
NATURE BIOTECHNOLOGY   VOLUME 31 NUMBER 7 JULY 2013 615

A N A LY S I S

Despite their apparent diversity, many problems in the analysis 

of high-throughput sequencing data are merely special 

cases of two general problems, signal detection and signal 

estimation. Here we adapt formally optimal solutions from 

signal processing theory to analyze signals of DNA sequence 

reads mapped to a genome. We describe DFilter, a detection 

algorithm that identifies regulatory features in ChIP-seq, 

DNase-seq and FAIRE-seq data more accurately than assay-

specific algorithms. We also describe EFilter, an estimation 

algorithm that accurately predicts mRNA levels from as few 

as 1–2 histone profiles (R ~0.9). Notably, the presence of 

regulatory motifs in promoters correlates more with histone 

modifications than with mRNA levels, suggesting that histone 

profiles are more predictive of cis-regulatory mechanisms.  

We show by applying DFilter and EFilter to embryonic forebrain 

ChIP-seq data that regulatory protein identification and 

functional annotation are feasible despite tissue heterogeneity. 

The mathematical formalism underlying our tools facilitates 

integrative analysis of data from virtually any sequencing-based 

functional profile.

High-throughput DNA sequencing has transformed genomics 

by enabling genome-wide equivalents of functional assays that 

were traditionally done on individual loci. The technology is now 

used to obtain genome-wide maps of histone modification, tran-

scription factor binding, chromatin openness, gene expression,  

DNA methylation, replication origins and mRNA binding by 

microRNAs and ribosomes, to name but a few of the applications 

in a rapidly growing list1–3. At the same time, a plethora of bioinfor-

matic tools has been developed for processing sequence-tag signals 

from the various assays. For example, distinct, assay-specific tools 

have been designed for analyzing transcription factor ChIP-seq 

(TF ChIP-seq), histone ChIP-seq, DNase-seq and formaldehyde-

assisted isolation of regulatory elements (FAIRE)-seq data1,4–9. 

Examples of specialized algorithms include blind deconvolution 

for TF ChIP-seq analysis8 and nonlocal means for detecting RNA 

polymerase II (Pol II)-enriched genomic segments10. However, 

the specialized nature of most existing analytical methods makes 

it difficult to compare, integrate or uniformly analyze data from 

multiple sources, particularly when they differ in signal patterns 

and noise characteristics. Moreover, many of the current tools are 

based on heuristics, rather than formal mathematical techniques 

for optimizing accuracy.

Here, we organize diverse sequence-tag data analysis problems 

into two major classes of problems, signal detection and signal 

estimation, and demonstrate that they can be solved by adapting 

‘uniform’ and ‘formally optimal’ techniques from the signal process-

ing literature. Signal detection is a generalization of peak detection, 

in that it accommodates signals of arbitrary shape (e.g., the peak- 

valley-peak signature of some histone modifications at promoters). 

We implemented a linear detection filter, known as a Hotelling 

observer11, that provides mathematically optimal detection accuracy, 

as measured by the receiver operating characteristic–area under the 

curve (ROC-AUC). This approach, which uses finite-width linear 

filtering, is equivalent to computing a weighted average of the signal 

(binned tag profile) in a sliding window spanning a fixed number of 

bins, that is, windowed smoothing. The objective of the Hotelling 

detection filter is to maximize the difference between filter outputs at 

true-positive regions and noise regions. More precisely, the Hotelling 

detection filter maximizes the ratio of the mean of this difference 

to its s.d. (that is, the z-score). Dfilter, our algorithm based on this 

approach, was benchmarked on histone ChIP-seq, TF ChIP-seq, 

DNase-seq and FAIRE-seq data from multiple cell lines. Unique 

features of the method were exploited to assess and compare the 

predictive power of DNase-seq and FAIRE-seq, both individually 

and in combination.

Signal estimation is the problem of estimating a continuous hidden 

variable (e.g., expression level, translation rate or binding strength) 

from observations of other correlated variables. Our algorithm, 

EFilter, estimates the unknown signal using a linear least-squares 

approach, and incorporates two additional features to facilitate the 

removal of bias and the use of cell types for training that are dis-

tinct from the target cell type. We benchmarked EFilter on estimat-

ing mRNA levels from histone ChIP-seq data, and used it to obtain 

insights into the relationship between transcription factor binding, 

chromatin state and gene expression. Finally, we generated histone 

ChIP-seq profiles from e11.5 mouse forebrain and analyzed the data 

using DFilter and EFilter, to assess the utility of chromatin profiling 

in a complex, heterogeneous tissue.
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RESULTS

Signal detection using DFilter

We illustrate DFilter by applying it to the analysis of ChIP-seq pro-

files from a human cell line of trimethylated lysine 4 on histone 

H3 (H3K4me3), a chromatin mark enriched at active promoters. 

The DFilter algorithm involves the following steps. (i) Construct a 

genome-wide profile by binning the input set of mapped sequence 

tags (Fig. 1a, blue curve). (ii) Normalize the tag-count profile using 

the local tag density in a user-supplied control (for example, non-

ChIP genomic DNA; Online Methods). (iii) Construct an approxi-

mate training set of positive regions (active promoters, in this case) 

using windowed averaging. In this example, the initial training 

set consisted of the 500 RefSeq-annotated transcription start sites 

(TSSs) having the largest ChIP-seq tag count within a 3-kbp win-

dow. (iv) Design the Hotelling detection filter, which is a function of 

the mean and covariance of the tag profiles at the training regions11 

(Supplementary Fig. 1). (v) Smooth the normalized ChIP-seq tag 

profile using the Hotelling detection filter (Fig. 1a, black curve).  

(vi) Detect active promoters by thresholding the smoothed profile at 

a level corresponding to a desired P-value cutoff (Online Methods).

We systematically evaluated the accuracy of DFilter in detecting 

active promoters using previously published H3K4me3 ChIP-seq data 

from three cell types (CD4+ T cells, K562 and GM12878)12,13. We also 

analyzed the accuracy of the widely used peak-finding algorithms 

MACS5, FindPeaks14, F-Seq6, ZINBA7 and SICER15 on the same 

data. True positives were defined as RefSeq promoters with above-

median gene expression. Expression was calculated using RNA-seq 

data from the respective cell types16,17. Of the six methods, DFilter 

consistently displayed the highest accuracy (Fig. 1b). The perform-

ance gap between DFilter and the other methods was greatest for 

CD4+ T cells, perhaps because control data were not available for 

this data set. DFilter also displayed the highest accuracy in overall 

promoter detection, regardless of expression (Supplementary Fig. 2).  

