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Abstract: An empirical likelihood method was proposed in Hill and Peng (2014)

to construct a unified interval estimation for the coefficient in an AR(1) model,

regardless of whether the sequence was stationary or near integrated. The error

term, however, was assumed independent, and this method fails when the errors

are dependent. Testing for a unit root in an AR(1) model has been studied in the

literature for dependent errors, but existing methods cannot be used to test for a

near unit root. In this paper, assuming the errors are governed by an AR(p) process,

we exploit the efficient empirical likelihood method to give a unified interval for the

coefficient by taking the structure of errors into account. Furthermore, a jackknife

empirical likelihood method is proposed to reduce the computation of the empirical

likelihood method when the order in the AR errors is not small. A simulation study

is conducted to examine the finite sample behavior of the proposed methods.

Key words and phrases: AR model, empirical likelihood, jackknife empirical likeli-

hood method, weighted score.

1. Introduction

Consider the autoregressive time series model

Xt = β0Xt−1 + ϵt for t = 1, . . . , n, (1.1)

with n the sample size, and the ϵ′ts identically distributed with zero mean and
finite variance. A commonly estimator for the true parameter value β0 is the least
squares estimator β̂LS =

∑n
t=1XtXt−1/

∑n
t=1X

2
t−1 which minimizes

∑n
t=1{Xt −

βXt−1}2. As is well known, the asymptotic distribution of β̂LS is normal for
the stationary case, |β0| < 1, and non-normal for the nearly integrated case,
β0 = 1 − δ/n for some δ ∈ R, cf., Phillips (1987), making interval estimation
quite challenging since inference by least squares is not unified.

In a more general environment, when {ϵt} may be a martingale difference
sequence, Chan, Li, and Peng (2012) applied the empirical likelihood method to
the weighted score equation

n∑
i=1

{Xt − βXt−1}
Xt−1√
1 +X2

t−1

= 0, (1.2)
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so that a unified interval for β0 can be obtained, regardless of whether {Xt} is
stationary or nearly integrated. Other weighted functions can be employed in
order to achieve weighted score equations similar to those in Ling (2007) and Pan,
Wang, and Yao (2007). The empirical likelihood method based on estimating
equations was studied by Qin and Lawless (1994) amongst many others, and
an overview of the method can be found in Owen (2001). References for more
computationally-involved methods for constructing unified intervals for β0 can
be found in Chan, Li, and Peng (2012).

In practice, assuming independent, or even martingale difference, errors is
restrictive since this requires (1.1) to be the true data generating process. In
many cases, however, we simply want to know ifXt is difference stationary or not,
in which case naturally ϵt may be dependent (Phillips (1987), Phillips and Perron
(1988)). Some recent references on processes with dependent errors include Wu
(2005), Wu and Min (2005), and Chen, Min, and Chen (2013). By assuming
that {ϵt} is an α-mixing sequence, Phillips and Perron (1988) proposed statistics
for testing a unit root under model (1.1) with an intercept. However, these
statistics cannot be employed to construct a confidence interval for β0 in the case
of a near unit root. Therefore, it remains unknown how to construct a unified
interval for β0 under the assumption that (1.1) holds with possibly dependent
ϵt. The procedure in Chan, Li, and Peng (2012) does not work since it does
not account for general weak dependence, but the blockwise empirical likelihood
method has the ability to deal with mixing data (see Kitamura (1997)). One can
attempt to apply the blockwise empirical likelihood method to some weighted
score equations for obtaining a unified interval. But there are serious issues in
doing so.

We investigate ways to construct a unified interval for β0 when {ϵt} in (1.1)
is governed by an AR(p) process. The least squares estimator β̂LS is clearly
inefficient since it does not take the structure of errors into account, and the
empirical likelihood method based on (1.2) does not lead to a chi-squared limit
due to the dependent errors. We propose a unified empirical likelihood method
based on some different weighted score equations that take the structure of {ϵt}
into account. We then propose a jackknife empirical likelihood method to reduce
the computation of the proposed empirical likelihood method when the order in
the errors is not small. Our unified intervals can be immediately applied to a
unit root test with a general alternative.

To keep arguments short, we assume the AR(p) error has an iid term {et}.
The theory developed here can be extended to the case where et is a martingale
difference, covering conditional volatility of unknown form. A simulation study
in Section 3 confirms this argument.

We organize the remainder of the paper as follows. Section 2 presents the
methodologies for an AR(1) model without or with a time trend, when the errors
follow an AR process. Simulation results are presented in Section 3. Proofs are
in Section 4.
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2. Methodologies

2.1. Profile empirical likelihood method

Consider model (1.1) with {ϵt} following from an AR(p) process:

et = ϵt +

p∑
j=1

γ0,jϵt−j for t = 1, . . . , n, (2.1)

where et is iid with zero mean and finite variance σ2 > 0, and γ0 = (γ0,1, . . . , γ0,p)
T

is such that {ϵt} is a stationary process.

