UNIFORM HASHING IN CONSTANT TIME AND OPTIMAL SPACE*

ANNA PAGHT AND RASMUS PAGH?

Abstract. Many algorithms and data structures employing hashing have been analyzed under
the uniform hashing assumption, i.e., the assumption that hash functions behave like truly random
functions. Starting with the discovery of universal hash functions, many researchers have studied
to what extent this theoretical ideal can be realized by hash functions that do not take up too
much space and can be evaluated quickly. In this paper we present an almost ideal solution to
this problem: A hash function h : U — V that, on any set of n inputs, behaves like a truly
random function with high probability, can be evaluated in constant time on a RAM, and can be
stored in (1 + €)nlg|V]| 4+ O(n + 1glg|U|) bits. Here € can be chosen to be any positive constant,
so this essentially matches the entropy lower bound. For many hashing schemes this is the first
hash function that makes their uniform hashing analysis come true, with high probability, without
incurring overhead in time or space.
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1. Introduction. Hashing is an important tool in randomized algorithms and
data structures, with applications in such diverse fields as information retrieval, com-
plexity theory, data mining, cryptology, and parallel algorithms. Many algorithms
using hashing have been analyzed under the assumption of uniform hashing, i.e., the
idealized assumption that the hash function employed is a truly random function. In
this paper we present a theoretical justification for such analyses, in the form of the
construction of a hash function that makes the uniform hashing assumption “come
true” with high probability. Our hash function can be evaluated in constant time on
a RAM, and its description uses very close to the minimum possible space.

1.1. History. According to Knuth [16], the idea of hashing was originated in
1953 by H. P. Luhn. The basic idea is to use a function h : U — V, called a hash
function, that “mimics” a random function. In this way a “random” value h(z) can
be associated with each element from the domain U. In this paper, as in most other
hash function constructions, we consider a universe of the form U = {0,...,u — 1}
and a range of the form V' ={0,...,v — 1}, where 1 < v < w.

Representation of a random function requires u lg v bits, so it is usually not feasible
to actually store a randomly chosen function. For many years hashing was largely a
heuristic, and practitioners used fixed functions that were empirically found to work
well in cases where uniform hashing could be shown to work well.

The gap between hashing algorithms and their analysis narrowed with the advent
of universal hashing [6]. The key insight was that it is often possible to get provable
performance guarantees by choosing hash functions at random from a small family of
functions (rather than from the family of all functions). The importance of the family
being small is, of course, that a function from the family can be stored succinctly.

Hash functions are usually chosen uniformly at random from some family H of
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hash functions. For example, the family
{z — ((az +b) mod p) mod v |0 < a<p, 0<b<p},

first studied by Carter and Wegman [6], has many known applications. The family is
described by the parameters p and v, while a particular function in the family is given
by the values of parameters a and b. In our results, we will distinguish between the
space needed to represent the family and the space needed to represent a function in
the family.

One property of the choice of hash function that often suffices to give performance
guarantees is that it maps each set of k elements in U to uniformly random and
independent values, where k is some parameter that depends on the application. If
this holds for a random function from a family H, we say that H is k-wise independent.
There exist such function families whose functions can be stored in O(klgu) bits of
space [25]. For many years, all known k-wise independent families with nontrivial
space usage required time (k) for evaluating a hash function. A breakthrough was
made by Siegel [23], who showed that high independence is achievable with relatively
small families of hash functions that can be evaluated in constant time on a RAM.

The RAM model used in Siegel’s result, as well as in this paper, is a standard
unit cost RAM with an instruction set that includes multiplication, and a word size
of ©(lgu) bits. The RAM has access to a source of random bits, and in particular we
assume that a random value in V' and a random word can be generated in constant
time.

The two main performance parameters of a hash function family is the space
needed to represent a function and the time necessary to compute a given function
value from a representation. A tight bound on the number of bits needed to achieve
k-wise independence is ©(k lgu) bits [3, 7]. Sometimes there is a trade-off between the
space used to represent a function and its evaluation time. For example, Siegel [23]
shows that if u = k') it is necessary to use k') lgv bits of space to achieve
constant evaluation time.

