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1. Introduction

Let k be a local field and G the group of k-rational points of a connected reductive

linear algebraic group over k with k-semisimple rank(G) ≥ 2. Let K be a good maximal

compact subgroup of G. For a unitary representation ρ of G, a vector v in ρ is called K-

finite if the subspace spanned byKv is finite dimensional. We will use the termK-matrix

coefficients (resp. K-finite matrix coefficients) of ρ to refer to its matrix coefficients with

respect to K-invariant (resp. K-finite) unit vectors. Following [BT], we denote by G+

the subgroup generated by the unipotent k-split subgroups of G. The main goal of the

present paper is to construct a class of uniform pointwise bounds for the K-finite matrix

coefficients of all infinite dimensional irreducible unitary representations of G, or more

generally of all unitary representations of G without a non-zero G+-invariant vector.

Let A be a maximal k-split torus and A+ the closed positive Weyl chamber of A such

that the Cartan decomposition G = KA+ΩK holds where Ω is a finite subset of the
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centralizer of A (2.1). Denote by Φ the set of non-multipliable roots of A and by Φ+

the set of positive roots in Φ. A subset S of Φ+ is called a strongly orthogonal system

of Φ if any two distinct elements α and β of S are strongly orthogonal, that is, neither

of α± β belongs to Φ. The notation ΞPGL2(k) denotes the Harish-Chandra function of

PGL2(k) (2.2). For simplicity, we use the notation:

ΞPGL2(k)(x) := ΞPGL2(k)

(

x 0
0 1

)

.

We denote by Z(G) the center of G and by s.s rank the semisimple rank of G.

1.1. Theorem. Let k be any local field with char(k) 6= 2 and k 6= C. Let G be the

group of k-rational points of a connected reductive linear algebraic group over k with

k-s.s.rank(G) ≥ 2 and G/Z(G) almost k-simple. Let S be a strongly orthogonal system

of Φ. Then for any unitary representation ρ of G without a non-zero G+-invariant

vector and with K-finite unit vectors v and w,

|〈ρ(g)v, w〉| ≤
(

[K : K ∩ dKd−1] · dim〈Kv〉dim〈Kw〉
)1/2 ∏

α∈S
ΞPGL2(k)(α(a))

for any g = k1adk2 ∈ KA+ΩK = G.

When k is archimedean, we have Ω = {e}, and for non-archimedean k, K ∩ gKg−1 is

an open compact subgroup of K for any g ∈ G and hence [K : K ∩ gKg−1] <∞. For k

non-archimedean, we fix a uniformizer q so that |q| = p−1 where p is the cardinality of

the residue field of k. The Harish-Chandra function ΞPGL2(k) has the following formula:

ΞPGL2(R)(x) =
2

π
√
x

∫ π/2

0

(

cos2 t

x2
+ sin2 t

)−1/2

dt, for x ≥ 1

and for k non-archimedean,

ΞPGL2(k)(q
n) =

1√
pn

(

n(p− 1) + (p+ 1))

p+ 1

)

, for n ∈ N.

Note that ΞPGL2(k)(q
n) = ΞPGL2(k)(q

−n) for any n ∈ Z.

Theorem 1.2. Let G be a connected reductive complex algebraic group with semisimple

rank at least 2 and G/Z(G) almost simple. Let S be a strongly orthogonal system of Φ.

Let ρ be any unitary representation of G without a non-zero G+-invariant vector.

(1) If G/Z(G) ≇ Sp2n(C) (locally), then for any K-finite unit vectors v and w,

|〈ρ(g)v, w〉| ≤ (dim〈Kv〉dim〈Kw〉)1/2
∏

α∈S
ΞPGL2(C)(α(a))
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for any g = k1ak2 ∈ KA+K = G.

(2) If G/Z(G) ∼= Sp2n(C) (locally), let nα = 1
2

if α is a long root and nα = 1

otherwise. Then for any K-invariant unit vectors v and w,

|〈ρ(g)v, w〉| ≤
∏

α∈S
Ξnα

PGL2(C)(α(a))

for any g = k1ak2 ∈ KA+K = G.

The Harish-Chandra function ΞPGL2(C) is as follows:

ΞPGL2(C)(x) =
1

πx

∫ π/2

0

(

cos2 t

x2
+ sin2 t

)−1

sin (2t) dt, for x ≥ 1.

Remark.

(1) Note in the above theorems that G/G+ is finite mod center. It follows that

any infinite dimensional irreducible unitary representation of G has no non-zero

G+-invariant vector.

(2) Note that G = G+ in the case when G is almost k-simple and simply connected.

If k = R and G is semisimple, then G+ coincides with the connected component

of the identity in G.

To simplify the explanation, we assume G/Z(G) ≇ Sp2n(C) in the rest of introduc-

tion,

Definition. For a strongly orthogonal system S of Φ, we set a bi-K-invariant function

ξS of G as follows:

ξS(k1adk2) =
∏

α∈S
ΞPGL2(k)(α(a)) for any k1adk2 ∈ KA+ΩK = G.

By the above two theorems, ξS presents a uniform pointwise bound for all K-matrix

coefficients (resp. K-finite matrix coefficients) of G (resp. up to a constant). Here are

additional properties of ξS :

Properties of ξS .

(1) 0 < ξS(g) ≤ 1.

(2) For any ǫ > 0, there are constants d1 > 0 and d2(ǫ) > 0 such that

d1

(

∏

α∈S
|α(a)|

)− 1
2

≤ ξS(g) ≤ d2(ǫ)

(

∏

α∈S
|α(a)|

)− 1
2+ǫ

for any g = k1adk2

where | · | denotes the absolute value on k in the sense of [We, Ch1].

(3) ξS(g) = 1 if and only if α(g) = 1 for all α ∈ S.



4 HEE OH

A strongly orthogonal system S is called maximal if the coefficient of each simple

root in the formal sum
∑

α∈S α is not less than the one in
∑

α∈O α for any strongly

orthogonal system O of Φ. A maximal strongly orthogonal system for each irreducible

root system has been constructed in [Oh] (see the Appendix for the list). Let Q denote

a maximal strongly orthogonal system of Φ. In view of the above inequality (2), the

uniform pointwise bound function ξQ gives the sharpest bound in this construction. We

remark that in general there exist more than one maximal strongly orthogonal systems

in Φ. Note, however, that the formal sum η(Φ) := 1
2

∑

α∈Q α, which determines the

decay rate of ξQ, does not depend on the choice of a maximal strongly orthogonal

system.

Moreover, it turns out that for G = SLn(k) or Sp2n(k), ξQ is in fact the best possible

uniform pointwise bound for K-finite matrix coefficients, more precisely, there exists an

irreducible class one unitary representation of G whose K-matrix coefficient is bounded

below by the function ξ1+ǫQ up to some constant. In the following theorem, the group

Sp2n(k) is defined by the bi-linear form

(

0 Īn
−Īn 0

)

where Īn denotes the skew diagonal

n× n-identity matrix.

Theorem 1.3. Let G be either SLn(k) (n ≥ 3) or Sp2n(k) (n ≥ 2, char k 6= 2, k 6= C).

Let P be the maximal parabolic subgroup of G which stabilizes ke1 and v be a unique

K-invariant unit vector in IndGP (1). Then for any ǫ > 0, there exists a constant C

depending on ǫ such that

C · ξ1+ǫQ (g) ≤ 〈IndGP (1)(g)v, v〉 ≤ ξQ(g)

for any g ∈ G.

For Sp2n(C), see Theorem 6.6 below.

In our proofs of Theorems 1.1 and 1.2, a crucial notion is the following:

Definition. Let M be the group of the k-rational points of a connected reductive

linear algebraic group over k with a good maximal compact subgroup K. A unitary

representation ρ of M is said to be tempered if for any K-finite unit vectors v and w,

|〈ρ(g)v, w〉| ≤ (dim〈Kv〉dim〈Kw〉)1/2 ΞM (g) for any g ∈M

where ΞM denotes the Harish-Chandra function of M (2.2).

A unitary representation ρ being tempered is equivalent to the condition that ρ is

weakly contained in the regular representation of M (see Theorem 2.4 for more equiva-

lent definitions for temperedness).
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Let G̃ be the underlying algebraic group of G, that is, G = G̃(k). Also let Ã be the

maximal k-split torus of G̃ such that A = Ã(k). Denote by HS the group of k-rational

points of the connected semisimple k-subgroup generated by the one-dimensional root

subgroups Ũ±α corresponding to ±α, α ∈ S, and by GS the group of k-rational points

of the connected reductive k-subgroup generated by Ũ±α, α ∈ S and Ã (see 5.1). The

following theorem then plays a key role in the proof of Theorems 1.1 and 1.2.

Theorem 1.4. Let S be any strongly orthogonal system of Φ. Then for any unitary

representation ρ of G without a non-zero G+-invariant vector, the restrictions ρ|HS
and

ρ|GS
are tempered. In fact, ξS |HS

= ΞHS
and ξS |GS

= ΞGS
.

Note that for any α ∈ Φ, the singleton {α} is a strongly orthogonal system. We set

Hα = H{α}. In particular Hα is isomorphic to either SL2(k) or PGL2(k) (see 3.1).

Hence here is a special case of Theorem 1.4:

Corollary 1.5. Let α ∈ Φ be any root. Then for any unitary representation ρ of G

without a non-zero G+-invariant vector, the restriction ρ|Hα
is tempered.

Theorems 1.1 and 1.2 cover all the groups of k-rational points of a connected almost

simple algebraic k-groups (char k 6= 2) with Kazhdan property (T), except for the two

rank one real groups: Sp(1, n), F−20
4 . In fact, Theorem 1.1 also holds for Sp(1, n) (see

Theorem 4.11). We remark that if one can provide an analogue of Theorem 4.8 for

F−20
4 , the same theorem holds for this group as well.

The pointwise bound ξS provides us with a simple and general method of calculat-

ing Kazhdan constants (see 8.1 for definition) for various compact subsets of semisim-

ple G, in particular for any compact subset properly containing K. For instance, in

SLn(R) (n ≥ 3), for any m ∈ N, the number 0.08
m

is a Kazhdan constant with respect

to the Kazhdan set
{

SO(2), diag(41/m, 4−1/m)
}

(embedded in the left upper corner of

SLn(R)) (see Ex 8.7.1). We also have the following interesting example:

Theorem 1.7.

inf
p= prime

inf
n≥3

inf
s/∈SLn(Zp)

κ(SLn(Qp), {SLn(Zp), s}) > 0.10

where κ(G,Q) is the best Kazhdan constant for Q, that is,

κ(G,Q) = inf max
g∈Q
‖ρ(g)v − v‖

where the infimum is taken over all unitary representations ρ of G without a non-zero

invariant vector and for all unit vectors v of ρ.

The problem of calculating Kazhdan constants was first raised by J. P. Serre (see [Bu],

[HV]). Kazhdan constants for the group of k-rational points of a semisimple algebraic
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group over k and for its lattices have been obtained with special choices of Kazhdan

sets (see [Bu], [CMS], [Sh], [Sh1], [Zu])

The paper is organized as follows: in section 2, after recalling Cartan decomposition

and the definition of the Harish-Chandra functions, we study when a unitary representa-

tion of a reductive algebraic group is tempered and recall Howe’s strategy; in section 3,

we study strongly orthogonal systems, subgroups Hα and the Harish-Chandra function

of PGL2(k); in section 4, we show the temperedness of ρ|Hα
; in section 5, we prove

Theorem 1.4 as well as our main results on uniform pointwise bounds; in section 6, we

show that the bounds given in section 5 are optimal for SLn(k) and for Sp2n(k); in

section 7, we give some upper bounds for the constant pK(G) as an application of our

main theorems; finally in section 8, we discuss another application to computation of

Kazhdan constants.

Some of the above results for k = R were announced in [Oh] where the application of

these results to the classification of non-Riemannian homogeneous spaces not admitting

compact quotients by discrete subgroups (cf. [Ma1], [Oh]) is discussed as well.

Let G be a connected almost simple simply connected Q-group and Γ ⊂ G(Q) a

congruence subgroup of G. Combined with some results of Clozel and Ullmo in [CU],

Theorem 1.1 in the case of p-adic fields yields an application in obtaining the equidis-

tribution of Hecke points on G(R)/Γ with the rate estimate [COU]. See also [GO] and

[Oh1] for other applications.

Acknowledgments. I would like to thank Hillel Furstenberg and Shahar Mozes for

their support and encouragement during the year (1998-99) I spent at the Hebrew

University in Jerusalem. I would also like to thank Amos Nevo for his interest in this

work and for helpful comments. Thanks also are due to Wee Teck Gan for many valuable

comments which improved the paper significantly.

2. Temperedness and Howe’s strategy

2.1. Cartan decomposition. Let k be a local field with the standard absolute value

| · | in the sense of [We, Ch1]. Let G̃ be a connected linear reductive algebraic group

defined over a local field k and let G = G̃(k). Let Ã be a maximal k-split torus and

B̃ a minimal parabolic k-subgroup of G̃ containing Ã. Set A = Ã(k) and B = B̃(k).

Denote by Φ′ the set of roots of Ã in G̃ and by Φ the set of non-multipliable roots in

Φ′ with the ordering given by B̃. Let X(Ã) denote the set of characters of Ã defined

over k whose ordering is induced from Φ. Denote by X+ (resp. Φ+) the set of positive

characters (resp. roots) in X(Ã) with respect to that ordering.

If k is archimedean, i.e., isomorphic to R or C, we set

k0 = {x ∈ R | x ≥ 0} and k̂ = {x ∈ R | x ≥ 1}.



UNIFORM POINTWISE BOUNDS 7

When k is non-archimedean, we fix a uniformizer q of k such that |q|−1
is the cardinality

of the residue field of k, and set

k0 = {qn | n ∈ Z} and k̂ = {q−n | n ∈ N}.

We set

A0 = {a ∈ A | α(a) ∈ k0 for each α ∈ X(Ã)}; and

A+ = {a ∈ A | α(a) ∈ k̂ for each α ∈ Φ+}.

Equivalently A+ = {a ∈ A0 | |α(a)| ≥ 1 for each α ∈ Φ+}. We call A+ a positive Weyl

chamber of G.

Let Z̃ denote the centralizer of Ã in G̃ and Z = Z̃(k). Since X(Z̃) can be considered

as a subset of X(Ã) in a natural way, it has an induced ordering from this inclusion.

Define

Z+ = {z ∈ Z | |α(z)| ≥ 1 for each α ∈ X(Z)+}; and

Z0 = {z ∈ Z | |α(z)| = 1 for each α ∈ X(Z)+}.

For any subgroup H of G, NG(H) denotes the normalizer of H, CG(H) denotes the

centralizer of H and Z(H) denotes the center of H.

Proposition. There exists a maximal compact subgroup K of G such that

(1) NG(A) ⊂ KA,

(2) the Cartan decomposition G = K(Z+/Z0)K and the Iwasawa decomposition

G = K(Z/Z0)Ru(B) hold, in the sense that for any g ∈ G, there are elements

a ∈ Z+ (unique up to mod Z0) and b ∈ Z (unique up to mod Z0) such that

g ∈ KaK and g ∈ KbRu(B),

(3) for any subset ∆ of the set of simple roots of Φ and for the subgroup M :=

ZG({a ∈ A | α(a) = 1 for all α ∈ ∆}), M ∩K satisfies the above properties (1)

and (2) with respect to (M,M ∩A).

See [GV, 2.2] for archimedean case and see [B-T], [Ti1], and [Si] for non-archimedean

case. In general, the positive Weyl chamber A+ has finite index in (Z+/Z0). Hence

for some finite subset Ω ⊂ Z+, G = K(A+Ω)K, i.e., for any g ∈ G, there exist unique

elements a ∈ A+ and d ∈ Ω such that g ∈ KadK. A maximal compact subgroup K is

called a good maximal compact subgroup of G if it satisfies the properties listed in the

above proposition.