One can efficiently estimate β0 and γ0 simultaneously by minimizing

n∑
t=1

{
Xt − βXt−1 +

p∑
j=1

γj (Xt−j − βXt−j−1)
}2

,

hence the proposed estimators of (β0, γ0)
T solve the score equations

n∑
t=1

{
Xt − βXt−1 +

p∑
k=1

γk(Xt−k − βXt−k−1)
}
(Xt−j − βXt−j−1) = 0

for j = 1, . . . , p, (2.2)
n∑

t=1

{
Xt − βXt−1 +

p∑
j=1

γj(Xt−j − βXt−j−1)
}{

Xt−1 +

p∑
j=1

γjXt−j−1

}
= 0. (2.3)

Intuitively this new estimator for β0 should be more efficient than the least

squares estimator β̂LS =
∑n

t=1XtXt−1/
∑n

t=1X
2
t−1 since it takes the error struc-

ture into account.

In order to construct a confidence interval for β0 without estimating the

asymptotic variance, one can apply the profile empirical likelihood method to

(2.2) and (2.3). However, when {Xt} is nearly integrated, Wilks theorem fails.

As in Chan, Li, and Peng (2012), we propose to apply the profile empirical

likelihood method to (2.2), and to a weighted version of (2.3),

n∑
t=1

{
Xt−βXt−1+

p∑
j=1

γj(Xt−j−βXt−j−1)
}{ Xt−1√

1+X2
t−1

+

p∑
j=1

γj
Xt−j−1√
1+X2

t−j−1

}
=0.

(2.4)

In particular, write Zt(β, γ) ≡ (Zt,1(β, γ), . . . , Zt,p+1(β, γ))
T ∈ Rp+1, where

Zt,j(β, γ) =
{
Xt − βXt−1 +

p∑
k=1

γk(Xt−k − βXt−k−1)
}
(Xt−j − βXt−j−1)

for j = 1, . . . , p,
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Zt,p+1(β, γ) =
{
Xt − βXt−1 +

p∑
k=1

γk(Xt−k − βXt−k−1)
}

{ Xt−1√
1 +X2

t−1

+

p∑
k=1

γk
Xt−k−1√
1 +X2

t−k−1

}
,

and define the empirical likelihood function for (β0, γ0) as

L(β, γ) = sup
{ n∏

t=1

(npt) : p1, . . . , pn ≥ 0,

n∑
t=1

pt = 1,

n∑
t=1

ptZt(β, γ) = 0
}
.

Since we are only interested in β0, we consider the profile empirical likelihood

function for β0:

LP (β) = max
γ∈Rp

L(β, γ).

Theorem 1. Suppose (1.1) holds with (2.1), and E|et|2+d < ∞ for some d > 0.

Then −2 logLP (β0)
d→ χ2(1) as n → ∞ whenever |β0| < 1, independent of n, or

β0 = 1− δ/n for some δ ∈ R.

Consider the same model with a linear time trend

Xt = α0,1 + α0,2t+ β0Xt−1 + ϵt for t = 1, . . . , n, (2.5)

where ϵt follows the AR(p) process in (2.1). In this case, take Z̄t(β, α1, α2, γ) ≡
[Z̄t,1(β, α1, α2, γ), . . . , Z̄t,p+3(β, α1, α2, γ)]

T ∈ Rp+3, where

Z̄t,j(β, α1, α2, γ)

=
{
Xt − α1 − α2t− βXt−1 +

p∑
k=1

γk(Xt−k − α1 − α2(t− k)− βXt−k−1)
}

× (Xt−j − α1 − α2(t− j)− βXt−j−1)

for j = 1, . . . , p, and

Z̄t,p+1(β, α1, α2, γ)

=Xt − α1 − α2t− βXt−1 +

p∑
k=1

γk (Xt−k − α1 − α2(t− k)− βXt−k−1) ,

Z̄t,p+2(β, α1, α2, γ)

=
{
Xt − α1 − α2t− βXt−1 +

p∑
k=1

γk(Xt−k − α1 − α2(t− k)− βXt−k−1)
}

×
{
t+

p∑
k=1

γk(t− k)
}
,
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Z̄t,p+3(β, α1, α2, γ)

=
{
Xt − α1 − α2t− βXt−1 +

p∑
k=1

γk(Xt−k − α1 − α2(t− k)− βXt−k−1)
}

×
{ Xt−1

(1+X2
t−1)

q
+

p∑
j=1

γj
Xt−j−1

(1+X2
t−j−1)

q

}
+Wt for some q>0.

The W ′
ts are simulated iid random variables, distributed as N(0, σ̄2), and σ̄2 >

0 is chosen to be smaller than E(e2t ). Here E(e2t ) can be estimated by first

estimating the errors ϵ′ts based on the least squares estimate for α1, α2, β, and

then using these estimated errors to obtain the least squares estimate for γ, and

finally estimating e′ts by these least squares estimates. In order to avoid the

effect of a random seed in generating W ′
ts, we use Wt = 1/

√
1, 000

∑1,000
i=1 Wt,i in

our simulation study, where the W ′
t,is are iid N(0, σ̄2) draws for t = 1, . . . , n and

i = 1, . . ., 1,000.

