
comput. complex. 12 (2003), 85 – 130

1016-3328/03/030085–46

DOI 10.1007/s00037-003-0178-7
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Abstract. Impagliazzo and Wigderson proved a uniform hardness vs.
randomness “gap theorem” for BPP. We show an analogous result for
AM: Either Arthur–Merlin protocols are very strong and everything in
E = DTIME(2O(n)) can be proved to a subexponential time verifier, or
else Arthur–Merlin protocols are weak and every language in AM has a
polynomial time nondeterministic algorithm such that it is infeasible to
come up with inputs on which the algorithm fails. We also show that
if Arthur–Merlin protocols are not very strong (in the sense explained
above) then AM ∩ coAM = NP ∩ coNP.
Our technique combines the nonuniform hardness versus randomness
tradeoff of Miltersen and Vinodchandran with “instance checking”.
A key ingredient in our proof is identifying a novel “resilience” prop-
erty of hardness vs. randomness tradeoffs.
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1. Introduction

One of the most basic goals of computational complexity is understanding the
relative power of probabilistic complexity classes such as BPP,MA and AM.
In particular, a long line of research is aimed at showing that randomness does
not add substantial computational power. Much research is aimed at achieving
this by using the mildest possible unproven assumptions.

1.1. Nonuniform hardness vs. randomness tradeoffs. One very fruit-
ful sequence of results uses the “Hardness versus Randomness” paradigm, first
suggested by Blum & Micali (1984) and Yao (1982). Nisan & Wigderson (1994)
extended this paradigm. Their approach is to show that one can take a func-
tion that is computable in exponential time but cannot be computed by small
circuits and use it to construct a pseudo-random generator that “stretches” a
short string of truly random bits into a long string of “pseudo-random bits”
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that cannot be distinguished from uniform by small circuits. Such generators
allow deterministic simulation of probabilistic classes. Loosely speaking, these
constructions differ in:

◦ The type of circuits “fooled” by the generator. To derandomize BPP and
MA one needs to fool deterministic circuits, and to derandomize AM one
needs to fool co-nondeterministic circuits.

◦ The “stretch” of the generator. Generators with polynomial “stretch”
(t bits to tc bits) are called low-end generators and give subexponential
time deterministic simulation (e.g., BPP⊆SUBEXP=

⋂
δ>0 DTIME(2n

δ
)

or AM ⊆ NSUBEXP =
⋂
δ>0 NTIME(2n

δ
)). Generators with exponen-

tial stretch (t bits to 2Ω(t) bits) are called high-end generators and give
polynomial time deterministic simulation (e.g., BPP = P or AM = NP).

◦ The precise assumption on the hard function. Typically high-end genera-
tors require lower bounds on larger circuits (circuits of size 2Ω(n)) whereas
low-end generators may require only superpolynomial lower bounds. Gen-
erators that fool co-nondeterministic circuits typically require hardness
for co-nondeterministic circuits.

Today, after a long line of research (Babai et al. 1993; Blum & Micali 1984;
Impagliazzo et al. 1999, 2000; Impagliazzo & Wigderson 1997; Klivans & van
Melkebeek 1999; Miltersen & Vinodchandran 1999; Nisan & Wigderson 1994;
Shaltiel & Umans 2001; Sudan et al. 1999; Umans 2002; Yao 1982), we have
powerful and elegant constructions of low-end and high-end generators that
derandomize BPP,MA and AM using “necessary assumptions” (i.e., assump-
tions that are implied by the existence of pseudo-random generators against
nonuniform circuits). The reader is referred to a recent survey paper on deran-
domization for more details (Kabanets 2002).

All the above mentioned hardness vs. randomness tradeoffs give generators
which fool some nonuniform class of circuits and require a uniformly computable
function that is hard against a nonuniform class of circuits. In fact, every
generator against a nonuniform class of circuits implies such a function.

We would like to mention that the nonuniform assumptions used in the
tradeoffs mentioned above can be replaced by assumptions involving only uni-
form classes. It was shown by Karp & Lipton (1980) (with improvements in
Babai et al. (1991b)) that if EXP 6= PH then there is a function computable
in exponential time that cannot be computed by polynomial size circuits (both
deterministic and nondeterministic).
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1.2. Uniform derandomization. It seems strange that when trying to de-
randomize uniform classes such as BPP,MA and AM one constructs generators
which fool nonuniform circuits. It is natural to consider a weaker notion of
pseudo-random generators which fool only uniform machines (either determin-
istic or nondeterministic). However, such generators only suffice to derandom-
ize BPP,MA and AM in a weak sense: It is infeasible to come up with inputs
on which the suggested derandomization fails.1

We now explain why generators against uniform machines do not suffice
for “full derandomization”. Suppose that we use such a generator to deran-
domize say BPP. If the derandomization fails (almost everywhere) then there
exist a sequence of inputs {xn} on which the deterministic simulation is in-
correct. There is no guarantee that these inputs can be feasibly computed by
a uniform machine. Thus, we cannot argue that there is a uniform machine
which distinguishes the output of the generator from uniform. (Indeed, this
is where nonuniformity usually comes in. These inputs are hardwired to the
BPP-algorithm to create a distinguishing circuit.) Nevertheless, if we only re-
quire the derandomization to succeed on all “feasibly generated” inputs then
it is guaranteed to work. Because if it fails then there is an efficient uniform
machine that can generate the “bad” inputs. These inputs can be served as
distinguishers, resulting in a uniform distinguisher for the generator. Follow-
ing Kabanets (2000) we refer to derandomization that is guaranteed only to
succeed on feasibly generated inputs as “pseudo-setting derandomization”. We
now define this notion more precisely.

Let C be a class of algorithms. We say that two languages L1, L2 are
C-different if there exists an algorithm REF ∈ C, called a refuter, that on
almost all input lengths produces instances in the symmetric difference of L1

and L2. C may be an arbitrary uniform class, and can be, e.g., a deterministic,
probabilistic or nondeterministic class. For a class of languages C and a class
of algorithms C ′, the complexity class [io-pseudo(C ′)]-C denotes all languages
which are C ′-similar (i.e., not C ′-different) to some language in C.2 Notice that
the stronger the refuter, the smaller the pseudo-class. Precise definitions and
other related notions are given in Section 3. So in the context of derandom-
ization, a deterministic simulation that places, for example, BPP in the class
[io-pseudo(C ′)]-DTIME(t(n)), means that the simulation works in DTIME(t(n)),
and it succeeds on all inputs that can be generated by algorithms in the class C ′.

1We remark that by Impagliazzo et al. (2002) even such weaker generators imply circuit
lower bounds.

2Here, as in Kabanets (2000), the “io” stands for infinitely often. One can also define
“almost everywhere” versions of “pseudo”.
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We remark that all the hardness vs. randomness tradeoffs mentioned above
require hardness against nonuniform circuits even when attempting to fool
uniform machines. Namely, even if we only want derandomization in the
pseudo-setting, we still need to assume nonuniform hardness when working
with the current constructions. This is because their correctness proofs use
nonuniform reductions. (More precisely, correctness of these tradeoffs follows
by showing a reduction from a machine that distinguishes the generator from
random into a circuit that computes the hard function. The reductions for
all the tradeoffs above use nonuniform advice.) In some sense (see Trevisan &
Vadhan (2002) for precise details) every “black-box” construction of generators
must rely on nonuniform reductions, and hence on hardness against nonuniform
circuits.

Impagliazzo & Wigderson (1998) (see also Trevisan & Vadhan (2002)) con-
struct a generator that relies on a uniform reduction only. Thus it is guaranteed
to fool uniform deterministic machines under a weaker (and uniform) assump-
tion: hardness against efficient uniform probabilistic machines (the previous
nonuniform tradeoff of Babai et al. (1993) required hardness against small cir-
cuits). This hardness vs. randomness tradeoff has a nice interpretation. It gives
a “gap theorem” for BPP: Loosely speaking, either BPP = EXP (i.e., BPP is
as strong as possible) or else every language in BPP has a subexponential time
deterministic algorithm in the pseudo-setting. More formally, if BPP 6= EXP
then for every δ > 0, BPP ⊆ [io-pseudo(BPP)]-TIME(2n

δ
).3

We mention that more “gap theorems” for other classes (such as ZPP, MA,
BPE, ZPE) were given in Impagliazzo et al. (2002) and Kabanets (2000), by
using the easy-witness method of Kabanets (2000).

1.3. Our results. In this paper we prove nondeterministic analogues of the
results of Impagliazzo & Wigderson (1998). That is, we replace the class BPP
by the class AM.

1.3.1. Hitting-set generators against co-nondeterministic machines.
We construct a “hitting” generator that fools uniform co-nondeterministic ma-
chines using a uniform assumption: hardness against efficient uniform Arthur–
Merlin games.4

3Impagliazzo & Wigderson (1998) use different notations and their statement is actually
slightly stronger than the one we give here. The suggested derandomization works for a
random input with high probability. We elaborate on this later on.

4A “hitting” generator is a one-sided version of a “pseudo-random” generator. We say
that a generator G is ε-hitting for a Boolean function h if there is an output of G which is
accepted by h, or if h accepts less than an ε-fraction of the inputs (of each input length). We
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Theorem 1.1. For every c > 0 there exists a generator G with exponential
stretch that runs in polynomial time in its output length, and:

(i) If E 6⊆ AMTIME(2βn) for some β > 0 then G is [io]-1
2
-hitting against

coNTIME(nc).

(ii) If E 6⊆ {io-AMTIME}(2βn) for some β > 0 then G is 1
2
-hitting against

coNTIME1/2(nc).

By exponential stretch we mean that the generator needs a seed of length
O(logm) to produce an output of length m. See Section 3 for the exact def-
inition of the classes involved. For the time being the reader can think of
{io-AMTIME}(2βn) as an i.o. analogue of AM (although they are not quite the
same) and of coNTIME1/2 as the class of co-nondeterministic machines which
answer “one” on at least half of the inputs. We later rephrase Theorem 1.1 in
a more general and formal way (see Theorem 5.5).

1.3.2. Uniform gap theorems for AM. We give an AM analogue of the
Impagliazzo & Wigderson (1998) gap theorem for BPP. A technicality is that
while Impagliazzo & Wigderson (1998) works only for the low-end setting (see
Trevisan & Vadhan (2002)), our result works only for the high-end setting.5

We prove:

Theorem 1.2. If E 6⊆ AMTIME(2βn) for some β > 0, then for all c > 0,

AM ⊆ [io-pseudo(NTIME(nc))]-NP.

Precise definitions appear in Section 3. In words our result can be stated
as a gap theorem for AM as follows: Either Arthur–Merlin protocols are very
strong and everything in E can be proved to a subexponential time verifier, or
else Arthur–Merlin protocols are very weak and Merlin can prove nothing that
cannot be proven in the pseudo-setting by standard NP proofs.

Our second gap theorem concerns the class AM ∩ coAM which we believe
is of special interest as it contains the well studied class SZK (Statistical Zero-
Knowledge) (Aiello & H̊astad 1991), and therefore contains some very natural
problems that are not known to be in NP, e.g., Graph non-isomorphism (Gol-
dreich et al. 1991), approximations of shortest and closest vectors in a lattice

say that G hits a complexity class if it hits every language L in the class, where L is viewed
as the membership function L(x) = 1 iff x ∈ L.

5We remark that as observed in Trevisan & Vadhan (2002) the results of Impagliazzo &
Wigderson (1998) can be adapted to the high-end setting if one assumes a hard function
computable in polynomial space instead of exponential time.
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(Goldreich & Goldwasser 1998) and Statistical Difference (Sahai & Vadhan
1997). For AM ∩ coAM we can completely get rid of the [io-pseudo] quantifier
and show:

Theorem 1.3.

(i) If E 6⊆ AMTIME(2βn) for some β > 0 then AM ∩ coAM ⊆ [io]-NP ∩
[io]-coNP.

(ii) If E 6⊆ {io-AMTIME}(2βn) for some β > 0 then AM ∩ coAM = NP ∩
coNP.

We chose to state the assumption as hardness against AMTIME(2βn) to
make it similar to the assumption of Theorem 1.2. However, in both Theorems
we can start with hardness against AMTIME(2βn) ∩ coAMTIME(2βn).