Remark. We have G = KA+K and G = KA0Ru(B)

(1) if k is archimedean, that is, k ∼= R, or C or;

(2) if G is split over k or;
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(3) if G is quasi-split and split over an unramified extension over a non-archimedean

local field k, for example G = SU(f) where f is a hermitian form of dimension

2n or 2n+ 1 over an unramified quadratic extension over k with Witt index n,

so that G ∼= SU(n, n) or G ∼= SU(n, n+ 1).

2.1.1. Example. For G = SLn(k), let A be the subgroup of all diagonal matrices and

B the subgroup of all upper triangular matrices. If k is archimedean, set

K = {g ∈ G | tḡg = 1},

A+ =











a1 0
. . .

0 an



 ∈ G | ai ∈ R, a1 ≥ · · · ≥ an > 0







;

otherwise, set

K = SLn(O) where O is the ring of integers of k, and

A+ =

















qk1 0
. . .

0 qkn






∈ G | ki ∈ Z, k1 ≤ · · · ≤ kn











.

Note that the condition on ki’s is equivalent to saying that the norms of qki ’s are

decreasing as the index i increases. Then K is a good maximal compact subgroup of G

and G = KA+K.

2.1.2. Example. Let D be a central simple division algebra of degree m over a non-

archimedean local field k, and let G = SLn(D) be the group of all n× n matrices with

entries in D which have reduced norm one. We may choose A to be the group of all

diagonal matrices in G with entries in k. Then Z is the full diagonal group of G. If

d 6= 1, then Z 6= A. Denote by qD a uniformizer of D, that is, any element x in D∗ can

be written as qkDu for some integer k and a unit u in D. Then the representatives of

Z+/Z0 can be taken as

















qk1D 0
. . .

0 qkn

D






∈ G | ki ∈ Z, k1 ≤ · · · ≤ kn











.

Here

A+ =

















qk1 0
. . .

0 qkn






∈ G | ki ∈ Z, k1 ≤ · · · ≤ kn
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where q is a uniformizer of k and

Ω =

















qk1D 0
. . .

0 qkn

D






∈ G | −m+ 1 ≤ k1 ≤ · · · ≤ kn











.

2.2. The Harish-Chandra function ΞG. We denote by δB the modular function of

B; in particular for a ∈ A0,

δB(a) =
∏

all positive α∈Φ′

|α(a)|mα

where mα denotes the multiplicity of α. The Harish-Chandra function ΞG is defined by

ΞG(g) =

∫

K

δB(gk)−1/2 dk.

As is well known, ΞG is the diagonal matrix coefficient g 7→ 〈IndGB(1)(g)f0, f0〉 where

IndGB(1) is the representation which is unitarily induced from the trivial representation

1 and f0 is its unique (up to scalar) K-invariant unit vector. In fact, f0 is given by

f0(kb) = δ
1/2
B (b) for k ∈ K, b ∈ B.

We list some well-known properties of ΞG (see [Wa, GV, Ha1]) which will be frequently

used in this paper:

Proposition.

(1) ΞG is a continuous bi-KZ(G)-invariant function of G with values in (0, 1].

(2) For any ǫ > 0, there exist constants c1 and c2(ǫ) such that

c1 δ
−1/2
B (b) ≤ ΞG(b) ≤ c2(ǫ) δ−1/2+ǫ

B (b) for all b ∈ B.

(3) ΞG is L2+ǫ(G/Z(G))-integrable for any ǫ > 0.

2.3. We now recall the definition of strongly Lp (cf. [Li]):

Definition. For a locally compact group M , a (continuous) unitary representation ρ

of M is said to be strongly Lp if there is a dense subset V in the Hilbert space attached

to ρ such that for any x and y in V , the matrix coefficient g 7→ 〈ρ(g)x, y〉 lies in Lp(M).

We say ρ is strongly Lp+ǫ if it is strongly Lq for any q > p.

For an irreducible unitary representation ρ, the center Z(M) acts by a character

(Schur’s lemma). Hence for any vectors v and w of ρ, [g] 7→ |〈ρ(g)v, w〉| is a well-

defined function on M/Z(M). Therefore the notion of its matrix coefficient being in

Lp(M/Z(M)) and that of ρ being strongly Lp(M/Z(M)) are well defined.
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Since the matrix coefficients of a unitary representation with respect to unit vectors

are bounded by 1, a strongly Lq representation is also strongly Lp for any p ≥ q.
Any unitary representation ρ of G is decomposed into a direct integral

∫

X
ρxdµ(x)

of irreducible unitary representations of G for some measure space (X, µ) (we refer to

[Zi, 2.3] or [Ma] for more detailed account for the direct integral theory). If ρ has no

invariant vector and v =
∫

X
vxdµ(x) is a K-invariant unit vector of ρ, then for almost

all x ∈ X , ρx is non-trivial and vx is a K-invariant unit vector.

We say that ρ is weakly contained in a unitary representation σ of G if any diagonal

matrix coefficients of ρ can be approximated, uniformly on compact sets, by convex

combinations of diagonal matrix coefficients of σ ([Fe], also see [CHH], [Sh]). Note that

ρ is weakly contained in a countable direct sum ∞ · ρ, and vice versa.

2.4. Temperedness.

Definition. A unitary representation ρ of G is said to be tempered if for any K-finite

unit vectors v and w,

|〈ρ(g)v, w〉| ≤ (dim〈Kv〉dim〈Kw〉)1/2 ΞG(g) for any g ∈ G

where 〈Kv〉 denotes the subspace spanned by Kv and similarly for 〈Kw〉.

The following establishes equivalent definitions of a tempered unitary representation

of a reductive algebraic group over a local field, generalizing the results in [CHH] for

the semisimple case.

Theorem. For any unitary representation ρ =
∫

X
ρx dx of G, the following are equiv-

alent:

(1) For almost all x ∈ X, the (irreducible) representation ρx is strongly L2+ǫ(G/Z(G)).

(2) ρ is weakly contained in the regular representation L2(G).

(3) For almost all x ∈ X, ρx is weakly contained in the regular representation L2(G).

(4) ρ is tempered.

(5) For almost all x ∈ X, ρx is tempered.

In the case when G is semisimple, the above is equivalent to saying that ρ is strongly

L2+ǫ.

Proof. The equivalence of (2) and (3) is well known (for example, see [Zi, Proposition

7.3.8]). We will show (2)⇒ (4)⇒ (1)⇒ (2) and (3)⇒ (5)⇒ (1)⇒ (2). The directions

(2) ⇒ (4) and (3) ⇒ (5) follow from [CHH, Theorem 2]. Even though it is assumed

that G is semisimple in [CHH, Theorem 2], the proof works for any reductive group case

as well without any change. To see the direction (4) ⇒ (1), we may assume that ρx
is weakly contained in ρ (up to equivalence) for each x ∈ X since G is type I (see 2.6
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below). Then by [Ho, Lemma 6.2], (4) implies that for almost all x ∈ X , the K-finite

matrix coefficients of ρx are bounded by ΞG up to a constant multiple. Since ΞG is

L2+ǫ(G/Z(G))-integrable for any ǫ > 0 and the K-finite vectors of ρx are dense by

Peter-Weyl theorem, this proves that (4) implies (1). The direction (5) ⇒ (1) clearly

follows from the above argument. It is now enough to show the direction (1) ⇒ (2).

Since (2) and (3) are equivalent, we may assume that ρ is irreducible. For the semisimple

case, it is a direct consequence of [CHH, Theorem 1]. We now make some modification

of the proof in [CHH] for our claim. For a unitary representation ρ and its attached

Hilbert space H, define a operator ρ(f) : H → H for f ∈ Cc(G) as follows:

〈ρ(f)v, w〉 =
∫

G

f(g)〈ρ(g)v, w〉 dg for v, w ∈ H.

By [Ey], (2) is equivalent to saying that for any f ∈ Cc(G)

‖ρ(f)‖ ≤ ‖λ(f)‖

where λ denotes the regular representation L2(G), and ‖ρ(f)‖ denotes the operator

norm of ρ(f) and similarly for ‖λ(f)‖. Let µ1 and µ2 be Haar measures on Z(G) and

G/Z(G) respectively. Since Z(G) is a normal subgroup of G, without loss of generality,

we may assume that G = Z(G) × G/Z(G) and dg = dµ1 × dµ2 (cf. [Pa, 1.11]). For

f ∈ Cc(G) such that supp f = Y1Y2 where Y1 ⊂ Z(G) and Y2 ⊂ G/Z(G) are compact

subsets,
∫

G

f(g) dg =

∫

Y2

∫

Y1

f(zh) dµ1(z) dµ2(h).

Then the Haar measure µ2 grows at most exponentially; hence, for some constants C

and M ,

µ2(Y
n
2 ) ≤ C ·Mn for any n ≥ 1.

On the other hand, since Z(G) is an abelian locally compact group, the Haar measure

µ1 grows polynomially (cf. [Pa, Theorem 6.17]), hence for some d and r,

µ1(Y
n
1 ) ≤ d · nr for any n ≥ 1.

As is shown in [CHH, P. 102],

‖λ(f)‖ = lim
n→∞

‖(f∗ ∗ f)∗2n‖
1
4n

2

and

‖ρ(f)‖ = sup
θ∈ρ

lim
n→∞

(
∫

G

(f∗ ∗ f)∗2n(x)〈ρ(x)θ, θ〉dµ(x)

)
1
4n

.
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Let v be a (unit) vector in ρ such that the matrix coefficient 〈ρ(x)v, v〉 is L2+ǫ(G/Z(G))-

integrable. Since Gv is a dense subset in ρ (ρ being irreducible), it suffices to consider

vectors θ in G.v in the above formula for ‖ρ(f)‖. For θ ∈ Gv, set ψ(x) = 〈ρ(x)θ, θ〉.
Then we have

∫

(Y1×Y2)
n

|ψ(x)|2dµ(x) ≤
∫

Y n
1

1 dµ1(x) ·
(

∫

Y n
2

|ψ(x)|2dµ2(x)

)

≤ µ1(Y
n
1 ) ·

(

∫

Y n
2

|ψ(x)|2+ǫdµ2(x)

)
2

2+ǫ

µ2(Y
n
2 )

ǫ
2+ǫ

≤ µ1(Y
n
1 )µ2(Y

n
2 )

ǫ
2+ǫ

(

∫

Y n
2

|ψ(x)|2+ǫdµ2(x)

)
2

2+ǫ

≤ dnr (CMn)
ǫ

2+ǫ ‖ψ‖2L2+ǫ(G/Z(G))

By plugging this into the formula for ‖ρ(f)‖ and extracting roots, we obtain that

‖ρ(f)‖ ≤M ǫ
8(2+ǫ) lim inf

n→∞
‖(f∗ ∗ f)

∗2n‖2
1
4n ;

since ǫ is arbitrary,

‖ρ(f)‖ ≤ lim inf
n→∞

‖(f∗ ∗ f)
∗2n‖2

1
4n

Hence

‖ρ(f)‖ ≤ ‖λ(f)‖.

Since the subset of functions in Cc(G) with support of the form Y1Y2 as above is dense

in Cc(G), this proves that ρ is weakly contained in L2(G). For semisimple G, the center

Z(G) is finite, and hence a matrix coefficient of an irreducible unitary representation ρ

is Lp(G)-integrable if and only if Lp(G/Z(G))-integrable. Therefore ρ (not necessarily

irreducible) being tempered is equivalent to saying that ρ is strongly L2+ǫ(G) as was

shown in [CHH]. �

It is well known that the trivial representation (in fact, any unitary representation) of

an amenable group is weakly contained in its regular representation (cf. [Zi, Proposition

7.3.6]). It follows that IndGB(1) is weakly contained in the regular representation of

G, because B is amenable and the induction map is continuous. The above theorem

therefore implies that the Harish-Chandra function ΞG gives the sharpest point-wise

bound for the K-finite matrix coefficients of unitary representations weakly contained

in the regular representation of G.

2.5. The following follows from (the proof) of [CHH, Corollary in P. 108]:
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Theorem. For semisimple G and its unitary representation ρ without a non-zero in-

variant vector,

(1) if ρ is strongly L2+ǫ, then every non-zero matrix coefficients of ρ is L2+ǫ-

integrable;

(2) if ρ is strongly L2k+ǫ for some positive integer k, then for any K-finite unit

vectors v and w,

|〈ρ(g)v, w〉| ≤ (dim〈Kv〉dim〈Kw〉)1/2 Ξ
1/k
G (g) for any g ∈ G

2.6. The group of k-rational points of a connected reductive algebraic group over k is

known to be of Type I (see [Wa], [Be]). Hence we have:

Proposition (cf. [Ho, Proposition 6.3]). Let k be a local field. Let I be a finite set,

and for each i ∈ I, let Gi be the group of k-rational points of a connected reductive

algebraic group over k and Ki a good maximal compact subgroup of Gi. Then for any

irreducible unitary representation ρ of
∏

i∈I Gi having
∏

i∈I Ki-invariant unit vector v,

we have ρ = ⊗i∈Iρi and v = ⊗i∈Ivi where ρi is an irreducible unitary representation of

Gi and vi is a Ki-invariant unit vector of ρi for each i ∈ I.
2.7. Howe’s strategy. In the spirit of Howe’s strategy (cf. [Ho, Proposition 6.3], [LZ,

Theorem 3.1]), we have the following:

Proposition. For 1 ≤ i ≤ k, let Hi be the group of k-rational points of a connected

reductive k-subgroup of G such that Hi ∩ B, Hi ∩ A and Hi ∩ K are a minimal par-

abolic subgroup, a maximal split torus, and a good maximal compact subgroup of Hi

respectively.

(1) Suppose that for all 1 ≤ i 6= j ≤ k, xixj = xjxi for xi ∈ Hi and xj ∈ Hj, and

Hi ∩Hj is a finite subset of K ∩Hi.

(2) Suppose that for each 1 ≤ i ≤ k, there exists a bi-(Hi ∩ K)-invariant positive

function φi of Hi such that for any non-trivial irreducible unitary representation

σ of G, and the Hi ∩K-matrix coefficients of σ|Hi
are bounded by φi.

Then for any unitary representation ρ of G without a non-zero invariant vector and with

K-invariant unit vectors v and w,

|〈ρ(
k
∏

i=1

hic)v, w〉| ≤
k
∏

i=1

φi(hi)

where hi ∈ Hi for each 1 ≤ i ≤ k and c ∈ ∩ki=1CG(Hi).

Proof. We denote byHI the formal direct product ofHi’s, that is, HI =
∏k
i=1Hi. LetH

be the subgroup of G generated by Hi’s. Then we have a natural homomorphism f from
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HI onto H, whose kernel is in
∏k
i=1(Hi ∩ K). Let ρ̃ = ρ ◦ f and ρ̃|HI

=
∫

X
ρxdµ(x).

Since c ∈ ∩ki=1CG(Hi), the vector ρ(c)v is obviously
∏k
i=1(Hi ∩ K)-invariant. Write

ρ(c)v and w as
∫

vxdµ(x) and
∫

wxdµ(x) respectively where vx and wx are vectors in

ρx. Without loss of generality, we may assume that for all x ∈ X , ρx is a non-trivial

unitary representation of HI and vx and wx are
∏k
i=1(Hi ∩K)- invariant unit vectors.

Hence by the assumption (2),

|〈ρx(h)vx, wx〉| ≤ φi(h) = φi(f(h)) for all h ∈ Hi.