The tradeoff between precision (positive predictive value) and recall 

(sensitivity) indicates that, in all cases, there is an inflection point 

in the precision-recall curve, where precision drops sharply as sen-

sitivity increases (Fig. 1c and Supplementary Fig. 2c). This point, 

which lies at ~3–7% false-discovery rate in our examples, is a potential  

threshold for annotating novel promoters. In addition to detecting 

focal signals, such as H3K4me3 at promoters, DFilter also provided 

the highest accuracy for detecting broad regions of trimethylated 

histone H3 lysine 36 (H3K36me3) enrichment, which characterize 

expressed gene bodies (Fig. 1d).

Histone modification signals are typically fuzzy, spanning at least 

1–2 kbp, whereas the ChIP-seq signal of a transcription factor binding 

site forms a sharp peak ~200 bp wide. Consequently, the performance 

of detection algorithms could vary between the two scenarios. We 

tested DFilter on five TF ChIP-seq data sets from three cell lines4,18,19. 

DFilter generated its own training set of positive regions by scan-

ning the genome for windows of high tag density. For comparison, 

we evaluated Quest4 and MACS5, two methodologically distinct 

algorithms that show high accuracy on TF ChIP-seq benchmarks9. 

We calculated the fraction of peaks that contained a high-affinity 

(high-scoring) sequence motif for the target transcription factor, and 

used this fraction as an approximate measure of precision. By this 

measure, the precision of DFilter was comparable to, or greater than, 

that of the other two methods at all detection thresholds in all five 

data sets (Fig. 2a).

Next, we asked whether the same algorithm could also detect 

regions of open chromatin based on DNase-seq and FAIRE-seq signals.  
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Figure 1 Signal detection by DFilter using histone modification ChIP-seq data. (a) Illustration of DFilter output: promoter detection in K562 cells. 

The filter is designed to match the shape of the histone modification profile at active promoters and have zero response to regions characterized by 

unvarying tag-count density. Filter output is higher at peaks of the desired shape than at peaks of incorrect shape. (b) Performance (ROC curve) of 

DFilter and five other algorithms at active promoter detection using H3K4me3 ChIP-seq in CD4+ T, K562 and GM12878 cells. Positive set: RefSeq 

promoters with expression above median. Negative set: 2-kbp non-CpG regions that are at least 2.5 kbp away from RefSeq and UCSC gene TSSs. FPR: 

false-positive rate (1-specificity). (c) Corresponding precision-recall plot. (d) Coverage of active genes by H3K36me3-enriched segments. For uniformity, 

each algorithm was allowed to cover at most 10% of the genome with enriched blocks.
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For comparison, we evaluated two other methods, F-Seq6 and 

ZINBA7, that were designed for open chromatin detection. DNase-seq 

and FAIRE-seq data from ‘Tier 1’ human cell lines of the ENCODE 

project (http://genome.ucsc.edu/encode/cellTypes.html) were used 

in this analysis3. As before, DFilter generated its own training set by 

scanning the genome for windows of high tag density. Owing to the 

lack of an independent benchmark set of open chromatin regions, 

we quantified detection accuracy based on overlap with putative 

regulatory elements (ENCODE peak calls for CTCF, Pol II and 

monomethylated histone H3 lysine 4 (H3K4me1); Online Methods). 

We also created a benchmark consisting of acetylated histone H3 lysine 27  

(H3K27ac) peaks, which represent active promoter and enhancer 

regions13. DFilter peaks consistently showed the greatest overlap with 

externally defined regulatory regions (Fig. 2b,c and Supplementary 

Fig. 3), suggesting that the Hotelling approach provides uniformly 

high accuracy across a broad range of signal detection problems.

So far, we have detected signals in individual data sets. However, the 

mathematical formalism underlying DFilter is also applicable to inte-

grative signal detection from multiple data sets. To assess the benefits 

of integrative detection, we used DFilter to detect open chromatin 

regions in GM12878, K562 and human umbilical vein endothelial 

cells (Huvec) cells using both DNase-seq and FAIRE-seq data simul-

taneously. We found that DFilter detected open chromatin signals 

more accurately from the combined data set than from DNase-seq 

or FAIRE-seq alone (Fig. 2d). A similar result was obtained previ-

ously3, although in that case the two data types were integrated by 

first calling peaks individually and then combining the resulting  

P values using Fisher’s combined probability test3. In our analysis, this 

two-step method was less successful than direct integrative analysis 

using DFilter (Fig. 2d). This is perhaps because DFilter accounts for 

the correlation between DNase-seq and FAIRE-seq signals, whereas 

Fisher’s method assumes statistical independence.

It is possible that DNase-seq and FAIRE-seq measure subtly differ-

ent aspects of the chromatin state. For example, the two assays appear 

to differ in their sensitivity at promoter regions3. However, a direct 

quantitative comparison on a comprehensive benchmark data set has 

not been performed. We partitioned the benchmark set of regulatory 

elements into promoter and nonpromoter subsets, and repeated the 

analysis in Figure 2d. As expected, DNase-seq provided substantially 

higher sensitivity at promoter regions (Fig. 2e). However, even at non-

promoter regulatory elements, the sensitivity of DNase-seq was simi-

lar to or greater than that of FAIRE-seq. Notably, FAIRE-seq benefited 

from two- to threefold greater sequencing depth, relative to DNase-

seq (Supplementary Table 1). When tag counts were equalized by 

random downsampling, DNase-seq showed greater sensitivity at most 

thresholds, both at promoters and at nonpromoter regulatory regions 

(Supplementary Figs. 4 and 5). Thus, FAIRE-seq could potentially 

require greater sequencing depth than DNase-seq to achieve compa-

rable sensitivity at nonpromoter regulatory elements.

Signal estimation using EFilter

Although signal detection is a major goal of sequencing-based 

functional assays, not all analysis tasks fit the detection paradigm. 

Consider, for example, the problem of using histone ChIP-seq data 

to predict gene expression20. This is a ‘signal estimation’ problem, in 

which the observable variables (data) are used to estimate the value of 

a continuous hidden variable. As before, we asked, which is the best 

linear estimator? The answer is provided by standard linear regression 

theory, and relies, as before, on the covariance matrix of the tag-count 

signal (Online Methods). We developed the EFilter program to apply 

this technique to tag profiles of ChIP-seq data.

We first tested a naive version of EFilter by estimating mRNA levels 

from ChIP-seq data on five histone marks (H3K27ac, monomethyl-

ated histone H4 lysine 20 (H4K20me1), H3K4me3, H3K36me3 and 

acetylated H3 lysine 9 (H3K9ac)) from four cell lines (lymphoblastoid 

cell line GM12878, liver carcinoma line HepG2, Huvec and normal 

human epidermal keratinocyte line NHEK)13,17. These histone marks 

were selected because they were the top five in terms of predictive 
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power (data not shown). We used ChIP-seq tag counts in 200-bp 

bins from 2 kbp upstream to 4 kbp downstream of RefSeq TSSs as 

predictor variables. Expression was calculated as log-transformed 

RNA-seq fragments per exonic kbp per million (log-FPKM (frag-

ments per kbp per million))21. For comparison, we used an existing 

linear regression method20 and predicted mRNA levels based on the 

total tag count of each ChIP-seq data set within the 6-kbp window 

around TSS. Training and test data were derived from the same cell 

line, using twofold cross-validation. Regardless of how many ChIP-

seq data sets were used as input, the naive version of EFilter provided 

more accurate predictions (Fig. 3a, black and red curves).