We mention that the fact that we have both infinitely often and almost
everywhere versions for the case of AM ∩ coAM is not trivial and indeed some
technical work is needed for showing that. The construction of Impagliazzo &
Wigderson (1998), as well as our Theorem 1.2 do not have both versions.

Our last gap theorem concerns derandomization under the assumption that
there is a hard function in nondeterministic exponential time. In nonuniform
tradeoffs, when moving from BPP to AM one can allow the hard function to
be in NE ∩ coNE. This only affects the complexity of the generator; instead
of being computable in deterministic polynomial time, it is now computable in
NP∩ coNP. Since the application of the generator to derandomize AM already
uses nondeterminism, this still gives the same result.

We cannot prove a high-end version of Theorems 1.2 and 1.3 that is based
on a hard function in NE ∩ coNE, but we can prove the following:6

Theorem 1.4. If NE ∩ coNE 6⊆ AMTIME(2βn) for some β > 0, then:

(i) AM ⊆ [io-pseudo(NTIME(nc))]-NTIME(2n
ε
) for every c, ε > 0.

(ii) AM ∩ coAM ⊆ [io]-NTIME(2n
ε
) ∩ [io]-coNTIME(2n

ε
) for every ε > 0.

Note the unusual hardness-randomness tradeoff in Theorem 1.4. While the
hardness assumption corresponds to the high-end setting (namely, a strong
assumption), the conclusions correspond to the low-end setting (namely, weak
derandomization). Nevertheless, Theorem 1.4 involves nondeterministic classes

6Actually, we prove something slightly stronger in Section 7.4. The reason we stated a
weak version here is to make it comparable to Theorems 1.2 and 1.3.
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only (with or without randomness), and thus has a nice interpretation in terms
of the relative power of randomness in the context of proof systems: either ran-
domness is helpful and every proof that requires exponentially long witnesses
can be replaced by a much more efficient Arthur–Merlin game, or else, ran-
domness is relatively weak and every (polynomial-time) Arthur–Merlin game
can be replaced by a proof that does not use randomness while paying at most
a subexponential cost in efficiency. (See also Remark 7.8 in Section 7.4.)

1.3.3. Comparison to previous work. We now compare our results to
previous work on derandomizing AM.

◦ Nonuniform hardness vs. randomness tradeoffs for AM were given in
Klivans & van Melkebeek (1999); Miltersen & Vinodchandran (1999);
Shaltiel & Umans (2001). Miltersen & Vinodchandran (1999) prove that
if NE ∩ coNE 6⊆ NTIME(2βn)/2βn for some constant β then AM = NP.
This high-end result was extended in Shaltiel & Umans (2001) and Umans
(2002) to the low-end setting.

◦ Using the easy witness method of Kabanets (2000), Lu (2001) showed
a derandomization of AM under a uniform assumption. Specifically,
he showed that if NP 6⊆ [io-pseudo(NP)]-DTIME(2n

ε
) for some ε > 0

then AM = NP. Impagliazzo et al. (2002) were able to remove the
[io-pseudo] quantifier from Lu (2001) and obtain the same conclusion
using an assumption on exponential classes, namely, if NE ∩ coNE 6⊆
[io]-DTIME(22εn) for some ε > 0, then AM = NP.

Our result is a uniform version of the nonuniform result of Miltersen &
Vinodchandran (1999) and uses their construction. We soon explain our tech-
nique and the technical difficulty in this transition. The results of Lu (2001)
and Impagliazzo et al. (2002) are incomparable to ours and use different tech-
niques. We would like to stress that our results give an analogue for AM of
the derandomization result of Impagliazzo & Wigderson (1998), while previous
results do not. We also stress that our technique is very different from that of
Impagliazzo & Wigderson (1998). We elaborate on our technique in Section 2.

1.4. Uniform generators and explicit construction of combinatorial
objects. Our main motivation for constructing generators for uniform ma-
chines is obtaining a gap theorem for AM. However, such generators are useful
in other contexts as well, as we now explain.

Some combinatorial objects can be easily constructed by probabilistic al-
gorithms, yet no deterministic algorithm which explicitly constructs them is
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known. Klivans & van Melkebeek (1999) showed that the hardness vs. ran-
domness paradigm can sometimes be used to obtain conditional, deterministic
explicit constructions of such objects. The main observation is that if the
property we are looking for can be checked in coNP (i.e., checking whether a
given object has the property can be done in coNP), then any generator which
“fools” co-nondeterministic circuits, must have an element with the desired
property as one of its outputs (or else the coNP algorithm is a distinguisher for
the generator). We observe that as we only want to fool uniform machines we
can use our construction to achieve the same conclusion under weaker uniform
assumptions—namely under the assumption of Theorem 1.1.

In Section 6 we identify a general setting in which our construction can
be used to derandomize probabilistic combinatorial constructions. We demon-
strate this with matrix rigidity. The rigidity of a matrix M over a ring S,
denoted RS

M(r), is the minimal number of entries that must be changed in or-
der to reduce the rank of M to r or below. Valiant (1977) proved that almost all
matrices have large rigidity. On the other hand, known explicit constructions
do not achieve this rigidity (Friedman 1990; Pudlák & Vavřin 1991; Razborov
1989). Klivans & van Melkebeek (1999) proved that under the assumption
that E requires exponential-size circuits with SAT-oracle gates, matrices with
the required rigidity can be explicitly constructed. Miltersen & Vinodchan-
dran (1999) relaxed the hardness assumption to nondeterministic circuits of
exponential-size. We further relax the assumption to hardness against Arthur–
Merlin protocols in which Arthur runs in exponential time.7

Theorem 1.5. If E 6⊆ {io-AMTIME}(2βn) for some constant β > 0, then
there exists an explicit construction algorithm that for every large enough n
constructs in time polynomial in n a matrix Mn over Sn = Zp(n)[x] such that
RSn
Mn

= Ω((n− r)2/log n), where p(n) is polynomially bounded.

Another application of Theorem 1.1 was recently given in Barak et al. (2003)
to achieve certain “bit-commitment” protocols.

1.5. Organization. In Section 2 we give an overview of the ideas used in
the paper. In Section 3 we describe the tools and set up the definitions and
notations that we use in the technical parts. In Section 4 we present the
Miltersen–Vinodchandran generator, prove its correctness and its useful prop-
erties. In particular we show that it has a resilient reconstruction algorithm.
In Section 5 we prove Theorem 1.1 that under uniform assumptions gives us

7Note that this is indeed a weaker assumption, since by standard inclusions of probabilistic
classes in nonuniform classes, AMTIME(t(n)) ⊆ NTIME(poly(t(n)))/poly(t(n)).



cc 12 (2003) Uniform hardness versus randomness tradeoffs 93

our generators against uniform co-nondeterministic machines. In Section 6 we
apply Theorem 1.1 in the context of explicit constructions to achieve Theo-
rem 1.5 about an explicit construction of rigid matrices. In Section 7 we prove
our uniform gap theorems for AM (Theorems 1.2, 1.3 and 1.4). We conclude
in Section 8 with some open problems and motivation for further research.

2. Overview of the technique

In this section we explain the main ideas in the paper on an “intuitive level”. In
this presentation it is easier to be imprecise with respect to “infinitely often”.

2.1. Previous work. We start with an overview of relevant previous work.

Reconstruction algorithms. All current generators constructions under
the hardness vs. randomness paradigm exploit the “reconstruction method”,
which we now explain. Let f be a hard function on which a generator G = Gf

is based. A circuit D is distinguishing if it distinguishes the “pseudo-random
bits” of Gf from uniformly distributed bits. A reconstruction algorithm R gets
a distinguishing circuit D for Gf and a short “advice string” a (that may de-
pend on f and D) and outputs a small circuit C = R(D, a) that computes
the function f . Reconstruction algorithms serve as “proofs of correctness”
for hardness vs. randomness tradeoffs: If f is hard against small circuits and
a reconstruction algorithm exists, then it must be the case that the genera-
tor Gf is pseudo-random (otherwise there exists a small distinguisher D, and
C = R(D, a) is a small circuit for f , contradicting the hardness of f). As
we previously explained this argument is essentially nonuniform. There is not
necessarily an efficient way to come up with the distinguisher D or the advice
string a.

Impagliazzo & Wigderson (1998): Using the reconstruction method
to find the advice string in a uniform way. Impagliazzo and Wigderson
made the simple observation that if the reconstruction algorithm R is efficient,
then an algorithm which is trying to compute the hard function can “run” it.
Furthermore, all known hardness vs. randomness tradeoffs for BPP use efficient
reconstruction algorithms.

Let us use this observation to sketch a proof of the contra-positive of Im-
pagliazzo & Wigderson (1998). Recall that this means that if BPP does not
have a subexponential-time simulation in the pseudo-setting then BPP = EXP.
Suppose that indeed BPP does not have a subexponential-time deterministic
algorithm. This means that BPP cannot be derandomized by any generator.
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In particular, if we take an EXP-complete function f and use a nonuniform
tradeoff to construct a generator Gf then Gf fails to derandomize BPP. Hence
there exists a distinguisher D and an advice string a such that C = R(D, a)
computes the EXP-complete function f . The uniform pseudo-setting guaran-
tees that D can be uniformly and efficiently generated. (This follows as in this
setting there is a uniform refuter which generates inputs on which the deran-
domization fails.) The problem we are left with is how to uniformly find the
advice string a. The key idea of Impagliazzo & Wigderson (1998) is to exploit
specific learning properties of a particular reconstruction algorithm of Nisan &
Wigderson (1994) and Babai et al. (1993), as well as properties of the func-
tion f , to gradually and efficiently reconstruct the advice a uniformly. Once
we can uniformly get the correct advice a, C can be generated efficiently (in
probabilistic polynomial time) and therefore the EXP-complete function f and
the class EXP itself are in BPP, i.e., EXP = BPP.

Babai et al. (1991b): A (possibly dishonest) prover supplies the non-
uniformity. Babai et al. (1991b) show that EXP 6= MA implies EXP 6⊆
P/Poly. (Together with Babai et al. (1993), Goldreich & Zuckerman (1997)
and Arvind & Kobler (1997) this gives a gap theorem for MA: If EXP 6= MA
then by Babai et al. (1991b), EXP 6⊆ P/Poly and such a hardness assumption
suffices to conclude that MA ⊆ NSUBEXP.) Our technique for AM uses this
approach. We now present the Babai et al. (1991b) argument in more detail.
We prove the contra-positive.

We use the terminology of instance checkers from Blum & Kannan (1995).
An instance checker for a function f is a probabilistic polynomial-time oracle
machine that when given oracle access to f and input x outputs f(x), and
when given oracle access to any f ′ 6= f either outputs f(x) or rejects with
probability almost one. By Babai et al. (1991b), every EXP-complete function
f has an instance checker. Let f be an EXP-complete function and assume
EXP ⊆ P/Poly. To show that f ∈ MA consider the following proof system: On

input x, Merlin sends Arthur a polynomial size circuit for f ∩ {0, 1}|x|. Arthur
simulates the instance checker on the given input x, using the circuit as the
oracle. It is easy to check that the protocol is sound and complete. For the
discussion below, it is important to point out the crucial fact in the proof: by
sending the circuit Merlin commits himself to a specific function.

2.2. Our technique. Our technique is an integration between the recon-
struction method and the instance checking techniques. We now present it on
an intuitive level. Again it is convenient to be imprecise with respect to in-
finitely often. It is also easier to present the technique for the low-end setting;
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we will point out exactly where we have to switch to the high-end. The pre-
sentation is sometimes oversimplified, and the reader can refer to the technical
parts for the exact details.

First attempt. Our aim is to construct a generator Gf that is based on
an EXP-complete function f and fool co-nondeterministic machines, assuming
that f does not have efficient Arthur–Merlin protocols. Such generators suf-
fice for derandomization of AM in the pseudo-setting (we give more details on
this later). Our starting point is known constructions of generators that fool
co-nondeterministic circuits under nonuniform hardness assumptions. Such
generators are constructed in Miltersen & Vinodchandran (1999) and Shaltiel
& Umans (2001). As usual, the correctness of these constructions is proved
by presenting a reconstruction algorithm C = R(D, a). In contrast to gen-
erators against deterministic circuits where C,D are deterministic circuits, in
the constructions of Miltersen & Vinodchandran (1999) and Shaltiel & Umans
(2001), the circuit D is a co-nondeterministic circuit and the circuit C is a
nondeterministic single-valued circuit. Informally, a single-valued circuit is a
nondeterministic circuit in which each computation path can take one value
from {0, 1, quit} such that all nonquitting paths take the same value (which we
call the output of the circuit).

