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In this paper, the behavior of a continuous flow in the vicinity of a closed 
positively .invariant subset in a metric space is investigated. The main theorem 
in this part in some sense generalizes previous results concerning classification 
of the flow near a compact invariant set in a locally compact metric space which 
was described by Ura-Kimura (1960) and Bhatia (1969). By applying the 
obtained main theorem, we are able to prove two persistence theorems. In the 
first one, several equivalent statements are established, which unify and 
generalize earlier results based on Liapunov-like functions and those about the 
equiyalence of weak uniform persistence and uniform persistence. The second 
theorem generalizes the classical uniform persistence theorems based on analysis 
of the flow on the boundary by relaxing point dissipativity and invariance of the 
boundary. Several examples are given which show that our theorems will apply 
to a wider rarity of ecological models. 
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1, I N T R O D U C T I O N  

Since Butler et al. (1986) and  Butler and  Wa l t ma n  (1986) published two 
consecutive papers in persistence theory, a n u m b e r  of papers on persistence 
in dynamical  systems have appeared; see, for example, D u n b a r  et al. 

(1986), F o n d a  (1988), Garay  (1989), Hofbauer  (1989), Hofbauer  and  So 
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(1989), Hale and Waltman (1989), Freedman and So (1989), Freedman 
and Moson (1990), Tang (1990), Teng and Duan (1990), Yang and Ruan 
(1992), and Thieme (1993). There are also two recent survey papers by 
Hutson and Schraitt (1992) and Waltman (1992) on persistence theory as 
it stands now. 

As far as we understand the literature, there are basically two distinct 
techniques utilized in determining persistence criteria: 

(1) analyzing the flow on the boundary and 

(2) using Liapunov-like persistence functions. 

The first approach was proposed by Freedman and Waltman (1984) 
to study persistence in three interacting predator-prey populations. To use 
this approach one needs the so-called Butler-McGehee lemma, which says 
that if a trajectory, not on the stable manifold of a given isolated hyper- 
bolic equilibrium P, has that equilibrium in its omega limit set, then its 
omega limit set also contains points on the stable and unstable manifolds 
of the equilibrium different from P. This lemma has been extended to a 
compact isolated invariant set and a continuous flow on a locally compact 
metric space by Butler and Waltman (1986), to a continuous semiflow by 
Dunbar etal. (1986), and to a complete metric space (not necessarily 
locally compact) by Hale and Waitman (1989). Recently, it also has been 
generalized by Yang and Ruan (1992) in such a way as to encompass 
orbits from a set rather than a single point and to consider the closure of 
the union of the omega limit sets of all points in that set. With such a 
generalization, a uniform persistence theorem has been established for 
certain dynamical systems which are not necessarily dissipative. Garay 
(1989) generalized the main theorem of Butler and Waltman (1986) by 
using Conley's (1978) theory of invariant sets and a theorem obtained by 
Ura and Kimura (1960) and Bhatia (1969). Briefly speaking, the Ura- 
Kimur-Bhatia theorem means that in a local compact space, either an 
isolated compact invar/ant set is asymptotically stable (positively or 
negatively) or there exist two points not in the compact set, whose omega 
or alpha limit sets belong to the compact set, respectively. 

The approach of using Liapunov-like functions has appeared in 
various forms, for example, Gard and Hallam (1979), Hoibauer (1980), 
Hutson (1984), Gard (1987), Fonda (1988), Hofbauer and So (1989), 
Fernandes and Zanolin (1989), and Freedman and Ruan (1994). The nicest 
statement is due to Fonda (1988), who stated the result in terms of 
repellers. This result has been generalized (and reproved) by Hofbauer and 
So (1989) to discrete semidynamical systems. For more details and more 
references about the two approaches and their applications in biological 
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models, we refer to the survey papers by Hutson and Schmitt (1992) and 
Waltman (1992). 

In this paper, we In'st investigate the behavior of the flow in a metric 
space (not necessarily locally compact) near a dosed positively invariant 
set (not necessarily compact); hence, our results generalize the theorem 
obtained by Ura and Kimura (1960) and Bhatia (1969) and the Butler- 
McGehee lemma (Butler and Waltman, 1986). The generalization allows us 
to prove two persistence theorems. In the first theorem, several equivalent 
statements are established, which include the statement that if the flow is 
dissipative on a subset of the interior of the positive cone, weak uniform 
persistence is equivalent to uniform persistence and is also equivalent to 
those uniform persistence conditions obtained by using Liapunov-like func- 
tions. The first equivalence improves a similar equivalence obtained by 
Freedman and Moson (1990). Recently, Thieme (1993) has obtained some 
very interesting results about this kind of equivalence. Some earlier results 
are unified and generalized in the first theorem. 