The last equality holds since kerf |Hi
⊂ K ∩Hi and φi is bi-K ∩Hi-invariant. Fixing

x ∈ X , by Proposition 2.6, we have ρx|HI
= ⊗ki=1ρxi, vi = ⊗ki=1vxi, and wx = ⊗ki=1wxi,

where ρxi is an irreducible class-one representation of Hi, and vxi and wxi are K ∩Hi-

invariant unit vectors for each 1 ≤ i ≤ k.
If hi ∈ Hi, then

|〈ρx(
k
∏

i=1

hi)vx, wx〉| =
k
∏

i=1

|〈ρxi(hi)vxi, wxi〉| ≤
k
∏

i=1

φi(hi).

Hence for any h′i ∈ Hi such that f(h′i) = hi,

|〈ρ(
k
∏

i=1

hic)v, w〉| = |〈ρ̃(
k
∏

i=1

h′i)(cv), w〉| ≤
∫

x

|〈ρx(
k
∏

i=1

h′i)vx, wx〉| dµ(x)

≤
k
∏

i=1

φi(h
′
i) =

k
∏

i=1

φi(hi).

This proves our claim. �

Remark. In fact, the proof of [Ho, Proposition 6.3] shows that if for any (K ∩Hi)-finite

vectors v and w, the matrix coefficient 〈σ|Hi
(h)v, w〉 is bounded by Cvwφi(h) where

Cvw is some constant depending only on dim〈Kv〉 and dim〈Kw〉, the above proposition

holds also for K-finite unit vectors v and w provided we multiply the function
∏k
i=1 φi

by some constant depending on dim〈Kv〉 and dim〈Kw〉.

3. The subgroups Hα, strongly orthogonal

systems and the Harish-Chandra function ΞPGL2(k)

3.1. We keep the notation from section 2.1. For each α ∈ Φ, set Ũ(α) to be the unipotent

subgroup of G̃ attached to the root α so that Lie(Ũ(α)) coincides with the root subspace

{x ∈ Lie(G̃) | Ad a(x) = α(a)x for each x ∈ Ã}. The group G̃ contains a connected

reductive k-split k-subgroup G̃0 such that we have Ã ⊂ G̃0, Φ = Φ(Ã, G̃0), and for each

α ∈ Φ, the subgroup Ũ(α)∩ G̃0 coincides with the one dimensional k-split root subgroup

Ũα in G̃0 (cf. [BT, Theorem 7.2]). As usual, we set G0 = G̃0(k) and Uα = Ũα ∩G0.
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Proposition [Ti]. For any α ∈ Φ, there is a homomorphism φα : SL2 → G̃0 defined

over k such that the kernel of φα is contained in the center of SL2(k) and

φα

(

1 x
0 1

)

∈ Uα, φα
(

1 0
y 1

)

∈ U−α, and φα

(

z 0
0 z−1

)

∈ A

for any x, y ∈ k and z ∈ k∗.

For each α ∈ Φ, we set H̃α = φα(SL2) and Hα = H̃α(k). Denote by U+ and U−

the upper and lower triangular subgroup of SL2. Since SL2 is generated by U± and

φα(U±) = Ũ±α, H̃α is the closed subgroup of G̃0 generated by Ũ±α. Note that Hα is

isomorphic to either SL2(k) (when kerφα = 1) or PGL2(k) (when kerφα = ±1).

Denote by Ā the diagonal subgroup of SL2 and by B̄ the upper triangular subgroup

of SL2. Consider the simple root ᾱ of SL2 defined by

ᾱ

(

z 0
0 z−1

)

= z2.

Denote by K̄ the good maximal compact subgroup of SL2(k) as defined in Example 2.1.1

so that the Cartan decomposition SL2(k) = K̄Ā+K̄ and the Iwasawa decomposition

SL2(k) = K̄Ā0U+ hold. Here Ā+ and Ā0 are defined as in 2.1 with respect to ᾱ.

Lemma.

(1) ᾱ = α ◦ φα
(2) φα(Ā) = Ã ∩ H̃α

(3) φα(Ā+,0) ⊂ {a ∈ A ∩Hα | α(a) ∈ k+,0}
(4) φα(K̄) ⊂ K ∩Hα.

(5) The set {α,−α} is a root system of Hα with respect to A ∩Hα and the Cartan

decomposition Hα = (K ∩Hα)A+(Hα)(K ∩Hα) holds where

A+(Hα) = {a ∈ A ∩Hα | α(a) ∈ k+,0}.

Proof. It suffices to verify the claim (1) by Proposition 2.1. Let a ∈ Ā and u ∈ U+.

Then aua−1 = ᾱ(a)u. Hence, applying φα on both sides, we get

φα(a)φα(u)φα(a−1) = ᾱ(a)φα(u)

(note that φα|U+ is a k-linear map). On the other hand, since φα(a) ∈ A and φα(u) ∈
Uα, it follows that

φα(a)φα(u)φα(a−1) = α(φα(a))(φα(u)).

Hence we have α(φα(a)) = ᾱ(a) for any a ∈ Ā, proving the claim (1).�
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3.2. Since PGL2 is the adjoint group of type A1, there exists a unique k-rational isogeny

ψα : H̃α → PGL2 such that ψα ◦ φα = j where j denotes the natural projection map

j : SL2 → PGL2. The group PGL2(k) has the Cartan decomposition and Iwasawa

decomposition which are compatible with those of SL2(k) described in 3.1.

Lemma. For any a ∈ A ∩Hα,

ΞHα
(a) = ΞPGL2(k)

(

α(a) 0
0 1

)

.

Proof. Since ΞHα
(a) = ΞPGL2(k)(ψα(a)) for any a ∈ A ∩ Hα, it is enough show that

ψα(a) =

(

α(a) 0
0 1

)

. Since

a = φα

(

y 0
0 y−1

)

for some y ∈ k∗,

we have

ψα(a) = ψα ◦ φα
(

y 0
0 y−1

)

= j

(

y 0
0 y−1

)

.

Since

α(a) = α ◦ φα
(

y 0
0 y−1

)

= ᾱ

(

y 0
0 y−1

)

= y2,

we have

ψα(a) = j

(

y 0
0 y−1

)

=

(

y2 0
0 1

)

=

(

α(a) 0
0 1

)

.

proving the lemma. �

3.3. We recall that two distinct roots α and β in Φ+ are said to be strongly orthogonal

if neither of α± β is a root.

Definition (cf. [Oh]).

(1) A subset S of Φ+ is called a strongly orthogonal system of Φ if any two elements

of S are strongly orthogonal to each other.

(2) A strongly orthogonal system S is called large if every simple root of Φ+ has a

non-zero coefficient in the formal sum
∑

α∈S α.

(3) A strongly orthogonal system S is called maximal if the coefficient of each simple

root in the formal sum
∑

α∈S α is not less than the one in
∑

α∈O α for any

strongly orthogonal system O of Φ.
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Example. Let G = SL3(k) and α1, α2 the simple roots. Then there are three strongly

orthogonal systems: {α1}, {α2}, {α1 + α2}.
For G = SL4(k), let α1, α2, α3 be the simple roots. Then the following is a complete

list of strongly orthogonal systems: {a positive root}, {α1, α3}, {α1 + α2, α2 + α3} and

{α1 + α2 + α3, α2}.

Clearly for any α ∈ Φ+, a singleton {α} is a strongly orthogonal system. If γ is the

highest root of Φ+, then the singleton {γ} is a large strongly orthogonal system. See the

Appendix for a list of a maximal strongly orthogonal system for each irreducible root

system constructed in [Oh]. We remark that a maximal strongly orthogonal system is

not unique in general (see Remark in [Oh, 2.3]).

We note that a priori it is not clear from the definition whether a maximal strongly

orthogonal system always exists. It will be interesting to give an intrinsic explanation

for its existence.

3.4. Lemma. Let S be a subset of Φ+. Then S is a strongly orthogonal system if and

only if for any α 6= β in S, xαxβ = xβxα for any xα ∈ Hα and xβ ∈ Hβ.

Proof. Since H̃α is generated by U±α for any α ∈ Φ, the claim follows from the Cheval-

ley’s commutator relations [St]. �

Recall that for a group H, the notation Z(H) denotes the center of H.

3.5. Corollary. If S is a strongly orthogonal system of Φ,

Hα ∩Hβ ⊂ Z(Hα) ⊂ K ∩ Z(Hα)

for any α 6= β in S.

Proof. If x ∈ Hα ∩Hβ , x centralizes Hα by Lemma 3.4, and hence x ∈ Z(Hα). Note

that Z(Hα) is non-trivial only when φα is injective, and hence when Hα is isomorphic to

SL2(k). Since Z(SL2(k)) ⊂ K̄, we have φα(Z(SL2(k)) = Z(Hα) ⊂ K ∩Hα by Lemma

3.2. �

3.6. We will now show that for any root α ∈ Φ+, the subgroup Hα is embedded in G

in one of the following four ways as the lemma below describes. We denote by k2 ⋉ k

(resp. k4 ⋉ k) the Heisenberg group of dimension 3 (resp. 5).

Lemma. Assume that G/Z(G) is almost k-simple with k−s.s. rank (G) ≥ 2. Then for

any α ∈ Φ+, there exist a connected almost simple k-split subgroup G̃α of rank 2 and a

unipotent algebraic k-subgroup Ñα of G̃ such that CGα
(H̃α)Ñα is a Levi-decomposition

of a parabolic subgroup of G̃α. Moreover if we set Gα = G̃α(k) and Nα = Ñα(k), one
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of the following holds for (type of Gα, Nα, the action of Hα on Nα/[Nα, Nα]) up to local

isomorphism:

(1) A2, Nα ∼= k2, the standard representation of SL2(k) on k2.

(2) C2, Nα ∼= k3, the adjoint representation of SL2(k) on k3.

(3) C2, Nα ∼= k2 ⋉ k, the standard representation of SL2(k) on k2.

(4) G2, Nα ∼= k4 ⋉ k, the symplectic representation of SL2(k) on k4.

Moreover in the root system of Gα, α is a short root in the cases (2) and (4), and a

long root in the case (3).

Proof. Since G/Z(G) is almost k-simple, the group G̃0/Z(G̃0) (see 3.1 for notation) is

almost simple and split over k. Since Φ is a reduced irreducible root system, there exists

a root β ∈ Φ such that one of α±β belongs to Φ. Consider Ψ = {iα+jβ ∈ Φ | i, j ∈ Z}.
Then Ψ is a reduced irreducible root system of rank 2. Denote by G̃′

0 the closed subgroup

of G̃0 generated by the one-dimensional root sub-subgroups Ũγ of G̃0, γ ∈ Ψ. Then G̃′
0

is of type A2, C2 or G2. Denote by {α1, α2} the set of simple roots of G̃′
0. Let α1 be the

short simple root if the lengths of α1 and α2 are different. Since any root is conjugate

to a simple root by a Weyl element, we may assume that α = αi for i = 1 or 2. In the

following case by case proof according to the type of (G̃α, α), except in the last case, we

will set G̃α = G̃′
0. For simplicity, we omit the notation˜in the rest of proof.

(1) For (A2, α1 or α2): since α1 and α2 are conjugate in A2, it suffices to consider

α = α1. Then it is enough to consider the unipotent subgroup Nα generated by

Uα2
and Uα1+α2

. Note that Nα is a 2-dimensional abelian subgroup.

(2) For (C2, α1): it suffices to consider the unipotent subgroup Nα generated by

Uα2
, Uα1+α2

and U2α1+α2
. Note that Nα is a 3-dimensional abelian subgroup.

(3) For (C2, α2): consider the unipotent subgroup Nα generated by Uα1
, Uα1+α2

and U2α1+α2
. Hence Nα is a Heisenberg subgroup with the center U2α1+α2

.

(4) For (G2, α1): consider the unipotent subgroup Nα generated by Uα2
, Uα1+α2

,

U2α1+α2
, U3α1+α2

, and U3α1+2α2
. Hence Nα is a Heisenberg subgroup with the

center U3α1+2α2
.

(5) For (G2, α2): since the root system generated by long roots of G2 is A2, it suffices

to set Gα to be the corresponding subgroup of type A2 and to apply the case of

A2.

Now the proof of lemma is straightforward from the above list. �

Remark. Unless Φ = Cn (n ≥ 2) and α is a long root (simultaneously), we can always

take β in the proof so that the case (3) in the above lemma does not occur. This can

be seen as follows: first we may assume that α is a simple root up to conjugation. If

Φ = G2, the case (4) or (5) happens as explained in the above proof. In all other cases
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except when α is a short (resp. long) root in Φ = Bn (n ≥ 3) (resp. Cn (n ≥ 2)), it is

clear from the Dynkin diagram that we can take β so that Ψ is A2 (here we regard B2

as C2). Finally if α is a short root in Bn, the case (2) arises.

3.7. The Harish-Chandra function of PGL2(k). We explicitly calculate the Harish-

Chandra function of PGL2(k). Let A (resp. B) be the image of the diagonal (resp. the

upper triangular) subgroup ofGL2(k) under the natural projectionGL2(k)→ PGL2(k).

Then the set of representatives of A can be taken to be {
(

a 0
0 1

)

| a ∈ k∗}. We set

ã =

(

a 0
0 1

)

∈ A+. Denote by α the simple root of PGL2(k) defined by α(ã) = a.

In the Iwasawa decomposition PGL2(k) = KA0Ru(B), the A0-part of an element of

PGL2(k) is uniquely determined. The modular function δB satisfies:

δB(kb̃n) = |b1
b2
| for k ∈ K, b̃ = diag (b1, b2) ∈ A0 and n ∈ Ru(B)

Recall from 2.2 that

ΞPGL2(k)(ã) =

∫

K

δB(ãk)−1/2 dk

where dk is a normalized Haar measure on K.

3.7.1. For k = R: since

ΞPGL2(R)

(

a 0
0 1

)

= ΞSL2(R)

(√
a 0

0
√
a
−1

)

we may calculate ΞSL2(R). Let G = SL2(R) and

K = SO2 =

{(

cos t sin t
− sin t cos t

)

| 0 ≤ t < 2π

}

, dk =
1

2π
dt

where dt is the Lebesgue measure on [0, 2π). Let ã =

(√
a 0

0
√
a
−1

)

. To compute

A0-component of ãk, let

ãk = k′b̃n where b̃ =

(

b 0
0 b−1

)

, b > 0

and apply the standard vector e1 on both sides. Then ãk.e1 = k′b.e1. Hence

b2 = a cos2 t+ a−1 sin2 t where k =

(

cos t sin t
− sin t cos t

)

since k2
11 + k2

21 = 1 for any k = (kij) ∈ K.

Since δB(ãk)−1/2 = b−1,

ΞPGL2(R)

(

a 0
0 1

)

= ΞSL2(R)

(√
a 0

0
√
a
−1

)

=
2

π
√
a

∫ π/2

0

(

cos2 t

a2
+ sin2 t

)−1/2

dt for a ≥ 1.
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3.7.2. For k = C: we can parameterize K = SU2 by

{k(ψ, t, φ) =

(

cos t e(i(φ+ψ)/2) i sin t e(i(φ−ψ)/2)

i sin t e(i(ψ−φ)/2) cos t e(i(φ+ψ)/2)

)

|

0 ≤ t < π/2, 0 ≤ ψ < 2π, −2π ≤ ψ < 2π}

and

dk =
1

8π2
sin(2t)dψ dt dφ

where each of dψ, dt and dφ is the Lebesgue measure on the corresponding domain of

each variable [KV].

By the same argument as in 3.7.1, now using the fact that the equation k11k11 +

k21k21 = 1 for every k = (kij) ∈ K (where kij denotes the (i, j)-th entry of k), we

deduce from the Iwasawa decomposition ãk = k′b̃n that b1b2 = a and

b21 = a2 cos2 t+ a−2 sin2 t where k = k(ψ, t, φ)

(here recall that a, b1 and b2 are positive reals).