Now suppose that a co-nondeterministic distinguisher for Gf exists for every
input length. Further assume that Arthur can somehow get hold of it (we later
explain how this can be done). Arthur wants to compute f with the help of
Merlin (this would contradict the hardness assumption). Let us try to follow the
arguments of Babai et al. (1991b) together with the reconstruction algorithm R.
Consider the following protocol for f : Merlin sends the advice string a. Then
Arthur computes the circuit C = R(D, a). As we cannot trust Merlin and we
do not know if he sent the correct advice, we ask Arthur to run the instance
checker for f using C as the oracle. Since C is a nondeterministic circuit,
Arthur cannot “run” the circuit by himself. Therefore, each time Arthur wants
to compute the function on some input, he asks Merlin to provide him with a
nonquitting computation path for that input.

This argument fails because not every nondeterministic circuit is necessarily
single-valued. A dishonest prover may send an advice string a such that C =
R(D, a) is not single-valued. (We are only guaranteed that for the “correct” a,
C is single-valued.) Consider a circuit that for every input has a nonquitting
path that evaluates to 1 and another that evaluates to 0. The prover can
evaluate the circuit to any value he wishes, and is not committed to any specific
function.
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Resilient reconstruction algorithms. The new approach suggested in this
paper is to study the behavior of reconstruction algorithms when given an
“incorrect” advice string a. We cannot hope that the reconstruction algorithm
R outputs a circuit C that computes f when given a wrong advice a. We
can however hope that the circuit C is a nondeterministic single-valued circuit
for some function f ′. We say that a reconstruction algorithm R is resilient if
it outputs a nondeterministic single-valued circuit given any (possibly wrong)
advice a.

If R is a resilient reconstruction algorithm then even if Merlin is dishonest
and sends an incorrect string a, the constructed circuit C = R(D, a) is single-
valued. Thus, even a dishonest Merlin has to commit himself to some function
f ′ (the one defined by the single-valued circuit C). With that we can continue
with the argument of Babai et al. (1991b), and Arthur can use the instance
checker to validate his result.

While the reconstruction algorithm of Shaltiel & Umans (2001) does not
seem to be resilient, we show that the “hitting-set” generator of Miltersen
& Vinodchandran (1999) has such a resilient probabilistic reconstruction algo-
rithm. The Miltersen–Vinodchandran generator only works in the high-end
setting, and this is why all our results work only in the high-end setting.

In order to complete the argument we have to show how Arthur gets hold
of the distinguisher. This is done in different ways according to the statement
we prove (namely Theorems 1.1, 1.2, or 1.3), as we explain below.

A generator against co-nondeterministic machines. This is the easiest
case. If the generator fails to hit uniform co-nondeterministic machines then
there is a machine that is a distinguisher for the generator on every input
length. This machine is uniform and can be part of Arthur’s machine. This
gives Theorem 1.1.

Gap theorems for AM. If the generator fails to derandomize a language L
in AM, then for every input length n there is an instance xn on which the de-
randomization failed. It is standard that xn gives rise to a co-nondeterministic
distinguisher for Gf . The problem we face now is how to find the “refut-
ing” input xn ∈ {0, 1}n. As we explained earlier this exact problem appears
in most uniform derandomization works (Impagliazzo & Wigderson 1998; Ka-
banets 2000; Lu 2001; Trevisan & Vadhan 2002). Previous works did not solve
the problem, but rather weakened the result by requiring the derandomization
to succeed in the pseudo-setting. In our case this means that if Gf fails to de-
randomize L ∈ AM in the pseudo-setting, then there exists a uniform machine
(the refuter) that on input n presents xn that defines a co-nondeterministic
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machine Dn that distinguishes Gf . Arthur can use this refuter to obtain Dn.
This gives Theorem 1.2.

Surprisingly, in the case of AM ∩ coAM (Theorem 1.3) we do not have to
settle for pseudo-setting derandomization. Instead of using the refuter, we now
ask the prover to supply us with a correct refuting input xn. Naturally,, we
should be wary of dishonest provers supplying incorrect inputs xn (namely,
inputs on which the derandomization has not failed) that do not lead to dis-
tinguishing algorithms Dn. It turns out that the Miltersen–Vinodchandran
generator is even more resilient than what we required above. Namely, it is
resilient not only in a, but also has the following resilience property in D:
Whenever D answers “zero” on few inputs (regardless of being a distinguisher
or not), for every a, R(D, a) is single-valued. This added resilience is the basis
for our improved result for AM ∩ coAM. It means that we can trust Merlin to
send xn as long as he can prove that Dn answers “zero” on few inputs.

In the case of AM ∩ coAM, Merlin can prove to Arthur that xn is not in
the language. This means that the AM protocol will accept xn with very low
probability, which translates into a guarantee that Dn answers “zero” on few
inputs.

2.3. A note on “infinitely often”. The appearance of “infinitely often” is
an unavoidable technicality in hardness vs. randomness tradeoffs. We have so
far ignored this technicality and we strongly suggest the reader to ignore these
issues at a first reading. Nevertheless, for the reader that do want to dwell on
the technical details, we feel that some explanation of how we handle “infinitely
often” is in place.

Usually, hardness vs. randomness tradeoffs come in two versions according
to the positioning of the “infinitely often”. It is helpful to state the tradeoff in
the contra-positive.

1. If the derandomization of the randomized class fails almost everywhere
then the function is easy almost everywhere.

2. If the derandomization of the randomized class fails infinitely often then
the function is easy infinitely often.

Most proofs work on an “input length to input length basis”. That is, for
every input length of f on which the generator based on f fails the proof uses
a distinguisher to show that f is easy on that length.8 This usually suffices to

8We remark that the proof of Impagliazzo & Wigderson (1998) has a different structure
and requires that the generator fails on all input lengths.
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achieve both versions above. However, in a uniform tradeoff there is a subtlety
concerning the second version. Suppose that there are infinitely many lengths n
on which a given function D : {0, 1}∗ → {0, 1} is a distinguisher for a generator.
It is important to observe that using a hard function with input length `, the
generator outputs m(`)� ` bits. Thus, the same length ` is used against many
different input lengths of D—the input lengths between m(` − 1) and m(`).
This poses a problem: when trying to use the distinguisher D to show that f is
easy on length ` we have to choose a length n in the range above and might miss
the “interesting” lengths on which D is a distinguisher. Nonuniform tradeoffs
can bypass this problem by hard-wiring the “interesting n” to the circuit. We
do not know how to overcome this difficulty in Theorem 1.2. We overcome this
difficulty in Theorems 1.1 and 1.3 by having Merlin send the “good” length n.
In these cases we use additional properties of the distinguisher D to argue that
a dishonest prover cannot cheat by sending “bad” lengths.

3. Preliminaries

The density of a set S ⊆ {0, 1}n, denoted ρ(S), is ρ(S) = |S|/2n. The density
of a circuit D over Boolean inputs of length m is ρ(D) = ρ({y ∈ {0, 1}m | D(y)
= 1}). For a language L and an input x, L(x) is one if the input is in the
language and zero otherwise. For a language L and an input length n, we
define Ln = L ∩ {0, 1}n. The notation z ← Um denotes picking z uniformly at
random from {0, 1}m. In this notation ρ(Ln) = Prx←Un[Ln(x) = 1]. For a class
of languages C we define the class

[io]-C = {L : ∃M ∈ C such that Ln = Mn for infinitely many n} .

3.1. Complexity classes. We use the complexity classes

EXP = DTIME(2poly(n)), E = DTIME(2O(n)), SUBEXP =
⋂

ε>0

DTIME(2n
ε

).

We let NEXP, NE and NSUBEXP be their respective nondeterministic analogs.
We define the nonstandard class coNTIMEγ(T (n)) to be the class of languages
L solvable by a coNTIME(n) machine, and ρ(Ln) ≥ γ for every n ∈ N.

Definition 3.1 (Nondeterministic circuits). A nondeterministic Boolean cir-
cuit C(x, w) gets x as an input and w as a witness. We say C(x) = 1 if there
exists a witness w such that C(x, w) = 1, and C(x) = 0 otherwise. A co-
nondeterministic circuit is defined similarly with C(x) = 0 if there exists a
witness w such that C(x, w) = 0, and C(x) = 1 if C(x, w) = 1 for all wit-
nesses w.
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Next, we define classes of languages that have Arthur–Merlin games (or
protocols).

Definition 3.2 (AM). AMTIMEε(n)(TIME = t(n), COINS = m(n)) consists
of those languages L for which there exists a constant-round public-coin inter-
active protocol (P, V ) such that the verifier uses at most m(n) random coins,
the protocol takes at most t(n) time, and

◦ (Completeness) For every x ∈ L the verifier V always accepts when in-
teracting with P .

◦ (Soundness) For every x 6∈ L and every possibly dishonest prover P ∗, the
probability V accepts when interacting with P ∗ is at most ε(n).

If ε is omitted then its default value is 1/3. If we are not interested in the
number of coins we omit it. AM denotes the class

⋃
c>0 AMTIME1/2(nc).

The original definition of Babai & Moran (1988) has two-sided error, but
it was shown in Fürer et al. (1989) that this is equivalent to the one-sided
version. Also, by the results of Babai & Moran (1988) and Goldwasser &
Sipser (1989), a language has a constant-round interactive proof of complexity
t(n) if and only if it has a one-round protocol of complexity poly(t(n)), where
Arthur sends his public random coins to Merlin and Merlin answers. We will
use this equivalence in the following way. We assume that protocols we want
to derandomize have one-sided error and are one-round, public-coin protocols.
Yet, when constructing protocols for hard functions we construct two-sided
error multi-round protocols.

We will need a nonstandard infinitely often version of the class AMTIME,
in which the soundness condition holds for every input length but the com-
pleteness holds only for infinitely many input lengths. We denote this class by
{io-AMTIME}.

Definition 3.3 ({io-AMTIME}). A language L belongs to

{io-AMTIME}ε(n)(TIME = t(n),COINS = m(n))

if there exists a constant-round public-coin interactive protocol (P, V ) such
that the verifier uses at most m(n) random coins, the protocol takes at most
t(n) time, the completeness condition in Definition 3.2 holds for infinitely many
input lengths and the soundness condition of Definition 3.2 holds for all input
lengths.
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Remark 3.4. It is instructive to compare [io]-AM and {io-AM}. For a lan-
guage L to be in [io]-AM there should be a language M ∈ AM such that
infinitely often M agrees with L. In particular, for every input length, M
should define some language such that there is a nonnegligible gap between the
acceptance probability of inputs in the language and outside it. In contrast,
the {io-AM} definition does not impose any restriction on positive instances of
lengths that are not in the good infinite sequence; however, false proofs cannot
be given even for these input lengths.

This strange “io” notion comes in when trying to reduce between different
problems. Suppose there is a linear-time (or polynomial-time) Karp-reduction
from problem A to problem B. This means that if B is in AM then A is in AM.
However, suppose that B is only known to be in [io]-AM. It does not follow
that A is also in [io]-AM . Nevertheless, if we replace [io]-AM by {io-AM}
(and require some additional properties of B) the conclusion does follow. See
Lemma 3.13.

3.2. Single-valued proofs. The notion of proofs (e.g., NP proofs or inter-
active proofs) is asymmetric in nature, the prover can prove membership in
a language but is unable to give false proofs of membership. The symmetric
version of such proofs is where the prover can prove membership or nonmem-
bership in a language and cannot give false proofs. It is not hard to see that
if a language L has such a symmetric proof system, then both L and L have
a one-sided proof system. Nevertheless, as we extensively use this notion we
explicitly define it. We begin with nondeterministic circuits:

Definition 3.5 (Nondeterministic SV circuits). A nondeterministic SV
(single-valued) circuit C(x, w) has three possible outputs: 1, 0 and quit such
that all non-quit paths are consistent, i.e., for every input x ∈ {0, 1}n, ei-
ther ∀w [C(x, w) ∈ {0, quit}] or ∀w [C(x, w) ∈ {1, quit}]. We say that
C(x) = b ∈ {0, 1} if there exists at least one w such that C(x, w) = b, and then
we say that w is a proof that C(x) = b. When no such w exists we say that
C(x) = quit.