When σ̄ = 0, q = 1/2, and |Xt|
p→ ∞, the joint limit of 1/

√
n
∑n

t=1 Z̄t,p+3(β,

α1, α2, γ) and 1/
√
n
∑n

t=1 Z̄t,p+1(β, α1, α2, γ) is no longer normal, which makes

the application of the empirical likelihood method fail. This is why we need to

add the pseudo sample Wt to achieve uniform inference. Based on arguments in

Li, Chan, and Peng (2014, Sec. 2), and Hill and Peng (2014, p.288), in the nonsta-

tionary case a choice of q > 1/2 makes
∑n

t=1 Z̄t,p+3(β0, α0,1, α0,2, γ0) asymptoti-

cally equivalent to
∑n

t=1Wt, while small q ≤ 1 allows
∑n

t=1 Z̄t,p+3(β, α0,1, α0,2, γ0)

to better detect departures from β0. We therefore enforce q ∈ (1/2, 1] to balance

power and size, and in practice simply use q = 0.75.

The empirical likelihood function for (β, α1, α2, γ) based on {Z̄t(β, α1, α2,

γ)}nt=1 is defined as

L̄(β, α1, α2, γ)

= sup
{ n∏

t=1

(npt) : p1, . . . , pn ≥ 0,

n∑
t=1

pt = 1,

n∑
t=1

ptZ̄t (β, α1, α2, γ) = 0
}

and, as before, we only consider the profile empirical likelihood function

L̄P (β) = max
(α1,α2,γT )T∈Rp+2

L̄(β, α1, α2, γ).

Theorem 2. Suppose (2.5) holds with E|et|2+d < ∞ for some constant d > 0.

Then −2 log L̄P (β0)
d→ χ2(1) as n → ∞ whenever |β0| < 1, independent of n, or

β0 = 1− δ/n for some δ ∈ R.

Remark 1. When we consider (1.1) with a constant trend, α0,2 = 0 in (2.5) is

known, Theorem 2 still holds if the term Z̄t,p+2 is removed and α2 is replaced by

zero.
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2.2. Jackknife empirical likelihood method

The profile empirical likelihood methods become computationally intensive
when p is large. In order to reduce computation time, one can estimate γ0 first
by solving (2.2), which results in an explicit function of β, and then apply the
empirical likelihood method to (2.4) with γ replaced by this estimator. However,
this does not lead to a chi-squared limit due to the plug-in estimator, but rather a
weighted sum of independent chi-squared variables, see Chen and Van Keilegom
(2009). Recently a jackknife empirical likelihood method was proposed by Jing,
Yuan, and Zhou (2009) to deal with non-linear functionals, and Li, Peng, and Qi
(2011) employed this idea to reduce the computation of the empirical likelihood
method based on estimating equations. Here, we employ the jackknife empirical
likelihood method.

Consider model (1.1) with the error ϵt following the autoregressive process
(2.1). Let γ̂(β) = (γ̂1(β), . . . , γ̂p(β))

T be, for arbitrary β, the solution to (2.2),

and for each i = 1, . . . , n let γ̂(i)(β) = (γ̂
(i)
1 (β), . . . , γ̂

(i)
p (β))T be the solution to

n∑
t=1,t̸=i

{
Xt − βXt−1 +

p∑
k=1

γk(Xt−k − βXt−k−1)
}
(Xt−j − βXt−j−1) = 0

for j = 1, . . . , p. (2.6)

Define the pseudo sample as

Z∗
n,j(β) =

n∑
t=1

{
Xt − βXt−1 +

p∑
k=1

γ̂k(β)(Xt−k − βXt−k−1)
}

×
{ Xt−1√

1 +X2
t−1

+

p∑
k=1

γ̂k(β)
Xt−k−1√
1 +X2

t−k−1

}

−
n∑

t=1,t̸=j

{
Xt − βXt−1 +

p∑
k=1

γ̂
(j)
k (β)(Xt−k − βXt−k−1)

}
×
{ Xt−1√

1 +X2
t−1

+

p∑
k=1

γ̂
(j)
k (β)

Xt−k−1√
1 +X2

t−k−1

}
for j = 1, . . . , n. Based on this pseudo sample, the jackknife empirical likelihood
function for β is

L∗(β) = sup
{ n∏

i=1

(npi) : p1 ≥ 0, . . . , pn ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piZ
∗
n,i(β) = 0

}
.

Theorem 3. Suppose (1.1) holds with (2.1) and E|et|4+d < ∞ for some d > 0.

Then −2 logL∗(β0)
d→ χ2(1) as n → ∞ whenever |β0| < 1, independent of n, or

β0 = 1− δ/n for some δ ∈ R.