In practice, one would like to predict mRNA levels in cell types for 

which genome-wide expression data are unavailable. However, the 

above implementation of EFilter required prior knowledge of expres-

sion levels in the target cell type, for training. We therefore devised a 

technique of imputing expression levels across cell types. Imputation 

works by assuming that genes with similar promoter histone modi-

fication levels in two cell types will also have similar levels of expres-

sion. We first identify a ‘source’ cell type for which mRNA levels and 

histone ChIP-seq are both available. Genes in the source and target 

cell types are ranked by total promoter ChIP-seq tag count, and the 

expression of rank-invariant genes is then imputed from the source 

to the target cell type (Online Methods). Imputed expression levels 

are then used to train the regression model in the target cell type.  

We tested this approach using three histone modifications (H3K27ac, 

H4K20me1 and H3K4me3) and all 16 possible combinations of four 

source and four target cell lines. Notably, the correlations between 

predicted and measured expression were only marginally smaller 

when EFilter used imputed, rather than actual, expression values 

for training (Fig. 3b). Thus, EFilter can be used to predict expres-

sion levels de novo in any cell type for which histone ChIP-seq data  

are available.

The naive version of EFilter described above assumes a constant 

relationship between chromatin state and mRNA level across all 

genes. However, inaccurate gene models, variation in mRNA deg-

radation rates, common technical biases and variations in the enzy-

matic activity of distinct PolII complexes could all cause EFilter to 

systematically over- or underestimate the expression of any indi-

vidual gene. Such systematic biases would in general be consistent 

across cell types, and we reasoned that it should therefore be pos-

sible for EFilter to learn the aggregate bias from training cell types 

and then cancel it out in the test cell type. First, we ran the naive 

EFilter on individual cell types, with both source and target being 

the same, and calculated the residual error between predicted and 

measured mRNA level. Then, we devised a ‘full’ version of EFilter 

(Supplementary Fig. 6), which takes as input not only binned tag 

counts, but also gene-specific residual errors from three nontarget 

cell lines. This expanded set of predictor variables is then used to esti-

mate mRNA levels in the target cell line, using the same linear regres-

sion approach as before. The full-fledged EFilter algorithm, which 

incorporates residual correction, showed markedly improved per-

formance, yielding correlation coefficients in the range of 0.89–0.93 

for all RefSeq genes (Fig. 3a, green curves; Fig. 3c,d) and 0.77–0.87 

for genes with fivefold differential expression between source and 
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target cell lines (Supplementary Fig. 7). This improvement in accu-

racy derives from the fact that the combined effect of gene-specific 

biological and technical biases is largely consistent across multiple 

cell types (R ~0.60–0.70; Supplementary Fig. 8).

Recently, additional methods have been developed to predict 

expression from histone ChIP-seq22–25. These methods were used to 

predict RNA-seq–based expression levels, using a large number of his-

tone ChIP-seq data sets as input. The maximum accuracy achieved by 

these methods on K562 data was R = 0.84. In contrast, using only three 

K562 histone marks and the same tenfold cross-validation approach, 

EFilter achieved R = 0.93.

The correlation between gene expression and transcription factor  

motif occurrence at promoters is often used to infer the identity 

of master regulatory factors26. We hypothesized that promoter  

histone modification profiles might show even greater correlation 

with transcription factor motif occurrence because transcription  

factor binding could be mechanistically ‘closer’ to chromatin state than 

to gene expression. To test this hypothesis, we estimated transcription 

factor presence or absence at promoters, based on thresholded scores 

of motifs from the TRANSFAC and JASPAR27,28 databases (above 

threshold = 1, below threshold = 0, for transcription factor bind-

ing). We used these transcription factor–binding estimates to predict 

expression in four cell types by multiple linear regression (Online 

Methods). Notably, in all four cell types, motif-based transcription 

factor binding estimates were more correlated with histone-predicted 

transcript levels (HPT) than with actual mRNA levels measured by 

RNA-seq (Fig. 4a). This conclusion was robust to alterations in the 

choice of histone modification (Supplementary Fig. 9), and also 

valid when motif occurrence was used to predict fold change, rather 

than absolute expression (Fig. 4b). Note that, in these tests, we cal-

culated HPT without residual correction. Incorporation of residuals 

renders HPT more similar to mRNA level (Fig. 3c), but less correlated 

with motif occurrence in promoters (data not shown). These results 

consistently imply that the occurrence of transcription factor motifs 

in promoters is more correlated to chromatin states than to mRNA 

level. Consequently, if one is interested in inferring the identity of key 

regulatory transcription factors, chromatin profiling could be more 

predictive than expression profiling.

Application to a complex tissue: developing mouse forebrain

The analyses described thus far have used as input functional data from 

pure cell lines or purified cell populations. However, analysis of in vivo 

gene regulation in heterogeneous tissue samples is more challenging 

because the genomic signals of individual cell types are diluted in the 

cellular mixture, resulting in a lower overall signal-to-noise ratio. We 

hypothesized that DFilter would provide greater benefit in such cir-

cumstances because the proportion of ‘marginal’ signals that could be 

mistaken for noise by suboptimal algorithms would be greater.

To test our bioinformatic methods on noisier data, and also more 

generally to assess the utility of chromatin profiling in a complex  
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Figure 4 Transcription factor–binding 

motifs at promoters are more correlated with 

histone-predicted expression (HPT) than with 

expression measured by RNA-seq. HPT was 

calculated for each RefSeq gene by EFilter 

using H3K27ac and H4K20me1 ChIP-seq, 

with no residual correction. (a) Solid lines: 

HPT was modeled as a linear function of 

occurrence of TRANFAC and JASPAR motifs 

(presence = 1, absence = 0) in promoter 

regions. Accuracy of the motif-based model of 

HPT (Pearson correlation) is shown for the top 

k motifs, as k is varied from 1 to 15. Dashed 

lines: motifs used to model RNA-seq FPKM. 

(b) Same as in a, except that motif occurrence 

was used to predict expression fold change, rather than absolute expression. To demonstrate generality, we calculated HPT using H3K36me3 and 

H3K20me1 ChIP-seq data in this case.
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Figure 5 In vivo functional profiling in a heterogeneous tissue (e11.5 mouse forebrain).  