We say that C is a nondeterministic TSV (total single-valued) circuit if
for all x ∈ {0, 1}n C(x) 6= quit, i.e., C defines a total function on {0, 1}n.
Otherwise, we say that it is a nondeterministic PSV (partial single-valued)
circuit.

It is easy to see that a Boolean function f has a nondeterministic TSV
circuit of size O(s(n)) if and only if f has both a nondeterministic and a
co-nondeterministic circuit of size O(s(n)). We next define single-valued AM
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protocols. We remind the reader that for a language L we let L(x) be one if
x ∈ L and zero otherwise.

Definition 3.6 (SV-AM protocols). An SV-AMTIMEε(n)(TIME = t(n),
COINS = m(n)) protocol for a language L is a constant-round public-coin
interactive protocol (P, V ) such that on input (x, b) ∈ {0, 1}n+1 the verifier
uses at most m(n) random coins, the protocol takes at most t(n) time, and:

(i) (Completeness) For every x, when interacting with the honest prover P ,
the verifier V accepts (x, L(x)) with probability at least 1− ε(n).

(ii) (Soundness) For every x and every possibly dishonest prover P ∗, the
probability V accepts (x, 1− L(x)) is at most ε(n).

If soundness holds for every input length, but completeness is only re-
quired to hold for infinitely many input lengths, then we say that this is a
{SV-io-AMTIME}ε(n)(t(n), m(n)) protocol.

Clearly, if L has an SV-AMTIMEε(n)(t(n), m(n)) protocol (or, respec-
tively, an {SV-io-AMTIME}ε(n)(t(n), m(n)) protocol), then we have L ∈
AMTIMEε(n)(t(n), m(n)) (resp. L ∈ {io-AMTIME}ε(n)(t(n), m(n))).

As usual if we are not interested in the number of coins we omit it. If the
ε is omitted then its default value is 1/3.

3.3. Generators. A generator is a function G : {0, 1}k → {0, 1}m for m > k.
We think of G as “stretching” k bits into m bits. We say a generator G is:

◦ ε-hitting for a class A if for every function h : {0, 1}m → {0, 1} in A
such that Prz←Um[h(z) = 1] > ε there exists a y ∈ {0, 1}k such that
h(G(y)) = 1.

◦ ε-pseudo-random for A if for every function h : {0, 1}m → {0, 1} in A,

|Pry←Uk [h(G(y)) = 1]− Prz←Um[h(z) = 1]| < ε.

Note that every ε-pseudo-random generator is also ε-hitting.

We will be interested in A’s such as functions computed by deterministic
circuits of some size t(m), nondeterministic circuits, co-nondeterministic cir-
cuits, etc. When G is not hitting (pseudo-random) for A we call a function
h ∈ A that violates the condition above an ε-distinguisher for G.

We often think of a generator G as a sequence Gk : {0, 1}k → {0, 1}m=m(k)

defined for every k ∈ N. Given an h : {0, 1}m → {0, 1} we can try and fool
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it by choosing the smallest k such that m(k) ≥ m, and using Gk. When
considering a sequence h = hm of functions, we can define two notions of hit-
ting (pseudo-random) generators according to whether the generator succeeds
almost everywhere or just infinitely often.

Definition 3.7. Let h = {hm} be a sequence of functions hm : {0, 1}m →
{0, 1}.

◦ G : {0, 1}k → {0, 1}m(k) is ε-hitting (pseudo-random) for h if for every
m ∈ N, taking k to be the smallest number such that m(k) ≥ m, Gk :

{0, 1}k → {0, 1}m(k) is ε-hitting (pseudo-random) for hm.

◦ G : {0, 1}k → {0, 1}m(k) is [io]-ε-hitting (pseudo-random) for h if for
infinitely many input lengths m ∈ N, taking k to be the smallest number
such that m(k) ≥ m, Gk : {0, 1}k → {0, 1}m(k) is ε-hitting (pseudo-
random) for hm.

Current PRG constructions, under the hardness vs. randomness paradigm,
take a hard function f : {0, 1}` → {0, 1} and use it to build a PRG Gf :

{0, 1}k(`) → {0, 1}m(`). We say that a construction G is a black-box gen-
erator if for every function f : {0, 1}` → {0, 1} it defines a function Gf :

{0, 1}k(`) → {0, 1}m(`), and furthermore it is possible to compute Gf in time
polynomial in its output length when given oracle access to f . We remark that
all existing constructions are black-box generators. If G is black-box then we
sometimes denote it by G` : {0, 1}k(`) → {0, 1}m(`), meaning that when Gf is
given access to a Boolean function f on ` bits it constructs from it a function
Gf : {0, 1}k(`) → {0, 1}m(`). We use the notation Gf when we want to em-

phasize that we work with a specific function f : {0, 1}` → {0, 1}. When we
want to emphasize both the specific function f and the input length ` that we
are currently working with, we use Gf,`. We sometimes add m = m(`) as a
subscript to emphasize the output length of the generator.

3.4. Pseudo-classes. In this section we define the notion of uniform indis-
tinguishability which is sometimes called “the pseudo-setting”. For the pur-
poses of this paper, we define only indistinguishability with respect to nonde-
terministic observers. Indistinguishability with respect to other observers (e.g.
deterministic, probabilistic) can be similarly defined. The following definitions
and notations are adopted from Kabanets (2000).
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Definition 3.8. We say that two languages L,M ⊆ {0, 1}∗ are NTIME(t(n))-
distinguishable a.e. (almost everywhere) if there is a nondeterministic length-
preserving procedure REF (which we call a refuter), which runs in time t(n),
such that for all but finitely many n’s, R on input 1n has at least one accepting
computation path, and on every accepting path it outputs an instance x such
that x ∈ L4M (where L4M is the symmetric difference between L and M). If
this holds only for infinitely many n’s, we say that L and M are NTIME(t(n))-
distinguishable i.o. (infinitely often).

If L and M are not NTIME(t(n))-distinguishable a.e. (resp. i.o.), we say
that they are NTIME(t(n))-indistinguishable i.o. (resp. a.e.).

Definition 3.9. Given a complexity class C of languages over {0, 1}∗ we define
the complexity classes:

[pseudo(NTIME(t(n)))]-C = {L : ∃M ∈ C such that L and M are

NTIME(t(n))-indistinguishable a.e.},
[io-pseudo(NTIME(t(n)))]-C = {L : ∃M ∈ C such that L and M are

NTIME(t(n))-indistinguishable i.o.}.

We remark that if the refuters have unlimited computational power, then
the definition [io-pseudo(C)] coincides with the standard notion of [io]-C.

Remark 3.10. We choose to use the notion of Kabanets (2000) with non-
deterministic refuters. This notion is incomparable to that of Impagliazzo &
Wigderson (1998). The notion of refuter used in Impagliazzo & Wigderson
(1998) concerns average case complexity. In Impagliazzo & Wigderson (1998)
a refuter (relative to some samplable distribution µ) is a probabilistic algo-
rithm which outputs a counterexample x with nonnegligible probability. Thus,
if two languages L and M are indistinguishable (relative to some samplable
distribution) then they agree with high probability on a random input.

Our results can work relative to such a probabilistic refuter. However,
we have to use refuters which output a counterexample with high probability
(significantly larger than 1/2). It is important to observe that it does not
immediately follow that one can amplify the success probability of a refuter
(that is, convert a refuter which outputs a counterexample with nonnegligible
probability into one which outputs a counterexample with high probability).
The obvious strategy for performing this amplification requires sampling many
candidates x and the ability to check whether a given input is a counterexample.
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This was done by Impagliazzo & Wigderson (1998) in the scenario of BPP but
seems harder for AM.9

3.5. Instance checking. Blum & Kannan (1995) introduced the notion of
instance checkers. We give a slight variation on their definition.

Definition 3.11. An instance checker for a language L is a probabilistic
polynomial-time oracle machine ICO(y, r) whose output is 0, 1 or fail and such
that the following hold.

◦ For every input y, Prr[IC
L(y, r) = L(y)] = 1.

◦ For every input y ∈ {0, 1}` and every oracle L′,

Prr[IC
L′(y, r) 6∈ {L(y), fail}] < 2−`.

Babai et al. (1991b) and Arora & Safra (1998) imply the following:

Theorem 3.12. For every complete problem in E, under linear-time reduc-
tions, there is a constant c and an instance checker for the problem that makes
queries of length exactly c` on inputs of length `. �

The next lemma allows us to use a fixed function f and a fixed instance
checker in the constructions. We prove:

Lemma 3.13. There is a function f that is E-complete under linear-time re-
ductions, and the following holds:

◦ There is a constant c and an instance checker for f that makes queries of
length exactly c` on inputs of length `.

◦ If f ∈ ⋂β>0 AMTIME(2βn) then E ⊆ ⋂β>0 AMTIME(2βn).

◦ If f has a {SV-io-AMTIME}(2O(βn)) protocol for every β > 0, then so
does every language in E. In particular, if f has such a protocol then

E ⊆
⋂

β>0

{io-AMTIME}(2O(βn)).

9One of the reasons is that BPP algorithms can run a given deterministic circuit whereas
AM protocols cannot run a given co-nondeterministic circuit. Loosely speaking, to check that
a given x is a counterexample one converts x into a “distinguisher circuit” to some generator
and checks that the circuit is indeed a distinguisher. However, in the case of AM this circuit
is co-nondeterministic, and thus it seems hard to perform this check by an Arthur–Merlin
protocol.
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Proof. Let f be the characteristic function of the language {(M,x, c) : M
is a (padded) description of a deterministic machine that accepts x in time at
most c}. By “padded description” we mean that M is a string with a (possibly
empty) prefix of zeros, followed by a description of a machine that starts with
the bit 1. It is easy to verify that this language is complete in E under linear-
time reductions. An important property of this function is that there is a simple
mapping reduction from instances of input length n to instances of input lengths
larger than n, just by padding the description of the machine. We say that this
reduction embeds instances of length n into instances of length m > n.

The first two items follow directly from the fact that f is E-complete (to-
gether with Theorem 3.12). We prove the third item. Let g ∈ E. Then there
exists a linear-time reduction from g to f mapping inputs of length ` to inputs
of length d`, for some constant d. Consider the following protocol for g: on
input y ∈ {0, 1}` and b ∈ {0, 1}, apply the reduction from g to f mapping
y to y′ ∈ {0, 1}d`. Next, the prover specifies an input length between d` and
d(`+1). Embed y′ into an instance y′′ of the specified length, and then run the
{SV-io-AMTIME}(2O(βn)) protocol for f on (y′′, b) and answer accordingly.

To see correctness, observe that by the properties of {SV-io-AMTIME}
protocols, for every y, no prover can convince the verifier to accept the wrong
answer 1 − g(y) with probability larger than 1/3 (because soundness always
holds, in particular for inputs of length |y′′|). Furthermore, there are infinitely
many input lengths ` for which the (honest) prover can find a good input length
between d` and d(` + 1) where the {SV-io-AMTIME}(2O(βn)) protocol for f
works well, and therefore on these input lengths the prover can convince the
verifier to accept g(y) with probability at least 2/3. �

3.6. Deterministic amplification. We will use explicit constructions of
dispersers to reduce the error probability of algorithms and generators.

Definition 3.14 (Sipser 1988). A function Dis : {0, 1}m̂ × {0, 1}t → {0, 1}m
is a (u, η)-disperser if for every set S ⊆ {0, 1}m̂ of size 2u, ρ(Dis(S, ·)) ≥ 1− η.

The following technique is taken from Sipser (1988) (see also the survey
papers Nisan (1996), Nisan & Ta-Shma (1999) and Shaltiel (2002) for more
details). Say we have a one-sided probabilistic algorithm A using m random

coins and having success probability 1/2. We design a new algorithm Â using
a few more random bits and having a much larger success probability γ, as
follows. We use a (m̂− log( 1

1−γ ), 1
2
)-disperser Dis : {0, 1}m̂×{0, 1}t → {0, 1}m.

