

ˆ

Z

G
kt−1

t−1
∑N

k=1 G
k
t−1

Mt

(

z
kt−1

t−1 , dyt
)

δxt,yt

(

dz1t×dzkt

t

)

N
∏

i=2,i6=kt

G
ai
t−1

t−1
∑N

j=1 G
j
t−1

Mt(z
ai
t−1

t−1 , dzit)
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= I{a1t−1 = 1}δxt

(

dz1t
)

N
∏

i=2

G
ai
t−1

t−1
∑N

j=1 G
j
t−1

Mt(z
ai
t−1

t−1 , dzit)

and we conclude with (5). For the second point, let i ∈ JT , a1:T ∈
(

[N ]N
)T−1

× [N ] such that

aitt−1 = it−1 for t = mi + 1, . . . , T , aT = iT and y1:mi
= x1:mi

then, with an obvious convention
when mi = 1 (i.e. a0 does not exist and should be ignored), we have

´

ZT−m
i
I{y ∈ S} ×

T
∏

t=mi+1

Mt(yt−1, dyt)
Gt−1(yt−1)
∑N

j=1G
j
t−1

× P
N
1,x,i,y (dzmi+1:T , ami:T−1 |zmi

)

=

ˆ

ZT−m
i

T
∏

t=mi+1

Mt(yt−1, dyt)
G

it−1

t−1
∑N

j=1G
j
t−1

I{y ∈ S, aitt−1 = it−1}P
N
1,x,i,y (dzt, at−1 |zt−1 )

=I{(y1:mi,z
im

i
+1:T

mi+1:T ) ∈ S}
T
∏

t=mi+1

P
N
1,x (dzt, at−1 |zt−1 ) I{aitt−1 = it−1}

=I{(y1:mi,z
im

i
+1:T

mi+1:T ) ∈ S}
T
∏

t=mi+1

I{aitt−1 = it−1}P
N
1,x (dzmi+1:T , ami:T−1 |zmi

) ,

where we have used the fact that from the structure of PN
1,x,i,y

(

·
)

we have z
im

i
+1:T

mi+1:T = ymi+1:T . We

notice that PN
1,x,k,y (AT = k |ZT = zT ) = P

N
1,x (AT = k |ZT = zT ) and conclude from the definition

of PN
1,x

(

·
)

. For the third point we remark that for any z1:T , a1:T , S ∈
(

ZN
)T

×
(

[N ]N
)T−1

× [N ]×

B
(

X
)

such that a11:T ∈ {1}T then Ii(z1:T , a1:T , S) = 0 if i /∈ JT and the result follows from the

definition of EN
1,x,i,y

(

·
)

.

B Proof of Lemma 8

Proof of Lemma 8. We can define the artificial joint distribution

π̃(k, dz1:T , a1:T−1) :=
1

NT

ˆ

X

π(dx)Pk,x (Z ∈ dz1:T , A1:T−1 = a1:T−1) . (14)

This admits as a marginal

π̃(dz1:T , a1:T−1) =
∑

k∈[N ]T

1

NT

ˆ

X

Pk,x (Z ∈ dz1:T , A1:T−1 = a1:T−1)π(dx).

It is straightforward to check that the conditional distribution of K given (z1:T , a1:T−1) can be
written

π̃z1:T ,a1:T−1
(k) =

GT (zkT

T )
∑N

j=1 GT (zjT )

T
∏

t=2

I

{

kt−1 = akt

t−1

}

.

Indeed, we can define the Markov kernel P̃N

P̃N (x, S) :=
∑

k∈[N ]T

1

NT

∑

i∈[N ]T

ˆ

XT×[N ]T−1

Pk,x (Z1:T ∈ dz1:T , A1:T−1 = a1:T−1) πz1:T ,a1:T−1
(i)I

{

zi1:T ∈ S
}

.