Since

δB(ãk)−1/2 = |
(

b1
b2

)

|−1/2 =

(

b1
b2

)−1

(recall that |z| = zz̄),

∫

K

δB(ãk)−1/2 dk =
1

8π2

∫ 2π

−2π

∫ π/2

0

∫ 2π

0

(

b1
b2

)−1

sin(2t)dψ dt dφ.

Hence

ΞPGL2(C)

(

a 0
0 1

)

=
1

πa

∫ π/2

0

(

cos2 t

a2
+ sin2 t

)−1

sin (2t)dt, for a ≥ 1.

3.7.3. For k non-archimedean with a uniformizer q such that |q|−1
= p: in the realiza-

tion of IndGB(1) on L2(k) (see 6.2), the K-invariant unit vector f0 is given by

f0(x) =

√

p

p+ 1
·max(1, |x|)−1

for any x ∈ k.

Hence

ΞPGL2(k)(ã) = 〈IndGB(1)(ã)f0, f0〉 =
p

p+ 1

∫

k

|a|−1/2
max

(

|a|−1
, |ax|

)−1

max (1, |x|)−1
dx
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where dx is a normalized Haar measure on k. For a = q−n, we split this integral into

three parts-the integral over |x| < p−n, the integral over p−n < |x| ≤ 1 and the integral

over |x| > 1. Then the integral becomes

p√
pn(p+ 1)

(

∫

|x|>1

p−n|x|−2
dx+

∫

p−n<|x|≤1

p−n|x|−1
dx+

∫

|x|<p−n

pn dx

)

.

Since (cf. [GGP, Ch 3.10])

∫

|x|>1

|x|−2
dx = p−1,

∫

p−n<|x|≤1

|x|−1
dx =

n(p− 1)

p
and

∫

|x|<p−n

dx = p−n,

we obtain

ΞPGL2(k)

(

q−n 0
0 1

)

=
n(p− 1) + (p+ 1)√

pn(p+ 1)
.

Since

(

qn 0
0 1

)

=

(

1 0
0 q−n

)

in PGL2(Qp) and the latter belongs toK

(

q−n 0
0 1

)

K,

we have

ΞPGL2(k)

(

qn 0
0 1

)

= ΞPGL2(k)

(

q−n 0
0 1

)

.

3.8. In summary, the function ΞPGL2(k) is a bi-K-invariant function of PGL2(k) such

that

ΞPGL2(k)

(

x 0
0 1

)

=























2
π
√
x

∫ π/2

0

(

cos2 t
x2 + sin2 t

)−1/2

dt, for x ≥ 1: for k = R

1
πx

∫ π/2

0

(

cos2 t
x2 + sin2 t

)−1

sin (2t) dt, for x ≥ 1: for k = C

n(p−1)+(p+1)√
pn(p+1)

, for x = q±n and n ∈ N: for k non-archimedean

(recall that |q| = p−1 where p is the cardinality of the residue field of k).

4. Temperedness of ρ|Hα

4.1. We continue the notation from 2.1 and 3.1. We also denote by G+ the subgroup

generated by the subgroups U(k) where U runs through the set of unipotent k-split

subgroups of G̃ (cf. [BT]). The goal of section 4 is to show the following two theorems

4.1 (for k 6= C) and 4.2 (for k = C) which play key roles in the construction of our

uniform pointwise bounds for K-matrix coefficients.

Theorem. (k 6= C) Let k be a local field not of characteristic 2. Assume that G/Z(G)

is almost k-simple with k-s.s. rank G ≥ 2. For any α ∈ Φ and for any unitary represen-

tation ρ of G without a non-zero G+-invariant vector, the restriction ρ|Hα
is tempered.

Moreover if G/Z(G) ∼= SLn(k) (locally), k can be any local field.
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4.2. When k is the complex field, there appears different phenomenon, mainly due to

the fact that the oscillator representation occurs as a representation of SL2(C), whereas,

if k 6= C it is a representation of a double covering of SL2(k) but not of SL2(k). More

precisely, when Hα ⊂ G = Sp2n(C) and α is a long root, the restrictions to Hα of the

K ∩ Hα-matrix coefficients of a unitary representation of G without a non-zero G+-

invariant vector are in general strongly L4+ǫ but not strongly L2+ǫ (see Theorem 6.6

below for an example of such a representation).

Theorem. (k = C) Let G be a connected reductive complex algebraic group with

s.s. rank G ≥ 2 and G/Z(G) almost simple. For any α ∈ Φ and for any unitary

representation ρ of G without a non-zero G+-invariant vector, the restriction ρ|Hα
is

tempered, except the case when G/Z(G) ∼= Sp2n(C) (n ≥ 2) (locally) and α is a long

root. In the latter case, ρ|Hα
is strongly L4+ǫ.

4.3. Recall the following direct consequence of the well known Howe-Moore theorem

on vanishing of the matrix coefficients at infinity [HM]: if G is the group of k-rational

points of a connected reductive algebraic group over any local field k with G/Z(G)

almost k-simple and ρ is a unitary representation of G without a non-zero G+-invariant

vector and M is a closed subgroup of G with M/(M ∩ Z(G)) non-compact, then ρ has

no M -invariant vector. In view of this, we may assume that G = Gα (see Lemma 3.6

for notation) in the proofs of Theorems 4.1 and 4.2. We will then carry out case by case

analysis based on the position of Hα in Gα along with the type of Gα given in Lemma

3.6. By the following lemma, we may also assume that Gα is of simply connected type

and hence Hα is isomorphic to SL2(k) without loss of generality.

Lemma. Let Gα be the simply connected covering of G̃α and π : Gα → G̃α be the k-

isogeny. Set Hα := π−1(H̃α). Suppose that for any unitary representation ρ of Gα(k)

with no non-zero invariant vector, ρ|Hα(k) is tempered. Then for any unitary represen-

tation ρ of Gα with no non-zero G+
α -invariant vector, ρ|Hα

is tempered.

Proof. Let ρ be a unitary representation of Gα with no non-zero G+
α -invariant vector.

Note that Gα(k) = Gα(k)+ and π(Gα(k)) = Gα(k)+. Hence ρ◦π|Gα(k) is a unitary repre-

sentation of Gα(k) with no non-zero Gα(k)-invariant vector. Note that π(Hα(k)) is a sub-

group of finite index in Hα. Let h1, · · · , hk be a set of representatives in Hα/π(Hα(k)).

Let v and w be non-zero vectors in ρ and set wi = ρ(h−1
i )w for each 1 ≤ i ≤ k. Denote

by dh a Haar measure on Hα. Since π(Hα(k)) is an open subgroup of Hα, the restriction

of dh defines a Haar measure on π(Hα(k)), which will also be denoted by dh. Let dm

denote the Haar measure on Hα(k) which is the pull back of dh under the covering map
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π : Hα(k)→ π(Hα(k)). Fix ǫ > 0. Then

∫

Hα

|〈ρ(h)v, w〉|2+ǫ dh =
k
∑

i=1

∫

π(Hα(k))

|〈ρ(hih)v, w〉|2+ǫ dh

=
1

c

k
∑

i=1

∫

Hα(k)

|〈ρ ◦ π(m)v, wi〉|2+ǫ dm

where c is the cardinality of ker(π) ∩ Hα(k). Since any non-zero matrix coefficients of

ρ ◦ π|Hα(k) is L2+ǫ-integrable for any ǫ > 0 by the assumption (Theorem 2.5), it follows

that ρ|Hα
is tempered by Theorem 2.4. �

Our main tool is the theory of Mackey on representations of a semi-direct product of

groups (cf. [Zi, Ex 7.3.4], [Ma, III.4.7], [LZ]). The first two cases of Lemma 3.6 will be

handled by the following proposition:

4.4. Proposition. Let k be any local field and let H = SL2(k). Let G be the group

H ⋉ k2 (resp. H ⋉ k3) where H acts on k2 (resp. k3) as the standard (resp. adjoint)

representation. Let K be a good maximal compact subgroup of H. Then for any unitary

representation ρ of without any k2 (resp. k3)-invariant vector, ρ|H is tempered.

Proof. Set N = k2 or k3 accordingly. Conisder the action of H on the character group

N̂ of N defined by

h.χ(n) := χ(h−1nh)

for any h ∈ H, χ ∈ N̂ and n ∈ N .

LetN ′ denote the space of k-linear forms onN , and fix a non-trivial additive character

λ of k. Then the map φ : N ′ → N̂ defined by φ(n′)(x) = λ(n′(x)) for any x ∈ n is a

bijection (cf. [We, Ch II-5, Theorem 3]). Through this identification of N̂ with N ′ ∼= N ,

the action of H on N̂ is equivalent to the standard SL2(k)-action on k2 if N = k2, and

to the standard SL2(k)-action on the symmetric power Sym2(k2) of k2 if N = k3.

Therefore the actions of H in N̂ are algebraic and hence the H-orbits on N̂ are locally

closed (see [BZ, 6.15 and 6.8]). We can easily check that the zero element in N̂ is the

only H-fixed point in N̂ . Hence the stabilizer in H of any non-zero element in N̂ is

amenable, since any proper algebraic subgroup of SL2(k) is amenable.

Now assume that ρ is irreducible. Applying Mackey’s theory, we conclude that ρ

is induced from an irreducible unitary representation σ of the stabilizer in G of an

element, say χ, of N̂ and if χ is trivial, then ρ|N contains the trivial representation (cf.

[Zi, Theorem 7.3.1]). It then follows from the assumption that χ must be non-trivial

and hence the stabilizer of χ in G, which is the semi-direct product of the stabilizer of

χ in H with N , is amenable. Recall the well known fact that any irreducible unitary
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representation of an amenable group is weakly contained in its regular representation

(cf. [Ma, Ch1, 5.5.3]). Hence ρ is weakly contained in the regular representation of G,

since the induced representation of a regular representation is the regular representation

and the induction map is continuous (cf. [Zi, Proposition 7.3.7]). It now follows that

ρ|H is weakly contained in a multiple of the regular representation L2(H). In general,

in the direct integral decomposition ρ =
∫

X
ρx dµ(x) where ρx is irreducible, for almost

all x ∈ X , ρx|N has no non-zero invariant vector. Hence ρx|H is weakly contained in

the regular representation L2(H) for almost all x ∈ X , by the above argument. By

Theorem 2.4, this finishes the proof. �

4.5. Now the last two two cases of Lemma 3.6 will be based on Propositions 4.5 and

4.6. In both cases, Hα is a subgroup (in fact, the derived subgroup of a Levi subgroup)

of a parabolic subgroup of Gα whose unipotent radical Nα is a Heisenberg subgroup.

Letting W = Nα/[Nα, Nα], Hα acts on W as a sympletic representation and hence

Hα →֒ Sp(W ). Fix a subset ∆ of Φ+ such that W admits a polarization

W =





∑

β∈∆

Uβ



⊕





∑

β∈∆

Uβ∗



 .

Denote by Ĥα the double cover of Hα for k 6= C, and set Ĥα = Hα for k = C. Applying

Mackey’s theory and the theory of oscillator representation, we can conclude that for

any unitary representation of Gα without a non-zero invariant vector, there exist unitary

representations µt of Ĥα, t ∈ k∗/(k∗)2, such that

ρ|Hα
=

∑

t∈k∗/(k∗)2

ωt|Ĥα
⊗ µt

(up to equivalence) where ωt is the oscillator representation of the symplectic group

Sp(W ) corresponding to t ∈ k∗/(k∗)2 (cf. [LZ, Proposition 2.1]). Here the representa-

tion ωt|Ĥα
⊗ µt factors through Ĥα → Hα. Therefore there exists a dense subset V of

ρ|Hα
such that for any x, y ∈ V , the matrix coefficient 〈ρ|Hα

(a)x, y〉 is bounded by a

constant multiple of

φ(a) =
∏

β∈∆

(

max(|β(a)|, |β(a)|−1)
)−1/2

for any a ∈ A(Hα) (cf. [LZ, Proposition 2.2]). Here φ is essentially a matrix coefficient

of ωt|Ĥα
. We keep these notation in the proofs of the following two propositions.

Proposition. Let k be a local field not of characteristic 2. Let G be the group of k-

rational points of a connected simply connected almost simple k-split group of type G2
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and α a short root in Φ. For any unitary representation ρ of G without a non-zero

invariant vector, the restriction ρ|Hα
is tempered.

Proof. Let α1 and α2 be as in the the proof of Lemma 3.6 (in particular α1 is short).

Then we may assume thar α = α1 (up to conjugation by a Weyl element). We may

assume that ρ is irreducible without loss of generality. The maximal split torus A of G2

can be identified as

A = {a = diag(a1, a2, a3) ∈ SL3(k) | ai ∈ k∗},

and

α1(a) = a2 and α2(a) =
a1

a2
.

Then

A+ ∩Hα1
= {b = diag(b−1

1 , b21, b
−1
1 ) | b1 ∈ k̂}.

Since ∆ can be taken as {α2, α1 + α2},

φ(b) = |α2(b)|−1/2|α1α2(b)|−1/2
= |b1|−2.

Therefore ρ|Hα
is strongly L1+ǫ; hence ρ|Hα

is tempered by Theorem 2.4. �

4.6. Proposition. Let k be a local field not of characteristic 2. Let G be the group

of k-rational points of a connected simply connected almost simple k-split group of type

C2 and α a long root in Φ. Let ρ be a unitary representation of G without a non-zero

invariant vector.

(1) For k 6= C, ρ|Hα
is tempered.

(2) For k = C, ρ|Hα
is strongly L4+ǫ.

Proof. We may realize G by Sp4(k) so that

A = {a = diag(a1, a2, a
−1
2 , a−1

1 ) | a1, a2 ∈ k∗}

and

α1(a) =
a1

a2
, α2(a) = a2

2

are simple roots. We may assume that α = α2. and

A+(Hα) = {b = diag(1, b1, b
−1
1 , 1) | b1 ∈ k̂}.

Then

φ(b) = |α1(b)|−1/2 = |b1|−1/2
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for any b ∈ A(Hα). Hence ρ|Hα
is strongly L4+ǫ. Now consider the case when k 6= C.

By the remark in 4.1, we may assume that ρ is irreducible. By [Ho, Corollary 2.15],

any non-trivial irreducible unitary representation of Sp4(k) has pure rank 2. By [Ho,

Corollary 2.12], the representations ωt are representations of Ĥα of pure rank 1. Since

ρ|Hα
is a representation of Hα and ωt acts on the kernel of Ĥα → Hα non-trivially, it

follows that µt is a genuine representation of Ĥα. It is well known that the genuine

irreducible unitary representation of Ĥα = ŜL2(k) is strongly L4+ǫ. Hence so is µt,

being the direct integral of irreducible. Since both ωt and µt are strongly L4+ǫ, ρ|Hα
is

strongly L2+ǫ. By Theorem 2.4, ρ|Hα
is tempered. The above argument for k 6= C is

borrowed from the proof of [DHL, Proposition 4.4.]. �

4.7. Proof of Theorems 4.1 and 4.2. Let Gα and Nα be as in Lemma 3.6. By Howe-

Moore, ρ|Gα
has no G+

α -invariant vectors. Hence we may assume G = Gα. Suppose

that Gα contains Hα ⋉ k2, or Hα ⋉ k3 as the first two cases of Lemma 3.6. Since ρ|ki

(i = 2, 3 respectively) has no non-zero invariant vector again by Howe-Moore, we apply

Proposition 4.4 to prove the claim. For the last two cases of Lemma 3.6, Propositions

4.5 and 4.6 imply the claim. Since the case (3) in Lemma 3.6 can be avoided unless

Φ = Cn (n ≥ 2) (i.e., G/Z(G) ∼= Sp2n(C)) and α is a long root (see the remark following

Lemma 3.5), we need to set nα = 1/2 only in that case with k = C as in Theorem 4.2.