Algorithm Â picks x ∈ {0, 1}m̂ and accepts the input iff for some r ∈ {0, 1}t,
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A accepts with the random coins Dis(x, r) ∈ {0, 1}m. It is not difficult to verify

(and we do that soon) that Â’s success probability is at least γ.
We need this amplification in two settings. One is where we want to amplify

the success probability of AM protocols. The other is where we want to amplify
the hitting properties of a generator. That is, given a generator that is hitting
very large sets, we want to design a new generator that is hitting even smaller
sets. Details follow.

3.6.1. Amplifying AM. Following Miltersen & Vinodchandran (1999) we
need AM protocols to have extremely small error probability, not only small
with respect to the input length but also small with respect to the number of
random coins. Using dispersers we have:

Lemma 3.15 (Implicit in Miltersen & Vinodchandran 1999). There exists a
constant ∆ > 1 such that for every 0 < δ < 1,

AMTIME1/2(nc) ⊆ AM
2−m+mδ (TIME = m2∆,COINS = m = O(nc/δ)).

Similar amplifications of the success probability of single-valued Arthur–
Merlin protocols are also true.

3.6.2. Amplifying hitting-set generators. Given a generator that is hit-
ting very large sets we want to design a new generator that is hitting even
smaller sets. The penalty is that the new generator uses a (slightly) larger seed
and outputs a (slightly) shorter sequence. The following lemma shows how to
do that for the case of generators against co-nondeterministic circuits, which is
the relevant class for this paper. However, the same arguments apply for other
classes as well.

Lemma 3.16. Let G` : {0, 1}k(`) → {0, 1}m(`) be an efficient generator with

k(`) ≥ log(m(`))). Then there exists another efficient generator Ĝ` : {0, 1}k̂(`)

→ {0, 1}m̂(`) with the following properties:

◦ k̂(`) = k(`) +O(logm(`)) = O(k(`)).

◦ m̂(`) = m− log( 1
1−γ ).

◦ For every algorithm D̂ running in co-nondeterministic time T ≥ m there
exists an algorithm D running in co-nondeterministic time poly(T ) such
that:
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– If ρ(D̂) ≥ 1
2

then ρ(D) ≥ γ.

– If D̂ 1
2
-distinguishes Ĝ` then D γ-distinguishes G`.

Proof. We use an explicit construction of an (m̂ = m−log( 1
1−γ ), 1

2
)-disperser

Dis : {0, 1}m × {0, 1}t=O(logm) → {0, 1}m̂

given by Saks et al. (1998) (see also Ta-Shma (1998); Ta-Shma et al. (2001)).
We define

Ĝ(seed, r) = Dis(G(seed), r).

Define D : {0, 1}m → {0, 1} by D(x) = 1 iff there exists some r ∈ {0, 1}t
such that D̂(x, r) = 1. Note that D can be implemented in co-nondeterministic
time poly(T, 2t) = poly(T ).

◦ Suppose ρ(D̂) ≥ 1
2
. That is, if we let S ⊆ {0, 1}m̂ be the set of x̂ ∈ {0, 1}m̂

such that D̂(x̂) = 0, then ρ(S) ≤ 1
2
. Let X ⊆ {0, 1}m be the set of

x ∈ {0, 1}m such that for every r ∈ {0, 1}t, Dis(x, r) ∈ S. By the

definition of dispersers we have |X| ≤ 2m̂ = 2m−log( 1
1−γ ). Thus, 1−ρ(D) ≤

2− log( 1
1−γ ) = 1− γ and ρ(D) ≥ γ.

◦ Suppose that in addition D̂ : {0, 1}m̂ → {0, 1} is a 1
2
-distinguisher for Ĝ.

That is, for every (seed, r) we have D̂(Ĝ(seed, r)) = 0. It follows that
D(G(seed)) = 0 for every seed, and D is a γ-distinguisher for G`. �

4. The MV-generator and resilient reconstructions

4.1. The Miltersen–Vinodchandran generator. Let f : {0, 1}` → {0, 1}.
We look at f as a d-variate polynomial f : Hd → {0, 1}, where |H| = h = 2`/d.
For a field F with q ≥ 2h elements and H ⊆ F , let f̂ be the low degree
extension of f (Babai et al. 1991a). That is, f̂ is the unique multivariate
polynomial f̂ : F d → F that extends f and has degree at most h − 1 in
each variable. We let ei = (0, . . . , 0, 1, 0, . . . , 0) be the ith basis vector of F d,
with one in the ith coordinate and zeros everywhere else. For w ∈ F d, the
points {w + aei | a ∈ F} lie on an axis-parallel line that passes through w with
direction i. The restriction of the multivariate polynomial f̂ to that line is a
univariate polynomial of degree at most h − 1, and we denote it by f̂ |w+Fei.
The generator MV : {0, 1}k → {0, 1}m,

MV = MVf,`,m,d,h,q : [d]× F d → Fh−1
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is defined by
MVf,`,m,d,h,q(i, w) = f̂ |w+Fei,

where Fh−1 is the set of all degree h−1 univariate polynomials over F . Note that
MV is a black-box generator. We often omit some (or all) of the subscripts. We
now fix some of the parameters involved in the construction as a function of `
and some auxiliary parameter 0 < δ < 1. We choose: q = 2h and d = 1/δ. This
makes h = 2δ`. We also require that ` ≥ Ω(1/δ). When we analyze parameters
we often look at the generator as a binary function MVf,`,δ : {0, 1}k → {0, 1}m
and we see that:

◦ k = log d+ log qd ≤ 2`.

◦ m = h log q ≥ 2δ` (this is because 2m = qh). We truncate the output of
MV to be of length exactly 2δ`.

◦ if f ∈ DTIME(2O(`)) then for every 0 < δ < 1, MVf,`,δ ∈ DTIME(2O(`)).

The parameter δ > 0 will be a constant, and under this choice the generator
has “exponential stretch” and stretches 2` bits into 2δ` bits.

Miltersen and Vinodchandran show that if f is sufficiently hard then this is
a hitting-set generator for co-nondeterministic circuits, from which they derive
a nonuniform hardness vs. randomness tradeoff for AM.

4.2. Resilient reconstruction algorithms. We define the notion of re-
construction algorithms for pseudo-random generators that are based on hard
functions. The definition below is specialized to the case of generators which

fool nondeterministic circuits. Let G` : {0, 1}k(`) → {0, 1}m(`) be a black-box
generator.

Definition 4.1 (Reconstruction algorithm). A deterministic machine R(·, ·, ·)
is a γ-reconstruction algorithm for G` with success probability p and complex-
ity T = T (`, t, γ) if for every ` ∈ N and every function f : {0, 1}` → {0, 1},
and for every size t co-nondeterministic circuit D that is γ-distinguishing
Gf : {0, 1}k(`) → {0, 1}m(`),

Prs[∃a such that C = R(D, a, s) is a nondeterministic

TSV circuit computing f ] ≥ p

and the size of the circuit C is at most T = T (t, γ, `). A reconstruction algo-
rithm R is called efficient if it runs in time polynomial in its output length T .
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We are interested in the behavior of the reconstruction algorithm R when
given an “incorrect” advice, i.e, when D is not a distinguisher or when a is
not the correct string. Clearly, we cannot expect R to output the correct
circuit given an incorrect advice. We can, however, hope that R outputs a
PSV circuit even when given an incorrect (or malicious) advice. We call such
a reconstruction algorithm resilient.

Definition 4.2 (Resilient reconstruction algorithm). A γ-reconstruction al-
gorithm R(D, a; r) is resilient against a co-nondeterministic circuit D with
probability p if

Prs [∀a R(D, a, s) is PSV] ≥ p.

A reconstruction algorithm is γ-resilient if it is a γ-reconstruction and it is
resilient against any circuit D with ρ(D) > γ.

4.3. A resilient reconstruction algorithm for the MV-generator. Our
main observation is that the reconstruction algorithm for MVf that is given
in Miltersen & Vinodchandran (1999) (with slightly different parameters) is
γ-resilient, for some (large) γ < 1.

Lemma 4.3. Let δ > 0 and ` ∈ N be such that ` > 1/δ2. There exists an
efficient γ = 1 − 2m

δ−m-resilient reconstruction algorithm R for MVf,`,δ, with

success probability p = 1− 2−m
δ

and complexity T = O(212δ` · t2).

Proof. We basically repeat the Miltersen–Vinodchandran proof that a re-
construction algorithm exists and we note that the reconstruction is resilient.
Suppose D is a co-nondeterministic circuit that is γ-distinguishing MVf,`,δ.
That is, if we define

I = IMAGE(MVf) = {v ∈ Fh−1 | ∃i, w [MVf(i, w) = v]} ,
Z = ZEROS(D) = {v ∈ Fh−1 | D(v) = 0} ,

then I ⊆ Z because the generator does not hit any string v that D accepts, and
|Z| < (1− γ)2m = 2m

δ−m · 2m = 2m
δ

because ρ(D) ≥ γ. Set SIZE(D) = t(m).

Every element z ∈ Z is an element of Fh−1 and is associated with some
low-degree polynomial. For q ∈ Fh−1 and S = {x1, . . . , xs} ⊆ F , let q|S be
the restriction of q to the set S, i.e., the vector (q(x1), . . . , q(xs)). We say that
S ⊆ F splits Z if q1|S 6= q2|S for every q1 6= q2 ∈ Z. The following claim says
that a large enough randomly chosen S splits Z with high probability.
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Claim 4.4. For a uniformly chosen S ⊆ F , Pr(S does not split Z)< |Z|22−|S|.

Proof. Let s = |S|. Fix q1 6= q2 ∈ Fh−1. As q1 and q2 are different univari-
ate polynomials of degree at most h−1, the probability that q1 and q2 agree on
s randomly chosen elements in the field is at most ((h− 1)/q)s ≤ 2−s since we
chose q to be 2h (this probability is even smaller when S is chosen without rep-
etitions). Taking the union bound over all pairs in Z shows that the probability
that there exists such a bad pair q1, q2 is smaller than

(|Z|
2

)
2−s < |Z|22−s. �

We are now ready to describe the reconstruction algorithm R(·, ·, ·). The
inputs to R are:

◦ A co-nondeterministic circuit D(Fh−1, ·) promised to be a γ-distinguisher
for MVf .

◦ The random string s is a uniformly chosen S ⊆ F , where |S| = 3mδ ≥
3 log |Z|.

◦ The “correct” advice string a is f̂(Sd), i.e., the value f̂(v) for every ele-
ment v ∈ Sd.

R outputs a nondeterministic circuit C which we describe now. The input
to C is y = (y1, . . . , yd) ∈ F d, and its output is f̂(y1, . . . , yd). C successively
learns the values f̂(Ai) for Ai = {(y1, . . . , yi, si+1, . . . , sd) | sj ∈ S}. We have

A0 = Sd and so we have f̂(A0) as an input to R and we can hardwire it
into C. Furthermore, Ad = {(y1, . . . , yd)}, so after d iterations C can output
f̂(Ad) = f̂(y1, . . . , yd).

Say we already have the values f̂(Ai); we show how C computes f̂(Ai+1).
For every si+2, . . . , sd ∈ S, C does the following guesses:

◦ C guesses q ∈ Fh−1.

◦ C guesses z.

C then checks that:

◦ D(q, z) = 0.

◦ For every j ∈ S, q(j) = f̂(y1, . . . , yi, j, si+2, . . . , sd). This check is possible
because for all j ∈ S we already know f̂(y1, . . . , yi, j, si+2, . . . , sd) (since
the point (y1, . . . , yi, j, si+2, . . . , sd) is in Ai).
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We will soon show that at this point the only nonrejecting paths are those
which guessed the polynomial q(j) = f̂(y1, . . . , yi, j, si+2, . . . , sd). In particular,

f̂(y1, . . . , yi, yi+1, si+2, . . . , sd) = q(yi+1).

After doing that for every si+2, . . . , sd ∈ S we know all the values in f̂(Ai+1).

Claim 4.5. The above algorithm is a resilient reconstruction algorithm for
MVf with parameters as stated in the lemma.