Siegel’s construction of a k-wise independent family comes close to this lower
bound (see Theorem 2.3). If one applies this family with & = n to a set S of n elements,
it will map these to independent and uniformly random values. We say that it is
uniform on S. However, the space usage is superlinear meaning that, in many possible
applications, the hash function description itself becomes asymptotically larger than
all other parts of the data structure.

1.2. Our result. In this paper we present a family of hash functions that has
the same performance as Siegel’s family on any particular set of n elements, and
space usage close to the lower bound of nlgwv + lglg, u bits shown in Section 5. The
previously best construction using O(nlgv +1glgu) space is based on evaluation of a
degree n — 1 polynomial over a finite field, and has Q(n) evaluation time.

THEOREM 1.1. Let S CU ={0,...,u— 1} be a set of n > 1 elements. For any
constants ¢ > 0 and € > 0, and for 1 < v < u, there is a RAM algorithm that, using
time lgn(lgv)®M) and O(lgn + 1glgu) bits of space, selects a family H of functions
fromU toV ={0,...,v—1} (independent of S) such that:

o H is k-wise independent when restricted to S, with probability 1 — O(#)

o A function in H can be represented by a RAM data structure using space
(I4+€e)nlgv+0O(n) bits such that function values can be computed in constant
time. The data structure of a random function in H can be constructed in
time O(n).



UNIFORM HASHING 3

As our hash functions are optimal with respect to evaluation time and essentially
optimal with respect to space usage, the only possible significant improvement would
be an error probability that decreases more rapidly with n. Such a result could
possibly be achieved for u = n©(!) by explicit constructions of certain expanders in
Siegel’s hash function construction.

Techniques. Our main technical ingredient is to use the two-choice paradigm [4]
that has recently found a number of applications in load balancing and data structures.
The central fact we make use of is that if we associate, using hashing, two memory
locations in a linear size array with every element of the set S, then there exists (whp.)
a way of associating keys with unique memory locations [19]. Essentially, each key
gets the independence of its hash value from random bits at the memory location
with which it is associated. A complication is that one needs to take care of cyclic
dependencies that may arise, but this involves only a logarithmic number of elements,
whp. The solution is to add a hash function that is independent (whp.) on the set of
problematic elements.

Perspective. It should be noted that a data structure with slightly different func-
tionality is very easy to construct: Use a high performance dictionary such as the one
in [9] to store elements from U and associated “hash values” from V. When a new
function value is needed, it is randomly generated “on the fly” and stored with the
element in the dictionary. The space needed for this is O(n(lgu + lgv)) bits, which
is a constant factor from the space usage achieved by our data structure if v = v©1),
The main difference between this and the data structure of Theorem 1.1 is that our
hash function can be generated once and for all, after which it may be used without
any need for random bits. This also means that our hash function may be distributed
and used by many parties without any need for additional communication. Another
distinguishing feature is that our hash function will be uniform with high probability
on each of n®M) sets of size n. Thus it may be shared among many independently
running algorithms or data structures.

1.3. Implications. The fact that the space usage of our hash function is linear
in n means that a large class of hashing schemes can be implemented to perform,
with high probability, exactly as if uniform hashing was used, increasing space by at
most a constant factor. This means that our family makes a large number of analyses
performed under the uniform hashing assumption “come true” with high probability.

Two comprehensive surveys of early data structures analyzed under the uniform
hashing assumption can be found in the monographs of Gonnet [13] and Knuth [16].
Gonnet provides more than 100 references to books, surveys and papers dealing with
the analysis of classic hashing algorithms. This large body of work has made the
characteristics of these schemes very well understood, under the uniform hashing as-
sumption. As the classic hashing algorithms are often very simple to implement, and
efficient in practice, they seem to be more commonly used in practice than newer
schemes with provably good behavior. While our family may not be of practical im-
portance for these hashing schemes, it does provide a theoretical “bridge” justifying
the uniform hashing assumption for a large class of them. Previously, such justifi-
cations have been made for much more narrow classes of hashing schemes, and have
only dealt with certain performance parameters (see, e.g., [20, 21]). More details on
applications of our scheme in hashing data structures can be found in the conference
version of this paper [17].