In the second theorem, we generalize the classical theorem of Butler 
and Waltman (1986) by relaxing point dissipativity and invariance of the 
boundary of the stated subset. The flow is required to be point dissipative 
only on a subset of the interior of the positive cone near the boundary. 
Similar attempts have been made by Teng and Duan (1990), Thieme 
(1993), and Yang and Ruan (1992). 

The rest of this paper is organized as follows. In Section 2, basic nota- 
tions and definitions are introduced. The behavior of the flow near a closed 
positively invariant set is discussed in Section 3. In Section 4, two unified 
and generalized persistence theorems are given. In the last section, we give 
several examples to illustrate our results. 

2. DEFINITIONS AND NOTATIONS 

In this section, we give some basic notations and definitions on 
dynamical systems which we require for this paper. 

Let X be a metric space with metric d. Let R denote the set of real 
numbers with the usual topological and algebraic structure, and let R + and 
R -  denote the sets of nonnegative and nonpositive real numbers, respec- 
tively. We consider a continuous flow : = (X, R, n) defined on X, where 
7~: X x R --, X is a continuous map such that ~(x,  O) = x for all x e X and 
lt(Tc(x,t),s)=~(x,t+s) for' all xeX,  t, seR. If M ~ X  and K~R,  then 
7~(M, K) denotes the set 

{n(x, t): xeM, teK} 
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For any M c X, we define 

?(M)-- 7r(M, R), ?+(M) =Tr(M, R+), ?-(M) =Tt(M, R-) 

For singleton Mffi {x}, the corresponding sets are denoted 7(x), ?+(x), 
y - (x )  and are, respectively, called the trajectory, positive trajectory, and 
negative trajectory o f  x. A set M c X is called invariant, positively invariant, 
or negatively invariant if and only if M =  ?(M), M =  7+(M) or M - ~ , - ( M ) ,  
respectively. The boundary, closure, and interior of a set M c X are denoted 
0M, 21~, and A~r, respectively. 

For any 8 > 0 and M c X, we 

S(M, e) - {x: 

S[M, e] = {x: 

H(M, e) --- {x: 

The lirrtit sets, prolongational 
point x ~ X are defined as follows. 

define 

x~X,a(x,M)<e} 

xeX,  a(x, M) ~8} 

x e X ,  d(x, M) =e} 

sets, and prolongational limit sets of a 

Definition 2.1. For each x ~ X, the set 

D+(x) = {y~X:  there are sequences {x.} c X ,  {t.} c R  + 

such that x .  ~ x, rt(x., t .) ---, y as n --* co} 

is called the first positive prolongation of x. The first negative prolongation 
D- (x )  is defined by requiring {t.} c R - .  The first prolongational limit set 
of x �9 X is defined as 

Y+ (x) = { y ~ X: there are sequences {x.} c X, { t.} c R + 

such that x .  --, x, t .  --, oo, ~t(x., t .) -* y as n - ,  oo } 

The first negative prolongational limit set J - (x )  is defined by requiting 
{ t.} c R -  and t.--, -a3 as n --, oo. The positive (or omega) limit set of 
x ~ X is defined to be 

A +(x) = { y ~ X: there is a sequence { t.} c R + with 

t.---, +oo and rt(x, t.)--, yasn- - ,  oo} 

The negative (or alpha) limit set A - ( x )  is defined by requiring {t.} = R -  
and t n"*  --00 as n--* oO. 

Obviously, for any x ~ X ,  we have D+(x)=r+(x) ,  D - ( x ) = r - ( x ) ,  
J+ (x) = A +(x), and J-(x) = A-(x). 
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Proposition 2.2. For any x e X ,  D+(x) is closed positively invariant, 
A +(x) and J+(x) are closed invariant. Furthermore, 

D +(x) =~ +(x) uJ+(x)  

Similar results hold for D-(x) ,  A- (x ) ,  and J-(x) .  

For the above definitions and results, we refer to Bhatia and Szeg6 
(1970) and Bhatia (1970). 

Definition 2.3. For any x e X ,  if ?+(x)" is compact, then the flow ~" 
is said to be quasi-dissipative at x. Let M ~ X be a nonempty set. If ~" is 
quasi-dissipative at each point x r M, then ~" is said to be quasi-dissipative 
over M. 

If a flow ~" is quasi-dissipative over M, then for any point x e M, the 
omega limit set A+(x) is nonempty, compact, connected, and invariant. 
Note that the definition of quasi-dissipativity coincides with the definition 
of positive compactness in Sell (1967). 

