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Abstract—A detailed study of fiber-coil-based polarization con-
trollers (PCs) is performed. First, a method to deterministically
calculate the PC configuration in order to transform between any
two states of polarization is presented. In a second stage, the case
in which the configuration angles are randomly changed is studied.
The cases of a single PC and of the system obtained with the con-
catenation of several PCs are analyzed. For both cases, a general
expression for the variance of the Stokes parameters is obtained.
Using this expression, it is demonstrated that it is possible to
achieve uniform polarization scattering using a concatenation of
fiber-coil-based PCs. Finally, it is shown that fiber-coil-based PCs
can be used to emulate both first- and second-order polarization-
mode dispersions.

Index Terms—Polarization controllers (PC), polarization-mode
dispersion (PMD), polarization scattering.

I. INTRODUCTION

OLARIZATION control and monitoring are major is-

sues in modern high-speed (> 40 Gb/s) and long-haul
(> 100 km) optical communication systems due to the small
tolerance of these systems to signal distortion. The first po-
larization control schemes used in fiber optics communication
systems were based on the elastooptic properties of silica by
means of controlled squeezing [1]-[4] or bending the fiber
itself [5]. Subsequently, other devices were proposed based
on electrooptics crystals [6], Faraday rotators [7], and liquid
crystals [8], [9]. Nevertheless, the most common polarization
controller (PC), at least in laboratorial systems, is the fiber-coil-
based PC.

The fiber-coil-based PC uses the elastooptic properties of
silica fibers to control the output state of polarization (SOP).
Low cost, ease of handling, and the ability to transform between
any two SOPs are the main reasons for the widespread use
of this PC device. The first PC device using fiber coils was
presented by Lefevre in 1980 [5] and patented in 1983 [10].

In [5], Lefevre describes a new single-mode fiber optic de-
vice (a fiber coil), which is equivalent to a fractional wave plate
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of classical optics. He also showed how to use a combination of
fiber coils to control the polarization inside a single-mode fiber.
In the proposed scheme, the fiber was looped into three coils
to create three independent fractional wave plates: two quarter-
wave plates (QWP) and one half-wave plate (HWP). The first
QWP transforms the input SOP into a linear polarization.
The HWP rotates the linear polarization, and the last QWP
transforms the linear polarization into the desired SOP. This
device became known as QWP-HWP-QWP fiber-coil-based
PC, and this configuration is still prevalent. However, other
schemes were proposed (see, for instance, the study in [11]).

In the late 1980s, the studies related with PCs were mainly
driven by the need of controlling the SOP in optical receivers
for coherent optical transmission systems. A good overview of
the work done during that time can be found in [12]. With the
advent of erbium-doped fiber amplifiers, the coherent systems
became less attractive, and the number of publications related
to PCs also decreased. More recently, the study of polarization
effects in optical fibers became more intense in connection with
the problem of polarization-mode dispersion (PMD), which
strongly limits the reach of high-speed optical communication
systems.

In this paper, a detailed study of fiber-coil-based PCs is per-
formed. In Section II, a review of the QWP-HWP-QWP fiber-
coil-based polarization control physics is done. Subsequently,
in Section III, we present a mathematical model for this PC. A
method that allows the determination of the PC configuration
angles to convert between any two states of polarization is pre-
sented. In Section IV, we analyze the PC when its configuration
is randomly changed. In particular, we investigated the problem
of uniformly scattering the light polarization, which is a central
problem in the construction of PMD emulators. In Section V,
we discuss the possibility of building a PMD emulator based on
this simple device. Finally, the main conclusions are presented
in Section VL.

II. PHYSICS OF THE FIBER-COIL-BASED PC

In single-mode fibers, the birefringence arises from the loss
of circular symmetry of the core or by mechanical stress
through the elastooptic effect. When a fiber is bent, as shown in
Fig. 1, the birefringence is mainly due to mechanical stress [13].
The dominant stress component takes place along the z di-
rection. Nevertheless, it does not contribute directly to the
birefringence as it is an odd function of y (is a tensile stress
for y < 0 and a compressive stress for y > 0 across the zy
plane), whereas the electromagnetic modes functions are even
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Fig. 1. Bent fiber and its principal mechanical stress.