UNIFORM INTERVAL ESTIMATION FOR AN AR(1) PROCESS WITH AR ERRORS 125

Remark 2. The jackknife empirical likelihood methods in Theorem 3 require a
higher moment for et than the profile empirical likelihood methods in Theorems
1 and 2. The reason is that we need to derive an accurate approximate distance
between γ̂(β0) and γ̂(i)(β0), and this ultimately requires a central limit theory
for cross products of the e′ts.

Now consider this model with a linear time trend, model (2.5). Define the
parameter subset θ = [α1, α2, β]

T . Let γ̄(θ) = (γ̄1(θ), . . . , γ̄p(θ))
T denote, for

arbitrary θ, the solution to

n∑
t=1

Z̄t,j(θ, γ) = 0 for j = 1, . . . , p, (2.7)

and let γ̄(i)(θ) = (γ̄
(i)
1 (θ), . . . , γ̄

(i)
p (θ))T for i = 1, . . . , n denote the solution to

n∑
t=1,t̸=i

Z̄t,j(θ, γ) = 0 for j = 1, . . . , p. (2.8)

Next, define the pseudo sample as

Z̄∗
n,i,k(θ) =

n∑
t=1

Z̄t,p+k(θ, γ̄)−
n∑

t=1,t̸=i

Z̄t,p+k(θ, γ̄
(i)),

where i = 1, . . . , n and k = 1, 2, 3. Take Z̄∗
n,i(θ) = (Z̄∗

n,i,1(θ), Z̄
∗
n,i,2(θ), Z̄

∗
n,i,3(θ)),

and define the jackknife empirical likelihood function for θ = (α1, α2, β)
T as

L̄∗(β, α1, α2) = L̄∗(θ)

= sup
{ n∏

i=1

(npi) : p1 ≥ 0, . . . , pn ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piZ̄
∗
n,i(θ) = 0

}
.

Since we are only interested in β, we consider the profile jackknife empirical
likelihood function

L̄∗P (β) = max
(α1,α2)T∈R2

L̄∗(β, α1, α2).

Theorem 4. Suppose (2.5) holds with E|et|4+d < ∞ for some constant d > 0.

Then −2 log L̄∗P (β0)
d→ χ2(1) as n → ∞ whenever |β0| < 1, independent of n,

or β0 = 1− δ/n for some δ ∈ R.

Remark 3. In Theorem 4 we do not estimate α1, α2, γ simultaneously in the first
step since this doesn’t lead to explicit formulas. If one wants to estimate them
simultaneously, then the approximate jackknife empirical likelihood method in
Peng (2012) can be employed, where explicit formulas for estimating nuisance
parameters are not required.
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Remark 4. When the process is explosive, |β0| > 1 and independent of n, the

proposed methods are still valid as in Chan, Li, and Peng (2012). The near unit

root case includes the slightly explosive case when δ < 0.

Remark 5. When ϵt =
∑∞

j=0 cjet−j , where {et} is a sequence of independent and
identically distributed random variables, similar jackknife empirical likelihood

methods may be developed by noting C−1(B)Xt = β0C
−1(B)Xt−1 + et with

C(B) =
∑∞

j=0 cjB
j , B denoting the usual backward operator, and using the

truncation techniques in Xiao et al. (2003). Detailed investigation is a future

project.

3. Simulation Study

In this section we examine the finite sample behavior of the proposed meth-

ods for models (1.1), (2.5), and (2.5) with known α0,2 = 0.

We drew 10,000 random samples with size n = 50 and 200 from either model

(1.1) or (2.5), with β0 ∈ {0.9, 0.99, 1}, the error AR order is p = 2 or 5 with

γ0 = (
(
p
1

)
0.1, . . . ,

(
p
p

)
0.1p), and {et} is a sequence of independent standard nor-

mals. Under (2.5) we use α0,1 = 0.5 and α0,2 ∈ {0, 0.2}. The added pseudo

sample {Wt}nt=1 is computed using Wt = 1/
√
1, 000

∑1,000
i=1 Wt,i, where W ′

t,is are

iid N(0, .5). We employ the R package ’emplik’ to compute the empirical likeli-

hood function and then use the R package ’nlm’ to calculate the profile empir-

ical likelihood function. Initial values are computed by least squares estimates.

For example, in order to compute coverage probabilities for (2.5), we minimize∑n
i=1{Xt − α1 − α2t − βXt−1}2 with respect to α1 and α2 to obtain functions

α̂i(β), and then minimize

n∑
i=1

{
Xi − α̂1 (β)− α̂2 (β) t− βXt−1

+

p∑
k=1

γk(Xt−k − α̂1 (β)− α̂2 (β) (t− k)− βXt−k−1)
}2

with respect to γ = (γ1, . . . , γp)
T to achieve γ̂(β). Coverage probabilities are

computed using simply α̂i(β0) and γ̂(β0).

We consider (1.1) with et =
√

0.1 + 0.5e2t−1 ξt, where ξt is a sequence of

independent standard normals.