The interpretation of this kernel is that it simulates from the conditional distribution of
(

Z−k

1:T , A1:T−1

)

given (k, Zk

1:T ) and then draws K = i conditional upon (Z1:T , A1:T−1), returning Z i

1:T . This pro-
vides immediately that P̃N is a self-adjoint, positive operator on L2(X, π) (see Appendix C) since

〈

P̃Nf, g
〉

π

=

ˆ

X2

g(x)f(y)π(dx)P̃N (x, dy)
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=

ˆ

X2

g(x)f(y)π(dx)

∑

k∈[N ]T

1

NT

∑

i∈[N ]T

ˆ

XT×[N ]T−1

Pk,x (Z ∈ dz1:T , A1:T−1 = a1:T−1)πz1:T ,a1:T−1
(i)δzi

1:T
(dy)

=
∑

k∈[N ]T

∑

i∈[N ]T

ˆ

XT ×[N ]T−1

g(zk1:T )f(zi1:T )π̃(k, dz1:T , a1:T−1)πz1:T ,a1:T−1
(i)

=
∑

k∈[N ]T

∑

i∈[N ]T

ˆ

XT ×[N ]T−1

g(zk1:T )f(zi1:T )π̃(dz1:T , a1:T−1)πz1:T ,a1:T−1
(k)πz1:T ,a1:T−1

(i).

Self-adjointness of P̃N follows, since clearly
〈

P̃Nf, g
〉

π
=
〈

f, P̃Ng
〉

π
and the positivity follows

because
〈

P̃Nf, f
〉

π
=

ˆ

XT×[N ]T−1

π̃(dz1:T , a1:T−1)πz1:T ,a1:T−1

(

f̃z1:T

)2

≥ 0,

where f̃z1:T (k) := f(zk1:T ).

In fact, when we implement the algorithm, we do not use P̃N . However, we have

PN (x, S) = E1,x





∑

i∈[N ]T

Ii(Z1:T , A1:T , S)





= Ek,x





∑

i∈[N ]T

Ii(Z1:T , A1:T , S)



 ,

for any k ∈ [N ]T in the case of multinomial resampling. (see, e.g., [8]), and as a consequence,
PN (x, S) = P̃N (x, S).

C Supplementary material for Section 4

In the next proposition we gather general properties for generic reversible Markov chains satisfying
a uniform minorization condition for which the minorization probability is precisely the invariant
distribution of the Markov chain. We suspect these results to be widely known, but could not find
a relevant reference. Let L2(E, µ) and L2

0

(

E, µ
)

:=
{

f ∈ L2(E, µ) : µ
(

f
)

= 0
}

both endowed with
the inner product defined for any f, g ∈ L2(E, µ) as 〈f, g〉µ :=

´

E
f(x)g(x)µ(dx), which yields the

associated norm ‖f‖µ :=
√

〈f, f〉µ. For any f ∈ L2(E, µ) we define the Dirichlet forms

EΠ(f) := 〈f, (I − Π)f〉µ ,

where I is the identity operator. The right and left spectral gaps of a generic reversible Markov
transition kernel have the following variational representation

Gap (Π) := inf
f∈L2

0
(E,µ)

EΠ(f)

‖f‖2µ
and GapL (Π) := 2 − sup

f∈L2
0
(E,µ)

EΠ(f)

‖f‖2µ
.

The condition Gap (Π) > 0 and GapL (Π) > 0 implies geometric ergodicity of the Markov chain.
It turns out that convergence is in fact uniformly geometric in the following scenario.