(a) Accuracy of RefSeq promoter prediction using peak calls from forebrain H3K4me3 ChIP-seq  

data. FPR: false-positive rate. (b) Number of overlapping H3K4me3 peaks among the top 10,000  

peak calls (by DFilter) from four sample types. NPCs and e11.5 forebrain showed the greatest  

overlap, suggesting that the functional signature of neural progenitors in the embryonic forebrain  

can be discerned, to some extent, despite tissue heterogeneity. (c) Comparison of predicted  

expression (HPT) between NPCs and other samples. Expression was predicted using H3K4me3 and  

H3K36me3 ChIP-seq data. Compared with other samples, NPCs had the highest correlation with  

e11.5 forebrain. (d) Visualization on UCSC browser (http://genome.ucsc.edu/) of previously unreported gene discovered using e11.5 forebrain  

ChIP-seq profiles. Forebrain expression of this gene was validated using qPCR (Supplementary Fig. 11).
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developing tissue, we carried out H3K4me3 

and H3K36me3 ChIP-seq on pooled, micro-

dissected mouse forebrain at embryonic  

day 11.5 (e11.5). We first used the H3K4me3 data to test the accuracy of 

forebrain promoter prediction and found a substantial performance gap 

between DFilter and MACS (Fig. 5a). DFilter provided similar, or even 

greater, improvements when tested on data from other heterogeneous 

tissues29 (Supplementary Fig. 10). Notably, the difference in accuracy 

between DFilter and MACS was greater than previously observed in 

tests on in vitro data from pure cell populations (Fig. 1b,c). These results  

suggest that the need for optimal signal processing is greater when 

genomic signals are noisy or diluted by cellular heterogeneity.

Inferring the identity of master transcription factors from histone- 

predicted transcript levels could be feasible even in ChIP-seq data 

from heterogeneous samples. Such transcription factor inference 

would be most effective if the heterogeneous-tissue chromatin sig-

nature was correlated with the signatures of the major constituent 

cell types. As neural progenitor cells (NPCs) are common in develop-

ing forebrain30, we asked if the H3K4me3 signal of NPCs31 could be 

detected in our forebrain ChIP-seq data. We examined H3K4me3 

ChIP-seq data from whole adult mouse brain32 (in which NPCs are 

less common)30, and also myotube cells33 (in which no NPCs are 

expected), as controls. We hypothesized that NPC promoters would 

show high overlap with the e11.5 forebrain promoter set, and only 

moderate overlap with adult brain promoters, and indeed this was the 

case (Fig. 5b). The overlap with myotube promoters was the smallest,  

and presumably dominated by ubiquitously expressed genes. We fur-

ther evaluated signal correlation by using EFilter to calculate gene 

expression (HPT) in e11.5 forebrain, NPCs and myotube cells (Fig. 5c).  

Again, we found that NPC gene expression showed substantially 

higher correlation with embryonic forebrain than with the other  

samples. Overall, these results suggest that, despite signal mixing in 

the heterogeneous forebrain sample, it should be possible to infer 

transcription factors regulating the major forebrain cell types.

As a quality check before using HPT to infer e11.5 forebrain tran-

scription factors, we tested the qualitative concordance between HPT 

and forebrain mRNA levels of nine genes (RT-PCR; Supplementary 

Table 2). Four genes with extremely low HPT (more than tenfold 

below median) were found to have no expression in forebrain, whereas 

five genes with high HPT (more than fivefold above median) showed 

high expression (Supplementary Fig. 11). The latter included one 

novel gene (Fig. 5d and Supplementary Fig. 11) and two poorly 

characterized loci associated with neurodevelopmental disorders34,35. 

Having qualitatively validated forebrain HPT, we used EFilter to pre-

dict mRNA levels in seven additional cell types (NPC, embryonic 

stem (ES) cell, mouse embryonic fibroblast, B-cell, myoblast, myo-

tube and 3T3-L1 pre-adipocyte), based on H3K4me3 and H3K36me3 

ChIP-seq data from previous studies31,33,36,37. Sample-specific gene 

expression was estimated as the log-ratio relative to the median of 

the eight samples. We then performed greedy multiple linear regres-

sion to identify the four transcription factor–binding motifs from 

TRANSFAC and JASPAR27,28 that best explained sample-specific 

expression (Fig. 4b). As expected, this analysis revealed known reg-

ulators of the relatively pure cell types (Fig. 6a and Supplementary 

Table 3). Four known regulators of forebrain development, Sox2, 

Rest, E2f and Tef, were also accurately identified. Moreover, de novo 

motif detection at forebrain-specific promoters revealed an ‘extended 

ZNF143 motif ’ (ACTACAnnTCCCAnRR; Fig. 6b) that was previ-

ously found at ZNF143, RBP-J and Notch1 binding sites in human 

T cells38. This result suggests a novel molecular mechanism for Notch 

signaling in forebrain development, potentially mediated by ZNF143 

and RBP-J binding at the detected motif. Thus, HPT-based inference 

of master transcription factors is effective in pure cell lines and also 

in complex tissues in vivo.

As NPCs are a major constituent of e11.5 forebrain, it is possible 

that their chromatin signal might obscure the signals of other fore-

brain cell types. We therefore asked whether master regulators of non-

NP forebrain cells could be inferred from the in vivo ChIP-seq data. 

To this end, we regressed the log ratio of forebrain (in vivo) and NPC 
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Figure 6 Transcription factor inference from 

ChIP-seq on pure and heterogeneous samples. 

Expression was predicted in e11.5 forebrain and 

seven cell lines by EFilter based on H3K4me3 

and H3K36me3 ChIP-seq data. Expression 

levels of rank-invariant genes were imputed from 

ES–cell RNA-seq data. Expression fold-change 

relative to the median in the eight samples 

was modeled using motif (from TRANSFAC 

and JASPAR27,28) occurrence at promoters, 

to predict the most relevant transcription 

factors. (a) The top four predictive transcription 

factor motifs are shown for mouse e11.5 

forebrain, mouse ES (mES) cells, myotube 

cells and human B cells. (b) The de novo motif 

detected in promoters of the top 3,000 genes 

with forebrain-specific predicted expression 

(HPT). (c) Three motifs most predictive of HPT 

upregulation in forebrain relative to NPC. The 

third motif belongs to steroid hormone receptors 

(NR3C1-4), namely, progesterone receptor (PR),  

glucocorticoid receptor (GR) and androgen 

receptor (AR). (d–f) Enriched annotations of 

genes with forebrain-specific HPT that contain 

a specific motif (REST, E2f or de novo motif) 

within the promoter.
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(in vitro) HPT against TRANSFAC and JASPAR motif occurrence at 

RefSeq gene promoters. The three motifs most predictive of upregu-

lation in forebrain relative to NPCs (Fig. 6c) were AP-2, RREB1 and 

steroid hormone receptor (NR3C1-4). AP-2 is not expressed in NPCs, 

but plays a key role in neural crest development39. RREB1 and NR3C1 

(glucocorticoid receptor) are both upregulated (fold change >1.5) in 

e11.5 forebrain relative to NPCs, based on HPT estimates. These 

results suggest that non-NPC regulatory signals are also discernible 

in the forebrain ChIP-seq data.