The condition that the characteristic of k is not 2 is required only in using oscillator

representations of the double cover of a symplectic group. For example, if Φ = An−1,

i.e.,G/Z(G) ∼= SLn(k), this case does not happen. Hence Theorem 4.1 is valid in this

case for any local field k.

Remark. The proof of Proposition 3.4 in [Oh] is incomplete since only the cases when

Nα can be taken abelian were treated. The above proof fills up its missing part.

4.8. Sp(1, n) case. We also show a theorem analogous to Theorem 4.1 for the real

rank one group G = Sp(1, n), (n ≥ 2). In this case, we have Φ+ = {α}.

Theorem. Let ρ be a unitary representation of G = Sp(1, n) without a non-zero in-

variant vector. Then ρ|Hα
is tempered.

Proof. Consider the natural embedding Sp(1, 2) →֒ G. Thanks to Howe-Moore again,

we may assume that G = Sp(1, 2). If we denote Φ by {α,−α}, we have that G0 = Hα.

It is known that any non-trivial irreducible unitary representation of G is strongly L5+ǫ

from the classification [Ko]. By Theorem 2.5, any K-finite matrix coefficients of ρ is

bounded by Ξ
1/3
G up to a constant multiple. But Ξ

1/3
G ≈ α−5/6 (see 5.6 for notation).

Hence Ξ
1/3
G |Hα

is L2-integrable and ρ|Hα
is strongly L2. This proves the claim. �

4.9. We now obtain the following from Theorems 4.1, 4.2 and Proposition 2.7:
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Theorem. Let k be a local field with char (k) 6= 2. Let G be the group of k-rational

points of a connected reductive linear algebraic group over k with k-s.s. rank G ≥ 2 and

G/Z(G) almost k-simple, or G = Sp(1, n) (over R). Let S be a strongly orthogonal

system of Φ. Let nα = 1
2

if k = C, Φ = Cn and α is a long root, and nα = 1 otherwise.

If ρ is a unitary representation of G without a non-zero G+-invariant vector and v and

w are K ∩HS-invariant unit vectors, then for any hα ∈ Hα and c ∈ ∩α∈SCG(Hα), we

have

|〈ρ(
∏

α∈S
hαc)v, w〉| ≤

∏

α∈S
Ξnα

Hα
(hα).

4.10. Definition. For a strongly orthogonal system S, define a bi-K-invariant function

ξS of G = KA+ΩK as follows:

ξS(k1adk2) =
∏

α∈S
Ξnα

PGL2(k)

(

α(a) 0
0 1

)

for a ∈ A+, d ∈ Ω, k1, k2 ∈ K

where nα = 1
2

if k = C, Φ = Cn and α is a long root (all at the same time), and nα = 1

in all other cases.

Lemma. For any element a =
∏

α∈S aαc where aα ∈ A+(Hα) and c ∈ ∩α∈SCA0Hα,

we have

ξS(g) =
∏

α∈S
Ξnα

Hα
(aα).

Proof. It suffices to show that

ΞPGL2(k)

(

α(a) 0
0 1

)

= ΞHα
(aα).

Since

ΞHα
(aα) = ΞPGL2(k)

(

α(aα) 0
0 1

)

for aα ∈ A ∩Hα

by Lemma 3.2, it suffices to show that α(a) = α(aα). Since the element
∏

β∈S,β 6=α aβc

lies in CG(Hα), we only need to show that α(b) = 1 for any b ∈ A∩CG(Hα). Note that

for any u ∈ Uα, bub−1 = α(b)u. Therefore if b commutes with Hα, and hence with u,

we have α(b)u = u, yielding α(b) = 1. �

4.11. Recall from 2.1 that if k is archimedean, we have the Cartan decomposition

G = KA+K. Therefore the following theorem presents a uniform pointwise bound on

G for all K-matrix coefficients of unitary representations of G without non-zero G+-

invariant vectors in the archimedean field case.
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Theorem. Let k = R or C, and let G be the k-points of a connected reductive lin-

ear algebraic group over k with k-s.s. rank (G) ≥ 2 and G/Z(G) almost k-simple or

G = Sp(1, n). Let S be a strongly orthogonal system of Φ. Then for any unitary rep-

resentation ρ of G without a non-zero G+-invariant vector and with K-invariant unit

vectors v and w, we have

|〈ρ(g)v, w〉| ≤ ξS(g) for g ∈ G.

Proof. Since both functions are bi-K-invariant, it suffices to consider the case when

g ∈ A+. In fact, we have

A+ ⊂
∏

α∈S
A+(Hα) · (∩α∈SCA0(Hα))

for k-archimedean (see Lemma 5.2 below). Hence it only remains to apply Theorem 4.9

with Lemma 4.10. �

Theorem 1.2 (2) is a special case of the above theorem.

5. Uniform pointwise bound ξS

5.1. Let k be any local field with char (k) 6= 2. Unless stated otherwise, G denotes

the group of k-rational points of a connected reductive linear algebraic group over k

with k-s.s. rank(G) ≥ 2 and G/Z(G) almost k-simple. We also assume that G/Z(G) ≇

Sp2n(C) (locally).

We state some more structure theory of algebraic groups. We continue the same

notation from 2.1, 3.1 and 4.1. In particular, recall that for each α ∈ Φ, Ũα (resp.

Ã) denotes the one dimensional root subgroup (resp. the maximal k-split torus) of G̃0

such that Ũα ∩ G0 = Uα (resp. Ã ∩ G0 = A). In the following discussion we freely use

some facts about algebraic groups from [BT, 3.8-3.11]. Let S be a strongly orthogonal

system of Φ. Then the set ±S = {α,−α | α ∈ S} is a closed subset of Φ. Denote

by G̃S the subgroup of G̃0 generated by Ã and Ũα, α ∈ ±S. Then G̃S is a connected

reductive algebraic subgroup of G̃0 defined over k. We also denote by H̃S the subgroup

of G̃0 generated by Ũα, α ∈ ±S. Then H̃S is a connected semisimple algebraic subgroup

of G̃0 defined over k. We set GS = G̃S(k) and HS = H̃S(k). Then GS = HSA. It

follows from Proposition 2.1 that HS and GS admit Cartan decomposition and Iwasawa

decomposition compatible with those of G:

HS = (K ∩HS)A+(HS)(K ∩HS) = (K ∩HS)A0(HS)(Ru(B) ∩HS);

GS = (K ∩GS)A+(K ∩GS) = (K ∩GS)A0(Ru(B) ∩GS).
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5.2. The subgroup H̃S is an almost direct product of H̃α, α ∈ S, and hence the subgroup

generated by Hα, α ∈ S has a finite index in HS . Since the centralizer of any subset is

algebraic, CA0(HS) = ∩α∈SCA0(Hα) and A+(Hα) ⊂ A+(HS) for each α ∈ S.

Lemma. Let S be a strongly orthogonal system of Φ. Then we have
{

A+ ⊂ A+(HS) · (∩α∈SCA0(Hα)) for k archimedean

2A+ ⊂ A+(HS) · (∩α∈SCA0(Hα)) for k non-archimedean

where 2A+ = {a2 | a ∈ A+}. In fact, for any a ∈ A+ (resp. for a ∈ 2A+ for the

latter case), there exist elements aα ∈ A+(Hα) (unique up to mod K ∩Hα), α ∈ S and

c ∈ CA0(HS) such that a =
(
∏

α∈S aα
)

· c.
Proof. Consider the character map α : A0 → k0 for each α ∈ S. For k archimedean,

α must be surjective, since both α(A0) and k0 are one-dimensional connected groups.

Hence A0 = (A0 ∩ Hα)ker(α). When k is non-archimedean, we claim that 2A0 ⊂
(A0 ∩Hα)2(ker(α)). Denote by π the natural projection A0 → A0/kerα. Consider the

map

α̃ : A0/ker(α)→ k0

which is induced by α. Then α̃(π(a)) = α(a) for all a ∈ A0 ∩Hα.

Denote by a (resp. b) the generator of A0 ∩ Hα (resp. A0/ker(α)) as a Z-module.

We may assume that π(a) = bm for some positive integer m. Define a character β :

A0 ∩Hα → k0 by setting β(a) = α̃(b). Then βm(a) = α̃(bm) = α̃π(a) = α(a). Hence

βm = α on Hα ∩A0. Since Hα is locally isomorphic to SL2(k), the Z-module generated

by the root α of Hα is of index 2 in the Z-module generated by all characters of A(Hα)

defined over k. Hence m = 1 or m = 2.

Therefore

2A0/ker(α) ⊂ A0 ∩Hα;

hence

(2A0/ker(α))(2ker(α)) ⊂ (A0 ∩Hα)(2ker(α)).

This shows that 2A0 ⊂ (A0 ∩ Hα)2(ker(α)) for k non-archimedean. For the rest of

the proof, let r = 1 or 2 depending on whether k is archimedean or not. Note that

ker(α) = CA0(Hα) and hence A0 ∩ Hβ ⊂ ker(α) for all β ∈ S\{α}. If β ∈ S\{α}, by

the same argument as before, we have

rker(α)/(ker(α) ∩ ker(β)) ⊂ (A0 ∩Hβ).

By an inductive argument, we obtain that

rA0 ⊂
(

∏

α∈S
A0(Hα) · (∩α∈Sker(α))

)

.
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Since
∏

α∈S A
0(Hα ⊂ A0(Hα), ∩α∈Sker(α) = CA0(HS) and α(a) ∈ k+ for any a ∈ A+

and α ∈ Φ+, this proves the inclusion relation. To show the uniqueness, assume that
∏

α∈S aαc =
∏

α∈S a
′
αc

′ where aα, a
′
α ∈ Hα and c, c′ ∈ ∩α∈SCA0(Hα). Then for each

α ∈ S, a−1
α a′α ∈ CA0(Hα), since Hβ ⊂ CA0(Hα) for any β 6= α in S. Therefore

a−1
α a′α ∈ Z(Hα) ⊂ K ∩Hα. This finishes the proof. �

Example. For G = SL4(k), let a = diag(a1, a2, a3, a4) ∈ A+. Consider the simple

roots α1, α2 and α3 such that αi(a) = ai

ai+1
for each 1 ≤ i ≤ 3. Set

γ1(a) =
a1

a4
and γ2(a) =

a2

a3
.

Then {γ1, γ2} is a (maximal) strongly orthogonal system of Φ. Observe that a is de-

composed into










√

a1

a4

1
1
√

a4

a1





















1
√

a2

a3
√

a3

a2

1

















√
a1a4 √

a2a3 √
a2a3 √

a1a4






.

Therefore the decomposition of a into A+(Hγ1)A
+(Hγ2)CA0(Hγ1Hγ2) can be achieved

provided γi(a) ∈ k̂2. For k archimedean, this is always the case. For k non-archimedean,

γi(a) = qn for some positive integer n. Hence γi(a) ∈ k̂2 if and only if n is even.

Therefore A+ cannot be contained in A+(Hγ1)A
+(Hγ2)CA0(Hγ1Hγ2).

5.3. We also denote by MS the subgroup generated by HS and CA(HS). Then MS
has a finite index in GS , since 2A+ ⊂ MS by Lemma 5.2 and A+ has a finite index

in A. Observe that HS/Z(HS) = MS/Z(MS). Since H̃S/Z(H̃S) has finite index in

G̃S/Z(G̃S) and PGL2 is of adjoint type, the map
∏

α∈S ψα (see 3.2) factors through

G̃S/Z(G̃S) and the following diagram is commutative:

HS/Z(HS)

Q

α∈S
φα←−−−−−− ∏

α∈S SL2(k)

i





y

j





y

GS/Z(GS)

Q

α∈S
ψα−−−−−−→ ∏

α∈S PGL2(k)

where i and j are canonical maps. We mention that the above map
∏

α∈S φα is not in

general surjective and HS/Z(HS) and GS/Z(GS) are not isomorphic.

Example. Let G = SL4(k) and S = {γ1, γ2} where

γ1







a1

a2

a3

a4






=
a1

a2
γ1







a1

a2

a3

a4






=
a3

a4
.
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Then

HS =

{(

A 0
0 B

)

| A,B ∈ SL2(k)

}

,

MS =

{(

xA 0
0 x−1B

)

| A,B ∈ SL2(k), x ∈ k∗
}

and

GS =

{(

A 0
0 B

)

| A,B ∈ GL2(k), det(AB) = 1

}

.

Hence

HS/Z(HS) ∼= MS/Z(MS) ∼= PSL2(k)× PSL2(k)

and

GS/Z(GS) ∼= PGL2(k)× PGL2(k).

5.4. Recall the Cartan decomposition G = KA+ΩK. Here Ω is a finite subset in the

centralizer of A. The bi-K-invariant function ξS of G = KA+ΩK is defined as follows

(4.10):

ξS(k1adk2) =
∏

α∈S
ΞPGL2(k)

(

α(a) 0
0 1

)

for k1adk2 ∈ KA+ΩK.

Lemma. For a strongly orthogonal system S of Φ, we have

ξS |HS
= ΞHS

and ξS |GS
= ΞGS

.

Proof. If a ∈ A ∩HS , then ΞHS
(a) = ΞGS

(a). Since for any a ∈ A,

ΞGS
(a) =

∏

α∈S
ΞPGL2(k)(ψα(a)),

it suffices to see that ψα(a) =

(

α(a) 0
0 1

)

, which can be found in the proofs of Lemma

3.2 and Lemma 4.10. �

5.5. Theorem. For any unitary representation ρ of G without a non-zero G+-invariant

vector, the restrictions ρ|HS
and ρ|GS

are tempered.

Proof. Denote by H the subgroup generated by Hα, α ∈ S. By Theorem 4.9 and the

remark following Proposition 2.7 imply that the K ∩H-finite matrix coefficients of ρ|H
are bounded by a constant multiple of ξS |H . Since ΞH = ξS |H , ρ|H is tempered. Since

H has finite index in HS , a similar argument to the proof of Lemma 4.3 shows that ρ|HS

is tempered. Now to show that ρ|GS
is tempered, write ρ|GS

as a direct integral
∫

Y
σy of
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irreducible representations of GS . Without loss of generality, we may assume that for all

y ∈ Y , σy has no non-zero G+
S -invariant vector and hence σy|HS

is tempered. Consider

the matrix coefficient g 7→ 〈σy(g)v, w〉 where v and w are K ∩ GS -finite vectors of σy.

Recall that the subgroup MS (5.3) has a finite index in GS . Let h1, · · · , hk be a set of

representatives in GS/MS . We denote by d[g] the G-invariant measure on GS/Z(GS).

We also denote by d[m] and d[h] the restrictions of d[g] to MS/Z(MS) and HS/Z(HS)

respectively. Fix ǫ > 0. Then

∫

GS/Z(GS)

|〈σy([g])v, w〉|2+ǫ d[g] =

k
∑

i=1

∫

MS/Z(MS)

|〈σy(hi[m])v, w〉|2+ǫ d[m]

=
k
∑

i=1

∫

HS/Z(HS)

|〈σy([h])v, h−1
i w〉|2+ǫ d[h]

Since any non-zero matrix coefficients of σy|HS
is L2+ǫ-integrable (Theorem 2.5) and

hence L2+ǫ(HS/Z(HS))-integrable (since Z(HS) is finite), we have shown that

∫

GS/Z(GS)

|〈σy([g])v, w〉|2+ǫ d[g] <∞.

Hence σy is strongly L2+ǫ (GS/Z(GS))-integrable. By Theorem 2.4, this implies that

ρ|GS
is tempered. �

5.6. For k archimedean, a translation of a K-finite vector is not necessarily K-finite.

However that is the case for the non-archimedean field case.