Proposition 31. Let µ be a probability distribution on some measurable space
(

E,B
(

E
))

and let

Π : E×B
(

E
)

→ [0, 1] be a Markov transition kernel reversible with respect to µ. Assume that there

exists ε > 0 such that for any (x,A) ∈ E× B
(

E
)

,

Π(x,A) ≥ εµ(A) ,

then
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(a) the Dirichlet forms satisfy for any f ∈ L2
(

E, µ
)

εvarµ(f) ≤ EΠ(f) ≤ (2 − ε)varµ(f) ,

(b) the spectral gaps are lower bounded by

min
{

Gap
(

Π
)

,GapL (Π)
}

≥ ε,

(c) for any probability distribution ν ≪ µ and any k ∈ N,

‖νΠk
(

·
)

− µ
(

·
)

‖L2(E,µ) ≤ ‖ν − µ‖L2(E,µ)(1 − ε)k,

(d) for any probability distribution ν ≪ µ we have

‖νΠk
(

·
)

− µ
(

·
)

‖TV ≤
1

2
‖ν − µ‖L2(E,µ) (1 − ε)k ,

(e) for any x ∈ X,

‖δxΠk
(

·
)

− µ
(

·
)

‖TV ≤ (1 − ε)
k

,

(f) and for any f ∈ L2
(

E, µ
)

ε

2 − ε
varµ

(

f
)

≤ var
(

f,Π
)

≤
(

2ε−1 − 1
)

varµ
(

f
)

.

and if Π is a positive operator then naturally var
(

f,Π
)

≥ varµ
(

f
)

.

Proof of Proposition 31. First, from the minorization condition one can write Π(x, dy) = εµ(dy)+

(1 − ε)RΠ,ε(x, dy), where RΠ,ε(x,A) := Π(x,A)−εµ(A)
1−ε is µ−invariant. Now for f ∈ L2

0

(

E, µ
)

〈f,Πf〉µ = ε 〈f, µ(f)〉µ + (1 − ε) 〈f,RΠ,εf〉µ

= (1 − ε) 〈f,RΠ,εf〉µ

and therefore with Eµ(f) = 〈f, f〉µ the Dirichlet form of the (reversible) “independent samples”
Markov chain we deduce

εEµ(f) ≤ EΠ(f) ≤ (2 − ε) 〈f, f〉µ = (2 − ε)Eµ(f) ,

which implies (a). The bounds on the spectral gaps (b) follow immediately and the results in
points (c) and (d) are now a consequence of the resulting property of the spectrum and e.g. [27,
Proposition 3.12, p. 44] and [14, Proposition 1.5]. Result (e) is due to Doeblin [19], while the two
bounds on the asymptotic variance are direct consequences of Lemma 32 and coincide in this case
with the “Kipnis–Varadhan” upper bound [13].

Lemma 32. Let Π1,Π2 be reversible with respect to µ and assume that there exists ̺ ≥ 0 such
that for any f ∈ L2

0

(

E, µ
)

EΠ2

(

f
)

≥ ̺EΠ1

(

f
)

,

then
Gap

(

Π2

)

≥ ̺Gap
(

Π1

)

,

and if ̺ > 0
var
(

f,Π2

)

≤ (̺−1 − 1)varπ(f) + ̺−1var (f,Π1) .

Proof. The first result is straightforward. For the second result, first notice that

sup
g∈L2

0

(

E,µ
)

2
〈

f, g
〉

µ
− EΠ2

(g) ≤ sup
g∈L2

0

(

E,µ
)

2
〈

f, g
〉

µ
− ̺EΠ1

(g)

= ̺−1
(

sup
g∈L2

0

(

E,µ
)

2
〈

f, ̺g
〉

µ
− EΠ1

(̺g)
)

= ̺−1
(

sup
g∈L2

0

(

E,µ
)

2
〈

f, g
〉

µ
− EΠ1

(g)
)

,

and since var
(

f,Π
)

= 2
[

sup
g∈L2

0

(

E,µ
) 2
〈

f, g
〉

µ
− EΠ(g)

]

− ‖f‖2µ we conclude that

var
(

f,Π2

)

≤ (̺−1 − 1)varµ(f) + ̺−1var (f,Π1) .
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D Supplementary material for Section 5

The proof of Proposition 9 relies on the following technical lemma, and is given after this interme-
diate result.