To explore the functional roles of the inferred transcription factors, 

we defined their regulatory targets in forebrain as promoter sequences 

that contained a motif match and showed forebrain-specific HPT. 

Using the GREAT40 tool, we found that synaptic transmission and 

glutamate receptor pathway genes were enriched in the target gene 

set for Nrsf (Fig. 6d), which is consistent with the known role of Nrsf 

in brain development41. E2f targets were also enriched for functional 

annotations matching the known neurodevelopmental functions of 

the E2f family42 (Fig. 6e). Notably, Notch1 targets that were predicted 

by using the de novo motif highlighted control of telomerase activity 

and cell cycle, both functions previously linked to Notch signaling43,44 

(Fig. 6f). Thus, in vivo chromatin profiles indicate not merely the 

identity but also the functional role of key transcription factors in the 

target tissue, despite cellular heterogeneity.

DISCUSSION

The data analysis problems associated with sequence-tag profiles 

are not unique to bioinformatics. Rather, they are special cases of 

more general problems that have long been studied in the field of 

signal processing. We have shown that a single ROC-AUC optimiz-

ing algorithm (DFilter) can detect functional signals in tag profiles 

from diverse assays (e.g., histone ChIP-seq, TF ChIP-seq, DNase-

seq and FAIRE-seq), and outperform more specialized algorithms in 

each case. Importantly, DFilter extends seamlessly to optimal integra-

tive analysis of multiple data sets, as we demonstrated by combining 

DNase-seq and FAIRE-seq data to detect open chromatin. DFilter 

should also be applicable to other signal detection problems, such as 

Sono-seq, CLIP-seq and ChIP-exo1,45,46.

The generality of DFilter allowed unbiased comparison of DNase-

seq and FAIRE-seq signals on a benchmark set of cis-regulatory 

regions. Given equal sequencing depth, DNase-seq showed greater 

sensitivity at a broad range of regulatory sites, though the difference 

was most pronounced at promoters. Of course, this must be balanced 

against the relative simplicity of the FAIRE-seq protocol, which can 

yield comparable sensitivity at nonpromoter regions, given greater 

sequencing depth.

Our signal estimation method, EFilter, consistently outperformed 

the sum-of-tags approach20 at predicting mRNA levels from histone 

ChIP-seq data. EFilter learns systematic gene-specific effects that 

are correlated across different cell lines, and suffers minimal loss 

of accuracy (1–2%) when trained on data from unrelated cell types. 

EFilter achieved correlation coefficients as high as R = 0.93 between 

predicted and measured expression, indicating that gene expression 

is highly correlated with chromatin state once gene-specific effects 

are taken into account. Two to three histone ChIP-seq data sets were 

sufficient to achieve near-maximal correlation with mRNA levels, 

and even a single suitably chosen data set (H3K27ac) could provide  

accurate predictions.

There is a vast literature26,47 on using transcriptomic data in con-

junction with promoter motif analysis to infer the identity of key 

upstream regulatory factors (that is, transcription factors). These 

methods are based on the assumption that expression levels are  

correlated with the occurrence of relevant transcription factor– 

binding motifs in the promoter region. We observed that this cor-

relation was even stronger when we replaced actual mRNA levels 

with chromatin-based expression predictions. As motif occurrence 

influences both histone marks and expression through transcrip-

tion factor–DNA binding, our results suggest that transcription  

factor binding to promoters is more tightly correlated with chromatin 

state than with mRNA level. Consequently, motif-based regulatory 

transcription factor inference should ideally be done using histone-

predicted, rather than actual, expression.

Tissue heterogeneity is a common cause for concern for in vivo 

sequencing-based functional studies. However, our results demon-

strate that ChIP-seq can be used to identify key regulatory transcrip-

tion factors even in heterogeneous samples. This is also supported by 

a ChIP-seq study of tissues from e14.5 and adult mouse embryos29. 

Furthermore, transcription factor functions can also be inferred from 

the same data, through analysis of enriched target-gene annotations. 

Notably, we uncovered an ACTACAnnTCCCAnRR motif in the pro-

moters of mouse forebrain-specific genes, which may mediate the 

known effects of Notch signaling on telomerase activity and cell cycle 

control during brain development43,44. Although the exact degree of 

heterogeneity in e11.5 forebrain (or in e14.5 anatomical structures) 

is not known, it is possible that other samples could be even more 

heterogeneous, and therefore refractory to the methods described 

here. In such cases, cell sorting might be needed before functional 

analysis. Moreover, our approach does not directly address the issue 

of determining the cell-type specificity of the transcription factors 

inferred to be active in heterogeneous samples, which remains a 

challenge. Nevertheless, our results demonstrate that ChIP-seq on 

heterogeneous tissues can yield substantial mechanistic insights.

METHODS

Methods and any associated references are available in the online 

version of the paper.

Accession codes. ChIP-seq data from e11.5 mouse forebrain, GEO: 

GSE34073). The EFilter and Dfilter tools are available at http://collabo-

rations.gis.a-star.edu.sg/~cmb6/kumarv1/dfilter/ and Supplementary 

Data File.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Constructing and normalizing the tag profile signal. To reduce computa-

tional memory requirements, we segmented the genome into nonoverlapping 

n-bp bins of equal width, and the whole-genome sequence tag profile was 

defined as the number of tags in each genomic bin. This binning approach 

has no substantial impact on interpretability, provided the bin size remains 

smaller than the characteristic length scale of the signal of interest. We selected 

a bin size of 200 bp for EFilter and 100 bp for DFilter, with a second-pass 

refined bin size of 5 bp when DFilter was used to analyze TF ChIP-seq data. 

On the assumption that the sequenced DNA fragments were ~200 bp in length, 

sequence tags were shifted by 100 bp in the direction of their alignment to 

the reference genome, and then counted in the bin containing the shifted tag 

start site. A more tailored approach that estimates mean fragment length from 

the data and shifts tags by half the estimated length was used at a bin size of 

5 bp. Multiple duplicate tags with the same orientation and starting base-pair 

position were replaced by a single tag.

Whenever a control data set was available, the tag-count signal of inter-

est was divided by the corresponding control signal to minimize artifactual 

peaks caused by repetitive sequences and corrected for GC content biases. In 

order for this normalization approach to be robust, the control signal must 

be smoothed over a length scale that includes a sufficient number of tags. 