Lemma. Let k be non-archimedean and ρ any unitary representation of G. Then for

any K-finite vector v and for any g ∈ G, the vector gv is K-finite. Furthermore

dim〈K(gv)〉 ≤ [K : gKg−1 ∩K] · dim〈Kv〉.

Proof. Since (gKg−1)(gv) = gKv, the subspace spanned by (gKg−1)(gv) has the same

dimension as 〈Kv〉. Now gKg−1∩K is an open compact subgroup of K, and hence has

finite index in K. Therefore

dim〈K(gv)〉 ≤ [K : gKg−1 ∩K] · dim〈(gKg−1 ∩K)(gv)〉
≤ [K : gKg−1 ∩K] · dim〈(gKg−1)(gv)〉
= [K : gKg−1 ∩K] · dim〈Kv〉.

�

5.7. Main Theorem. We are now ready for our main theorem:
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Theorem. Let k be a local field with char (k) 6= 2. Let G be the k-rational points of

a connected linear reductive algebraic group with k-s.s. rank (G) ≥ 2, G/Z(G) almost

k-simple and G/Z(G) ≇ Sp2n(C) (locally). Let S be a strongly orthogonal system of Φ.

Then for any unitary representation ρ of G without a non-zero G+-invariant vector and

with K-finite unit vectors v and w, we have

|〈ρ(g)v, w〉| ≤
(

[K : K ∩ dKd−1] · dim〈Kv〉dim〈Kw〉
)1/2

ξS(g).

for all g = k1adk2 ∈ KA+ΩK = G.

Proof. By Theorem 5.5, ρ|GS
is tempered. By the definition of GS , A+ ⊂ GS . For

g = k1adk2 ∈ KA+ΩK (recall Ω = {e} for k = R,C), we have

|〈ρ(k1adk2)v, w〉| = |〈ρ(a)(dk2v), (k
−1
1 w)〉|

≤
(

dim〈K(d(k2v))〉dim〈K(k−1
1 w)〉

)1/2
ΞGS

(a)

≤
(

[K : K ∩ dKd−1] · dim〈K(k2v)〉dim〈K(k−1
1 w)〉

)1/2
ΞGS

(a)

=
(

[K : K ∩ dKd−1] · dim〈Kv〉dim〈Kw〉
)1/2

ΞGS
(a).

Since ΞGS
(a) = ξS(a) = ξS(g) by Lemma 5.4, this finishes the proof.�

As an immediate corollary, we have:

5.8. Corollary. Keeping the same notation as above, assume furthermore that G =

KA+K holds. With the same conditions on ρ, v and w as above, we have

|〈ρ(g)v, w〉| ≤ (dim〈Kv〉dim〈Kw〉)1/2 ξS(g) for all g ∈ G.

5.9. We now summarize:

Theorem (Properties of ξS).

(1) 0 < ξS(k1adk2) = ξS(a) ≤ 1 for any a ∈ A+, d ∈ Ω and k1, k2 ∈ K.

(2) For any a ∈ A+, ξS(a) = 1 if and only if α(a) = 1 for all α ∈ S.
(3) For any ǫ > 0, there are positive constants c1 and c2 such that

c1

(

∏

α∈S
|α(a)|

)−1/2

≤ ξS(a) ≤ c2
(

∏

α∈S
|α(a)|

)−1/2+ǫ

for any a ∈ A+.
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For instance, in the case when k = Qp, if we set

nS(g) =
1

2

∑

α∈S
logp |α(g)|,

then for any ǫ > 0, there exists constants c1 and c2(ǫ) such that for any g ∈ G(Qp),

C1 p
−nS(g) ≤ ξS(g) ≤ C2(ǫ) p

−nS(g)(1−ǫ).

In the inequality (3), using the well-known estimate of ΞPGL2(k), we may replace
∏

α∈S |α(a)|ǫ by some polynomial of variables |α(a)|, more precisely, for any sufficiently

large integer r, there are positive constants c1 and c2 such that

c1 ≤
(

∏

α∈S
|α(a)|

)1/2

ξS(a) ≤ c2
∏

α∈S
(1 + |α(a)|)r

(see [GV] for k archimedean, and see [Si] for k non-archimedean). For two non-negative

bi-K-invariant functions f1 and f2 of KA+K such that f1(g), f2(g) ≤ 1 for all g ∈ A+,

we will write f1 ≈ f2 if for any ǫ > 0, there are constants d1 and d2 such that d1f1(a) ≤
f2(a) ≤ d2f1(a)

1−ǫ for all a ∈ A+. Since ξS ≈
∏

α∈S |α|
−1/2

clearly ξS decays fastest

when S is a maximal strongly orthogonal system of Φ, that is,
∑

α∈S α is the largest

among all strongly orthogonal systems of Φ (see 3.3). Set η(Φ) := 1
2

∑

α∈Q α where Q
is a maximal strongly orthogonal system of Φ. Note that η(Φ) does not depend on the

choice of maximal strongly orthogonal systems. In the appendix we present the list of

η(Φ).

6. Representations with the slowest decay

In this section we show that for G = SLn(k) or G = Sp2n(k), the pointwise bound

function ξQ is an optimal bound for the K-matrix coefficients of the class one part of

the unitary dual of G for a maximal strongly orthogonal system Q. We remark that

a priori it is not clear whether there should exist one representation whose K-matrix

coefficients behave essentially like ξ1+ǫQ in every direction of A+. This is indeed the case

for G = SLn(k) or Sp2n(k).

6.1. Consider the case when G = SLn(k). Let A+ and K be as in Example 2.1.1 so

that G = KA+K holds. Define the characters γi’s by







γi =
∑n−i
k=i αk for i ≤ ⌊n/2⌋ − 1

γ⌊n/2⌋ =

{

α⌊n/2⌋ for n even

α⌊n/2⌋ + α⌊n/2⌋+1 for n odd
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where αi(a) = ai

ai+1 for each 1 ≤ i ≤ n− 1 and for a = diag(a1, · · · , an) ∈ A+. That is,

γi(a) =
ai

an+1−i
.

Then Q = {γi | 1 ≤ i ≤ ⌊n/2⌋} is a maximal strongly orthogonal system of Φ [Oh,

Proposition 2.3]. The function ξQ (5.4) is a bi-K-invariant function of G defined by

ξQ (a) =

⌊n/2⌋
∏

i=1

ΞPGL2(k)

(

ai

an+1−i
0

0 1

)

.

Then by 5.9, for any ǫ > 0, there exist constants d1 and d2 (depending only on ǫ) such

that

d1 · ξQ(a)1+ǫ ≤ F (a) ≤ d2 · ξQ(a) for all a ∈ A+

where F is a bi-K-invariant function of G defined by

F (a) =

{ ∏n/2
i=1 |ai|

−1
for n even

(

∏(n−1)/2
i=1 |ai|−1

)

|a(n+1)/2|−1/2
for n odd .

6.2. We recall the formula for the matrix coefficients of the induced representation

IndGP (1) (cf. [Kn]) where P is a parabolic subgroup of G. Consider the Langlands

decomposition of P : P = MAPN . Denote by N̄ the unipotent radical of the opposite

parabolic subgroup to P with the common Levi subgroup MAP . If g decomposes under

the decomposition G = KMAPN , we denote by expH(g) the AP -component of g. If g

decomposes under N̄MAPN as

g = n̄(g)m(g) expa(g)n(g),

then the action is given by

IndGB(1)(g)f(x) = e−δ0(a(g−1x))f(n̄(g−1x)) for any f ∈ L2(N̄ , dx) and x ∈ N̄

where δ0 is the half sum of positive N -roots.

Define the vector f0 of IndGP (1) as follows:

f0(x) = e−δ0(H(x)).

It is not difficult to see that f0 is K-invariant and the matrix coefficient of IndGP (1) with

respect to f0 is as follows:

〈IndGP (1)(g)f0, f0〉 =
∫

N̄

e−δ0(a(g−1x))e−δ0(H(n̄(g−1x)))e−δ0(H(x))dx.



36 HEE OH

Let G = SLn(k), and P the maximal parabolic subgroup of G which stabilizes the

line k.e1. We write an element of N̄ as x = (x1, x2, · · · , xn)T where x1 = 1. The

realization of the representation IndGP (1) on L2(N̄ , dx) can be formulated as follows (see

[Oh, 4.4]): for a ∈ A+, for f ∈ L2(N̄ , dx) and x = (x1 = 1, x2, · · · , xn)T ∈ N̄
(

IndGP (1)(a)f
)

(x) = |a1|n/2f(a−1
1 x1, a

−2
2 x2 · · ·a−1

n xn)

and the K-invariant vector f0 is defined by

f0(x) = |x|−n/2.
Here the absolute value | · | in kn is defined as follows:

|x| =











√
∑n
i=1 x

2
i for k = R

∑n
i=1 xix̄i for k = C

max1≤i≤n |xi| for k non-archimedean.

6.3. Theorem. Let k be any local field and G = SLn(k) (n ≥ 3). Then for any ǫ > 0,

there is a constant c > 0 (depending on ǫ) such that for any g ∈ G,

c · ξQ(g)1+ǫ · ‖f0‖ ≤ 〈IndGP (1)(g)f0, f0〉 ≤ ξQ(g) · ‖f0‖.

Proof. This theorem is shown in Proposition 4.4 in [Oh] for k = R. For k = C, es-

sentially the same proof goes through. We will briefly go over the case when k is a

non-archimedean local field. The proof given here follows line by line the proof of

Proposition 4.4 in [Oh]. For a ∈ A+, we have

〈IndGP (1)(a)f0, f0〉 =

∫

kn−1

max
1≤i≤n

|xi|
|ai|

−n/2
max

1≤i≤n
|xi|−n/2 dm

where dm is a normalized Haar measure on kn−1.

Set r = ⌊n+1
2 ⌋, and let T be the following set:

{x = (x2, · · · , xn) ∈ kn−1 | 0 ≤ |xi| ≤ 1 for 2 ≤ i ≤ r − 1,

1 ≤ |xr| ≤ 2, |xi| ≤
|ai|
|ar|
|xr| for r + 1 ≤ i ≤ n}.

Note that if x = (x2, · · · , xn) ∈ T , then for each 1 ≤ i ≤ n, we have

|xi| ≤ |q| and
|xi|
|ai|
≤ |xr||ar|

.

Therefore

〈IndGP (1)(ã)f0, f0〉 ≥ C
∫

T

|ar|n/2dm ≥ C |ar|n/2
n
∏

i=r+1

( |ai|
|ar|

)

= C
∏

α∈Q
|α(a)|

−1/2
.

Hence we have

〈IndGP (1)(a)f0, f0〉 ≥ d · ξQ(a)1+ǫ

for some constant d > 0. �
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6.4. We now consider the case when G = Sp2n(k). The group Sp2n(k) is defined by the

bi-linear form

(

0 Īn
−Īn 0

)

where Īn denotes the skew diagonal n× n-identity matrix.

We may take the positive Weyl chamber A+ and the maximal compact subgroup K to

be the intersections of those of SLn(k) with G. Then an element a of A+ is of the form

a = diag(a1, · · · , an, a−1
n , · · · , a−1

1 ).

Define the characters γi’s by
{

γi =
(

∑n−1
k=i 2αk

)

+ αn for i ≤ n− 1

γn = αn

where αi(a) = ai

ai+1
, 1 ≤ i ≤ n− 1 and αn(a) = a2

n are the simple roots of Φ. That is,

γi(a) = a2
i for each i = 1, · · · , n.

Then Q = {γ1, · · · , γn} is a maximal strongly orthogonal system of Φ [Oh, Proposition

2.3]

By the definition of ξQ, we have

ξQ (a) =



















∏n
i=1 ΞPGL2(k)

(

a2
i 0

0 1

)

for k 6= C

∏n
i=1

(

ΞPGL2(C)

(

a2
i 0

0 1

))1/2

for k = C

(note that γi is a long root in Cn for each 1 ≤ i ≤ n). Hence for any ǫ > 0, there exist

constants d1 and d2 (depending on ǫ) such that

d1 · ξQ(a)1+ǫ ≤ F (a) ≤ d2 · ξQ(a) for all a ∈ A+

where

F (a) =

{

∏n
i=1 |ai|

−1
for k 6= C

∏n
i=1 |ai|

−1/2
=
∏n
i=1 ai

−1 for k = C (all ai positive).

6.5. Let P be the maximal parabolic subgroup of G which stabilizes the line k.e1. Let

P = MAPN denote the Lang lands decomposition of P and N̄ ∼= k2n−1 the unipotent

radical of the opposite parabolic subgroup to P with the common Levi subgroup MAP .

Then an element x of N̄ can be identified with

x = (x1 = 1, x2, · · · , xn, yn, · · · , y1)T .
In the realization of the representation IndGP (1) on L2(N̄ , dx), we have that for a ∈

A+, for f ∈ L2(N̄ , dx) and x ∈ N̄ ,
(

IndGP (1)(a)f
)

(x) = |a1|nf
(

(a−1
1 x1, a

−2
2 x2, · · · , a−1

n xn, a
−1
n yn, · · · , a−1

1 y1)
T
)

.

Then vector f0 given by

f0(x) = |x|−n

is K-invariant, where the absolute value | · | of k2n is defined similarly as in 6.2.
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Theorem (k 6= C and char k 6= 2). Let G = Sp2n(k) (n ≥ 2). Then for any ǫ > 0,

there is a constant c > 0 (depending on ǫ) such that for any g ∈ G,

c · ξQ(g)1+ǫ · ‖f0‖ ≤ 〈IndGP (1)(g)f0, f0〉 ≤ ξQ(g) · ‖f0‖.

Proof. As the case of Theorem 6.3, the other inequality is also shown in Proposition 4.4

in [Oh] for k = R. Let k be a non-archimedean local field. Then for a ∈ A+,

〈IndGP (1)(a)f0, f0〉 =

∫

k2n−1

max
1≤i≤n

{ |xi||ai|
, |aiyi|}−n · max

1≤i≤n
{|xi|, |yi|}−n dm

where x1 = 1. Let T be the following set:

{(x1, · · · , xn, yn, · · · , y1) | 1 ≤ |yn| ≤ 2,

|yi| ≤
|an|
|ai|
|yn|, 0 ≤ |xi| ≤ 1, 0 ≤ |yi| ≤ 2 for 1 ≤ i ≤ n}.

Note that if (x1, · · · , xn, yn, · · · , y1) ∈ T , then

|xi| ≤ |aianyn|

since |ai| ≥ 1 for all 1 ≤ i ≤ n. Therefore

〈IndGP (1)(a)f0, f0〉 ≥ C
∫

T

(|anyn|)−ndm ≥ C
1

|a1 · · ·an|
= d · ξ1+ǫQ (a)

where C and d are some positive constant.�

6.6. The inequality in Theorem 6.2 is not true for G = Sp2n(C), in fact, the K-matrix

coefficient of the representation IndGP (1) satisfies

ξQ(a) ≈
(

〈IndGP (1)(a)f0, f0〉
)1/2

.

In this case, the minimal pointwise decay can be achieved by the oscillator representation

ω of Sp2n(C) (we refer the reader to [Ho] for a detailed description of ω). In the

realization of ω in L2(Cn), we have the following formula: for a ∈ A+, for f ∈ L2(Cn)

and (z1, · · · , zn) ∈ Cn,

ω(a)f(z1, · · · , zn) =
n
∏

i=1

|ai|−1/2f(a−1
1 z1, · · · , a−1

n zn)

where a = diag (a1, · · · , an, a−1
n , · · · , a−1

1 ) ∈ A+ (recall that |ai| = aiāi = a2
i ). The

representation ω decomposes into two irreducible components, the even part ω+ and
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the odd part ω−. In the realization of ω in L2(Cn), the space ω+ can be taken as the

even functions: functions such that f(−x) = f(x) and the space ω− consists of the odd

functions: functions such that f(−x) = −f(x). And only the even part ω+ is class one.