Proof. Correctness: To see that R is a reconstruction algorithm we have
to show that when D is a distinguisher, with probability p (over the choice
of r) there exists a such that our conclusions are correct in every iteration.
Since D is a γ-distinguisher, we necessarily have ρ(D) > γ and hence |Z| =
|ZEROS(D)| ≤ (1− γ)2m = 2m

δ
. Therefore, by Claim 4.4, with probability at

least p, S splits Z. Suppose that S is indeed splitting.
If C guessed a polynomial q for which D(q) = 1, then for all z, D(q; z) = 1

and C rejects. If, on the other hand, C guessed a polynomial q for which
D(q) = 0, then for some z, D(q; z) = 0. Thus, the surviving paths so far are
exactly those which guessed q ∈ Z and a witness z for that. Next, C checks that
q and q′(j) := f̂(y1, . . . , yi, j, si+2, . . . , sd) agree on S. Notice that q′ ∈ I ⊆ Z.
However, as both q and q′ are in Z, and both agree on S, it must be that q = q′

(because S splits Z). We therefore conclude that the correct path guessing
q = q′ survives, and furthermore, every surviving path guessed q ′. It follows
that every nonrejecting path computes the value f̂(Ai+1) correctly. Hence, the
algorithm is TSV.

Complexity: The algorithm of the circuit C makes d iterations. In each iter-
ation, for every si+2, . . . , sd the circuit C guesses a polynomial, i.e., C guesses
at most |S|d polynomials (strings of length m) on which it evaluates the circuit
D, and each evaluation takes at most t(m) = SIZE(D) time. Thus, the total
running time is

t(m) ·O(d · |S|d) = t(m) ·O(d(3mδ)d) ≤ t(m) ·O(d3dmδd) ≤ t(m) ·O(24dm).

However, d = 1/δ ≤
√
` ≤ δ`, and so 24d ≤ 24δ`. We also have, m ≤ h2 = 22`/d.

Altogether, the running time is at most t(m) · O(26δ`). The circuit size is at
most the square of this.

Resilience: Finally, we show that the reconstruction algorithm is γ-resilient
with probability p. First note that Claim 4.4 is correct even if D is not a
distinguisher, as long as ρ(D) > γ. This is because |Z| = |ZEROS(D)| ≤
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(1− γ)2m = 2m
δ

and this is all that is needed in the proof of Claim 4.4. So S
splits Z with probability at least p.

Now suppose for contradiction that ρ(D) > γ, the random set S ⊆ F
splits Z, and there is some (incorrect) advice a and some input y ∈ F d to
C = R(D, a, r) such that C has two different accepting paths on y that re-
sult in different values for f̂(y). Then at some iteration C chooses q1 in the
first path and q2 in the other, and q1 6= q2. Let us look at the first time
this happens, and suppose it is during the computation of val(Ai), and when
the last values are fixed to some si+1, . . . , sd ∈ F . Since the two paths are
accepting, it follows that for every j ∈ S, val(y1, . . . , yi−1, j, si+1, . . . , sd) =
q1(j) = q2(j) (note that val(y1, . . . , yi−1, j, si+1, . . . , sd) does not necessarily
equal f̂(y1, . . . , yi−1, j, si+1, . . . , sd) because the advice val(A0) may be incor-
rect and is not necessarily the restriction of f̂ to Sd). However, as before, since
S splits Z, and q1, q2 ∈ Z agree on S, it follows that q1 = q2, contradicting our
assumption. Thus, whenever S splits Z, R(D, a, r) is PSV for every possible
(correct or incorrect) advice a. �

This completes the proof of Lemma 4.3. �

5. A generator against uniform
co-nondeterministic machines

In this section we construct a generator that hits uniform co-nondeterministic
machines under a uniform assumption and prove Theorem 1.1.

◦ Let f : {0, 1}∗ → {0, 1} be the E-complete language from Lemma 3.13,
and let IC(y, r) be the instance checker for it. In particular, on inputs

y ∈ {0, 1}`, IC(y, r) makes queries of length exactly `′ = c`, for some
constant c.

◦ Let G = G`′ : {0, 1}k(`′) → {0, 1}m=m(`′) be a black-box generator that
has an efficient γ = γ(m)-resilient reconstruction algorithm R(D, a, s)
with probability p = p(m) > 0.99 and complexity T = T (t, `, γ).

We use `′ as a subscript as we only intend to run G using input lengths of
the form `′ = c` for the hard function f . We now describe the main protocol
of this paper which will be used in all the proofs to follow. This protocol
(which appears in Figure 5.1) is an Arthur–Merlin protocol where the two
players are given as input a string y ∈ {0, 1}`, a bit b and a co-nondeterministic
Dm which takes inputs of size m and has total size t(m). Merlin’s goal is to
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convince Arthur that f(y) = b. We show that if the circuit Dm fulfills certain
requirements (specified below) then the protocol is complete and sound. We
call the protocol R&ICDm(y), for Reconstruct-and-Instance-Check.

Input:

◦ y ∈ {0, 1}` , b ∈ {0, 1}. Merlin wants to convince Arthur
that f(y) = b.

◦ A co-nondeterministic circuit Dm on m input bits.

Protocol:

1. Arthur: Sends a random s.

2. Merlin: Sends a.

3. Let C be the nondeterministic circuit C = R(D, a, s) getting
inputs of length `′.

4. Arthur: Sends a randomly chosen string r to be used as the
instance checker of random coins.

5. Merlin:

◦ Runs ICC(y, r), i.e., it runs the instance checker (from
Lemma 3.13) on the input y, with the random coins r
and using the nondeterministic circuit C as an oracle.

◦ Sends the queries and the answers of the oracle C during
the execution of ICC(y, r).

◦ For each pair of query q and answer a, gives a witness
w such that C(q;w) = a.

6. Arthur: Runs ICC(y, r) verifying the queries and the answers
(using the witnesses).

Output: ICC(y, r).

Figure 5.1: Protocol R&ICD(y), Reconstruct-and-Instance-Check

We claim that if ρ(Dm) is large then for every (y, b) such that f(y) 6= b,
no prover can convince the verifier to accept with probability larger than 0.1.
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Furthermore, if Dm is a distinguisher for Gf , then for every (y, b) such that
f(y) = b, there exists a prover who can convince the verifier to accept (y, b)
with probability at least 0.9.

Lemma 5.1. For every co-nondeterministic circuit Dm and every y ∈ {0, 1}`,

◦ If ρ(Dm) ≥ γ(m), then for every prover P ∗ the verifier accepts (y, 1−f(y))
with probability at most 0.1.

◦ If Dm γ-distinguishes Gf , then there exists a prover for which the verifier
accepts (y, f(y)) with probability at least 0.9.

Proof. Assume ρ(Dm) ≥ γ(m) and let the prover be arbitrary. By Defini-
tion 4.2, for almost all s (except for a 1− p fraction), for all possible values a,

C = R(D, a, s) is PSV. Thus, C defines a partial function g : {0, 1}`′ → {0, 1}.
We now run the instance checker for f over the input y with an oracle access
to g (note that the input lengths are right, since on input length `, the oracle
calls are of length `′ = c`). By Lemma 3.13 we get the correct answer f(y) or
“reject” with probability at least, say, 0.9.

Now, further assume that Dm γ-distinguishes Gf . By Definition 4.1, with
probability at least p over s, there exists a witness a such that C = R(D, a, s)
defines a TSV circuit computing f . When interacting with the honest prover,
Merlin sends this witness a and the right answers of the instance checker
IC as specified by the protocol. Whenever C is indeed a TSV circuit for f ,
Lemma 3.13 guarantees that ICC computes f correctly on inputs of length `
with probability 1. Thus, the protocol accepts with probability at least p on
inputs of length `. �

We now check the running time of Protocol R&IC:

Claim 5.2. The interactive protocol of Figure 5.1 can be performed in time
poly(`) · poly(T (t(m), `′, γ)).

Proof. The size of the advice string a and the circuit |C| are at most T ′ =
T (t(m), `′, γ), the reconstruction algorithm R is efficient, hence the complexity
of steps 1, 2 and 3 is poly(T ′). Sending r takes poly(`′) = poly(`) bits. There
are poly(`) steps of the instance checker IC, and each such step may involve a
computation of the circuit C. Altogether, the running time of steps 4, 5 and 6
is poly(`) · T ′. �

We get the following corollary:
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Lemma 5.3.

◦ If Gf is not [io]-γ-hitting against coNTIME(t(m)),
then f has an SV-AMTIME(poly(`) · poly(T (t(m), `′, γ))) protocol.

◦ If Gf is not γ-hitting against coNTIMEγ(t(m)),
then f has an {SV-io-AMTIME}(poly(`) · poly(T (t(m), `′, γ))) protocol.

Proof. If Gf is not γ-hitting against coNTIMEγ(t(m)) then there exists a
uniform machine D ∈ coNTIMEγ(t(m)) that is a γ-distinguisher for Gf on
infinitely many input lengths m = m(`′). If Gf is not [io]-γ-hitting then there
exists such a machine M that is a γ-distinguisher for Gf for all input lengths
m = m(`′), except for possibly finitely many. In both cases, by Lemma 5.1, for
every such input length m = m(`′), and for every value y ∈ {0, 1}`, there exists
a proof for which the protocol accepts the correct result with probability at
least 0.9, and there is no proof that makes the verifier accept the wrong value
with probability more than 0.1. This gives completeness for both cases, and
soundness for the first.

In addition we know that for every input length m = m(`′), we have
ρ(Dm) ≥ γ (by the definition of the class coNTIMEγ(t(m))). So by the first

part of Lemma 5.1, for every input y ∈ {0, 1}` and every prover, the probabil-
ity the prover convinces the verifier to accept the wrong answer is at most 0.1,
which gives soundness for the second case. �

5.1. Working with the MV-generator. We are now ready to prove The-
orem 1.1. We do that by plugging the MV-generator and its resilient recon-
struction algorithm into protocol R&IC.

Let δ > 0 be a constant. We will choose δ later, and for the time being
we express other parameters in terms of δ. Let f be the E-complete language
from Lemma 3.13 and IC be the instance checker for f , having queries of length
exactly `′ = c` on inputs of length `. We let Gf,`′,δ = MVf,`′,δ (recall that d =
1/δ and m = 2δ`

′
). We assume that ` is large enough so that ` > 1/δ2. Recall

thatGf,`′,δ has an efficient γ = 1−2m
δ−m-resilient reconstruction algorithm with

probability p = 1 − 2−m
δ

and complexity T (t, `, γ) = 2O(δ`) · t2 (Lemma 4.3).

Let Ĝf,`′,δ be the efficient generator defined in Lemma 3.16.

Lemma 5.4.

◦ If Ĝf,`′,δ is not [io]-1
2
-hitting against coNTIME1/2(nO(1)),

then f has an SV-AMTIME(2O(δ`)) protocol.
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◦ If Ĝf,`′,δ is not 1
2
-hitting against coNTIME1/2(nO(1)),

then f has an {SV-io-AMTIME}(2O(δ`)) protocol.

In both cases the constant in the O notation is independent of δ.

Proof. We do the second statement, the first is essentially similar (and

simpler). If Ĝf,δ is not 1
2
-hitting against coNTIME1/2(nO(1)), then there exists

some D̂ ∈ coNTIME1/2(nO(1)) that for infinitely many input lengths n, 1
2
-dis-

tinguishes Ĝf,δ. By Lemma 3.16 there exists D such that:

◦ For every input length n, ρ(Dn) ≥ γ.

◦ For every input length where D̂ 1
2
-distinguishes Ĝf,δ, D γ-distinguishes

Gf,δ.

That is, D ∈ coNTIMEγ(n
O(1)) and Gf,`′,δ is not γ-hitting D. Recall that

t(m) = SIZE(D) = mO(1) = 2O(δ`). By Lemma 5.3,

f ∈ {SV-io-AMTIME}(T (t(m), `′, γ)) = {SV-io-AMTIME}(2O(δ`)t2(m))

= {SV-io-AMTIME}(2O(δ`)). �

Combining Lemma 5.4 and Lemma 3.13, we get Theorem 1.1, which we
now rephrase more formally.

Theorem 5.5. Let c > 0.