In addition to the classic hashing schemes, our result provides the first provably
efficient hashing based implementation of load balancing schemes of Azar et al. [4] and
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Vocking [24]. The fact that hash functions can be used to perform the random choices
in these algorithms means that it is possible to retrace any previous load balancing
decision by checking a small number of possible choices.

Finally, our construction has an application in cryptography, where it “deran-
domizes” a construction of Bellare et al. [5] for the most important parameters (see
discussion in Section 3.1.1).

1.4. Overview of the paper. The organization of the paper is as follows. In
Section 2 we provide the background information necessary to understand our con-
struction. Specifically, we survey Siegel’s construction, which will play an important
role. Section 3 presents our initial construction, which achieves space that is within
a constant factor of optimal. Section 4 shows, by a general reduction, how to reduce
the space to (essentially) 1+ € times the space lower bound shown in Section 5.

2. Background. Theorem 1.1 can be seen as an improvement of Siegel’s family
of high performance hash functions [23]. The motivation for Siegel’s work was that
many algorithms employing hashing can be shown to work well if the hash functions
are chosen at random from a k-wise independent family of functions, for suitably large
k.

DEFINITION 2.1. A family H of functions from U to V is k-wise independent
if, for any distinct elements x1,...,x € U, and any y1,...,yx € V, when h € 'H is
chosen uniformly at random,

Pr(h(z1) = y1 A+ Ah(zy) = ) = V78

In other words, a random function from a k-wise independent family acts like a truly
random function on any set of k elements of U. We note that several relaxed notions
of k-wise independence exist, e.g. the notion of (¢, k)-universality [8]. However, we
don’t know of any data structures in the literature that allow evaluation of a function
from a (c, k)-universal (or similar) family in time o(k), except for those achieving
k-wise independence.

Siegel’s construction. Siegel showed that for arbitrary constants ¢ > 0 and € > 0 it
is possible to construct, using O(u lgk/lgute g v) bits of space, a family of functions
from U to V with the following properties:

e It is k-wise independent with probability at least 1 — u™¢.

e There is a RAM data structure of O(uV'8¥/184+¢]g ) bits representing its
functions such that function values can be computed in constant time.

Siegel mainly considered the case k = u°), e.g., k = O(lgw), where the space usage
is dominated by the u€ term. The positive probability that the family is not k-wise
independent is due to the fact that Siegel’s construction relies on a certain type of
expander graph that, in lack of an explicit construction, is found by selecting a graph
at random (and storing it). However, there is a small chance that the randomly
chosen graph is not the desired expander, in which case there is no guarantee on the
performance of the family. Also, there seems to be no known efficient way of generating
a graph at random and verifying that it is the desired expander. (However, a slightly
different class of expanders can be efficiently generated in this way [2].)

Space lower bound. It is inevitable that the space usage grows with 4 when con-
stant evaluation time is required. Siegel shows the following trade-off between evalu-
ation time and the size of the data structure:

THEOREM 2.2. (Siegel [23]) Consider any k-wise independent family H of func-
tions from U to V, and any RAM data structure using m words of O(lgv) bits to
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represent a function from H. Then there exists h € H and x € U such that the data
structure for h requires time Q(min(lg,, ,, (u/k), k)) on input x.

Note that when using optimal space, i.e., m = O(k), the time needed to evaluate
a function is Q(min(lg(u/k), k)).