Definition 2.4. For any x e X, if there exists a compact neighborhood 
U of x, and a compact set V such that for any y e U, there is some time 
t ( y ) > 0  such that tr(y, t ) e  I~for all t>~t(y), then the flow ~ is said to be 
locally dissipative at x. The flow ~r is locally dissipative over a nonempty set 
M c X if ~r is locally dissipative at each point x e M. 

By Definition 2.4, if ~r is locally dissipative at x with corresponding 
sets U and V, then one can find t (U)>  0 such that for all y e U and 
t/> t(U), lr(y, t ) � 9  lk holds. The set it(U, R § ) is relatively compact. 

Definit ion 2.5. The flow ~r is point dissipative over a nonempty set 
M ~ X if there exists a compact set N c X such that for any y e M, there 
exists t ( y ) > 0  such that for any t>~t(y), ~r(y, t ) e~ .  

For the above definitions and their inter relations, we refer to Hale 
(1988) and Teng and Duan (1990). If the space X is locally compact, the 
above definition of point dissipativity coincides with dissipativity given by 
Butler et al. (1986) and Butler and Waltman (1986). 

DeFinition 2.6. A nonempty subset M ~ X is called an isolated set if 
there exists e > 0 such that for any invariant set N contained entirely in 
S[ M, el,  we have N c M. 
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If the set M is closed invariant, our definition coincides with the one 
given by Butler etal. (1986). Note that in Definition 2.6, it is not required 
that there exists an invariant set contained in M. For example, according 
to Definition 2.6, any regular point in Euclidean space R" is isolated. 

3. FLOWS NEAR A CLOSED POSITIVELY INVARIANT SET 

Let X be a metric space with metric d, and ~" be a continuous flow 
defined on X. In this section, we discuss the behavior of the flow near a 
closed positively invariant set in the metric space At. The main result of this 
section is Theorem 3.7, which gives a classification of possible behavior of 
the flow near a closed positively invariant set E in the metric space X where 
the flow ~" is assumed to be point dissipative on S[E, =]/E, the set of 
all points belonging to S[E, 0r but not E, and = is a suitable positive 
constant. 

In the case that X is locaUy compact and E is compact invaxiant sub- 
set of X, a Classification of behavior of the flow in the vicinity of E, 
described by Ura and Kimura (1960) and Bhatia (1969), may be stated as 
follows. 

Ura-Ifimura-Bhatia Theorem. Let the metric space X be locally com- 
pact and E c X be a compact invariant subset of  X. Then one o f  the following 
statements holds. 

(i) The set E is not isolated, that is, for any neighborhood ql of  E, 
there exists an x ~ E  with 7(x)ca//. (Note that since E is 
invariant, •(x) c~ E = J~ ). 

(ii) There exist y(~E and z ~ E  such that ~ # A + ( y ) c E  and 
O # A - ( z ) c E .  

(iii) E IS positively (negatively) asymptotically stable, that is, any 
neighborhood ~ of  E contains a positively (negatively) invariant 
neighborhood ~ of  E such that for any xeq l ,  I Z ~ A + ( x ) c E  
(or 0 ~ A -(x)  c E, respectively). 

In Theorem 3.7, the space X is not required to be locally compact and 
the set E is required only to be closed and positively invariant. It is in this 
sense that the above theorem is generalized. 

If the subset E is reduced to an equilibrium of the flow ~', and if we 
make the further assumption that E is an isolated hyperbolic equilibrium, 
then from the above theorem we can see that either E is asymptotically 
stable (positively or negatively) or there exist two points y and z different 
from E such that A +(y)ffi E and A-(z)f f i  E. In fact, we have the following 
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so-caUed Butler-McGehee lemma (Freedman and Waltman, 1984; Butler 
and Waltman, 1986), which has a stronger conclusion in this case. 

Butler--McGehee Lemma. Let E be an isolated hyperbolic equilibrium 
in a locally compact metric space X, and suppose there exists x ~ E such that 
E ~ A + (x) but E ~.4 + (x). Then there exist points y and z in 11 + (x) different 
from E such that A+(y) f i e  and A - ( z )  =E. 

Our first result, Theorem 3.1 of this section, may be regarded as a 
generalization of the Butler-McGehee lemma in some sense. We mention 
here that Sell and Sibuya (1967) described a classification for the behavior 
of solutions of the nonautonomous differential equations in the vicinity of 
a critical point under some general assumptions and their result is similar 
to the above Ura-Kimura-Bhat ia  theorem if the compact set E is reduced 
to an equilibrium and the system is reduced to the autonomous case. 