We set this minimum tag number at 20. For each genomic bin, the control 

tag density was estimated within a 1-kbp window centered on the bin, if the 

1-kbp window contained at least 20 tags. If not, a 5-kbp window was used, or 

a 10-kbp window, if even the 5-kbp window was insufficient to accumulate 

20 tags. When even this was insufficient, the control tag density was set to 

a pseudo-count value of 20 tags per 10 kbp. Thus, the smallest value of the 

denominator during control normalization would be 0.2 tags/bin (assuming 

100-bp bins). Control data sets were used for transcription factor and histone 

ChIP-seq analysis, where available. No control data were available for DNase-

seq and FAIRE-seq libraries.

ROC-AUC maximizing detection filter (DFilter). DFilter takes as input a 

set of sequence tags mapped to a reference genome. Based on the genomic 

distribution of tags, the algorithm classifies individual n-base-pair bins as posi-

tive (signal) or negative (noise) regions. For example, if FAIRE-seq data was 

supplied as input, DFilter would be used to detect open chromatin regions in 

the genome. For efficiency, DFilter implements linear finite-impulse-response 

detection, that is, a windowed linear filter h of user-specified width, followed 

by the standard thresholding step. If the user does not specify a filter width, 

DFilter learns the filter width from an average signal profile of a set of posi-

tives. The problem of designing a linear detector that maximizes accuracy, 

as defined by the ROC-AUC, has a well-known solution in the field of signal 

processing11. The solution relies on an interesting property of the ROC-AUC, 

namely that it equals the probability of observing a higher detector output at a 

signal region than at a noise region. Under the Gaussian-noise approximation, 

maximizing the latter probability is equivalent to maximizing a z-score, the 

square of which can be thought of as the square root of the signal-to-noise ratio 

of the detector. The Hotelling observer11, also known as the pre-whitening 

matched filter, is the filter that maximizes this z-score, and thus maximizes 

ROC-AUC. DFilter first estimates the requisite means and covariance matrices  

of the input sequence tag data, calculates the form of the optimal detec-

tion filter (Hotelling observer) and then applies this filter to the tag profile.  

The filtered profile can then be thresholded to detect genomic regions of inter-

est, such as promoters.

Given the observed signal vectors at positive regions, xp, and at negative 

regions, xn, with variances Rp and Rn, respectively, the z-score of the positives 

relative to negatives can be written as 

Z
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where h is the linear filter and the superscript H represents the Hermitian 

transpose. Here, h is a row vector and xp and xn are column vectors, and each 

vector spans a user-specified number of genomic bins. The term z-score corre-

sponds to signal-to-noise ratio for the measure of detection. The optimal linear 

detection-filter that maximizes the above z-score, and therefore maximizes 

ROC-AUC under the Gaussian noise approximation, can be derived as 

h K E x E xp n= −−1
( ( ) ( ))

where K is the mean of covariances of observations at positive and negative 

regions such that K = (Rp + Rn)/2.

Designed in this manner, the linear filter h is known as the Hotelling 

observer, or pre-whitening matched filter11,48. Ideally one would desire an 

infinite amount of data in order to calculate the exact covariance matrix K. 

Its estimation using a limited amount of data is a classical signal processing 

problem, conventionally solved with help of information-theoretic dimen-

sion reduction criteria like AIC, MDL or EDC49,50. In our tests, the EDC2 

criterion50 was the most robust (data not shown), and we therefore used it 

to estimate the reduced-dimension covariance matrix, and then to invert  

the matrix.

When multiple signals (next-generation sequencing data sets) are to be inte-

grated and used jointly for signal detection, the optimal filter can be straight-

forwardly derived by conceptually concatenating the individual data vectors 

and estimating their joint co-variance matrix. The concatenated signal can be 

written as X = (x1; x2), where x1 and x2 denote signal vectors from the two data 

sets that cover a given genomic region. The ROC-AUC maximizing filter hc 

for the combined signal can be derived exactly as before, so that 

h K E X E Xc p n= −−1
( { } { })

where K is again the mean of the covariance matrices of the observed con-

catenated signals at positive (Xp) and negative (Xn) regions. Note that this 

concatenation approach does not entail any loss of generality or optimality, 

as it merely replaces a “two-dimensional” (that is, two-row) coefficient matrix 

with a single-row matrix having twice as many columns.

When used to detect asymmetric, directional features such as promot-

ers, DFilter was trained on positive regions aligned in the same direction, 

resulting in an asymmetric filter shape. This asymmetric filter was applied to 

chromatin profiles in both directions, and the larger of the two filter outputs 

was assigned to each genomic bin. Some chromatin profiles (e.g., H3K4me3) 

are characterized by focal peaks at regulatory elements and also, occasion-

ally, broad plateaus of enrichment over gene bodies. Copy-number-amplified 

regions in karyotypically aberrant cell lines such as K562 could also result in 

broad plateaus of elevated signal. In such cases, when detecting focal peaks 

at regulatory elements, it is desirable to filter out the broad plateaus, since 

they could create artifactual peaks. This can be done by applying a pre-filter 

to the data that suppresses broad signal features (that is, a ‘high-pass’ filter) 

before further processing by DFilter. The same outcome can also be achieved 

by modifying the filter coefficients of DFilter. The simplest modification that 

achieves this goal is to shift all of the filter coefficients down until their sum 

becomes zero. We set the sum of the DFilter filter coefficients to zero when 

detecting peaks in H3K4me3, DNase-seq and FAIRE-seq data. In contrast, 

for TF ChIP-seq and H3K36me3, filters were used as is, without setting the 

coefficient sum to zero.

When positive regions are not defined by the user, DFilter smoothens the 

tag profile using a 1-kbp smoothing window, and prioritizes all bins with a 

smoothed score greater than two s.d. above the mean as potential positives. 

Sets of prioritized bins within 1 kbp of each other are merged to define can-

didate regions, and the top 5% of such regions by smoothed peak height are 

discarded as outliers. The top 1,000 regions among the remaining candidates 

are defined as positives, aligned by their central bin and trimmed to the user-

specified width. The corresponding 1,000 unsmoothed tag-count vectors of 

fixed length are used to define xp and Rp. Negative regions of fixed width are 

chosen at random from the genome, based on closeness to the background 

signal level, and used to define xn and Rn.

After defining positive and negative training sets, DFilter calculates the 

coefficients of the Hotelling detection filter and then applies the filter to 

the genome-wide binned tag-count signal. The filtered tag-count signal is 

then thresholded to detect significant genomic regions. The coordinates of 

predicted regions are chosen so as to include all contiguous bins that score 

above the threshold, and regions separated only by a short gap are merged 
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(see “Details of data analysis” below). The score of a region is defined as the 

highest value of the filtered signal in the underlying bins. Given sufficient 

sequencing depth, the central limit theorem states that the scores of noise 

regions will closely follow a Gaussian distribution. In practice, we have found 

that this is indeed a reasonable assumption. We therefore fit a Gaussian curve 

to the central region of the observed distribution of bin scores in the genome, 

and use the fitted distribution to estimate the P values of predicted positive 

regions. Supplementary Table 4 provides an overview of computational time 

taken by DFilter in comparison to other methods.