Applying domain reduction. Theorem 2.2 establishes that high independence re-
quires either high evaluation time or high space usage when w is large. A standard
way of getting around problems with hashing from a large domain is to first perform
a domain reduction, where elements of U are mapped to elements of a smaller domain
U’ using universal hashing. As this mapping cannot be 1-1, the domain reduction
forces some hash function values to be identical. However, for any particular set S
of n elements, the probability of two elements in .S mapping to the same element of
U’ is O(n=¢) if |U’| > n°t2. One universal family, suggested implicitly in [12] and
explicitly in [18], uses primes in a certain range. A function from the family can be
generated in expected time (Ig |U’| +1glgu)?™) and stored in O(Ig|U’| +lglgu) bits.
Another universal family [8] has functions that can be generated in constant time and
stored in O(lgu) bits. Both families support constant time evaluation of functions.
In the following we will state all results using the former universal family, obtaining
the smallest possible space at the cost of a modest amount of precomputation.

Using domain reduction with Siegel’s family described above, one gets the follow-
ing result. For k = n it is similar to our main theorem, the main difference being that
the space usage is superlinear.

THEOREM 2.3. (Siegel [23]) Let S C U = {0,...,u — 1} be a set of n elements.
For any constants € > 0 and ¢ > 0 there is a RAM algorithm constructing a random
family ST(U,V, k,n,c,€) of functions from U to V ={0,...,v — 1} in expected time
O(s) + (Iglgu)°M and O(slgv + lglgu) bits of space, where s = nV (c+2)1gk/lgnte
such that:

o With probability 1 — O(%) the family is k-wise independent when restricted
to S.

e There is a RAM data structure of O(slgv +1glgu) bits representing its func-
tions such that function values can be computed in constant time. The data
structure can be initialized to a random function in time O(s).

Notice that the space usage is w(k‘/i) bits for all parameters, so it is truly su-
perlinear in k. With currently known ways of constructing expanders, Siegel’s hash
function family exhibits high constant factors.

Other constructions. Other proposals for high performance hash functions, due
to Dietzfelbinger and Meyer auf der Heide [9, 10], appear more practical than Siegel’s.
However, these families only exhibit O(1)-wise independence and are difficult to ana-
lyze in general.

Dietzfelbinger and Woelfel [11] have analyzed a family similar to the abovemen-
tioned high performance hash functions, and shown that it may be used for hashing
schemes whose analysis rests on a bipartite graph defined by a pair of hash functions.
In particular, they are able to give an alternative to our initial uniform hashing con-
struction, described in Section 3, that is likely to be more practical. However, their
construction restricts the size v of the range to be a prime number.

3. Initial hash function construction. In this section we describe a hash
function family with properties as stated in Theorem 1.1 for some constant € > 0.
In Section 4 we will extend this to show Theorem 1.1 (where € can be any positive
constant). We use the notation T'[¢] to denote the ith entry in an array 7. By [m] we
denote the set {0,...,m — 1}.
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3.1. The hash function family. We start with a definition.
DEFINITION 3.1. Let G be a family of functions from U to V, and consider
functions iy,is : U — [m]. We define the family of functions

H(i1,i2,G) = {z — (T1[ir(z)] + Toliz(x)] + g(z)) mod v | T, T2 € V™ and g € G}.

The hash function family considered in this section uses Siegel’s construction of
function families to get the functions i; and iy, as well as the family G in the above
definition.

DEFINITION 3.2. Forn < u and any constant ¢ > 0 we define the random family
Hpe = H(ir,iz,G) of functions as follows: Let k = [n'/Zt] and construct the
random families

G=8Z(U,V,k,n,c,1/4), and
F =S8I(U,4n],k,n,c,1/4)

according to Theorem 2.3. Pick i1 and is independently at random from F.

3.1.1. Related constructions. A similar way of constructing a function family
was presented in [9]. The essential change in the above definition compared to [9] is
that we look up two values in tables, rather than just one.

The technique of using multiple lookups in a random (or pseudorandom) table
to produce a new random value has previously been used in cryptography by Bellare
et al. [5] in connection with stateless evaluation of pseudorandom functions. The
construction given in this paper is strictly more general that the one in [5] as we get a
random function rather than just a way of generating random values. Also, function
evaluation is deterministic, whereas the generation procedure in [5] is randomized.
Our analysis is completely different from the one in [5].