Theorem 3.1. Let E be a closed positively invariant subset of  X and x 
be a point in X with d( x, E) > O. Suppose the flow 3~ is locally dissipative at 
x and D + (x) r~ E ~ ~ .  Then for any 0 < e < d(x, E), there exists y ~ H(E, e) 
such that A+(y) c S [ E ,  el. 

Proof. Take z E D + (x)r~ E. Then" there exist sequences {xn} c X and 
{ tn} c R + such that x~ --* x, ~(x~, t~) --} z as n --* ~ .  Since ~- is locally dis- 
sipative at x, we can choose a closed neighborhood Ux of x such that 
Uxr~S[E,e]=~j  and lt(Ux, R + ) c  Ik, where Vx is a compact set. Also, 

S[E,e] 

Fig. l.  
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we can choose a dosed neighborhood Us of z such that Us c S[E, 8/2], 
where O<e<d(x ,E)  (Fig. 1). 

Without loss of generality, we assume that {x . }=U. ,  and 
{it(x., t.)} = U.. Let z.  = n(x . ,  t.). Then {z.} c Us. The positive trajec- 
tories ?+(x.) must touch the set H(E, e) sometime between t--O and t. .  
Defme 

�9 . ffi inf{ t: 0 < t < t.,  rt(x., t) E H(E, e), zt(x., (t, t.)) ~ S(E, e)} 

Clearly 0 < ~. < t . .  Let y .  ffi l t(x.,  ~.), then z.  ffi n(y. ,  t. - ~.), y .  r H(E, e). 
If there exists some y.eH(F.,  e) such that for all t e R  +, rt(y., t ) r  el, 
then let y -- y . .  Then A +(y) ~ S[E, e] and we are done. So in the following 
we suppose that for every point x . ,  there is s .  > t.  satisfying 

s. = max{ t: t. < t < +oo, lt(x., t) ~ H(E, e), n(x. ,  (t.,  t)) ~ S(E, e)} 

We denote p. f f in(x . , s . ) .  Then p .eH(E ,e ) ,  0 < r . < t . < s . <  +oo. Note 
that {y.} = V.,c~H(E,e), {p.} ~ Vxc~H(E,e) and since Vxc~H(E,e) is 
compact, we can choose a convergent subsequence of {y.} and a con- 
veigent subsequence of {p.} which we also rewrite as {y.} and {p.}. Then 
there exists y e H(E, ~) and p e H(E, 8) such that 

lim y .  = y, lira p .  -- p 
n ...* o o  n ~ o o  

Now we prove that s .  - r .  --, oo as n --. oo. Actually at this time we can 
prove that s . - t . - - ,  oo as n--* oo. I f  this is not true, we could find a 
sequence of the form { s . - t . }  and a constant T >  0 and, without loss of 
generality, say s. - t .  ---, T t> 0 as n ~ oo. Then we have that 

p -- lira n(p . ,  s .)  = lira 7r(z., s.  - t .)  = n(z, T) 

This is impossible since z r E, p r E, and E is positively invariant. Hence for 
any t > 0 ,  there exists an N,>O such that for any n > N , ,  we have 
~ ( y . , t ) r  and since l t ( y , t ) = l i m . _ = ~ ( y . , t ) ,  then ~t(y,t)r 
S[E,e].  Therefore ? + ( y ) c S [ E , e ]  and then A+(y )=S[E ,e] .  This 
completes the proof. [] 

Remark 1. In the case that every positive trajectory 7+(x.) exits the 
set S[E, 8] at the point p . ,  one can see that for the limit point p of {p.},  
we have A - ( p )  c S [  E, 8] and y r D § (x), p r J+ (x). 

Remark 2. If the set E is isolated with = > 0, i.e., every invariant set 
K contained entirely in S[E, ~] satisfies K a  E, in addition to the assump- 
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tion of Theorem 3.1, then for any 0 < t < m i n { 0 q  d(x, E)}, one can find a 
point y ~ H(E, ~) such that A +(y) c E. 

Remark 3. If the set E is compact invariant and the metric space X 
is locally compact, then the assumption of local dissipativeness at x can be 
removed for sufficiently small e > 0. 

If one requires that the set X/E is a positively invariant subset instead 
of E being positively invariant, where E is a nonempty closed set, then the 
conclusion of Theorem 3.1 also holds. In fact, we have the following result. 