Lemma 33. Let x, y ∈ X, then,

(a) for any t ≥ 2, z1:t−1 ∈ ZN(t−1) such that (z11:t−1, z
2
1:t−1) = (x1:t−1, y1:t−1) and ft : Z → R we

have

E
N
1,x,2,y

[

N
∑

m=1

ft(Z
m
t )

∣

∣

∣

∣

∣

Zt−1 = zt−1

]

= ft(xt) + ft(yt) +
N − 2

∑N
l=1 Gt−1(zlt−1)

N
∑

k=1

Qt−1,t(ft)(z
k
t−1) ,

(b) for any k = 1, . . . , T −1, any z1:T−k ∈ ZN(T−k) such that (z11:T−k, z
2
1:T−k) = (x1:T−k, y1:T−k)

E
N
1,x,2,y





T
∏

t=T−k+1

N
∑

j=1

Gt(Z
j
t )

∣

∣

∣

∣

∣

ZT−k = zT−k



 = AT−k + BT−k

where

AT−k : =

k
∑

s=1

(N − 2)k−s
∑

i∈Ik,s

[GT−k+1,i1 (xT−k+1) + GT−k+1,i1(yT−k+1)]Ck,s

(

i, x, y
)

,

BT−k : =
N − 2

∑N
l=1 GT−k(zlT−k)

( k
∑

s=1

(N − 2)k−s
∑

i∈Ik,s

N
∑

r=1

GT−k,i1

(

zrT−k

)

Ck,s

(

i, x, y
)

)

,

and Ik,s and Ck,s are as in Proposition 9.

Proof of Lemma 33. The property in (a) is immediate from the linearity of the expectation and
the definition of the process. We now prove property (b) by induction on k = 1, . . . , T − 1.
In order to alleviate notation we let Gi

p,q := Gp,q

(

Zi
p

)

when found inside an expectation and

Gi
p,q := Gp,q

(

zip
)

otherwise, G1+2
p,q := Gp,q

(

xp

)

+ Gp,q

(

yp
)

and Ck,s(i) := Ck,s(i, x, y). The case

k = 1 follows from (a) with t = T by observing that I1,1 =
{

T + 1
}

, C1,1

(

i, x, y
)

= 1 and that

Gr
T−1,T+1 = QT−1,T

(

GT

)(

zrT−1

)

:

E
N
1,x,2,y

[

N
∑

m=1

Gm
T

∣

∣

∣

∣

∣

ZT−1 = zT−1

]

= GT (xT ) + GT (yT ) +
N − 2

∑N
l=1 GT−1(zlT−1)

N
∑

k=1

QT−1,T (GT )(zkT−1)

= GT (xT ) + GT (yT ) +
N − 2

∑N
l=1 GT−1(zlT−1)

N
∑

k=1

Gk
T−1,T+1 .

Now we assume the property true for some k ∈ {1, . . . , T − 2} and establish it for k + 1. We have

E
N
1,x,2,y





T
∏

t=T−k

N
∑

j=1

Gj
t

∣

∣

∣

∣

∣

ZT−k−1 = zT−k−1



 = A + B ,

with

A :=E
N
1,x,2,y



AT−k

N
∑

j=1

Gj
T−k

∣

∣

∣

∣

∣

ZT−k−1 = zT−k−1
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B :=E
N
1,x,2,y



BT−k

N
∑

j=1

Gj
T−k

∣

∣

∣

∣

∣

ZT−k−1 = zT−k−1



 ,

and we deal with the two terms separately. Observe that AT−k only depends on xT−k+1:T and
yT−k+1:T , then by application of the first result of the lemma we obtain

A = AT−k

(

G1+2
T−k +

N − 2
∑N

l=1 G
l
T−k−1

N
∑

l=1

Gl
T−k−1,T−k+1

)

and, noting that Ck,s(i) depends on xT−k+2:T , yT−k+2:T only

B =

k
∑

s=1

(N − 2)k+1−s
∑

Ik,s

E
N
1,x,2,y

[

N
∑

r=1

Gr
T−k,i1

∣

∣

∣

∣

∣

ZT−k−1 = zT−k−1

]