In fact, the function

f0(z1, · · · , zn) = exp

(

π−2(

n
∑

i=1

ziz̄i)

)

is a K-invariant unit vector in ω+ where K = SU(2n) ∩ Sp2n(C). Then

〈ω+(a)f0, f0〉 =

n
∏

i=1

(ai)
−1
∫

R

∫

R

exp
(

−π2(1 + a−2
i )(x2

i + y2
i )
)

dxi dyi.

Since
∫

R2 exp
(

−(x2 + y2)
)

dx dy = π,

〈ω+(a)f0, f0〉 =
n
∏

i=1

(a2
i + 1)−1/2.

Since FSp2n(C)(a) =
∏n
i=1 |ai|

−1/2
=
∏n
i=1 ai

−1, we have shown:

Theorem. Let G = Sp2n(C) (n ≥ 2). For any ǫ > 0, there exists a constant C > 0

(depending on ǫ) such that

C · ξ1+ǫQ (g) ≤ 〈ω+(g)f0, f0〉 ≤ ξQ(g)

for any g ∈ G.

6.7. Corollary. Let G = Sp2n(C) (n ≥ 2) and α a long root in its root system Cn.

Then ω+|Hα
is strongly L4+ǫ but not strongly L2+ǫ.

Proof. By conjugation, we may assume α = γ1 where γ1 is defined as in 6.4. It then

follows from the above theorem that for any ǫ > 0, there exists a constant C > 0 such

that

C · Ξ1/2+ǫ
Hγ1

(h) ≤ 〈ω+(h)f0, f0〉 ≤ Ξ
1/2
Hγ1

(h) for any h ∈ Hγ1 .

Note that Ξ
1/2
Hγ1

is L4+ǫ-integrable for any ǫ > 0. Hence the restriction to Hγ1 of

the matrix coefficient 〈ω+(h)f, f〉 is L4+ǫ-integrable for any f ∈ Gf0. Since ω+ is

irreducible, Gf0 spans a dense subset in the Hilbert space attached to ω+. Hence ω+|Hγ1

is strongly L4+ǫ. Now suppose that ω+|Hγ1
is strongly L2+ǫ. Then by Theorem 2.4, its

K ∩Hγ1 -matrix coefficient 〈ω+(h)f0, f0〉 must be L2+ǫ-integrable. This is contradiction

since it is bounded from below by the function C · Ξ1/2+ǫ
Hγ1

which is not L2+ǫ-integrable.

�
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7. Uniform Lp-bound for matrix coefficients: pK(G)

7.1. In this section, let G be the group of k-rational points of a connected almost k-

simple algebraic group over k where k is any local field. As before, let K be a good

maximal compact subgroup of G. Denote by Ĝ the set of equivalence classes of infinite

dimensional irreducible unitary representations of G. Recall that p(G) denotes the

smallest real number such that for any non-trivial ρ ∈ Ĝ, ρ is strongly Lq for any

q > p(G) (cf. [Li], [LZ]). Similarly we denote by pK(G) the smallest real number such

that for any non-trivial ρ ∈ Ĝ, the K-finite matrix coefficients of ρ are Lq-integrable

for any q > pK(G). By Peter-Weyl theorem, we have p(G) ≤ pK(G) (we point out that

in the literature the number p(G) has been implicitly identified with pK(G)). Cowling

showed that p(G) < ∞ if and only if G property (T) [Co]. For G = Sp2n(k) (n ≥ 2),

Howe showed that pK(Sp2n(C)) = 4n and pK(G) = 2n for other local field k 6= C

with char (k) 6= 2 [Ho]. For other real (or complex) classical simple Lie groups, the

exact number pK(G) is obtained by combining the known cases of a classification of the

unitary dual by Vogan and Barbasch, and the results of Li (see [Li] for references). The

precise values of pK(G) are not known in general but upper bounds have been given in

many cases (see [Ho], [Li], [LZ], [Oh]).

7.2. Let Q be a maximal strongly orthogonal system of Φ. Then it follows from Theo-

rem 5.7 that

pK(G) ≤ inf{q ∈ R | ξQ ∈ Lq(G)}.

7.3. Lemma. Let f be a continuous function on G such that f(k1adk2) = f(a) for

any k1adk2 ∈ KA+ΩK. If
∫

A+ |f(a)|pδB(a) da <∞ for some p > 0, then f ∈ Lp(G).

Proof. For K = R or C, this can be seen using the decomposition of the Haar measure

dg on G = KA+K: dg = ∆(a)dk1 dadk2 and the well known fact (cf. [Kn, Proposition

5.2.8]) that for any t > 1, there exist constants d1(t) and d2 such that

d1(t) δB(a) ≤ ∆(a) ≤ d2 δB(a)

for all

a ∈ A+
t = {g ∈ A+ | |α(g)| ≥ t for all α ∈ Φ+}.

For k non-archimedean, we have

∫

G

|f(g)|p dg =
∑

ad∈A+Ω

Vol(KadK)|f(a)|p.

In fact there exist positive constants c1 and c2 such that c1 δB(ad) ≤ Vol(KadK) ≤
c2 δB(ad) for all ad ∈ A+Ω [Si, Lemma 4.1.1]. Since the modular function δB is a
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homomorphism on B and Ω is finite, it follows that for some positive constant c′1 and

c′2, c
′
1 δB(a) ≤ Vol(KadK) ≤ c′2 δB(a) for any ad ∈ A+Ω. Hence the above claim follows.

�

7.4. Hence by the above lemma together with the inequality (3) in 5.9, getting an upper

bound for pK(G) boils down to a matter of comparing the coefficients of each simple

root in
∏

α∈Q α
−1/2 with those in the modular function δB .

Theorem. Let k be a local field with char (k) 6= 2. Let G be the k-rational points

of a connected linear almost k-simple algebraic group over k with k-rank (G) ≥ 2 and

G/Z(G) ≇ Sp2n(C) (locally). Let δB be the modular function of B and set η(Φ) =
1
2

∑

α∈Q α for a maximal strongly orthogonal system Q of Φ (for example, one in the

appendix). Then

pK(G) ≤ max

{

the coefficient of αi in δB
the coefficient of αi in η(Φ)

∣

∣

∣

∣

i = 1, · · · , n
}

where {α1, · · · , αn} is the set of simple roots in Φ.

For example, if G is split over k with rank ≥ 2, pK(G) is bounded above by below:

Φ : An Bn Cn Dn:even Dn:odd E6 E7 E8 F4 G2

pK(G) ≤: 2n 2n 2n 2(n− 1) 2n 16 18 29 11 6

We remark that for k = R, if we let F (k1ak2) =
∏

α∈Q α
−1/2(a) for any k1ak2 ∈

KA+K = G, this function F coincides with FG in [Oh] except for Dn, n odd, in which

case F was improved by replacing two of the Hγ’s by SO(3.3) (see the remark in 3.5

in [Oh]) and one obtains a stronger estimate 2n − 2 for pK(G). Since we believe that

the novelty of the above corollary lies in the simplicity of our method giving an upper

bound for pK(G) rather than in improving the bound, we do not elaborate on here.

7.5. Moreover the results in section 6 yields the precise number pK(G) in the following

cases (in which the classification of the unitary dual is also known):

Theorem.

(1) Let n ≥ 3. Then pK(SLn(k)) = 2(n− 1) for any local field k.

(2) Let n ≥ 2. Then pK(Sp2n(k)) = 2n for any non-archimedean local field k (char

k 6= 2) or k = R.

(3) Let n ≥ 2. Then pK(Sp2n(C)) = 4n

7.6. By the work of Cowling, Haggerup and Howe [CHH] (see Theorem 2.5), we have

a passage from a uniform Lp-bound to a uniform pointwise bound, that is, let m be

any integer such that 2m ≥ pK(G). Then any K-finite matrix coefficients 〈ρ(g)v, w〉
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of an infinite dimensional ρ ∈ Ĝ is bounded by (dim〈Kv〉dim〈Kw〉)1/2 ΞG(g)1/m. We

remark that even in the case when the number pK(G) is precisely known, Theorem 5.7

(for a maximal strongly orthogonal system) provides a much sharper pointwise bound

in general.

8. Kazhdan constants

In this section, we discuss some applications of the above results in terms of a quan-

titative estimate of Kazhdan property (T ) of the group G, namely, Kazhdan constant.

8.1. For a locally compact group G, we say that a unitary representation ρ of G almost

has an invariant vector if for any ǫ > 0 and any compact subset Q of G, there exists

a unit vector v which is (Q, ǫ)-invariant, that is, ‖ρ(g)v − v‖ ≤ ǫ for all g ∈ Q. Recall

that G is said to have Kazhdan property (T ) if any unitary representation of G which

almost has an invariant vector actually has a non-zero invariant vector.

Definition (cf. [HV], [Bu]). For a locally compact group G with a compact subset

Q, a positive number ǫ is said to be a Kazhdan constant for (G,Q) if for any unitary

representation ρ without a non-zero G+-invariant vector and for any unit vector v of ρ,

max
s∈Q
‖ρ(s)v − v‖ ≥ ǫ.

If there exists such an ǫ, we call Q a Kazhdan set for G.

In other words, if ǫ is a Kazhdan constant for (G,Q), then any unitary representation

of G which has a (Q, ǫ)-invariant vector actually has a non-zero invariant vector.

8.2. In what follows, we keep the notation etc. from section 2.1.

Proposition. Let H be any subset of G such that K ∩ H is a closed subgroup of K.

Let Φ be a bi-K ∩H-invariant function of H with the following properties:

(1) 0 < Φ(h) ≤ 1 for any h ∈ H;

(2) For h ∈ H, Φ(h) = 1 if and only if h ∈ K ∩H;

(3) For any unitary representation ρ of G and any K ∩H-fixed unit vector v,

|〈ρ(h)v, v〉| ≤ Φ(h) for any h ∈ H.

Set

χ(h) =

√

2(1−Φ(h))
√

2(1−Φ(h)) + 3
for any h ∈ H.

Then χ is a bi-K ∩H-invariant function of H satisfying

(1) 0 ≤ χ(h) <
√

2√
2+3

for any h ∈ H;
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(2) For h ∈ H, χ(h) = 0 if and only if h ∈ K ∩H;

(3) We have

inf max
s∈{K∩H,h}

‖ρ(s)v − v‖ ≥ χ(h) for any h ∈ H

where the infimum is taken over all unitary representations ρ of G without a

non-zero invariant vector and for all unit vectors v of ρ.

Proof. (1) and (2) are obvious from the definition of χ. Let h be a non-trivial element

of H such that h /∈ K ∩H. Fix a unit vector v of ρ. Suppose that for all k ∈ K ∩H, we

have ‖ρ(k)v− v‖ ≤ χ(h). We will show that ‖ρ(h)v− v‖ ≥ χ(h). Let v1 be the average

of the K ∩H-transform of v:

v1 =

∫

K∩H
kvdk

where dk is the normalized Haar measure on K ∩H. Note that v1 is K ∩H-fixed. We

compute

‖v − v1‖ ≤ χ(h), so that ‖v1‖ ≥ 1− χ(h).

Since χ(h) < 1, the inequality implies that v1 is non-zero. Recall that for any unit

vector w,

‖ρ(h)w − w‖2 = 2− 2Re〈ρ(h)w,w〉.

Hence
∥

∥

∥

∥

ρ(h)

(

v1
‖v1‖

)

− v1
‖v1‖

∥

∥

∥

∥

≥
√

2(1− Φ(h))

and

‖ρ(h)v1 − v1‖ ≥
√

2(1− Φ(h))‖v1‖ ≥
√

2(1− Φ(h))(1− χ(h)).

Therefore

‖ρ(h)v − v‖ = ‖ρ(h)v1 − v1 + (ρ(h)v − ρ(h)v1) + (v1 − v)‖

is greater than or equal to

√

2(1− Φ(h))(1− χ(h))− 2χ(h) = χ(h).

Hence

‖ρ(h)v − v‖ ≥ χ(h).

This shows that for any h ∈ H,

max
{s∈K∩H,h}

‖ρ(s)v − v‖ ≥ χ(h),
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proving the proposition. �

The above proposition can be considered as a generalization of a quantitative state-

ment of the fact that the unitary representations of G which are not class one are

uniformly bounded away from the trivial representation in the Fell topology: if ρ has

an (K, ǫ)-invariant vector, say v, for some 0 < ǫ < 1, then ρ does have a K-invariant

vector. This can be seen by considering the average
∫

K
ρ(k)v of v along its K-transform.

If ǫ < 1, then the average is non-zero, which is K-invariant. This is the reason that a

pointwise bound for the matrix coefficients (only) with respect to K-invariant vectors

yields Kazhdan constants.

8.3. In what follows, let k be a local field with char (k) 6= 2 and let G be the group of

k-rational points of a connected simply connected almost k-simple linear group over k

with k-rank at least 2 with the Cartan decomposition G = KA+K (see Remark in 2.1).

In particular G = G+.

Recall the bi-K-invariant function ξS on G for a strongly orthogonal system S defined

in 4.10 (see 5.9 as well).

Notation. Define a bi-K-invariant function χS on G by

χS(a) =

√

2(1− ξS(a))
√

2(1− ξS(a)) + 3
for any a ∈ G.

Since HS (see 5.1) and ξS satisfy Proposition 8.2 by Corollary 5.8 and Theorem 5.9,

we have:

Theorem. Let S be a strongly orthogonal system of Φ. Then for any s ∈ HS\K, χS(s)

is a Kazhdan constant for ({K ∩HS , s}, G).

8.4. Note that if S is a large strongly orthogonal system S (3.3), then

K = {g ∈ KA+K | ξS(g) = 1};

hence it follows that χS(g) > 0 for any g /∈ K.

Theorem. Let S be a large strongly orthogonal system of Φ.

(1) For any s /∈ K, χS(s) is a Kazhdan constant for ({K, s}, G).

(2) For any compact subset Q properly containing K, maxg∈Q χS(g) is a Kazhdan

constant for (Q,G).

Proof. (1) follows from Corollary 5.8 and Proposition 8.2. To deduce (2) from (1), it

suffices to observe that maxg∈Q χS(g) = χS(x) for some x ∈ Q, since χS is a continuous

function on G and Q is compact. �
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Using an explicit form of ξS and hence of χS in the above theorem provides us a

simple machine which produces a Kazhdan constant for any set {K, s}, s /∈ K, and

hence for any compact subset properly containing K. One of the simplest methods will

be to use S = {the highest root}, but to get an optimal Kazhdan constant from this

method, we can use a maximal strongly orthogonal system as in the Appendix.

Remark. The assumption that Q contains K can be loosened in many generic cases

when k is archimedean. For instance, if Q contains some neighborhood of identity of G,

then there is a positive integer n such that Qn contains K properly, where Qn denotes

the set of all elements whose word lengths with respect to Q are at most n. Then

maxg∈Qn χS(g) is a Kazhdan constant for (Qn, G) by Theorem 8.4. Observe that

n ·max
g∈Q
‖ρ(g)v− v‖ ≥ max

g∈Qn
‖ρ(g)v − v‖

for any unitary representation ρ and a unit vector v of ρ. Therefore 1
n maxg∈Qn χS is a

Kazhdan constant for (Q,G).

Remark. For the real group Sp(1, n) (n ≥ 2), Theorem 8.4 remains valid in view of

Theorem 4.9.

8.5. Corollary. For any non-trivial irreducible class one unitary representation ρ of

G and a K-invariant unit vector v,

‖ρ(g)v − v‖ ≥ χS(g) for all g ∈ G.