Theorem 3.2. Let E be a closed subset o f  X such that the flow ~ is 
positively invariant over X/E. Let x q~ E be such that d(x, E) > O, and let the 
flow ~r be locally dissipative at x, D + ( x ) c ~ E # ~ .  Then for any 0 < e <  
d(x, E), there exists y E H(E, e) such that A +(y) c S(E, e). 

Proof. The proof is similar to that of Theorem 3.1. In this case, after 
constructing sequences { z,}, { t,}, and {sn} similar to those constructed in 
the proof of Theorem 3.1, one can show that tn - z~ ---, oo. [] 

If E is a closed positively invariant subset of X with nonempty 
boundary aE and nonempty interior/~, then/~ is also positively invariant, 
but 0E is in general not positively invariant. As in Theorem 3.2, we have 
the following theorem. 

Theorem 3.3. Let E be a closed, positively invariant subset of  X with 
nonempty I~ and aE. Let x r I~ and the flow ~r be locally dissipative at x. I f  
D+(x) c~OE#O, then for any O<e<d(x,  OE), there exists y~H(OE,~) 
such that A +(y) c S[aE, t]. 

Note that for any x e X, A + ( x ) c J + (x) c D + ( x ). Hence the following 
corollaries are valid. 

Corollary 3.4. The conclusions of  Theorems 3.1, 3.2, and 3.3 hoM if 
the set D+(x) is replaced by J+(x). 

Corollary 3.5. The conclusions of  Theorems 3.1, 3.2, and 3.3 hold if  
the set D+(x) is replaced by A+(x). In this case, the flow ~= is required only 
to be quasi-dissipative at x instead of  locally dissipative at x. 

The proof of Corollary 3.5 is similar to that of Theorem 3.1. The only 
difference is that every point in {xn} is x and the compact set Vx should 
be changed to 7+(x). 

By Theorem 3.1 and Remarks 1 and 2, we also have the following. 

865/61~ 
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Corollary 3.6. Suppose E is a closed, positively invariant subset o f  X, 
xq~E, and 7+(x) is compact. I f  A + ( x ) n E # O ,  xocA+(x) /E,  and the set 
E is isolated with a corresponding number ~ > 0 such that any invariant set 
K contained entirely in S[E, ~] satisfies K ~  E~ then for any 0 <e < 
min{~, d(xo, E)}, there exist points y r H(E, e) n A +(x), and p ~ H(E, e) n 
A + (x) such that 

A+(y)=E, A-(p)=E 

Remark 4. Corollary 3.6 is similar to Theorem 2.2 of Dunbar et al. 
(1986), in which the map 7~ is a local semiflow. Also by Remark 3, 
Corollary 3.6 can be reduced to Theorem 4.1 of Butler and Waltman 
(1986). 

Theorem 3.7. Let E be a closed positively invariant set for a con- 
tinuous flow Sr on a metric space X. Suppose there exists ~ > 0 such that 
is point dissipative on S[ E, ~]/E, then one of  the following statements holds. 

( i)  The set E is not isolated, that is, for any e > O, there exists an 
invariant set K c  S[E, e] and K r E. 

( ii) There exists y e S ( E ,  oO/E, such that A +( y) = E. 

(iii) There is e > 0  such that for any x ~ S [ E ,  o~]/E, limt_.~ d(7~(x, t), 
E) >~e. 

Proof. Without loss of generality, we assume that (i) and (ii) do not 
hold and then show that (iii) holds. 

Choose 0 < 6 < ~, such that the neighborhood S[E, ~] of E is isolated, 
that is, if K is an invariant set and K =  S[E, ~], then K c  E. 

If there exists x ~ S [ E , ~ ]  such that A + ( x ) n E # O ,  take 0<Co<  
min{d(x, E), ~}. From Corollary 3.5 and Remark 2, there exists y r  H(E, ~o) 
such that A +(y) c E, which is impossible since y ~ S[E, a]/E and we assume 
that (ii) does not hold. Hence for any xr  A + ( x ) n E = O .  
Moreover, for any x r E, A +(x) n E = 0 .  