functions [14]. In fact, the birefringence arises due to the lateral
stress in the z and y directions. The lateral stress induces a
change in the fiber refractive index along the two main axes
of the fiber due to the elastooptic properties of the silica, which
are given by [5]

n3 2

An, = Z(plz — VP12 — VP11) (ﬁ) (D
n3 2

An, = Z(Pu —2up12) (E> 2

where v is the Poisson’s ratio, p11 and p;o are two terms of the
fiber material photoelasto tensor, and r and R are the fiber and
the curvature radius, respectively (see Fig. 1). If we define dn as
the refractive index difference between the fast and slow axes,
we obtain

2
on = —a ( R> 3)
with a ~ 0.133 [5] for silica fibers. Although the refractive
index difference is small, it can produce a considerable phase
delay over a distance correspondent to a large number of
wavelengths. In fact, by coiling the fiber with a small number of
turns with a few centimeters of radius, it is possible to obtain an
optical phase difference of A/m between the main polarization
axes, where m is a number greater than zero. For m equal to
two and four, the HWP and QWP are, respectively, obtained.
In [5], an expression for R as a function of the optical path
difference A/m and the number of turns NV was obtained

N
2

R(A/m,N) = 2mar N

Using (4), it is possible to build a device equivalent to a wave

plate of classical optics. However, just like in classical optics,

in order to control the light SOP, we must be able to rotate

the wave-plate retardation axes in relation to the SOP of the
incident light.

In Fig. 2, a fiber coil with a radius R is depicted, where A
and C are two fixed points. With this setup, it is possible to
rotate the wave-plate retardation axes in relation to the SOP
of the incident light. When the coil plane is rotated through
an angle 0, a twist effect is present in AB and B’C, making

“)
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Fig. 2. Schematic representation of a fiber coil. Points A and C are fixed in a
lab coordinate system, and B and B’ are fixed in a coordinate system solidary
with the fiber coil.

the effective rotation angle equal to (1 — ¢)0, where ¢ is the
twist effect coefficient [5]. According to the study in [14], ¢
takes a small value for silica fibers, approximately equal to 0.08,
making the effective rotation angle almost equal to the physical
rotation angle.

In conclusion, a fiber coil can be seen as a classical wave
plate, where the phase delay is fixed, and the principal axes
orientation are changeable.

III. MATHEMATICAL MODEL FOR THE
FIBER-COIL-BASED PC

A QWP allows us to convert any input SOP into a linear SOP
and vice versa, and an HWP allows us to change between any
two linear SOPs. To transform an arbitrary input SOP into an
arbitrary output SOP as well, the QWP-HWP-QWP wave plate
combination is the most commonly used [5]. In the following,
a method to deterministically calculate the QWP-HWP-QWP
PC configuration (i.e., the three wave-plate angles) for any
given input and output SOP is presented.

If we have an input SOP and we aim to generate another SOP
at the PC output, we must select the correct configuration angles
(61, 02, and 603) (see Fig. 3). The SOP at the input and output of
the PC can be written, respectively, as the Stokes vectors

§i = [(s1)i, (s2)i, (s3)i] " ®)

and

=§o - [(51)07 (32)07 (SS)O]T (6)
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Fig. 3.

where T indicates the transpose. In the same way, the SOP
after the QWP and HWP can be written, respectively, as
85 = [(s1)5, (s2)5, (s3);]7 and 3 = [(s1), (s2)k, (83)]"
Therefore, after going through the first QWP, the SOP is
given by

5; = R(01)M,y 4R (—01)5; @)

where ¢, is the angle of the first wave plate, M} /4 is the
QWP matrix, and R is the rotation matrix of the wave plate.
In the Stokes space, the M /4 and R matrices are, respectively,
given by

1 0 0
My = [0 0 —1 (8)
01 0
and
cos(20) —sin(20) 0
R = |sin(20) cos(20) 0] . 9)
0 0 1

Equation (7) can therefore be written as (10), shown at the
bottom of the page. In order to transform the input SOP §;
into a linear SOP 3;, we must choose for the first plate (QWP)
an angle 6,1, such that the third component of (10) vanishes.
Therefore, 0 is given by

Schematic representation of the QWP-HWP-QWP wave plates configuration.