Ck,s

(

i
)

=

k
∑

s=1

(N − 2)k+1−s
∑

Ik,s

[

G1+2
T−k,i1

+
N − 2

∑N
l=1 G

l
T−k−1

N
∑

r=1

Gr
T−k−1,i1

]

Ck,s

(

i
)

,

where we have again applied the first result of the lemma. Consequently we can group the terms
as follows

A + B = AT−kG
1+2
T−k +

k
∑

s=1

(N − 2)k+1−s
∑

Ik,s

G1+2
T−k,i1

Ck,s

(

i
)

+
N − 2

∑N
l=1 G

l
T−k−1



AT−k

N
∑

l=1

Gl
T−k−1,T−k+1 +

k
∑

s=1

(N − 2)k+1−s
∑

Ik,s

( N
∑

r=1

Gr
T−k−1,i1

)

Ck,s

(

i
)



 .

(15)

Now we first focus on the first term on on the RHS on the first line (with the sum now written in
extension in order to help and we note that we do not use the double indexing isj in order to keep
notation simple),

AT−kG
1+2
T−k =

k
∑

s=1

(N − 2)k−sG1+2
T−k

∑

T−k+1<i1···<is−1<is=T+1

G1+2
T−k+1,i1

s−1
∏

m=1

G1+2
im,im+1

=

k
∑

s=1

(N − 2)k−s
∑

i0=T−k+1<i1···<is−1<is=T+1

G1+2
T−k,i0

s−1
∏

m=0

G1+2
im,im+1

=

k+1
∑

s′=2

(N − 2)k+1−s′
∑

j1=T−k+1<j2···<js′−1<js′=T+1

G1+2
T−k,j1

s′−1
∏

m=1

G1+2
jm,jm+1

,

where we have used the following changes of variables: jm = im−1 for m = 1, . . . , s+ 1 followed by
s = s′ − 1. Note that we can extend the sum in order to include the term s′ = 1, since we cannot
have j1 = T + 1 6= T − k+ 1 = j1. We examine the second term on the RHS of the first line of (15)

k
∑

s=1

(N − 2)k+1−s
∑

T−k+1<i1<···<is−1<is=T+1

G1+2
T−k,i1

s−1
∏

m=1

G1+2
im,im+1

,

and we notice that we can extend the sum in order to include the term s = k + 1 because
♯ {T − k + 2, . . . , T + 1} = k, which implies that Ik,k+1 = ∅. Consequently we deduce that

AT−kG
1+2
T−k +

k
∑

s=1

(N − 2)k+1−s
∑

Ik,s

G1+2
T−k,i1

Ck,s

(

i
)

= AT−(k+1) .
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We now turn to the second line of (15) and examine the two terms within the brackets and use
similar ideas. First we have

N
∑

l=1

Gl
T−k−1,T−k+1AT−k

=

k
∑

s=1

(N − 2)k−s
N
∑

l=1

Gl
T−k−1,T−k+1

∑

T−k+1<i1···<is−1<is=T+1

G1+2
T−k+1,i1

s−1
∏

m=1

G1+2
im,im+1

=

k
∑

s=1

(N − 2)k−s
∑

i0=T−k+1<i1···<is−1<is=T+1

N
∑

l=1

Gl
T−k−1,i0

s−1
∏

m=0

G1+2
im,im+1

=

k+1
∑

s=2

(N − 2)k+1−s
∑

i1=T−k+1<i2···<is−1<is=T+1

N
∑

l=1

Gl
T−k−1,i1

s−1
∏

m=1

G1+2
im,im+1

and the other term is, in extension,

k
∑

s=1

(N − 2)k+1−s
∑

T−k+1<i1···<is−1<is=T+1

[

N
∑

r=1

Gr
T−k−1,i1

]

s−1
∏

m=1

G1+2
im,im+1

.