On the other hand, our analysis shares some features with the analysis of cuckoo
hashing in [19], as it rests on the analysis of the same random bipartite graph (gen-
erated by Siegel’s hash functions). In fact, Dietzfelbinger and Woelfel show in [11]
how to base uniform hashing (with range of size that is a prime number) on any hash
function that works with cuckoo hashing.

3.2. Properties of the family. For two functions 41,42 : U — [m] and a set
S C U, let G(i1,i2,5) = (A, B, E) be the bipartite graph that has left vertex set
A={ay,...,an}, right vertex set B = {by,...,b,}, and edge set

E = {e, | v € S}, where e, = (a4, (2), biy(x)) -

We consider the edge e, to be labeled by x. Note that there may be parallel edges
with different labels.

We define a leafless subgraph E' C E of a graph as a subset of the edges such that
there is no vertex incident to exactly one edge in E’. A graph’s leafless part C C E
consists of the edges that are on a cycle and the edges that are on a path connecting
two cycles. (This is also known as the 2-core.)

LEMMA 3.3. Let S C U be a set of n elements and let G be a family of functions
from U to V that is k-wise independent on S. If the total number of edges in the
leafless part of G(i1,12,S) = (A, B, E) is at most k, then H(i1,i2,G) is uniform when
restricted to S

Proof. Let S’ be the set of all elements x € S where the edge e, with label z is
in the leafless part C of G(iy, i2,.9).
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The proof is by induction on |E\ C|. In the base case we assume that |E\ C| =0,
i.e., that 8" = S. Since |S| < k it holds for any function h that the function family
x — (h(z) + g(z)) mod v, where g is chosen from a k-wise independent family, is
uniform on S. In particular, H(i1,i2,G) has this property.

For the inductive step, note that among the edges in E \ C there has to be
at least one edge with one unique endpoint. Let ey« = (a;, (3+), bi,(2+)) be such an
edge, z* € S\ S’. By symmetry we may assume that a;, (,-) is the unique endpoint.
The induction hypothesis says that H(i1,72,G) is uniform on S\ {z*}, and for h €
H(i1,1i2,G) chosen at random, all values h(z) for x € S\ {z*} are independent of the
value Ti[i1(z*)]. These facts mean that, given g € G and all entries in vectors Ty
and Ty except Ti[i1(z*)], h(z*) is uniformly distributed when choosing 77 [i1 (z*)] at
random. Hence H(i1,142,G) is uniform on S. O

LEMMA 3.4. For each set S of size n, and foriy,is : U — [4n] chosen at random
from a family that is k-wise independent on S, k > 32, the probability that the leafless
part C' of the graph G(i1,is,S) has size at least k is n/29%*),

Proof. Assume that |C| > k and that & < n is even (this may be assumed without
loss of generality). Either there is a connected leafless subgraph in G(i1, 12, S) of size
at least k/2 or there is a leafless subgraph of size k', where k/2 < k' < k. In the first
case there is a connected subgraph in G (i1, 2,.5) with exactly k/2 edges and at most
k/2 41 vertices. In the second case there is a subgraph with k&’ edges and at most &’
vertices in G(i1,142,5).

In the following we will count the number of different edge labeled subgraphs with
k" edges and at most k' + 1 vertices for k/2 < k' < k to bound the probability of
such a subgraph to appear in G(i1,1i2,.5). Hence, we also get an upper bound on the
probability that |C| is at least k. Note that since i; and is are chosen from a k-wise
independent family, each subset of at most k£ elements of S will map to to random
and independent edges. We will only consider subgraphs corresponding to at most k
elements of S.