Under this condition, 5; can be written as
8 = [X,v,0" (12)

where X and Y are the two non-null Stokes parameters at the
input of the second plate (HWP)

X = (51);cos?(2601) + (s2); cos(26;) sin(26;)

+ (53)Z sin(291) (13)
Y = (51)7 COS(201) sin(291) + (82)1' sin2(2¢91)
— (s3), cos(267). (14)

Light after the first plate ($;) presents a linear SOP. The second
plate will transform it into another linear SOP (§j) given by
sk=[W.Z,0" (15)

where W and Z are functions of the final polarization state
(85). The linear SOPs $; and §j, can be characterized by their
respective polarization plane angles o; and o, as

1 Y
a; = 3 arctan X

«@ —larctan é
) W)

Considering the situation where 65 = 0, the §; vector is ob-
tained by multiplying the M, /» matrix

(16)

a7

1 0 0
1 (s2)i Myp,=|[0 -1 0 (18)
01 = 5 arctan ((51)1) . (11 0 0 -1
(s1)icos?(2601) + (s2); cos(207) sin(261) + (s3); sin(26;)
5; = | (s1)icos(2601)sin(261) + (s2); sin?(260;) — (s3); cos(26;) (10

(s2); cos(261) — (s1);sin(26;)
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PCn(el,meZ,n?eE},n)

SOP(1) SOP(n) SOP(n+1)
-L o000 M-

Fig. 4. Schematic representation of n concatenated PCs used for SOP random scattering.

by §;. Then, we obtain

8 = [X,-Y,0]". (19)
From (19), we observe that when 65 = 0, the output angle is
just the inverse of the input angle oy, = —a;. It is also known
that a @ rotation of an HWP induces a rotation in the linear
polarization of 26 [5]. Thus, the polarization plane angle of the

light at the output of the second fiber coil is given by
ap = —a; + 205. (20)

In order to obtain the wave-plate angle 65, we use (16), (17),

0 ) = — |al Cta]l ~ + al Cta]l e .

Note that 05 is both a function of the input SOP §; and output
SOP 3,. The angle of the third wave plate W and Z are
determined using an equation analogous to (7)

ey

50 = R(03)M, 4R(—03)3s. 22)

Using again the matrices M, /4 and R, given by (8) and (9),
respectively, we obtain

W cos?(203) + Z cos(203) sin(2603)

(52)0 | = | W cos(263) sin(263) 4 Z sin’(263) (23)
$3)o Z cos(263) — W sin(263)
From (23) and by knowing (s1), and (s2),, we get
_ 1 (82)0
03 = 3 arctan ((51)0> . (24)

With the help of (24) and with the knowledge of (s3),, we also
find expressions for W and Z as

W = (s1), cos®(263)

+ (52)0 COS(2Q3) sin(2¢93) - (83)0 sin(203) (25)
7 =(81), cos(263) sin(203)
+ (52)0 5in%(203) — (53), cos(263). (26)

In conclusion, (11), (21), and (24), in conjugation with (5),
(6), (13), (14), (25), and (26), provide the three wave-plate
angles in order to transform between any two SOP.

Like each individual wave plate, the fiber-coil PC can also be
represented by its matrix, resulting from the concatenation of
the wave-plate matrices. Therefore, the matrix F' that describes
the PC is given by

F(01,02,03) = R(03)M) 4R(—03)R(02)

XMy s R(—02)R(01)M) 4R(—01). (27)

Matrix F can be used to calculate the output SOP §,, given the
input SOP §;, and the configuration angles (61, 62, and 63).

IV. RANDOM DISTRIBUTION OVER
THE POINCARE SPHERE

In order to test the ability to uniformly scatter an input
SOP over the Poincaré sphere, we use a system resulting from
the concatenation of several fiber-based PCs, as schematically
represented in Fig. 4. A device or a concatenation of devices,
with the ability to produce a uniform scatter over the Poincaré
sphere, can be useful, for instance, in the development of PMD
emulators. Indeed, some authors have proposed PMD emula-
tors, based on pieces of polarization-maintaining fibers (PMFs)
interconnected with uniform scattering devices [15], [16].

To verify the scattering uniformity, the statistics of the three
Stokes parameters must be evaluated and compared with the
theoretical predictions. As derived in the Appendix, if we
have a uniform distribution of points over the Poincaré sphere,
each Stokes vector component s; has a mean value equal to
zero, variance of one third, and uniform distribution between
—1 and 1. The procedure used to investigate the evolution of
the polarization scattering of our device, namely the variance
convergence to one third, was inspired in the Marcuse analysis
of two rotation matrices [17].