Coverage probabilities are reported in Tables 1−4. We observe from these

tables that (i) when the model has no trend, the jackknife empirical likelihood

method performs better than the empirical likelihood method for n = 50, but

they are comparable for n = 200; (ii) when the model has a linear trend, the jack-

knife empirical likelihood method is worse than the empirical likelihood method
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Table 1. Model (1): no trend. Coverage probabilities based on Theorem 1
(ELM1 for level 0.9 and ELM2 for level 0.95) and Theorem 3 (JELM1 for
level 0.9 and JELM2 for level 0.95) are reported for model (1.1).

(β0, n)
ELM1 JELM1 ELM2 JELM2 ELM1 JELM1 ELM2 JELM2
p = 2 p = 2 p = 2 p = 2 p = 5 p = 5 p = 5 p = 5

(0.9, 50) 0.8900 0.9022 0.9398 0.9548 0.8887 0.9268 0.9427 0.9711
(0.99, 50) 0.8763 0.8889 0.9333 0.9453 0.8623 0.8962 0.9203 0.9545
(1, 50) 0.8703 0.8809 0.9300 0.9403 0.8511 0.8881 0.9193 0.9523

(0.9, 200) 0.8931 0.8959 0.9434 0.9482 0.8963 0.9097 0.9438 0.9571
(0.99, 200) 0.8909 0.8938 0.9445 0.9481 0.8884 0.8977 0.9401 0.9493
(1, 200) 0.8856 0.8898 0.9417 0.9464 0.8787 0.8896 0.9387 0.9490

Table 2. Model (7): a linear time trend. Coverage probabilities based on
Theorem 2 (ELM1 for level 0.9 and ELM2 for level 0.95) and Theorem 4
(JELM1 for level 0.9 and JELM2 for level 0.95) are reported for model
(2.5).

(β0, n)
ELM1 JELM1 ELM2 JELM2 ELM1 JELM1 ELM2 JELM2
p = 2 p = 2 p = 2 p = 2 p = 5 p = 5 p = 5 p = 5

(0.9, 50) 0.8897 0.8903 0.9449 0.9455 0.8967 0.8154 0.9480 0.9012
(0.99, 50) 0.8887 0.8892 0.9447 0.9454 0.8962 0.8173 0.9479 0.9027
(1, 50) 0.8890 0.8896 0.9446 0.9453 0.8948 0.8170 0.9479 0.9017

(0.9, 200) 0.8961 0.8985 0.9469 0.9475 0.9037 0.8977 0.9492 0.9485
(0.99, 200) 0.8969 0.8992 0.9467 0.9473 0.9035 0.8981 0.9489 0.9485
(1, 200) 0.8968 0.8991 0.9464 0.9473 0.9038 0.8976 0.9496 0.9493

Table 3. Model (7): constant trend. Coverage probabilities based on Theo-
rem 2 (ELM1 for level 0.9 and ELM2 for level 0.95) and Theorem 4 (JELM1
for level 0.9 and JELM2 for level 0.95) are reported for model (2.5) with
α0,2 = 0 known.

(β0, n)
ELM1 JELM1 ELM2 JELM2 ELM1 JELM1 ELM2 JELM2
p = 2 p = 2 p = 2 p = 2 p = 5 p = 5 p = 5 p = 5

(0.9, 50) 0.8986 0.9005 0.9473 0.9491 0.8967 0.9027 0.9474 0.9509
(0.99, 50) 0.8977 0.8969 0.9492 0.9497 0.8959 0.8975 0.9470 0.9500
(1, 50) 0.8985 0.8979 0.9497 0.9504 0.8961 0.8971 0.9471 0.9492

(0.9, 200) 0.8954 0.8951 0.9482 0.9479 0.8961 0.8968 0.9484 0.9485
(0.99, 200) 0.8965 0.8963 0.9470 0.9472 0.8965 0.8967 0.9454 0.9451
(1, 200) 0.8966 0.8966 0.9467 0.9462 0.8991 0.8991 0.9468 0.9473

for n = 50 and p = 5, but they are comparable for n = 200; (iii) when the model

has a constant trend, the methods are comparable; (iv) the methods work when

{et} is a martingale difference.

The proposed methods perform quite well. The jackknife empirical likelihood

method is preferred when the model has no trend or a constant trend, or the
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Table 4. Model (1): no trend, but heteroscedastic {et}. Coverage probabili-
ties based on Theorem 1 (ELM1 for level 0.9 and ELM2 for level 0.95) and
Theorem 3 (JELM1 for level 0.9 and JELM2 for level 0.95) are reported for

model (1.1) when et =
√
0.1 + 0.5e2t−1 ξt, ξ

′
ts are iid with N(0, 1).

(β0, n) ELM1 JELM1 ELM2 JELM2
(0.9, 50) 0.8845 0.9063 0.9368 0.9573
(0.99, 50) 0.8625 0.8796 0.9256 0.9414
(1, 50) 0.8575 0.8741 0.9214 0.9377

(0.9, 200) 0.8872 0.8955 0.9423 0.9483
(0.99, 200) 0.8857 0.8921 0.9380 0.9456
(1, 200) 0.8778 0.8860 0.9380 0.9436

sample size is not too small, e.g., n = 200. When the model has a linear trend,

the jackknife empirical likelihood is worse than the empirical likelihood method

for a large order p and a small n, although its computation is less intensive.