We therefore conclude that

N − 2
∑N

l=1 G
l
T−k−1



AT−k

N
∑

l=1

Gl
T−k−1,T−k+1 +

k
∑

s=1

(N − 2)k+1−s
∑

Ik,s

[

N
∑

r=1

Gr
T−k−1,i1

]

Ck,s

(

i
)





= BT−(k+1) ,

which finishes the proof.

Proof of Proposition 9. We start with the second result of Lemma 33 for k = T −1 and we proceed
as in the beginning of the proof of that lemma, using similar notation and arguments. Here we
have however

A = A1 ×
(

G1+2
1 + (N − 2)G0,2

)

=
T
∑

s=2

(N − 2)T−s
∑

i1=2<i2···<is−1<is=T+1

G1+2
1,i1

s−1
∏

m=1

G1+2
im,im+1

+ (N − 2)

T
∑

s=2

(N − 2)T−s
∑

i1=2<i2<···<is−1<is=T+1

G0,i1

s−1
∏

m=1

G1+2
im,im+1

,

and

B =

T−1
∑

s=1

(N − 2)T−s
∑

IT−1,s

[

G1+2
1,i1

+ (N − 2)G0,i1

]

s−1
∏

m=1

G1+2
im,im+1

=

T−1
∑

s=1

(N − 2)T−s
∑

2<i1<···<is−1<is=T+1

G1+2
1,i1

s−1
∏

m=1

G1+2
im,im+1

+

T−1
∑

s=1

(N − 2)T+1−s
∑

2<i1<···<is−1<is=T+1

G0,i1

s−1
∏

m=1

G1+2
im,im+1

,

and using arguments similar to those of the proof of Lemma 33,

A + B =

T
∑

s=1

(N − 2)T−s
∑

1<i1<···<is−1<is=T+1

G1+2
1,i1

s−1
∏

m=1

G1+2
im,im+1
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+ (N − 2)

T
∑

s=1

(N − 2)T−s
∑

1<i1<···<is−1<is=T+1

G0,i1

s−1
∏

m=1

G1+2
im,im+1

,

which can be rewritten as (again we use s′− 1 = s and the fact that G0,1 = G0 = 1 by convention)

A + B =

T
∑

s=1

(N − 2)T−s
∑

i0=1<i1<···<is−1<is=T+1

s−1
∏

m=0

G1+2
im,im+1

+
T
∑

s=1

(N − 2)T+1−s
∑

1<i1<···<is−1<is=T+1

G0,i1

s−1
∏

m=1

G1+2
im,im+1

=
T+1
∑

s′=2

(N − 2)T+1−s′
∑

i1=1<i2<···<is′−1<is′=T+1

s′−1
∏

m=1

G1+2
im,im+1

+

T
∑

s=1

(N − 2)T+1−s
∑

1<i1<···<is−1<is=T+1

G0,i1

s−1
∏

m=1

G1+2
im,im+1

=

T+1
∑

s=1

(N − 2)T+1−s
∑

0<i1<···<is−1<is=T+1

G0,i1

s−1
∏

m=1

G1+2
im,im+1

.

We conclude.

Proof of Lemma 16. Consider first the case where k ≥ m, for zp, z
′
p ∈ Z2,

Qp,p+k(1)(zp)

Qp,p+k(1)(z′p)
=

Gp(zp)

Gp(z′p)

Mp+1 (Gp+1Mp+2Qp+2,p+k(1)) (zp)

Mp+1 (Gp+1Mp+2Qp+2,p+k(1)) (z′p)

≤ δ1/m
supz∈ZGp+1(z)

infz′∈ZGp+1(z′)

Mp,p+2 (Qp+2,p+k(1)) (zp)

Mp,p+2 (Qp+2,p+k(1)) (z′p)

≤ δ
Mp,p+m (Qp+m,p+k(1)) (zp)

Mp,p+m (Qp+m,p+k(1)) (z′p)
,

by using (A2)(b) and a straightforward induction. Now we can conclude by using (A2)(a). When
k < m we simply note that, proceeding as above, for any zp, z

′
p ∈ X2,

Qp,p+k(1)(zp)

Qp,p+k(1)(z′p)
≤ δk/m ≤ δ ≤ βδ .