◦ If for every δ > 0, Ĝf,`′,δ is not [io]-1
2
-hitting against coNTIME(nc),

then E ⊆ ⋂β>0 AMTIME(2O(β`)).

◦ If for every δ > 0, Ĝf,`′,δ is not 1
2
-hitting against coNTIME1/2(nc),

then E ⊆ ⋂β>0{io-AMTIME}(2O(β`)).

6. Explicit constructions under uniform assumptions

Klivans & van Melkebeek (1999) suggested a general framework for derandom-
ization under hardness assumptions. They showed that nonuniform hardness
vs. randomness tradeoffs can be used to conditionally derandomize a broader
class of randomized processes beyond decision problems. They give some ex-
amples that demonstrate the usefulness of their approach. Some of these appli-
cations concern “explicit construction of combinatorial objects”. We observe
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that in some cases uniform hardness vs. randomness tradeoffs suffice and we
can use a weaker assumption than that of Klivans & van Melkebeek (1999) and
Miltersen & Vinodchandran (1999). We describe a general framework for de-
randomizing probabilistic constructions of combinatorial objects under uniform
assumptions. Let us start by defining the notion of explicit and probabilistic
constructions.

Definition 6.1. Let Q = {Qn}n≥1, Qn ⊆ {0, 1}n, be a property of strings.
We say that a procedure A is an explicit construction for the property Q if A
runs in deterministic polynomial time and on input 1n outputs x ∈ Qn′ , for
some n′ ≥ n. We say that A is a probabilistic construction for Q if A runs
in deterministic polynomial time, and on input (1n, ρ), where |ρ| = poly(n),
Prρ[A(1n, ρ) ∈ Qn′] > 1/2. Infinitely often (i.o.) construction algorithms are
similarly defined, where the algorithms are required to succeed only on infinitely
many input lengths.

Let Q be a property and A a probabilistic construction for Q. We need the
following to hold in order to apply our approach.

1. Q ∈ coNP.

2. There exists a deterministic polynomial-time procedure B that given a
list, x1, . . . , xk, of strings in {0, 1}n such that xi ∈ Qn for at least one
1 ≤ i ≤ k, B outputs x ∈ Qn′ for some n′ ≥ n.

Lemma 6.2. Let Q be a property and A a probabilistic construction for Q such
that conditions 1 and 2 hold. Then Q has an explicit construction algorithm,
unless E ⊆ ⋂β>0{io-AMTIME}(2βn).

Proof. For input length n, let m = |ρ| be the length of the second part of
A’s input. Let f be the E-complete language from Lemma 3.13. Let δ > 0.
We define an explicit construction algorithm C for Q: on input 1n, run the
generator Ĝf,`′,δ (i.e. the generator obtained from applying Lemma 3.16 on
the generator Gf,`′,δ from Section 5.1) on all the possible seeds to obtain a list
of strings ρ1, . . . , ρk ∈ {0, 1}m, where k = poly(n) (since the seed length is
O(logm) = O(logn)). Then run A on (1n, ρi) for all 1 ≤ i ≤ k, to obtain a

list x1, . . . , xk ∈ {0, 1}n
′

(n′ = poly(n)). Finally, run the procedure B from

condition 2 on x1, . . . , xk to obtain x ∈ {0, 1}n′′ (n′′ = poly(n′) = poly(n)).
Output x.
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Now suppose that for every δ > 0, for infinitely many input lengths the
algorithm C fails to produce elements in Q. We define a (deciding) co-nonde-
terministic algorithm A′, taking inputs ρ ∈ {0, 1}m, as follows: on input ρ, run
A on (1n, ρ) to obtain an instance x, accept if x ∈ Q. By condition 1, this is a
co-nondeterministic algorithm. By the fact that A is a probabilistic construc-
tion algorithm for Q, we know that ρ(A′m) ≥ 1/2 for every m (where A′m is the
restriction of A′ to input length m). We conclude that A′ ∈ coNTIME1/2(nc)
(for some constant c). Furthermore, for infinitely many input lengths, A′m does

not accept any of the elements generated by Ĝf,`′,δ. In other words, for every

δ > 0, Ĝf,`′,δ is not 1
2
-hitting against coNTIME1/2(nc). By Theorem 5.5 (second

part) E ⊆ ⋂β>0{io-AMTIME}(2βn). �

Remark 6.3. By using the first part of Theorem 5.5, we can have a version
of Lemma 6.2, in which the construction algorithm succeeds infinitely often,
unless E ⊆ ⋂β>0 AMTIME(2βn).

The matrix rigidity problem is a special case of Lemma 6.2. Valiant (1977)
showed that a random matrix is rigid, property 1 is clear, and Klivans & van
Melkebeek (1999) showed property 2. Together, this gives Theorem 1.5.

7. Gap theorems

In this section we prove Theorems 1.2, 1.3 and 1.4. We start by setting up
some parameters and notations, common to all the proofs in this section.

Let δ > 0 be a constant. We will choose δ later, and for the time being
express other parameters in terms of δ. Let f be the E-complete language
from Lemma 3.13. Set `′ = c`, where c is the constant from Lemma 3.13. Let
Gf,`′,δ = MVf,`′,δ; as before we require that `′ > 1/δ2. Recall that m = Ω(2δ`

′
).

By Lemma 4.3, Gf,`′,δ has an efficient γ = 1 − 2m
δ−m-resilient reconstruction

algorithm with probability p = 1− 2−m
δ

and complexity T (t, `, γ) = 2O(δ`) · t2.

For a language L ∈ AMTIMEε(TIME = poly(n),COINS = m = m(n)), let
ML be the machine such that:

x ∈ Ln =⇒ Prz∈{0,1}m [∃w ML(x; z, w) = 1] = 1,(7.1)

x 6∈ Ln =⇒ Prz∈{0,1}m [∃w ML(x; z, w) = 1] ≤ ε.(7.2)

The “derandomized” language L′ is obtained by replacing the random coins
of the AM protocol for L with all the possible outputs of the generator. That
is, let ` be the smallest integer such that 2δ`

′ ≥ m. We will use the generator
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G based on the function f with input length `′.

L′(x) =

{
1 if ∀z ∈ IMAGE(Gf,`′,δ) ∃w [ML(x; z, w) = 1],
0 otherwise.

We now show that L′ ∈ NP. Indeed, L′ calls the nondeterministic machine
ML · |IMAGE(Gf,`′,δ)| times, which is at most polynomial in m (and n). Also,
since Gf,`′,δ is efficient, and f is in E, each element in the set is generated in
time polynomial in m (and n). Each execution of ML takes poly(m) = poly(n)
nondeterministic time. Altogether, L′ ∈ NTIME(nO(1)) and is in NP.

In Figure 7.1 we present a protocol that is used by all the proofs in this
section. We assume that the prover is able to present us with a circuit Dm such
that:

◦ For every m = m(`), the prover can prove in poly(m) time that ρ(Dm)
≥ γ.

◦ For some (or all) input lengths, Dm is a distinguisher for Gf,`′,δ. The
prover does not prove this part, though.

This assumption will be realized in different ways according to the different
statements that we prove.

Input: y ∈ {0, 1}` , b ∈ {0, 1}. Merlin wants to prove that f(y) = b.

1. Merlin: Sends a co-nondeterministic circuit Dm.

2. Merlin proves to Arthur that ρ(Dm) ≥ γ (this is the place
where the protocols for Theorems 1.2 and 1.3 differ, and we
will later describe how this is done in each proof).

3. Arthur and Merlin play Protocol R&ICDm(y, b).

Figure 7.1: Common protocol for Theorems 1.2 and 1.3

Claim 7.3. If for every ` the prover can choose a circuit Dm that is γ-distin-
guishing for Gf,`′,m,δ then E ⊆ AMTIME1/3(2O(δ`)). If the above only holds
for infinitely many input lengths ` then E ⊆ {io-AMTIME}1/3(2O(δ`)). In both
cases the constant in the O notation is independent of δ.
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Proof. Soundness: For every input length ` the prover proves that ρ(Dm)
≥ γ with sufficient soundness (this is our assumption). The rest follows from
the soundness of Protocol R&IC (Lemma 5.1).

Completeness: Whenever Dm is γ-distinguishing for Gf,`′,m,δ, the complete-
ness follows again from Lemma 5.1.

Running time: By our assumption, the first part takes time poly(m) =
2O(δ`′) = 2O(δ`). By Claim 5.2 and Lemma 4.3, Protocol R&IC runs in time
2O(δ`′) = 2O(δ`). Altogether, the total running time is 2O(δ`) with the constant
in the O notation independent of δ.

It follows that in the first case, for every β > 0, f ∈ AMTIME(2β`), and in
the second, for every β > 0, f ∈ {io-AMTIME}(2β`). Lemma 3.13 shows that
the above also holds for the whole class E as desired. �

We now prove Theorems 1.2 and 1.3, which by the discussion above amounts
to realizing our assumptions regarding Dm.

7.1. A gap theorem for AM

Proof of Theorem 1.2. Assume AM 6⊆ [io-pseudo(NTIME(nO(1)))]-NP.
It follows that there exists a language L ∈ AMTIME1/3(nO(1)) such that L 6∈
[io-pseudo(NTIME(nO(1)))]-NP. By Lemma 3.15,

L ∈ AMTIME
2mδ−m(TIME = mO(1),COINS = m = O(nO(1/δ))).

In Lemma 7.4 (see below) we prove that there exists a polynomial-time non-
deterministic procedure A such that for all but finitely many `′, on input 1n,
A has at least one accepting computation path, and on every accepting path,
A outputs a co-nondeterministic circuit Dm that is γ-distinguishing for Gf,`′,m,δ.
The prover sends this Dm and a proof that A(1n) = Dm, i.e., a computation
path of A(1n) that outputs the circuit Dm. The rest follows from Claim 7.3.�

Informally, the following lemma says that if a black-box generator fails
in the pseudo-setting then a distinguisher for the generator can be efficiently
generated.

Lemma 7.4. Let c > 0 be an arbitrary constant. Let f : {0, 1}` → {0, 1} be a

language in E, and G` : {0, 1}k(`) → {0, 1}m(`) an efficient black-box generator
with k(`) ≤ O(log(m)). If

AMTIMEε=ε(n)(TIME = poly(n),COINS(n) = poly(n))

6⊆ [io-pseudo(NTIME(nc))]-NP,
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then there exists a procedure A ∈ NP such that for all but finitely many `,
on input 1n(`), A has at least one accepting path, and on every accepting path
A outputs a co-nondeterministic circuit Dm which is a γ = 1− ε-distinguisher
for Gf,`,m, where n = n(`) is the first integer such that m(`) ≥ COINS(n).

Proof. Let L be a language in AMTIMEε(TIME = poly(n),COINS = m =
m(n)), and yet L is not in [io-pseudo(NTIME(nc))]-NP. Let ML the machine
that defines L, and L′ the “derandomized” version of L with the generator
Gf,`,m (as defined in Section 7). Recall that L′ ∈ NP.

As L 6∈ [io-pseudo(NTIME(nc))]-NP, there is a refuter REF ∈ NTIME(nc)
such that for all large enough input lengths n, REF(1n) ∈ L4L′. Furthermore,
L ⊆ L′ and so REF(1n) ∈ L′ \ L.

We can now describe the nondeterministic procedure A that outputs distin-
guishers for the generator. On input 1n, A runs the refuter REF(1n) to obtain
an instance xn (on accepting paths of REF). A outputs the co-nondeterministic
circuit Dm(z), with inputs from {0, 1}m, defined to be Dm(z) = 1 if and only
if ∀w [ML(xn; z, w) = 0]. We see that:

◦ ρ(Dm) ≥ γ (because REF(1n) 6∈ L).

◦ For every z ∈ IMAGE(Gf,`,m), Dm(z) = 0 (because REF(1n) ∈ L′).

◦ SIZE(Dm) ≤ poly(m) (because ML ∈ AMε(TIME = poly(n),COINS =
m = poly(n)), and the translation to a circuit is at most quadratic in
size).