To count the number of different subgraphs with k' edges and at most k' + 1
vertices, for k/2 < k' < k, in a bipartite graph G = (A, B, E) with |A| = |B| = 4n
and |E| = n, we count the number of ways to choose the edge labels, the vertices,
and the endpoints of the edges such that they are among the chosen vertices. The &k’
edge labels can be chosen in (%) < (en/k’)¥ ways. Since the number of vertices in
the subgraph is at most &’ + 1, and they are chosen from 8n vertices in G, the total
number of ways in which they can be chosen is bounded by

E'+1
(37) < Ben/(K + 1)K+t .

1

+

%

Let k, and k; be the number of vertices chosen from A and B, respectively. The
number of ways to choose an edge such that it has both its endpoints among the
chosen vertices is koky < (k' 4+ 1)/2)2*'. In total, the number of different subgraphs
with k' edges and up to &’ + 1 vertices is at most

(en/K)* - (8en/(K + 1)F - (K +1)/2)*
_ 8en . (262 .n2. M)k’

k41 k'
8en 63 2\ Kk’
< g (5 on)",

using k' > k/2 > 16.
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There are in total (4n)2k/ graphs with &’ specific edges. In particular, the proba-
bility that k’ specific edges form a particular graph is (4n)’2k', using k’-wise indepen-
dence. To get an upper bound on the probability that there is some subgraph with
k' edges and at most k' + 1 vertices, where k/2 < k’ < k, we sum over all possible
values of k’:

’ _ ’
> e (et )

k/2<k'<k
en K
= Z k:8’+1 '(6%)
k/2<k'<k
< (b/2+1) - 5 (8)2
=n/2%F)

0

We now proceed to show Theorem 1.1 for some constant € > 0. More precisely,
we will show that the random family H,, . of Definition 3.2 fulfills the requirements in
the theorem. The families G = SZ(U,V, k,n,c,1/4) and F = SZ(U, [4n}, k,n,c,1/4)
are both k-wise independent with probability 1 —n~¢ for sets of size up to n according
to Theorem 2.3. If F is k-wise independent then by Lemma 3.4 the probability that
the leafless part of graph G(i1,is,S) has size at most k is at least 1 — n~%®)  if
k > 32. We can assume without loss of generality that k& > 32, since otherwise
the theorem follows directly from Theorem 2.3. When the leafless part of graph
G(i1,12, S) has size at most k then, by Lemma 3.3, H,, . is uniform on S if G is k-wise
independent. The probability that G is k-wise independent, F is k-wise independent,
and that the leafless part of the graph G(i,i2,S) has size at most k is altogether
(1—-n"92(1—-2"2®) =1-0(n"°).

The construction of H,, ., i.e., constructing F and G and choosing i; and iy,
can according to Theorem 2.3 be done in expected O(s) + (lglgu)®™®) time and
O(slgv) bits of space, where s = nV(et2)lgk/lgnt1/4 — (p096)  The space us-
age of a data structure representing a function from H, . is O(nlgv) bits for T} and
T, and O(slgv+1glgu) bits for storing i1, i and g. The initialization time is domi-
nated by the time used for initializing 77 and T5 to random arrays and the (lglg u)o(l)
term from Siegel’s construction. Function values can clearly be computed in constant
time.

4. Achieving near-optimal space. In this section we present a general reduc-
tion for decreasing the space used by a uniform hashing construction. Together with
Section 3 this will show Theorem 1.1. The idea of the reduction is the following. We
construct a data structure of (1 + €/2)nlgv + O(n) bits representing a function f,
such that for any set S C U of n elements there exists, with probability 1 —O(n°), a
set S” C S, where |S’| > (1 — €/16) n, such that the following independence property
holds:

e The values (f(z))zcs are independent and uniform in [v], even when condi-
tioned on particular f-values for elements in S\S’.

To be precise, we associate with each possible choice of f a unique set S’. The uni-

formity property above holds when restricting f to the subset of functions associated

with any particular set S’. (The probability space may be empty for some choices
of §.)
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Now choose a function h according to a uniform hashing construction for sets of
size (€/16) n, and error probability O(n~°). We consider the function

z— (f(x) + h(z)) mod v .