4. Proofs

The proof of Theorem 1 exploits the following results.

Lemma 1. Let (1.1) hold with (2.1) and E|et|2+d < ∞ for some d > 0. Let

either |β0| < 1 independent of n, or β0 = 1 − δ/n for some δ ∈ R. Then

1/
√
n
∑n

t=1 Zt(β0, γ0)
d→ N(0,Σ) as n → ∞, where Σ = (σi,j)1≤i,j≤p+1 with

σi,j = E(e2t )E(ϵt−iϵt−j) for i, j = 1, . . . , p,

σi,p+1 =

 E(e2t )E
{
ϵt−i

(
Xt−1√
1+X2

t−1

+
∑p

j=1 γ0,j
Xt−j−1√
1+X2

t−j−1

)}
when |β0| < 1,

0 when β0=1− δ
n

for i = 1, . . . , p, and

σp+1,p+1 =


E(e2t )E

{
Xt−1√
1+X2

t−1

+
p∑

j=1
γ0,j

Xt−j−1√
1+X2

t−j−1

}2
when |β0| < 1,

E(e2t )×
(
1 +

p∑
j=1

γ0,j

)2
when β0=1− δ

n .

Proof. Note that
Zt,j(β0, γ0) = etϵt−j for j = 1, . . . , p,

Zt,p+1(β0, γ0) = et

{
Xt−1√
1+X2

t−1

+
p∑

j=1
γ0,j

Xt−j−1√
1+X2

t−j−1

}
.

(4.1)
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In the local to unity case β0 = 1− δ/n, |Xt|
p→ ∞ as t → ∞, hence( Xt−1√

1 +X2
t−1

+

p∑
j=1

γ0,j
Xt−j−1√
1 +X2

t−j−1

)2 p→
(
1 +

p∑
j=1

γ0,j

)2
as t → ∞. (4.2)

The result follows from (4.1), (4.2), and the central limit theorem for martingale

differences. See McLeish (1974) and Hall and Heyde (1980), and see arguments

in the appendices of Chan, Li, and Peng (2012) and Hill and Peng (2014).

Lemma 2. Under the conditions of Lemma 1, n−1
∑n

t=1 Z
T
t (β0, γ0)Zt(β0, γ0)

p→
Σ as n → ∞.

Proof. The claim follows from (4.1)−(4.2) and the weak law of large numbers

for martingale differences (see Hall and Heyde (1980)).

Lemma 3. Under the conditions of Lemma 1, as n → ∞, with probability one

L(β0, γ) attains its maximum or local maximum value at some point γ̃ in the

interior of the ball ||γ − γ0|| ≤ n−d/3, and γ̃ and λ̃ satisfy Q1n(γ̃, λ̃) = 0 and

Q2n(γ̃, λ̃) = 0, where

Q1n(γ, λ) ≡
1

n

n∑
i=1

Zi(β0, γ)

1 + λTZi(β0, γ)

and

Q2n(γ, λ) ≡
1

n

n∑
i=1

1

1 + λTZi(β0, γ)

(
∂Zi(β0, γ)

∂γ

)T

λ.

Proof. The proof is similar to the proof of Lemma 1 in Qin and Lawless (1994)

by using Lemmas 1 and 2.

Proof of Theorem 1. Apply Lemmas 1−3 and arguments in Qin and Lawless

(1994).

Proof of Theorem 2. The proof is similar to the proof of Theorem 1.

Before proving Theorems 3 and 4, we need some notations and lemmas. Put,

for i = 1, . . . , n,

A =



1
n

n∑
t=1

etϵt−1

·
·
·

1
n

n∑
t=1

etϵt−p


, A(i) =



1
n−1

n∑
t=1,t̸=i

etϵt−1

·
·
·

1
n−1

n∑
t=1,t̸=i

etϵt−p


,
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B =



1
n

n∑
t=1

ϵ2t−1 · · · 1
n

n∑
t=1

ϵt−pϵt−1

·
·
·

1
n

n∑
t=1

ϵt−pϵt−1 · · · 1
n

n∑
t=1

ϵ2t−p


,

B(i) =



1
n−1

n∑
t=1,t ̸=i

ϵ2t−1 · · · 1
n−1

n∑
t=1,t̸=i

ϵt−pϵt−1

·
·
·

1
n−1

n∑
t=1,t̸=i

ϵt−pϵt−1 · · · 1
n−1

n∑
t=1,t̸=i

ϵ2t−p


,

Σ̄ = E(B), D = (Σ̄−B)Σ̄−1A, D(i) = (Σ̄−B(i))Σ̄−1A(i).