E Supplementary material for Section 6

Lemma 34. Assume that {µx}x∈X is a family of finite measures on (Rd,B(Rd)) such that x 7→
µx(A) is a measurable mapping for each A ∈ B(Rd), and suppose that ξ is a probability measure on
(X,B(X)). For any ǫ > 0 there exists a set A ∈ B(X) such that {µx}x∈A is tight and ξ(A) ≥ 1 − ǫ.

Proof. Denote by Br the closed ball of radius r centred at the origin and define the sets

Ak,r :=
{

x ∈ X : µx

(

B∁
r

)

≤ k−1
}

,

for k ∈ N and r ∈ R+; observe that Ak,r ∈ B(X). Define the finite constants

rǫ,k := inf
{

r ∈ R+ : ξ(Ak,r) ≥ 1 − ǫ2−k
}

.

We may define A := ∩k≥1Ak,rǫ,k which satisfies ξ(A∁) ≤
∑∞

k=1 ǫ2
−k = ǫ.
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F Detailed comparisons with the PIMH and PMMH

In this section we contrast the performance properties of the i-cSMC (resp. PGibbs sampler),
as established in Section 5 (resp. Section 7), with those of the Particle Independent Metropolis–
Hastings kernel (PIMH) (resp. particle Marginal Metropolis–Hastings (PMMH)) also proposed
in [1], which also aims to (indirectly) sample from π as defined in Section 3 (resp. Section 7). We
use notation similar to that used in Section 3 for the i-cSMC algorithm. The Markov kernel of
the PIMH can be defined for (a, z) ∈ W (with an obvious abuse of notation in order to alleviate
notation), W ∈ B

(

W
)

and N ≥ 1 as

P̌N (a, z;W ) := E
N

[

I{(A,Z) ∈ W}

{

1 ∧
γ̂N
T (Z)

γ̂N
T (z)

}

+

{

1 − 1 ∧
γ̂N
T (Z)

γ̂N
T (z)

}

I{(a, z) ∈ W}

]

,

where E
N is the expectation corresponding to the law P

N of the standard SMC algorithm, defined
on W × B

(

W
)

via the following conditionals, with zt ∈ Z
N for t ∈ [T ], at ∈ [N ]T−1 and aT ∈ [N ],

P
N (Z1 ∈ dz1) :=

N
∏

i=1

M1(dzi1) ,

and for t ∈ {2, . . . , T },

P
N
(

Zt ∈ dzt, At−1 = at−1 | Z1:t−1 = z1:t−1, A1:t−2 = a1:t−2

)

=P
N (Zt ∈ dzt, At−1 = at−1 | Zt−1 = zt−1)

:=

N
∏

i=1

N
∑

k=1

Gt−1(zkt−1)
∑N

j=1 Gt−1(zjt−1)
I
{

ait−1 = k
}

Mt(z
k
t−1, dz

i
t) and

P
N (AT = aT | ZT = zT ) =

GT (zaT

T )
∑N

j=1 GT (zjT )
,

A = A1:T and Z := Z1:T . We note that γ̂N
T (z) is not a random quantity in the definition of

P̌N (a, z;W ). The invariant distribution of the Markov chain, which evolves on W, is given for any
W ∈ B

(

W
)

by

π̌N (W ) :=
∑

i∈[N ]T

1

NT

ˆ

X

Pi,x ((A,Z) ∈ W )π(dx) . (16)

As suggested by its name and as shown in [1], this algorithm can be interpreted as being a standard
independent Metropolis–Hastings (IMH) kernel with target distribution π̌N and proposal distribu-
tion the standard SMC law P