Mathematical aspects of linear estimation method (EFilter). We first 

describe the simplest case, in which EFilter uses a single sequence tag profile 

(e.g., ChIP-seq) to predict a continuous-valued parameter (gene expression, 

defined as log-RPKM). If there are n genes in the genome, and xi is the column 

vector of binned ChIP-seq tag counts within a genomic window containing 

the TSS of gene i, then the data matrix can be written as X = [x1, x2,…, xn]. If 

the genomic window used to estimate gene expression extends from bin −m1 

to bin m2 relative to the TSS, then the EFilter linear regression coefficients 

can be written as the row vector 

F f m f m f m= − − +[ ( ), ( ),..., ( )]1 1 1 2

and the row vector Y representing the log-expression values of the n genes 

can be written as 

Y FX v= +

where v is the error vector. It can be shown that the value of F that minimizes 

the sum of squared prediction errors vvH is given by 

F YX XX
H H= −
( )

1

As in the case of DFilter, we need to estimate the covariance matrix XXH and 

its inverse from the limited number of samples available in the training data, 

and as before, we use the EDC2 (ref. 50) criterion to derive robust matrix esti-

mates. Again, as in the case of DFilter, multiple predictive data sets (ChIP-seq 

data on 3 different histone modifications, for example) can straightforwardly 

be incorporated into the signal estimation formalism by concatenating the 

multiple data vectors for a single gene and then using the same equation as 

above to calculate the optimal concatenated regression coefficients. The EFilter 

and Dfilter tools are available at http://collaborations.gis.a-star.edu.sg/~cmb6/

kumarv1/dfilter/ and Supplementary Data File.

Embryonic mouse forebrain ChIP-seq library preparation. Mouse embry-

onic forebrain tissues were microdissected and pooled from timed pregnant 

matings for e11.5 CD1 (Hsd:ICR(CD-1)) embryos, with e0.5 being the morn-

ing a vaginal plug was detected. All animal procedures were done according to 

the Singapore A*STAR Biopolis Biological Resource Center (BRC) Institutional 

Animal Care and Use Committee (IACUC Protocol No: 100560). Dissected 

tissues were mechanically dissociated by passing through a cell strainer and 

fixed in 1% formaldehyde (diluted from 37% stock solution, Sigma, F8775) 

simultaneously following pre-treatment with 0.125% Trypsin/Versene solu-

tion. 36 forebrain pieces were used for each ChIP-seq library preparation. 

Cells were resuspended in SDS buffer and sonicated 12 times for 30 s with 30 s  

intervals with Bioruptor water bath sonicator (Diagenode). Following sonica-

tion, samples were diluted with IP dilution buffer and incubated with 50 µl affin-

ity resin coupled with 10 µl anti-H3K4me3 antibodies (Upstate, Cat# 07-473,  

Lot# 32497). Following washing steps, chromatin was reverse-crosslinked for 

purification of DNA.

H3K4me3 ChIPed DNA and 0.5% input DNA samples were amplified for  

8 cycles with GenomePlex Single Cell Whole Genome Amplification Kit (WGA4, 

Sigma) using universal primer linked to BpmI restriction site. Amplified DNA 

samples were digested with BpmI to remove universal primer. After quantifica-

tion of DNA with Quant-iT PicoGreen sdDNA Assay Kit (Invitrogen, P7589), 

12 ng of the DNA sample was directly used for Illumina sequencing adaptor 

ligation. Illumina sequencing was performed using GAII platform in GIS. 

In order to validate reproducibility of our ChIP-seq protocol, ChIP-seq was  

performed for two biological replicates for H3K4me3 (Supplementary Fig. 11). 

H3K36me3 data were obtained similarly using 15 µl of anti-H3K36me3 anti-

body (Abcam, Cat# Ab9050, Lot# 707981). As the DNA yield of H3K36me3 

ChIP was much higher, the WGA amplification step was not required, and 

ChIP DNA was directly used for Illumina sample preparation.

RT-PCR based expression validation. Total RNA was isolated from dissected 

mouse e11.5 forebrain tissues using Trizol (Invitrogen) according to the manu-

facturer’s instructions. Random primed cDNA synthesis was performed on  

2 µg of total RNA using Multiscribe reverse transcriptase (Applied Biosystems) 

in accordance with the manufacturer’s protocol. qRT-PCRs were performed 

on a 7900HT ABI platform using 2X SYBR green master mix (ABI). Analysis 

of relative mRNAs expression levels was performed by the 2-∆∆CT method 

with beta-actin as the internal control for normalization. Primers are listed 

in Supplementary Table 2.

Data sources and genome assemblies. All of the human sequence tags ana-

lyzed here were mapped to the hg18 assembly of the human genome. CD4+ 

T cell ChIP-seq data were derived from previous work12. ChIP-seq data  

and peak calls for K562, GM12878, NHEK, Huvec and HepG2 cells were  

produced by an ENCODE consortium group13 and downloaded via the  

UCSC genome browser (http://genome.ucsc.edu/). DNase-seq and FAIRE-

seq analysis was based on previous sequence3, including matched PolII ChIP-

seq peak data. Analysis of CTCF peak coverage by FAIRE-seq and DNase-seq 

was based on ENCODE CTCF peak calls from Broad Institute ChIP-seq 

data13. CD4+ T cell RNA-seq data were from previous work16, whereas 

RNA-seq data from GM12878, K562, Huvec, HePG2 and NHEK cells gen-

erated by Caltech group of ENCODE consortium17, were downloaded from  

the UCSC browser.

ChIP-seq data from mouse ES, MEF, NP cells and adult brain31,32 were 

downloaded from the UCSC browser. The mouse ES cell TF ChIP-seq data-

sets were derived from previous work18. The downloaded tag locations for 

H3K4me3 and H3K36me3 ChIP-seq from myotube, myoblast and 3T3 

cells33,37) were mapped from the mm9 mouse genome assembly to mm8. 

RNA-seq data for mouse ES cells were adapted51. The H3K4me3 ChIP-seq 

data from mouse lung, heart and spleen were adapted29.