A. Theoretical Derivation

As can be seen in Fig. 4, the output signal of a PC is used
as the input of the next PC. The SOP statistics at the end of
each PC is evaluated and compared with the desired uniform
distribution. The number of concatenated elements is increased
in order to improve the scattering uniformity.

The SOP at the nth PC output is related to the SOP at the nth
PC input by the following expression:

(Sl)n+1 (Sl)n
52)nt1 | = Fn(01,n,02.0,030) | (52)n (28)
53)n+1 (53)n

where F,, (01,021,035 ,) is given by (27). The index n was
introduced in F,, (01 1, 02 5., 05, in order to make it clear that
the matrix F' and the angles 61, 65, and 65 refer to the nth PC
controller. In (28), (s;)y, is the 4 component of the Stokes vector
at the input of the nth PC.

We are going to assume that the PC angles are randomly
changed following a uniform distribution between —m and .
We are also going to assume that the change is independent
between the angles of the same PCs and between the angles
of different PCs. Therefore, the average value of the F matrix
elements f;; will be equal for all the PCs and will be hereafter
designated simply by (f;;).
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The mean value of each Stokes parameter at the output of the
nth PC ((s;)n+1) is given by

((81)n+1) (fir)  (fiz)  (fuz) || ((s1)n)
((52)n+1) (far)  (f22) (fa3) || ((52)n) (29)
((s3)n+1) (fa1)  (fa2) (f33) || ((s3)n)

Note that the n index was dropped in the matrix coefficients
(29) because all the PCs are, statistically, equivalents. In (29),
the mean value (f11), for instance, is calculated by

(f11) _]]]P3f11 db1 db2 db

-7 —T —T

(30)

where py is the probability density function (pdf) for each
wave-plate angle, and f;; is obtained directly from (27) and is
given by
f11 =2 cos?(26) cos®(2603) cos?(265)

+ 2 cos?(26;) cos(265) cos(263) sin(263) sin(265)

— cos?(26;) cos?(265)

+ 2cos(26;) sin(26 ) sin(26) cos? (263) cos(265)

+ cos(261) sin(2601) cos(265) sin(263)

— 2cos(20;) sin(26; ) cos(203) sin(263) cos?(265)

+ sin(263) sin(26,). 31)
Assuming a uniform distribution between —m and 7 for the

configuration angles, the pdf is given by pp = 1/27. Using this
value in (30) and performing the triple integral, we find that

(fi1) =0.

Repeating the same proceeding for all the matrix F elements,
we found that the remaining matrix elements have the same av-
erage value, { fij> = 0; then, we can conclude that, independent

(32)
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Fig. 5. Parameter a as a function of the third Stokes vector component (s3)1.

of the number of concatenated PCs, each Stokes vector compo-
nent always has a null average, provided that the configuration
angles are uniformly distributed between —7 and 7.

In order to calculate the variance of each Stokes vector
component, we start by squaring each component of (28).
Equation (33), shown at the bottom of the page, is obtained.
Considering the statistical independence of (s;).,, Stokes vector
components at the input of the nth PC, and f;; matrix elements
of the nth PC, the mean values ((s;)7, ;) can be written as (34),
shown at the bottom of the page. The mean values ( fy; fkj> are
evaluated using an equation analogous to (30)

(frifrj) = / / / D fri frj d61 dBs dBs (35)

- —T —T

where fi; and fi; are directly obtained from (27), and
pg = 1/2m. After calculating the triple integral, we reach the

fhn(s0)5 4 flon(s2)h + flan(sa)h +2 23: rinfrin(si)n(85)n
C Hm
(s2)241 | = | Foin(s0)i + flon(s2)h + fRan(s3)n +2 3 foim f2jn(si)n(si)n (33)
(s3)ns1 w:?#])
F3n(51)5 + foon(s2)n 4 f35,(s3)7 + 2”7%#) F3inf35,n(81)n(85)n
(f) ((s0)7) + (o) ((s2)7) + (fis) ((s3)n) +2 23: (frifi) ((si)n(s5)n)
(51)20) #4=1G)
((520241) | = | () ((s0)i) + () ((s2)7) + (f3s) ((s3)7) +2 2 {faife) {(s0)n(si)n) (34)
((55)24) A
(f3) ((s1)7) + () ((s2)7) + (f3s) ((s3)7) + Qijg(:#j) (f3if35) ((s)n(s5)n)
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Fig. 6. Stokes parameters resulting from the scattering due to one PC, considering the initial SOP §; =

output SOP. (b) (s1)2 histogram. (c) (s2)2 histogram. (d) (s3)2 histogram.