N . Samples from π can be recovered as a byproduct of A and Z [1]
: this should not be surprising since π̌ is the invariant distribution of the i-cSMC algorithm as
seen as a Markov chain on the extended space W and not X solely. The interpretation as an IMH
algorithm allows us to use a well known result by [20] to deduce that the PIMH is (uniformly)
geometrically ergodic if and only if π̌ − ess supz γ̂

N
T (z) < ∞ with rate r ≤ 1 − ǫ̌N where

ǫ̌N :=
γT

π̌N − ess supz γ̂
N
T (z)

.

Clearly ǫ̌N > 0 whenever π̌N − ess supz γ̂
N
T (z) < ∞, which is similar to what we have obtained in

Propositions 11 and 13 for the i-cSMC. An important difference, which may explain the widely
perceived superiority of the i-cSMC, is that the rate of convergence of PIMH will typically not
improve (and in particular converge to 1) as N increases, even for bounded potentials, which is in
contrast with the corresponding convergence rate of the i-cSMC (see Propositions 11 and 13).

We can also compare the results of Section 7 for the PGibbs sampler with the corresponding
results for the PMMH algorithm [1]. This latter algorithm evolves on Θ × W with transition
probability

Φ̌N

(

θ, a, z;S ×W
)

=

ˆ

S

E
N
ϑ

[

I{(A,Z) ∈ W}

{

1 ∧
̟(dϑ)q(ϑ, dθ)

̟(dθ)q(θ, dϑ)

γ̂N
ϑ,T (Z)

γ̂N
θ,T (x)

}]

q(θ, dϑ)
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+

ˆ

Θ

E
N
ϑ

[{

1 − 1 ∧
̟(dϑ)q(ϑ, dθ)

̟(dθ)q(θ, dϑ)

γ̂N
ϑ,T (Z)

γ̂N
θ,T (x)

}

I {(θ, a, z) ∈ S ×W}

]

q(θ, dϑ)

which leaves the distribution π(dθ)π̌N
θ (dw) invariant, where for any θ ∈ Θ, π̌N

θ is as in (16) but
with P

N
θ (and E

N
θ ) corresponding to the SMC process as defined above for a family of Markov

kernels {Mθ} and potentials {Gθ,t, t ∈ [T ]}. Just as ΦN can be viewed as an exact approximation
of Γ, Φ̌N can be viewed as an exact approximation of a Markov kernel Φ∗, evolving only on Θ as,
for (θ, S) ∈ Θ × B

(

Θ
)

Φ∗
(

θ, S
)

=

ˆ

S

{

1 ∧
̟(dϑ)q(ϑ, dθ)

̟(dθ)q(θ, dϑ)

γϑ,T
γθ,T

}

q(θ, dϑ)

+

ˆ

Θ

{

1 − 1 ∧
̟(dϑ)q(ϑ, dθ)

̟(dθ)q(θ, dϑ)

γϑ,T
γθ,T

}

I {θ ∈ S} q(θ, dϑ) .

In [5], it is shown that when

π − ess sup
θ

(

π̌θ − ess sup
z

γ̂N
θ,T (z)

γθ,T

)

< ∞ ,

Gap(Φ̌N ) > 0 whenever Gap(Φ∗) > 0, i.e. the existence of a spectral gap of Φ∗ is “inherited” by
Φ̌N . This coincides in many cases with inheritance of geometric ergodicity, for example when Φ̌N

is positive.
The rate of convergence of a geometrically ergodic PMMH Markov chain does not improve

in general as N increases, in contrast to our results for PGibbs Markov chains. In this context,
weak convergence in N of the asymptotic variance of estimates of π(f) using Φ̌N to that of Φ∗

is nevertheless provided by [5, Proposition 19] for all f ∈ L2(Θ, π). This can be contrasted with
quantitative bounds obtained in Theorem 27.
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