Since the flow ~ is point dissipative over S[E, ~]/E, we can find a 
compact set N such that for any y ~ S[E, ~]/E, there exists Ty > 0 such that 
7t(y, t) f N  when t >  Ty. Define 

{a+(y): yES[ , 

Then ~ = N  and ~ c N .  
Choose a sequence {en}, O < e n < ~  such that l im~_~en=O. If (iii) 

does not hold, then for any e~, we can fred xneS[E ,  oc]/E such that 
A +(x~) n H(E, ~ )  # 0 .  In this case, we must have A +(x~) n H(E, ~) # 0 .  
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Otherwise A+(x . )=S[E,  J]  and then A+(x~)cE,  which is impossible, 
and 

inf{d(y,E), ycA+(x~)} <e. ,  sup{d(y,E), ycA+(xn)}  >~ 

Choose sufficiently large r~ > O, t~ > 0 with t~ - z~ > O, such that 

y~ : =  ~(x~, ~) ~ H(E, ~) 

z~ := n(x~, t~) = zc(y,, t~--z~)~H(E, t~) 

and 

y~r z ~ e N  

Since N is compact, we can choose two convergent subsequences { y J  and 
{z~k }. Denote 

y = lim Y~k, z = lim z~ 
k ~ o o  l q ~ o o  

Then y ~ H( E, ~), z r E, and z e D + ( y ). So D + ( y ) n E #  0 .  By Theorem 3.2, 
for any 0 < ~o < ~, we have Yo ~ H(E, ~o) such that A +(Yo) c E, which is a 
contradiction to our assumption, and then the proof is completed. [] 

Remark 5. If X/E is a positively invariant set and E is closed, then 
Theorem 3.7 holds. To see this is true, one is required only to use 
Theorem 3.2 and the same discussions such as those in the proof of 
Theorem 3.7. 

Analogous to Theorem 3.3, we can prove the following. 

Theorem 3.8. Let E be a closed, positively invariant subset of  X with 
nonempty I~ and aE. Suppose there exists cr > 0 such that ~r is point dis- 
sipative on S[ aE, ~ ] ~ 1~. Then one of  the following statements holds. 

(i) The boundary aE is not isolated. 

(ii) There exists y ~ t~ such that A +(y) ~ aE. 

(iii) There exists e>0  such that for any xr lim,_oo d(~(x,t),aE)>~e. 

The above result givesa description of the flow near the boundary of 
a closed positively invariant subset E of X. It is used extensively in the next 
section when we discuss persistence, an important concept in population 
dynamics. 



594 Freedman, Ruan, and Tang 

4. PERSISTENCE 

Let X be a metric space with metric d, and let 6 r be a continuous flow 
defined on X. Let E be a closed subset of X with OE and /~ nonempty. 
Throughout this section we suppose that 6 )- is positively invariant over E. 
Then /~ is also positively invariant, but the boundary OE may not be 
positively invariant. 

Definition 4.1. The flow ~- is called 

(i) weakly persistent if for all x~/~, 

lim sup d(n(x, t), OF,) > 0 
1 - - 0 r  

(ii) persistent if for all x ~/~, 

lira infd(rt(x, t ), O E) > 0 
t ~ O 0  

(iii) weakly uniformly persistent if there exists So > 0 such that for all 
xe/~, 

lira sup d(n(x, t), OE) > eo 
I "--~ O0 

(iv) uniformly persistent if there exists eo > 0 such that for all x E/~, 

lira inf d(n(x, t), OE) > eo 
I ~ O0 

Note that if the closed set E is invariant, the above definitions of weak 
persistence, persistence, and uniform persistence coincide with those given 
by Butler etal. (1986) and Butler and Waltman (1986). Weak uniform 
persistence was firstly defined by Freedman and Moson (1990). They also 
discussed the interrelations of these definitions. 

Theorem 4.2. Let X be a metric space with metric d, ,,~ be a con- 
tinuous flow defined on X, and E c X be a closed, positively invariant set. 
Suppose that there exists a constant oc > 0 such that ~,~ is point dissipative on 
S[ OE, oc] c~ 1~. Then the following statements are equivalent. 

(i) 3 r is uniformly persistent. 

(ii) ~ is weakly persistent and OF, is isolated in I~. 

(iii) ~ is weakly uniformly persistent. 

(iv) There exists 0<82<0c such that for any xeS[aE ,  e2]c~l~, 
there exists Tx > 0 such that 7t(x, Tx) ~ S[ aE, s2]. 
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( v ) There exists 0 < e 3 < o~ and a continuous function 
P ~ : S[ O E, o~ ] ~ R + satisfying the following conditions: 

(a)  P~(x)ffi0 i f f  XeoE ,  and 

(b)  for any x~S[OE,  e~]~I~, there exists T~>0  such that 
P~(n(x, T~)) > P~(x). 

Furthermore, let s = A + ( S[ OF., o~ ] r~ E) = { A + ( x ) ] x r S[ OF., o~ ] n E} and 
M = g2 ra OF.. I f  M is a closed invariant set, then the above conclusions are 
also equivalent to the following statements. 