Therefore, by definition, Dm is a γ-distinguisher for Gf,`,m. Clearly, A runs in
poly(n) nondeterministic time, which completes the proof. �

7.2. A gap theorem for AM ∩ coAM

Proof of Theorem 1.3(i). Assume AM ∩ coAM 6⊆ [io]-NP ∩ [io]-coNP.
It follows that AM ∩ coAM 6⊆ [io]-NP and therefore there is a language L ∈
AMTIME1/3(nO(1)) ∩ coAMTIME1/3(nO(1)) such that L 6∈ [io]-NP. By Lemma
3.15,10

L ∈ AMTIME
2mδ−m(mO(1), m = nO(1/δ)) ∩ coAM1/10(nO(1), nO(1)).

10Note that we need the strong amplification of the success probability (as in Lemma 3.15)
only for the protocol for L but not for L̄. For the latter we can use the standard amplification
technique of running many independent copies of the protocol in parallel and deciding by
majority.
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As before, the derandomized language L′ is in NP and L 6∈ [io]-NP, therefore it
must be that for all input lengths, except finitely many, there exists an input
xn ∈ L 4 L′ = L′ \ L. Merlin sends xn, and proves that xn 6∈ L using the
AM protocol for L̄. Let Dm be the co-nondeterministic circuit taking inputs
from {0, 1}m, defined to be Dm(z) = 1 iff ∀w [ML(xn; z, w) = 0]. That is,
we hardwire xn into the circuit obtained from ML which now takes as inputs
elements from {0, 1}m (the random tape of ML becomes the input). We see
that:

◦ ρ(Dm) ≥ γ (because xn 6∈ L).

◦ For every z ∈ IMAGE(Gf,`′,m,δ), Dm(z) = 0 (because xn ∈ L′).

Now the protocol continues as in Figure 7.1 with the circuit Dm.

Soundness: In the first step, the prover sends xn. If xn ∈ L, then the prover
is caught cheating with probability at least 0.9 during the proof that xn 6∈ L.
Otherwise, xn 6∈ L, which implies that Dm accepts almost all inputs, i.e.,
ρ(Dm) ≥ γ. The soundness now follows from Claim 7.3.

Completeness and running time follow directly from Claim 7.3. �

7.3. An “almost everywhere” gap theorem for AM ∩ coAM

Proof of Theorem 1.3(ii). The proof of Theorem 1.3(ii) is slightly more
complicated than that of Theorem 1.3(i) because when the derandomization
fails it only fails on infinitely many input lengths. We will have to allow Merlin
to also choose a “correct” input length when sending the distinguisher.

We start with the assumption that AM ∩ coAM 6⊆ NP, whereas previously
we had an [io] in the statement, so there is a language L ∈ AMTIME1/3(nO(1))∩
coAMTIME1/3(nO(1)) such that L 6∈ NP. By Lemma 3.15,

L ∈ AM
2mδ−m(mO(1), m = O(nO(1/δ))) ∩ coAM1/10(nO(1), nO(1)).

As before, L′ ∈ NP, but, L 6∈ NP. It follows that there is an infinite set I
of input lengths such that for every n ∈ I there exists an input xn ∈ L4 L′ =
L′\L. We let Dm be the co-nondeterministic circuit taking inputs from {0, 1}m,
defined to be Dm(z) = 1 iff ∀w [ML(xn; z, w) = 0].

We modify the protocol as follows: Previously n was fixed by Arthur to
be n = mΘ(δ) = 2cδ

2` for some constant c. We now allow Merlin to choose an
input length n between 2cδ

2` and 2cδ
2(`+1). This is needed to allow Merlin to

send an input length on which he can send a counterexample xn. The rest of
the protocol continues unchanged. Namely, Merlin sends xn, and proves that
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xn 6∈ L using the AM protocol for L̄, and the protocol in Figure 7.1 continues
with the circuit Dm. �

Completeness: There are infinitely many n’s such that there exist xn ∈
{0, 1}n for which xn ∈ L′ \L. For such n, let ` = blog(n)/δ2cc. So, 2δ

2c` ≤ n ≤
2δ

2c(`+1). For this choice of ` the honest Merlin can choose a “good” n. As in the
proof of Theorem 1.3(i), the circuit Dm, obtained from xn, is a distinguisher for
Gf,`′,δ and the completeness follows from Claim 7.3. Thus, for infinitely many
`’s, the protocol computes f correctly.

Soundness: For every input y, if xn ∈ L, then the prover is caught cheating
with probability at least 0.9 during the proof that xn 6∈ L. Otherwise, xn 6∈ L,
hence ρ(Dm) ≥ γ, and the soundness follows from Claim 7.3.

7.4. Replacing E by NE∩ coNE. We now prove Theorem 1.4. In fact we
prove a stronger statement by replacing the class NE ∩ coNE with NEXP ∩
coNEXP.

Theorem 7.5. If NEXP ∩ coNEXP 6⊆ AMTIME(2βn) for some β > 0, then

(i) AM ⊆ [io-pseudo(NTIME(nc))]-NTIME(2n
ε
) for every c, ε > 0,

(ii) AM ∩ coAM ⊆ [io]-NTIME(2n
ε
) ∩ [io]-coNTIME(2n

ε
) for every ε > 0.

We will need the following from Impagliazzo et al. (2002):

Theorem 7.6. If NEXP ∩ coNEXP 6= EXP then AM ⊆ [io]-NTIME(2n
ε
) for

every ε > 0.

We also need the following version of Theorems 1.2 and 1.3.

Theorem 7.7. If EXP 6⊆ AMTIME(2βn) for some β > 0, then

(i) AM ⊆ [io-pseudo(NTIME(nc))]-NQP for every c > 0,

(ii) AM ∩ coAM ⊆ [io]-NQP ∩ [io]-coNQP,

where NQP = NTIME(2polylog(n)) (nondeterministic quasi-polynomial time).

Sketch of proof. The proofs of Theorems 1.2 and 1.3 work just as well
since complete functions in EXP have instance checkers (Babai et al. 1991b).
The loss in running time (from polynomial to quasi-polynomial) stems from
the fact that now the generator computes a function in DTIME(2l

c
) (for some

constant c) on inputs of size l = O(logn). �
We can now prove Theorem 7.5.
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Proof of Theorem 7.5. We have two cases. Either NEXP ∩ coNEXP 6=
EXP and then by Theorem 7.6 the conclusions hold. Otherwise NEXP ∩
coNEXP = EXP, and then by the hypothesis, EXP 6⊆ AMTIME(2βn) for
some β > 0. Now applying Theorem 7.7 gives the desired conclusions. �

Remark 7.8. As we mentioned in the introduction, Theorem 7.5(ii) has a nice
interpretation in terms of the relative power of randomness in the context of
single-valued proof systems (note that both the assumption and the conclusion
involves single-valued proofs only). We can weaken the assumption in Theo-
rem 7.5 by replacing the class NEXP ∩ coNEXP with the class NEXP. The
cost is that now the derandomizations are slightly nonuniform (taking advice
of size at most nε for arbitrarily small ε). Thus we also get an interpretation
regarding the power of randomness in the context of general proof systems (not
necessarily single-valued), but it is not as clean (involving pseudo-classes and
nonuniformity). We omit the details.

8. Discussion and open problems

In this section we discuss directions for further research and present open prob-
lems.

8.1. Towards removing the io-pseudo. In Lemma 4.3 we show that the
Miltersen–Vinodchandran generator has a reconstruction algorithm that is re-
silient against a large family of co-nondeterministic circuits. An interesting
open problem is to construct a generator that has a reconstruction algorithm
which is resilient against all co-nondeterministic circuits. We call such a re-
construction algorithm completely resilient. Such a generator will immediately
give a version of Theorem 1.2 without the [io-pseudo] quantifier.

8.2. Towards a low-end gap theorem. Our results are all in the high-
end setting. That is, we assume a hard function against AMTIME(2Ω(n))
and conclude a “full derandomization” placing AM in NP. We do not know
how to extend these results to the low-end setting. That is, assume a hard
function against AM and conclude a “weak derandomization” (placing AM in
NSUBEXP). This happens because the generator of Miltersen & Vinodchan-
dran (1999) is only known to work in the high-end setting.

Recently, Shaltiel & Umans (2001) gave a generator construction that im-
proves that of Miltersen & Vinodchandran (1999) and also works in the low-
end setting. However, the known reconstruction algorithm for this construction
does not seem to be resilient.
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Another approach to try and get a low-end result is to use the technique of
the gap theorem of Impagliazzo & Wigderson (1998). This paper uses a differ-
ent property of reconstruction algorithms. They show that the reconstruction
algorithm of Nisan & Wigderson (1994) and Babai et al. (1993) is learning :
The “correct” advice string a can be efficiently computed with oracle access to
the hard function.

Definition 8.1 (Learning reconstruction algorithm). A reconstruction algo-
rithm R as in Definition 4.1 is p-learning if there exists a polynomial time
oracle machine MA such that for every function f , and a co-nondeterministic
circuit D that is a distinguisher for Gf , with probability p over the choice of r,
R(D,Mf (r), r) outputs a nondeterministic TSV circuit C which computes f .

In Impagliazzo & Wigderson (1998), this property is used to efficiently find
the “correct” advice string a when the hard function is “downwards self re-
ducible” (which they can assume in their setting).11 We point out that the
reconstruction algorithm for the Miltersen–Vinodchandran generator is learn-
ing. We also point out that the reconstruction algorithm for Shaltiel & Umans
(2001) and Umans (2002) is not learning.12

8.3. Towards pacing AM in ΣP
2 . One of our motivations for studying this

problem is the attempt to prove that AM ⊆ ΣP
2 . We remark that AM is known

to be in ΠP
2 (and therefore in ΣP

3 ), and that Santha (1989) constructs an oracle
relative to which AM is not in ΣP

2 .
Let us start with explaining why “gap theorems” are helpful to achieve this

goal. Suppose that we could prove a “dream version” of the gap theorem, i.e.,
either EXP = AM or AM = NP. The goal follows because if EXP = AM then
AM is closed under complement, and thus AM = coAM ⊆ ΣP

2 .
As we only have weaker versions of the gap theorem we obtain much weaker

results which have an [io-pseudo] quantifier. We remark that even somewhat
stronger results follow from the methods of Kabanets (2000).13 It seems that

11In Trevisan & Vadhan (2002) it was pointed out that this assumption is problematic
when trying to extend their result to the high-end setting.

12The construction of Shaltiel & Umans (2001) and Umans (2002) works for derandomizing
both BPP and AM. The reconstruction algorithm given there for BPP is learning. However,
the one given for AM is not and requires additional advice which we do not know how to
compute even with oracle access to f .

13In Kabanets (2000) it was shown that RP ⊆ [io-pseudo(ZP− SUBEXP)]-ZPTIME(2n
β

)
for every β > 0. The same technique shows that for every β > 0,

AM ⊆ [io-pseudo(C)]-Σ
Time(2n

β
)

2 ,
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unlike Kabanets (2000), the use of [io-pseudo] in our results may not be inherent
to our technique—indeed, we do not need [io-pseudo] when working with MA
or AM ∩ coAM.

We now discuss the consequences of solving the open problems listed above
on placing AM in “variants” of ΣP

2 .

◦ A “high-end gap theorem” (without [io-pseudo]) will give that for every

β > 0, AM ⊆ [io]-Σ
Time(2βn)
2 .

◦ A “low-end gap theorem” (without [io-pseudo]) will imply that for every

β > 0, AM ⊆ [io]-Σ
Time(2n

β
)

2 .

◦ It was pointed out to us by Umans (2003) that if there exists a high-end
generator which has a completely resilient reconstruction that is learning
for p > 1/2 then AM ⊆ ΣP

2 . The argument is a modification of the
proof of Nisan & Wigderson (1994) and Arvind & Kobler (1997) that
MA ⊆ ZPPNP.

8.4. A high-end version based on a hard function in NE ∩ coNE.
As mentioned in the introduction, we cannot prove a high-end version similar
to Theorems 1.2 and 1.3 that is based on hard functions in NE ∩ coNE (the
conclusions in Theorem 1.4 are too weak). The reason is that it is not known
that such functions have instance checkers. We leave this as an intriguing open
question.
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where C allows refuters which run in Σ
Time(2n

β
)

2 . We remark that a slightly weaker result
follows without delving into Kabanets (2000), by just observing that the argument of Ka-
banets (2000) relativizes, using the argument there with an NP oracle and observing that

AM ⊆ coRPNP.
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