Proof. Since v is K-invariant, ρ(k)v − v = 0 for any k ∈ K. If g ∈ K, then the both

sides are 0. For g /∈ K, by the above theorem,

max
s∈{K,g}

‖ρ(s)v − v‖ ≥ χS(g).

But maxs∈{K,g} ‖ρ(s)v − v‖ = ‖ρ(g)v − v‖, proving the claim. �

8.6. While the function ξS gives an exact value for k non-archimedean, it is not the

case for k = R or C. In the following we discuss some estimates of ξS for k = R (the

process is similar for k = C).

We have that (cf. [HT, Ch V, 3.1])

ΞR(x) =
2

π
√
x

∫ π/2

0

(

cos2 t

x2
+ sin2 t

)−1/2

dt ≤ 1.09 + log x√
x

for any x ≥ 16.

Hence

ξS(s) ≤
∏

γ∈I(s)
hR(γ(s)) for any s /∈ K

where hR(x) = 1.09+logx√
x

and I(s) = {γ ∈ S | γ(s) ≥ 16}.



46 HEE OH

Lemma. For any s ∈ HS\K, the set {K ∩ HS , s} is a Kazhdan set with a Kazhdan

constant
1

Ns
χS(sNs) ≥ 1

Ns
f(hR(16)|I(s

Ns )|)

where Ns denotes the minimum positive integer n such that I(sn) 6= ∅ and f(x) =√
2(1−x)√

2(1−x)+3
.

Proof. Observe that for any positive integer n,

1

n
max

g∈{K,sn}
‖ρ(g)v − v‖ ≤ max

g∈{K,s}
‖ρ(g)v − v‖

for any unitary representation ρ and a unit vector v of ρ. On the other hand, since f(x)

is a strictly decreasing function on [0, 1], we have χS(sn) ≥ f
(

hR(16)
|I(sn)|

)

. Since

maxg∈{K,sn} ‖ρ(g)v − v‖ ≥ 1
n
χS(sn), the lemma is proved. �

8.7. Examples of Kazhdan constants. We note that any compact subset of G,

which contains K properly, generates the group G in the topological sense. Any compact

generating subset of a Kazhdan property (T) group is a Kazhdan set (see [HV, Ch

1, Proposition 15]). Furthermore, any compact subset of G which generates a non-

amenable subgroup is in fact a Kazhdan set (see [Sh]). The following theorem yields

examples of Kazhdan sets which are contained in a proper closed semisimple subgroup of

G. We give examples of Kazhdan constants where Kazhdan sets are taken from SL2(k)

or SL4(k) embedded into the upper left corner of SLn(k).

Example 8.7.1. Let m be any non-zero integer.

(1) For any n ≥ 3, the group SLn(R) has a Kazhdan constant
(

{

SO(2), diag(41/m, 4−1/m)
}

,
0.08

|m|

)

.

(2) For any n ≥ 4, the group SLn(R) has a Kazhdan constant
(

{

SO(4), diag(41/m, 41/m, 4−1/m, 4−1/m)
}

,
0.109

|m|

)

Proof. Let m = 1. Denote by s1 and s2 the diagonal elements in (1) and (2) respectively.

Set

γ1(a) =
a1

an
and γ2(a) =

a2

an−1
,

where a = diag(a1, a2, · · · , an) ∈ A+, that is, ai ≥ ai+1 > 0 for all 1 ≤ i ≤ n− 1. Note

that S1 = {γ1} and S2 = {γ1, γ2} are large strongly orthogonal systems (since γ1 is the

highest root). Then γ1(s1) = 16, γ1(s2) = 16 and γ2(s2) = 16. Therefore by Lemma

8.6, χS1
(s1) ≥ f(hR(16)) ≥ 0.08 and χS2

(s2) ≥ f(hR(16)2) ≥ 0.109. Now the claim for

an arbitrary m follows from Lemma 8.6. �
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Example 8.7.2. Let m be any non-zero integer.

(1) For any n ≥ 3, the group SLn(R) has a Kazhdan constant

({

SO(2),

(

1 4
m

0 1

)}

,
0.104

|m|

)

(2) For any n ≥ 4, the group SLn(R) has a Kazhdan constant

















SO(4),







1 4
m 0 0

0 1 0 0
0 0 1 4

m
0 0 0 1

















,
0.139

|m|







Proof. By Lemma 8.6, it suffices to consider the case of m = 1. Let

s1 =

(

1 4
0 1

)

, s2 =







1 4 0 0
0 1 0 0
0 0 1 4
0 0 0 1






.

For g ∈ G, denote by A+(g) the A+-part of the decomposition of g in the Cartan

decomposition G = KA+K. It is not difficult to see that

A+(s1) = diag((9 + 4
√

5)
1/2
, 1, · · · , 1, (9 + 4

√
5)

−1/2
),

and that for n ≥ 4,

A+(s2) = diag((9 + 4
√

5)
1/2
, (9 + 4

√
5)

1/2
, 1, · · · , 1, (9 + 4

√
5)

−1/2
, (9 + 4

√
5)

−1/2
).

Let γ1, γ2, S1 and S2 be as in the proof of Example 8.7.1. Therefore γ1(s1) = γ1(s2) =

γ2(s2) = 9 + 4
√

5 ≥ 16. By Lemma 8.6,

χS1
(s1) ≥ f(hR(γ1(s1))) ≥ 0.104

and

χS2
(s2) ≥ f(hR(γ1(s2)hR(γ2(s2))) ≥ 0.139.

�

The following two examples are direct application of Theorem 8.4. Let

cn =
n(p− 1) + (p+ 1)√

pn(p+ 1)
and f(x) =

√

2(1− x)
√

2(1− x) + 3
.
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Example 8.7.3. For n ≥ 3, SLn(Qp) has Kazhdan constants:

({

SL2(Zp), diag (pm, p−m)
}

, f
(

c2|m|
))

for any m ∈ Z.

Example 8.7.4. For n ≥ 3, the group SLn(Qp) has Kazhdan constants:

(

{SL3(Zp), diag (pn1 , pn2 , pn3)} , max
1≤i,j≤3

f(c|ni−nj |)

)

for any n1, n2, n3 ∈ Z such that
∑3
i=1 ni = 0.

So for SLn(Q2), SLn(Q3), and SLn(Q5), the following are Kazhdan constants re-

spectively:
({

SL4(Z2), diag (2, 2−1, 22, 2−2)
}

, 0.25)
)

;
({

SL4(Z3), diag (3, 3−1, 32, 3−2)
}

, 0.29)
)

; and
({

SL4(Z5), diag(5, 5−1, 52, 5−2)
}

, 0.31)
)

8.8. Recall the definition of κ(G,Q) from the introduction.

Proposition. Let k be any local field with char(k) 6= 2 and G the group of k-rational

points of a connected simply connected almost k-simple algebraic group over k with

k-rank (G) ≥ 2.

(1) Let k be non-archimedean and G be k-split. Then

inf
s∈G\K

κ(G, {K, s}) ≥ f

(

2
√
p

p+ 1

)

where p is the cardinality of the residue field of k.

(2) We have

inf
p= prime

inf
n≥3

inf
s/∈SLn(Zp)

κ(SLn(Qp), {SLn(Zp), s}) ≥ f
(

2
√

2

3

)

> 0.10.

(3) Let k = R or C. Then

inf
s∈G\K

κ(G, {K, s}) = 0.

(4) For any sequence gi ∈ G going to the infinity,

lim inf
i→∞

κ(G, {K, gi}) ≥
√

2

(
√

2 + 3)
.
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Proof. Claim (1): Denote by γ the highest root in Φ. Then S = {γ} forms a large

strongly orthogonal system of Φ. Let s ∈ G\K. By replacing s by its A+-component in

the Cartan decomposition G = KA+K, we may assume that s ∈ A+. Hence |γ(s)| = pm

for some positive integer m. By the definition of ξS ,

ξS(s) = ΞPGL2Qp

(

γ(s) 0
0 1

)

≤ ΞPGL2Qp

(

p−1 0
0 1

)

.

Hence we have

κ(G, {K, s}) ≥ f(ξS(s)) ≥ f
(

ΞPGL2Qp

(

p−1 0
0 1

))

≥ f
(

2
√
p

p+ 1

)

.

Claim (2): Since p ≥ 2 for k = Qp, we have

2
√
p

p+ 1
≥ 2
√

2

3
.

Hence by Claim (1), we have

κ(SLn(Qp), {SLn(Zp), s}) ≥ f

(

2
√

2

3

)

> 0.10.

Since this is independent of n and p, Claim (2) follows.

Claim (3): Let ρ be any class one unitary representation of G without any in-

variant vector (of which we know existence), and let v be a K-invariant unit vec-

tor of ρ. Then the matrix coefficient 〈ρ(g)v, v〉 is a continuous function which has

value 1 for all g ∈ K. Hence for a sequence gi tending to an element of K with

gi /∈ K, we have limi→∞〈ρ(gi)v, v〉 = 1. By the well known equality that states

‖ρ(g)v − v‖2 = 2− 2Re〈ρ(g)v, v〉, we obtain limi→∞ ‖ρ(gi)v − v‖ = 0.

Claim (4): Without loss of generality, we may assume gi ∈ A+. Then f(ξS(gi)) tends

to
√

2√
2+3

. Thus the claim follows from Theorem 8.4 �

8.9. Let Γ be a lattice in G. If (Q, ǫ) is a Kazhdan constant for G, then in principle one

can find some positive real number R (at least bigger than the radius of Q) such that

Γ ∩BR yields a Kazhdan set for Γ where BR denotes a ball of radius R of the identity

in a suitable metric in G/K (see [Sh, Theorem B], also [HV, Lemma 3.3]). For instance,

our results imply that if Γ is a co-compact lattice in the group G = PGL3(Qp) such

that Γ acts simply transitively on G/PGL3(Zp), then 0.10 is a Kazhdan constant for

(Γ, B1 ∩ Γ) where B1 = {g ∈ PGL3(Qp) | g ∈ PGL3(Zp)diag(p, 1, 1)PGL3(Zp)}.
However obtaining Kazhdan constants for a lattice Γ of G using this method involves

understanding the size of the fundamental domain of Γ in G, which seems highly non-

trivial in general.
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Appendix: maximal strongly orthogonal systems

Let Φ be a reduced irreducible root system with a basis α1, ..., αn.

The subscripts of αi’s are determined by the following choice of the highest root [Bo].

Φ the highest root

An α1 + α2 + · · ·+ αn

Bn α1 + 2α2 + · · ·+ 2αn

Cn 2α1 + 2α2 + · · ·+ 2αn−1 + αn

Dn α1 + 2α2 + · · ·+ 2αn−2 + αn−1 + αn

E6 α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6

E7 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7

E8 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8

F4 2α1 + 3α2 + 4α3 + 2α4

G2 3α1 + 2α2

The notation ⌊x⌋ denotes the largest integer not bigger than x. Set

N(Φ) = N =



















[n+1
2 ] forΦ = An

2[n2 ] for Φ = Dn

4 for Φ = E6

rank(Φ) for Φ = Bn, Cn, F4, G2, E7, E8

In the following we list maximal strongly orthogonal systems Q constructed in [Oh]. We
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correct a typo for γ3 in E8 from [Oh].

Φ Q(Φ) : a maximal strongly orthogonal system of Φ

An







γi = αi + · · ·+ αn−i+1 for 1 ≤ i ≤ N − 1

γN =

{

αN for n odd

αN + αN+1 for n even

Bn, (n ≥ 2)











γ2i−1 = αi + · · ·+ αn−i + 2αn−i+1 + · · ·+ 2αn

γ2i = αi + · · ·+ αn−i for 1 ≤ i ≤ [n2 ]

γn = α(n+1)/2 + · · ·+ αn for n odd

Cn, (n ≥ 2)

{

γi = 2αi + · · ·+ 2αn−1 + αn for 1 ≤ i ≤ N − 1

γN = αn

Dn, (n ≥ 4)



















γ1 = α1 + · · ·+ αn−2 + αn

γ2 = α1 + · · ·+ αn−1

γ2i−1 = αi + · · ·+ αn−i + 2αn−i+1 + · · ·+ 2αn−2 + αn−1 + αn

γ2i = αi + · · ·+ αn−i for 2 ≤ i ≤ [n2 ]

E6



















γ1 = α1 + α2 + α3 + 2α4 + 2α5 + α6

γ2 = α1 + α2 + 2α3 + 2α4 + α5 + α6

γ3 = α2 + α3 + 2α4 + α5

γ4 = α2

E7















































γ1 = α1 + α2 + α3 + 2α4 + 2α5 + α6 + α7

γ2 = α1 + α2 + 2α3 + 2α4 + α5 + α6 + α7

γ3 = α1 + α2 + 2α3 + 2α4 + 2α5 + α6

γ4 = α1 + α2 + α3 + 2α4 + α5 + α6

γ5 = α2 + α3 + 2α4 + α5

γ6 = α2 + α3 + 2α4 + 2α5 + 2α6 + α7

γ7 = α2

E8



























































γ1 = α1 + 2α2 + 3α3 + 5α4 + 4α5 + 3α6 + 2α7 + α8

γ2 = α1 + 2α2 + 2α3 + 3α4 + 3α5 + 2α6 + α7 + α8

γ3 = α1 + 2α2 + 2α3 + 3α4 + 2α5 + 2α6 + α7

γ4 = α1 + α2 + α3 + 2α4 + 2α5 + 2α6 + 2α7 + α8

γ5 = α1 + α2 + 2α3 + 2α4 + α5 + α6 + α7 + α8

γ6 = α1 + α2 + 2α3 + 2α4 + 2α5 + α6 + α7

γ7 = α1 + α2 + α3 + 2α4 + α5

γ8 = α1 + α3 + α4 + α5 + α6

F4



















γ1 = α1 + 2α2 + 4α3 + 2α4

γ2 = α1 + 2α2 + 2α3 + 2α4

γ3 = α1 + 2α2 + 2α3

γ4 = α1

G2

{

γ1 = 3α1 + 2α2

γ2 = α1
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We set η(Φ) to be the half sum of the roots in a maximal strongly orthogonal system

of Φ. Recall that η(Φ) does not depend on the choice of a maximal strongly orthogonal

system.

Φ η(Φ)

An

{ ∑(n−1)/2
i=1

i
2αi +

∑n
i=(n+1)/2

(n−i+1)
2 αi for n odd

∑n/2
i=1

i
2
αi + n

4
αn/2+1 +

∑n
i=n/2+2

(n−i+1)
2

αi for n even

Bn, (n ≥ 2)

⌊n/2⌋
∑

i=1

iαi +

n
∑

i=⌊n/2+1⌋

n

2
αi

Cn, (n ≥ 2)
n−1
∑

i=1

iαi +
n

2
αn

Dn, (n ≥ 4)

⌊n/2⌋
∑

i=1

iαi +
n−2
∑

i=⌊n/2⌋+1

⌊n
2
⌋αi +

1

2
⌊n
2
⌋(αn−1 + αn)

E6 α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6

E7 2α1 +
7

2
α2 + 4α3 + 6α4 +

9

2
α5 + 3α6 +

3

2
α7

E8 4α1 + 5α2 + 7α3 + 10α4 + 8α5 + 6α6 + 4α7 + 2α8

F4 2α1 + 3α2 + 4α3 + 2α4

G2 2α1 + α2
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Groupes de Lie II (Séminaire Nancy-Strasbourg 1976–78), Lecture Notes in Mathematics 739

(1979), Springer-Verlag, New York, 132–178.
[CHH] M. Cowling, U. Haggerup and R. E. Howe, Almost L2 matrix coefficients, J. Reiner Angew.

Math 387 (1988), 97–110.

[DHL] W. Duke, R. E. Howe and J-S. Li, Estimating Hecke eigenvalues of Siegel modular forms, Duke
Math J. 67 (1992), 219–240.
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