Details of data analysis. DFilter trains itself for each data set separately. It 

does not use the same filter for all cell types or data types as the noise level 

or signal pattern can vary for different data sets. While processing HK4me3 

ChIP-seq data, DFilter used a Hotelling detection filter (with mean as zero) of 

width 100 bins (10 kbp); however, for H3K36me3 ChIP-seq it used a filter of  

30 bins (3 kbp) without making its mean as zero. Hence a non-zero-mean filter 

of width 25–40 bins (2.5 kbp–4 kbp) could be suitable for detecting wide pattern 

in ChIP-seq datasets such as for H3K36me3 and H3K27me3 histone modifica-

tions. When processing DNase-seq and FAIRE-seq data, the filter (with mean 

as zero) width was 50 bins (5 kbp, 1 bin =100 bp). For TF ChIP-seq analysis,  

DFilter initially used a bin width of 100 bp, and a filter width of 20 bins  

(2 kbp) in the first round of detection. Then in the second pass, the bin width 

was narrowed to 5 bp for improved resolution, and a second Hotelling detec-

tion filter of width 40 bins (200 bp) was applied. In the second pass DFilter 

also re-estimates the length of fragments so that the detected peak centers are 

found with high accuracy. For promoter detection, peaks in the filter output 

whose edges were within 1 kbp of each other were merged, whereas for FAIRE-

seq and DNase-seq analysis, predicted open chromatin regions were merged 

only if they lay within 400 bp of each other. Input control data were used for 

H3K4me3 ChIP-seq data sets except for CD4+ T cells. Similarly input control 

was used for TF ChIP-seq and H3K36me3 ChIP-seq analysis. No input control 

was used for DNase-seq and FAIRE-seq data sets.

For detecting peaks in H3K4me3 ChIP-seq data, F-seq (ref. 6) was used with 

default parameters. MACS5 was used with mfold = 10, and peaks were ranked 

by P value. SICER15 was used with window size = 200 bp, gap size = 400 bp and 

FDR = 0.01. Findpeaks14 was used with dist_type=1 200 (triangular distribu-

tion) and eff_size = 0.8, with the remaining options at their default settings. 

For peak-detection in TF ChIP-seq, QuEST4 was used with default parameters, 

except that the detection threshold was lowered in order to call a larger number 

of peaks. For DNase-seq and FAIRE-seq analysis, F-seq and ZINBA peaks 
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were downloaded from the UCSC browser. For histone ChIP-seq data analysis 

ZINBA7 was used using the pipeline function provided by authors.

For Figure 1b–c the RefSeq promoters whose genes had RNA-seq based 

FPKM level above median were defined as active. For measuring performance 

of promoter detection, those predicted sites were considered positives that were 

within 400 bp of RefSeq gene TSS. All peaks wider than 20 kbp were truncated to 

a width of 20 kbp. In order to determine the false-positive rate for ROC analysis, 

negative (nonpromoter regions) were defined as 2-kbp regions that lay at least  

2.5 kbp from the nearest RefSeq TSS, UCSC KnownGene TSS or CpG island.

The performance test for H3K36me3 peaks was done by checking the aver-

age coverage of genes according to their expression level. In order to avoid bias 

due to different peak widths, for every method only that many top-ranking 

peaks were allowed which covered up to 10% of bins in the total genome.

To define an independent benchmark set of positive regions for evaluating 

open chromatin detection, the union of peaks from H3K4me1, CTCF and PplII 

ChIP-seq was used. Alternatively, we used peaks in H3K27ac ChIP-seq as posi-

tive regions. In order to avoid biasing the benchmark set in favor of DFilter, 

we used externally generated peak calls for these data sets. ENCODE peaks 

in H3K4me1, H3K27ac and CTCF ChIP-seq called in previous work13 were 

downloaded from the UCSC browser. Similarly, PolII peaks called using F-seq3 

were also downloaded from the same source. A positive region from the bench-

mark set was counted as detected if it lay within 400 bp of the center (summit) 

of a FAIRE-seq or DNase-seq peak called by one of the algorithms.

The HPTs for seven mouse cell lines and e11.5 mouse forebrain were calcu-

lated using ChIP-seq data of H3K36me3 and H3K4me3 using histone-rank-

invariant genes and source as ES cells.

Training and test sets for evaluation of EFilter. Paired-end 2 × 75 bp RNA-

seq data generated by the Caltech ENCODE group were downloaded from 

the ENCODE website (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/ 

encodeDCC/wgEncodeCaltechRnaSeq/). Expression levels of RefSeq genes 

were quantified as FPKM using Cufflinks21 with the options –frag-bias- 

correct and –multi-read-correct. The FPKM values of transcripts having the 

same strand and TSS were added together. The signal of ChIP-seq tag-counts 

in 200-bp bins lying between 2 kbp (m1) upstream to 4 kbp (m2) downstream 

of RefSeq TSSs were used by EFilter to model expression. Gene expression 

(FPKM) and binned ChIP-seq tag-counts were log-transformed while doing 

regression. When RNA-seq and ChIP-seq data were from the same cell line, 

all RefSeq genes were used in the training set and also in the test set. However 

when RNA-seq data were not from the same cell line as ChIP-seq, only rank-

invariant (RI) genes were used in the training set, while the test set still com-

prised all genes. In generating the results shown in Figure 3b,c, three ChIP-seq 

data sets (H3K4me3, H4K20me1 and H3K27ac) were used to calculate HPT. 

However, RI genes were defined only on the basis of H3K4me3 and H3K27ac, 

the two most predictive histone marks. RefSeq genes were ranked by tag count 

in 3 kbp around the TSS, and genes whose rank difference between source and 

target cell line was <1,000 for both marks were defined as RI genes.

Motif-based expression prediction. Promoters were defined as 1-kbp regions 

on either side of RefSeq TSSs, and scanned for the presence or absence of all 

TF-binding motifs from the TRANSFAC and JASPAR databases27,28. A binding 

motif was said to be present if the promoter contained at least one DNA n-mer 

with an above-threshold log-odds score. In order to set the score threshold for 

a motif, we randomly generated 10,000 n-mers from the probability distribu-

tion (motif-PWM) of bound sites, and chose a cutoff at the 85th percentile, 

that is, at the score of the 8,500th n-mer. Thus for each motif, occurrence score 

at every promoter was converted to either 1 or 0.

A greedy linear regression method was used to select the set of k promoter 

motifs that best predicted the log-expression level of RefSeq genes, with k 

varied from 1 to 15. Promoter motifs were used to predict expression in four 

cell types: GM12878, HepG2, Huvec and NHEK. Two-fold cross-validation 

was performed by randomly choosing half of the gene set for training and the 

other half for test. For the genes in the test set, we calculated the Pearson cor-

relation between input log-expression values and the motif-based predictions 

(Fig. 4 and Supplementary Fig. 9).

Other details of analysis. Transcription factor motifs in ChIP-seq peak regions 

were detected using MOODS52. The motif thresholds were defined based on  

P < 0.0001). Then for Figure 2a, accuracy of peak detection was defined based 

on fraction of peaks that contained motif for the corresponding transcription 

factor within 30 bp of peak center (summit).

The de novo motif detection using the top 3,000 forebrain-specific promot-

ers was done using MEME53.

To find enriched functional terms for forebrain-specific promoters 

GREAT was used in hypergeometric mode. For this purpose positives were 

locations of promoter having a transcription factor motif and forebrain- 

specific HPT, and the background set consisted of all promoters that had  

forebrain-specific HPT. This highlighted the specific role of transcription  

factor target genes in forebrain.
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