For a given set S C U of size n, there exists with probability 1 — O(n~¢) a set S” with
properties as stated above. With probability 1 —O(n~°) the function & then maps the
elements of S\\S’ to uniformly distributed and independent values. Hence, using the
independence property of f, the function x — (f(x) + h(x)) mod v must be uniform
on the set S with probability 1 — O(n™°).

Using the uniform hashing construction of Section 3, the space to represent h is
(8¢/16) nflgv] +o(n)+ O(lglgu) = (¢/2)nlgv+ O(n+1glg u) bits, so the total space
for storing f and h is as required in Theorem 1.1.

4.1. Details of the reduction. It remains to see how to construct f in the
desired space bound, with the desired preprocessing time, and such that function
values can be computed in constant time. Below we will several times refer to a
constant ¢, which is assumed to be “sufficiently large”. That is, the arguments are
valid if ¢ is set to a sufficiently large constant. We first notice that for the case
where v < ¢, Theorem 1.1 was already shown in Section 3. Thus, in the following we
may assume that v > £. Let p > v be a prime in the range v to v + O(v*/3). We
know from [14] that there are Q(v?/3/lgv) such primes, so p can be found in time
lgn(lgv)®M) with high probability by sampling [1].

Let d = [£/€?], k = [n/ D] ry = [(1+¢€/2)n/d], and let o > 9d°/¢ be a
constant. Since v can be assumed to be sufficiently large, we have that p—v < ev/(9d).
Now pick the following functions uniformly at random:

p1:U—A{0,...,m1 — 1} from SZ(U, [r1], k,n,c,1/4)
p2: U —{0,...,ro — 1} from SZ(U, [rq], k,n,c,1/4)

Also, pick functions fi, ..., fr, independently at random from the family of degree
d—1 polynomials in the field of size p, which is known to be d-wise independent. Note
that such a polynomial can be stored in d[lgp] = dlgv + O(d) bits, and evaluated in
O(d) time using arithmetic modulo p. Without loss of generality we may assume that
€ < 1 and p > ro. Thus we may interpret a value of p2 as an input to fi,..., fr,, and
the following is well-defined:

f(@) = for () (p2())

Observe that f may have function values up to p—1, i.e., not in [v]. However, we will
define S’ such that the function values of elements in S’ are uniform in [v], and this
suffices for the reduction to work.

4.2. Analysis.

Time and space usage. We first argue that f has the desired properties with
respect to storage, preprocessing time, and evaluation time. The storage required for
p1 and po is bounded by the storage used in the construction of Section 3, so it can
be ignored in this context. The functions fi, ..., f,, require space r1(dlgv+ O(d)) =
(1+€¢/2)nlgv + O(n) bits, and a function can be evaluated in O(1) time, since d is
a constant. Selection of p; and p2 can be done in o(n) time, while construction of
fi,. .., fr, requires expected time w®® to find the prime p, and O(n) time to choose
the random polynomials.
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Independence. To argue that f has the desired independence property, we let

S; ={z € 8| pi(x) =i} and define S” to be the union of the sets S; for which:

e |5 <d,

o [p2(S;)] = |54, i-e., p2 is 1-1 on S;, and

o fi(p2(5:)) < [v]
In other words, if we think of p; as hashing into buckets of capacity d, the set S’
consists of those elements that are hashed to a bucket ¢ that does not overflow, whose
elements have no collisions under ps, and where f; produces values in the right range
for all elements in the bucket.

Consider a nonempty part of the probability space where f is associated with a
particular set S/, and has a specific, fixed value on each of the elements in S\S’. We
will argue that if f is chosen in this part of the probability space, we get a uniform
function on S’. First of all, function values of elements hashing to different buckets
are completely independent as f1, ..., f,, are chosen independently. If S; is part of S’,
then |S;| < d by definition of S’. Since f; is d-wise independent and there is no collision
among elements in S; under po, the f-values of elements in S; are independent and
uniformly random in [v] (because of the requirement f;(p2(S;)) C [v]). This concludes
the argument for uniformity on S’.