(vi)  M is isolated on E and there is no point x in I~ satisfying 
A + ( x ) = M .  

(vii) There exists 0 < e4 < ~ such that for  any x ~ S[ M, e4] ra I~, there 
exists T x > 0 such that ~(x, T~)q~ S [M,  e4]. 

(viii) There exists 0 < ez < o~ and a continuous function 
P2: SLOE, 0~] --} R + satisfying 

(a)  P2(x)---O if f  x ~ E ,  and 

(b)  for any x ~ S [ M ,  ez]r~l~, there exists T x > 0  such that 
e2(~(x, T~)) > e2(x). 

Proof. (i) =) (ii), (i) =~ (iii), and (i) =~ (iv) are obvious; (ii) =~ (i) can 
be easily proved by using Theorem 3.8. 

(iii)=~(ii). Let e l > 0  be such that for all x~/~, limsupt~oo 
d(lr(x, t), aE) > e. Take 0 < e < rain{el, ~}; then for any x r S[aE, e] • t~, 
A+(x)  r S[ag,  e]. Hence Og is isolated in/~. 

(iv)=~(ii). Let e2>0 be as in (iv). Then for any x ~ S [ a E ,  t2]n t~ ,  
A+(x)  r S[aE, e2], which shows that aE is isolated in E. Hence for any 
x ~ S[OE, e2] n ~, we have lira sup ,_  ~o d(g(x, t), aE) I> e2 > 0. 

(iv)f~(v). Let e2, e3 be as in (iv) and (v) and let t2=e3.  Define 
Pl(x)  ffi d(x, OE), x r S[ OE, ~]. Then PI:  S[ OE, ~ ] ~ R + is continuous and 
Pi(x)  = 0  i f f x~aE.  For any xES[OE,  el]  n/~, there exists T x > 0  such that 
lr(x, I x ) ~  S[ OE, e2]. Hence Pl(~(x,  Tx)) ffi d(~(x, Tx), OE) > e2 >1 Pl(x).  

(v)f~(iv). Let Pl(x)  and e3 be as in (v). I f  there exists 
x r  e3] n /~  such that ?+(x) ~S[OE,  83], then ?+(x) c S [ a E ,  ~3]. 

Note that ?+(x) is compact; then P~(x) takes its maximum value on 7+(x). 
Let y e T + ( x )  be such that Pl(y)>~Pl(z)  for all zey+(x) .  Then 
y ~ SLOE, 83] ~ ~. Since ?+(y)  c {x: x r 7+(x)}, hence PI(Y) >t Pl(z)  for 
any z ~ ?+(y), which contradicts condition (b) in (v). 

(ii) =~ (vi). It is obvious. 
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(vi)=>(ii). If there exists x r  such that A+(x)cOE, then 
A+(x)=M, which contradicts (vi). Hence ~" is weakly persistent on E. 
Since M is isolated, there exists J0 > 0 such that S[ M, do ] is isolated in E. 
If OE is not isolated, we can choose a sequence {a.}, 0 < e .  <min{Jo, 0c} 
such that l im._~  e. •0, and a sequence of invariant sets { W'.}, I ~  
S[OE, e.], W" r OE. Define W.= W'./M, then W. is invariant and 
W.~NnS[aE ,  e.], where N is a compact set such that {A+(x)lxr 
S[OE, ~] c~ t~} c N. Since S[M, Jo] is an isolated neighborhood of M, then 
for any IV., there exists y .r  W. such that d(y. ,M)>Jo. Let K be the 
metric space of nonempty compact subsets of N with Hausdorff metric p; 
then K is compact (see Whyburn, 1971). Hence we can find a convergent 
subsequence of {W.}, which we also relabel as {W.}, such that 
p( W., IV) --. 0 as n --* oo, where W~ K. Clearly W= OE and W is invariant; 
then W c M .  Without loss of generality, we suppose that {y.} is con- 
vergent. Let 

y--  lira y. 
n - ' ~  O 0  

Then y e IV. On the one hand, d(y,, M) > Jo implies that d(y, M) >1 Jo > O. 
On the other hand, y e  W~ M implies d(y, M)=0, which is impossible. 

(iv) => (vii) and (v) => (viii). Obvious. 

(vii) =:- (vi). Similar to the proof of (iv) => (ii). 

(viii) ~ (vi). Similar to the proof of (v) => (ii). [] 

Remark 6. Theorem 4.2 may be viewed as a unified and generalized 
theorem combining results of Fonda (1988), Freedman and Moson (1990), 
Hofbauer (1989), and Hotbauer and So (1989). 