Lemma 4. Under the conditions of Theorem 3,

γ̂(β0)− γ0 + Σ̄−1A = Op(n
−1), (4.3)

max
1≤i≤n

|γ̂(i)(β0)− γ0 + Σ̄−1A(i)| = Op(n
−1), (4.4)

max
1≤i≤n

|B(γ̂(i)(β0)− γ̂(β0)) +BΣ̄−1(A(i) −A) +D(i) −D| = op(n
−3/2). (4.5)

Proof. Equation (4.3) follows from

0 = A+B(γ̂(β0)− γ0) = D +B(γ̂(β0)− γ0 + Σ̄−1A), (4.6)

A = Op(n
−1/2), and Σ̄−B = Op(n

−1/2). Write

B(i) =
n

n− 1
B − B∗

i

n− 1
, A(i) =

n

n− 1
A− A∗

i

n− 1
, (4.7)

where

B∗
i =


ϵ2i−1 · · · ϵi−pϵi−1

·
·
·

ϵi−pϵi−1 · · · ϵ2i−p

 , A∗
i =


eiϵi−1

·
·
·

eiϵi−p

 .
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Since max1≤i≤n,1≤j≤p |ϵi−1ϵi−j | = op(n
1/2), it follows from (4.7) that

B(i) = Op(1) and B(i) −B = op(n
−1/2) uniformly in i = 1, . . . , n. (4.8)

Similarly,

Σ̄−B(i) = Op(n
−1/2), A(i) = Op(n

−1/2) and A(i) −A = op(n
−1/2)

uniformly in i = 1, . . . , n. (4.9)

Therefore, (4.4) follows from (4.9) and 0 = D(i)+B(i)(γ̂(i)(β0)−γ0+Σ̄−1A(i)). By

writing 0 = D(i)+(B(i)−B)(γ̂(i)(β0)−γ0+Σ̄−1A(i))+B(γ̂(i)(β0)−γ0+Σ̄−1A(i)),

(4.5) follows from (4.4), (4.6), and (4.8).

Lemma 5. Under the conditions of Theorem 3, we have

1√
n

n∑
t=1

Z∗
n,t(β0)

d
=

1√
n

n∑
t=1

etẽt + op(1)
d→ N(0, E(e2t ẽ

2
t ))

and
1

n

n∑
t=1

Z∗2
n,t(β0)

p→ E(e2t ẽ
2
t )

as n → ∞, where

ẽt =
Xt−1√
1+X2

t−1

+
p∑

k=1

γ0,k
Xt−k−1√
1+X2

t−k−1

−


ϵt−1

·
·
·

ϵt−p


T

E(ϵ2p) · · · E(ϵpϵ1)

·
·
·

E(ϵpϵ1) · · · E(ϵ21)





E

{
ϵp

(
Xp√
1+X2

p

+
p∑

k=1

γ0,k
Xp−k√
1+X2

p−k

)}
·
·
·

E

{
ϵ1

(
Xp√
1+X2

p

+
p∑

k=1

γ0,k
Xp−k√
1+X2

p−k

)}


.

Proof. By (4.7)−(4.9) and

n∑
i=1

(A(i) −A) = 0 and
n∑

i=1

(B(i) −B) = 0, (4.10)

we have

n∑
i=1

{D(i) −D} =
n∑

i=1

(B −B(i))Σ̄−1(A(i) −A)
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=

n∑
i=1

(
n

n− 1
B −B(i))Σ̄−1(A(i) − n

n− 1
A)− n

(n− 1)2
BΣ̄−1A

= − 1

(n− 1)2

n∑
i=1

B∗
i Σ̄

−1A∗
i +Op(n

−1)

= Op(n
−1), (4.11)

D(i) −D = A(i) −A− (B(i) −B)Σ̄−1A(i) −BΣ̄−1(A(i) −A)

= op(n
−1/2) uniformly in i = 1, . . . , n. (4.12)

Using (4.5), (4.10), (4.11), and (4.12), we can show that, for any p× p matrix ∆,

nop(n
−3/2) =

n∑
i=1

{∆(γ̂(β0)− γ̂(i)(β0))−∆Σ̄−1(A(i) −A)−∆B−1(D(i) −D)}

=
n∑

i=1

∆(γ̂(β0)− γ̂(i)(β0)) + op(n
−1/2),

n∑
i=1

(A(i) −A)T Σ̄−1∆Σ̄−1(A(i) −A)

=

n∑
i=1

(A(i) − n

n− 1
A)T Σ̄−1∆Σ̄−1(A(i) − n

n− 1
A) +Op(n

−1)

=
1

(n− 1)2

n∑
i=1

A∗T
i Σ̄−1∆Σ̄−1A∗

i +Op(n
−1)

= Op(n
−1),

n∑
i=1

(A(i) −A)T Σ̄−1∆B−1(D(i) −D)

=

n∑
i=1

(A(i) − n

n− 1
A)T Σ̄−1∆B−1(D(i) −D) +Op(n

−2)

= − 1

n− 1

n∑
i=1

A∗T
i Σ̄−1∆B−1(D(i) −D) +Op(n

−2)

= Op(n
−1/2)op(n

−1/2) +Op(n
−2) = Op(n

−1),
n∑

i=1

(D(i) −D)TB−1∆B−1(D(i) −D)