Size of S’. Finally, we need to show that |S’| > (1 — €/16) n with probability
1 — O(n°). For this we split [r1] into blocks of at most 2% consecutive integers
I; ={2%4,...,2%(j+1) — 1}, 7=10,1,2,..., where z = Q(lgn) is the highest integer
for which 2%d < k. If 2% does not divide 71 there will be one block of size less than 27.
If we conservatively assume that all elements of S having a pj-value in this final block
will be part of S’, it will follow from the arguments below that this will contribute
only negligibly to S’. Thus we simply assume that 2% divides ;.

First we observe that for all j, |Ujer, Si| < (1—¢/4)2%d with probability 1—n—vW),
This follows from Chernoff bounds for random variables with limited dependence [22,
Theorem 5.1.b]. On the condition that | Ujes; Si| < (1 — €/4)2%d (which is assumed
in the following) the z least significant bits of the p;-values of elements in U;er, S;
will be random and independent for any particular j. We conclude the argument
by proving that for any j, |S" N (Uier, Si)| > (1 — €/16)| User; Si| with probability
1 — O(n=*M). By the union bound this will imply that S’ has the desired size with
probability 1 — O(n=*M),

Consider the indicator random variables Y, x € Uier;S;, where Y, = 1 if and
only if x has the same value under p; as at least d other elements in U, S;. Observe
that if Y,, = 1 then x is not included in S’ due to the first requirement in the definition
of S. By uniformity of p; in the z least significant bits, and since the expected number
of elements colliding with « is bounded by (1 —¢/4)d it follows from classical Chernoff
bounds that Pr(Y, = 1) < /6. The random variables Y, are not independent;
however, they are negatively related [15] which means that we can apply a Chernoff
bound on the sum of the Y;s to show that it is bounded by (e/4)| Uies, Si| with
probability 1 —n<() [15].

Finally consider the indicator random variables X;, ¢ € I; where X; = 1 if and only
if |.S;| < d and either |p2(S;)| < |S;| or fi(p2(S;i)) € [v]. That is, X; indicates whether
the set .S; fails to be included in S’ because of at least one of the two last requirements
in the definition of S’. For each variable X; equal to 1 we have at most d elements
(those in S;) that are not part of S’. We next show that with probability 1 — n*(!)
the sum ), I X; is bounded by 2%¢/(4d), which means that the number of elements
not included in S’ due to requirements two and three is at most (e/4)| Usez; Si|. Since
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p2 is independent on all elements in U;e,S;, the X; are independent. By the choice
of p and ro we have that for all i, Pr(X; = 1) < 2= 4 (g)/’l“g < 2¢/(9d). Hence by
Chernoft bounds Zielj X; < 2%¢/(4d) with probability 1 — n®(!). Together with the
similar bound above for the first requirement this shows that S’ has the desired size
with high probability.

The combined construction. For ease of reference we state the full uniform hashing
construction used to show Theorem 1:

2= (for @) (p2(2)) + Thlir (2)] + Taiz(2)] + g(2)) mod v

5. Space lower bound. We now show that our space usage in bits is close to the
best possible. To this end, note that any data structure achieving n-wise independence
on a set S of n elements, with nonzero probability, must be able to represent every
function from S to V.

THEOREM 5.1. For integers u > n > 2 and v > 2, let U = {0,...,u — 1} and
V ={0,...,v—1}. Any data structure representing functions h : U — V such that
the restriction h|s to any set S C U of n elements can be an arbitrary function from
S to V must use space max(nlgv,lglg, u) bits.

Proof. Even for fixed S, nlgv bits are necessary to be able to represent all
functions from S to V. Secondly, if the data structure can represent fewer than lg, u
different functions, there will be elements x1,z2 € U such that all functions map x
and x5 to the same value, contradicting the assumptions of the theorem. Thus the
data structure must have at least lglg, w bits. O
Note that when lgv < lglgu the second term in the lower bound is Q(lglgu), so the
lower bound is Q(nlgv + lglgu) bits.
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