We denote the restriction of .ff to OE by 0Y and note that OF. is, in 
general, not positively invariant. Let N be the maximal invariant set of 0~ r 
on OE. Suppose N is a closed invadant set and there exists a cover 
{N~}~A of N, where A is a nonempty index set, N,~aE,  N c U , ~ N  ~, 
and N~ (0c ~A) are pairwise disjoint closed invariant sets. Furthermore, we 
propose the following hypothesis. 

(H) (a) All N~ are isolated invariant sets of the flow ~'. 

(b) {N~},~a is acyclic, tha~ is, any finite subset of {Nffi}~a 
does not form a cycle (see Butler and Waltman, 1986). 

(c) Any compact subset of aE contains, at most, finitely many 
sets of { N . } ~ .  
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Theorem 4.3. Let E be a closed positively invariant subset of  X on 
which a continuous flow ~ is deJ'med. Suppose there is a constant o~ > 0 such 
that ~r is point dissipative on S[OE, oL] (a I~ and the assumption (H) holds. 
Then the flow ~ is uniformly persistent i f  and only i f  

W+(N=) n SEOE, ~] ng,= 

for any a~A,  where W+(N=)= { y e X :  A + ( y ) : N ~ } .  

The proof is similar to that given by Butler et al. (1986) and Butler 
and Waltman (1986). 

Remark 7. Theorem 4.3 generalizes Theorem 3,1 of Butler and 
Waltman (1986), Theorem 4.2 of Hofbauer and So (1989), Theorem 2 of 
Garay (1989), and Theorem 3 of Teng and Duan (1990). 

5. EXAMPLES 

In this section we consider some examples to illustrate our results. In 
a recent paper, Hutson and Schmitt (1992) survey results leading to 
uniform persistence in ecological systems. All their theorems require dis- 
sipativity of the models. On the other hand, the classical Lotka-Volterra 
models are not necessarily dissipative, but if so, they lead to exhibit 
persistence which is not uniform. Here we give examples of systems 
which are either not dissipative or not invariant on the axes, but which are 
uniformly persistence. 

Example 1. In this example we consider a simple model of competi- 
tion with a source term for one of the competitors, without which it cannot 
survive. The model is given as follows: 

{ ' ~ =  xl(1 -- xl --ax2) 

-~t2 ffi x2( --1 - b x l  - x 2 )  +e  

(1) 

In the case e ffi 0, x2 ~ 0 as t ~ 0. However, by our results, if 

then system (1) is uniformly persistence. 
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Example 2. Here we consider a system of predator-prey type 

f - ~ = x ( 1 - - y ( l + x ) )  
(2) 

[~ t - -  Y ( - l  + x 2 -  Y) 

When y=O, the subsystem dx/dt = x is clearly not dissipative. However, 
our results show that the system is persistence with a locally stable interior 
equilibrium. 

As pointed out by Thieme (1993), persistence theory has so far focused 
rather on ecological models than epidemiological models. In epidemiology, 
the question of persistence can be posed in a twofold way: persistence of 
the host population, i.e., the disease does not extinguish the host; and 
persistence (or endemicity) of the disease, i.e., the disease does not go 
extinct itself. In the following we consider a SEIRS epidemiological model 
following Liu et al. (1987) and Hethcote and van den Driessche (1991). 

Example 3. The host population is subdivided into susceptible (S), 
exposed (E), infections (/), and recovered (R) individuals: 

e dS 
-~  = -MPS q + la - /~S + JR 

dE -~ = ~ J p S ~ -  (e + /~ ) E 

d I = e E -  (r +l~)I (3) 
dt 
dR 

S + E + I + R = I  

All parameters are assumed to be positive. By using the assumption 
S + E + I +  R = 1, the model can be reduced to the following three-dimen- 
sional system 

' ~='- ,UP(1 - E -  I -  R) q - (e + /~)E 

dt 
(4) 

=rI-(6+l,)R 
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We can see that the region B = { (E, I, R): E >I 0, I i > 0 ,  R />0 ,  
E +  I +  R ~< 1} is positively invariant with respect to the model. There 
always exists a unique equilibrium (0, 0, 0) on the boundary of B which 
corresponds to the disease-free state. By Theorem 4.3, we can see that 
uniform persistence of system (4) is equivalent to instability of the disease- 
free equilibrium (0, 0, 0). Combine the local stability analysis for this trivial 
equilibrium by Liu et al. (1987)  and Theorem 4.3; we know that system (4) 
and hence system (3) are uniformly persistence if and only if 0 < p < 1 or 
p = l ,  6 > 1 .  
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