=

n∑
i=1

{A(i) −A}TB−1∆B−1(D(i) −D)
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−
n∑

i=1

{(B(i) −B)Σ̄−1A(i)}TB−1∆B−1(D(i) −D)

−{BΣ̄−1(A(i) −A)}TB−1∆B−1(D(i) −D)

= Op(n
−1) + nop(n

−1/2)Op(n
−1/2)op(n

−1/2) +Op(n
−1)

= op(n
−1/2),

n∑
i=1

(A(i) −A)T Σ̄−1∆(γ̂(β0)− γ̂(i)(β0))

=

n∑
i=1

(A(i) −A)T Σ̄−1∆{γ̂(β0)− γ̂(i)(β0)− Σ̄−1(A(i) −A)−B−1(D(i) −D)}

+Op(n
−1)

= nop(n
−1/2)op(n

−3/2) +Op(n
−1) = Op(n

−1),
n∑

i=1

(D(i) −D)TB−1∆(γ̂(β0)− γ̂(i)(β0)) = Op(n
−1),

nop(n
−3/2)op(n

−3/2) =

n∑
i=1

{
γ̂(β0)−γ̂(i)(β0)−Σ̄−1(A(i)−A)−B−1(D(i)−D)

}T
∆

×
{
γ̂(β0)−γ̂(i)(β0)−Σ̄−1(A(i)−A)−B−1(D(i)−D)

}
=

n∑
i=1

(γ̂(β0)−γ̂(i)(β0))
T∆(γ̂(β0)−γ̂(i)(β0))+op(n

−1/2),

which imply that
n∑

i=1
∆(γ̂(β0)− γ̂(i)(β0)) = op(n

−1/2),

n∑
i=1

(γ̂(β0)− γ̂(i)(β0))
T∆(γ̂(β0)− γ̂(i)(β0)) = op(n

−1/2).
(4.13)

For j = 1, . . . , n, put

Wj1 =

p∑
l=1

(γ̂l(β0)− γ̂
(j)
l (β0))

n∑
t=1

ϵt−l

( Xt−1√
1 +X2

t−1

+

p∑
k=1

γ0,k
Xt−k−1√
1 +X2

t−k−1

)

+

p∑
l=1

(γ̂l(β0)− γ̂
(j)
l (β0))

n∑
t=1

et
Xt−l−1√
1 +X2

t−l−1
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+
1

2

p∑
k=1

p∑
l=1

(γ̂k(β0)− γ̂
(j)
k (β0))(γ̂l(β0)− γ̂

(j)
l (β0))

n∑
t=1

ϵt−k
Xt−l−1√
1 +X2

t−l−1

,

Wj2 =

(
ϵj−1

{ Xj−1√
1 +X2

j−1

+

p∑
k=1

γ0,k
Xj−k−1√
1 +X2

j−k−1

}
+ ej

Xj−1−1√
1 +X2

j−1−1

,

· · · , ϵj−p

{ Xj−1√
1 +X2

j−1

+

p∑
k=1

γ0,k
Xj−k−1√
1 +X2

j−k−1

}
+ ej

Xj−p−1√
1 +X2

j−p−1

)T

.

Then it follows from Lemma 4, (4.13) and Taylor expansions that

1√
n

n∑
i=1

Z∗
n,i(β0) =

1√
n

n∑
i=1

Wi1 +
1√
n

n∑
i=1

(γ̂(i)(β0)− γ0)
TWi2

+
1√
n

n∑
i=1

ei

( Xi−1√
1 +X2

i−1

+

p∑
k=1

γ0,k
Xi−k−1√
1 +X2

i−k−1

)
+ op(1)

= − 1√
n

n∑
i=1

(A(i))TΣ−1Wi2

+
1√
n

n∑
i=1

ei

( Xi−1√
1 +X2

i−1

+

p∑
k=1

γ0,k
Xi−k−1√
1 +X2

i−k−1

)
+ op(1)

= −(
√
nA)TΣ−1 1

n

n∑
i=1

Wi2

+
1√
n

n∑
i=1

ei

( Xi−1√
1 +X2

i−1

+

p∑
k=1

γ0,k
Xi−k−1√
1 +X2

i−k−1

)
+ op(1)

=
1√
n

n∑
i=1

eiẽi + op(1).

Now apply a martingale central limit theorem argument as in Lemma 1 to

(1/
√
n)
∑n

i=1 eiẽi to achieve (1/
√
n)
∑n

i=1 Z
∗
n,i(β0)

d→ N(0, E(e21ẽ
2
1)). Similarly,

we can show that

1

n

n∑
i=1

Z∗2
n,i(β0) =

1

n

n∑
i=1

e2i ẽ
2
i + op(1)

p→ E(e21ẽ
2
1).

This completes the proof.

Proof of Theorem 3. The claim can be proven by using Lemma 5, and argu-

ments in Qin and Lawless (1994).
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Proof of Theorem 4. The argument is similar to the proof of Theorem 3.
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