conclusion that (fy;fx;) =0 when i # j. Using this result
and calculating the values for the case ¢ = j, the following
expression is obtained:

{(s1)241) 3/8 3/8 1747 [((s1)2)
((s2)21) | = |3/8 3/8 1/4| |((s2)2) (36)
((s3)241) /4 1/4 1/2] [((s3)2)

Equation (36) gives a relation between Stokes vector com-
ponent variances at the input and output of the nth PC. By
using (36) iteratively and considering an initial SOP 3§; =
[(51)1, (52)1, (s3)1] T, the following expression is found:

((s1)241) 1 1 1
((s2)24) | = S+ 47 1 | +6n0b | —1] (37)
< 53 n+1> 1 -2 0

where d,0 is the Kronecker symbol, and a and b are func-

tions of §;
1/1
a=3 (3 - (83)%> (38)
1
b=5 ((s)7 — (s2)1) - (39)

From (37), we verify that the variance of each component
of the Stokes vector converges to the one third value with a
factor a/4™. Indeed, from (38), we can say that SOPs with the
same modulus of (s3); have the same convergence rate (note
that these SOP domains depict a circumference in the Poincaré
sphere parallel to the s3 = 0 plane) and that the convergence
rate decreases with the increase of the modulus of a. Fig. 5 rep-
resents the parameter a versus (s3)1. The parameter a becomes
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Fig. 7. Mean square of the Stokes parameters as function of the samples
number for the case of one PC and §; = [0,0,1]T.

null when (s3)? = 1/3, which means that, independent of the
number of PCs, §; = [(s1)1, (s2)1,£+/1/3]" is a special initial
SOP. In fact, with this initial SOP, the variance of the Stokes
parameters reaches the one third value right after the first PC.

B. Numerical Simulations

We now present some results, considering the polarization
scattering corresponding to different initial SOPs and number
of PCs. First, only one PC is considered; subsequently, the
number of PCs is increased up to 20.

In Fig. 6(a), 5000 Stokes vectors are represented and ob-
tained at the end of a single PC, considering the same input
5 =[0,0,1]T and varying the configuration angles uniformly
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Fig. 8. Stokes parameters resulting from the scattering due to 20 PCs, considering the initial SOP 1 = [0, 0, 1]T. (a) Poincaré sphere representation of the

output SOP. (b) (s1)21 histogram. (c) (s2)21 histogram. (d) (s3)21 histogram.

between —7 and 7. As can be seen in Fig. 6(b), (c), and (d),
light is not uniformly scattered at the PC output. This result
is in accordance with the theoretical prediction. Using (37),
the variances for the Stokes parameters at the PC output are
given by

(40)

7~
—
W
N
S~—
DN NN NN
~—
[Tt N

The numerical results converge for the theoretical values (40)
as the numbers of trials increases, as shown in Fig. 7.

This result confirms that one PC does not produce a uniform
distribution over the Poincaré sphere. We repeated the same
numerical simulations for different polarization states of input
light, and we observed that with one PC, the output Stokes
parameters’ mean-square values are strongly dependent on the
initial SOP. Nevertheless, using three different input SOPs,
with equal |(s3)1], three similar distributions were obtained.
This result is in good agreement with the |(s3)1| parameter
degeneration presented in (37) and (38).

Fig. 8(a) represents 5000 Stokes vectors for an input SOP
81 =[0,0,1]7 using 20 PCs. Fig. 8(b), (c), and (d) shows that
the three Stokes parameters are uniformly distributed between
—1and 1.

According to (37), for large n, the mean value of sf, s%, and
53 converges to one third which is independent of the input SOP.
We present in Fig. 9 the mean squares of the Stokes parameters
as a function of the PC number to a particular input SOP
81 = [0,0,1]T. As expected, all mean-square values converge
to the one third value.

0,504
L? - <(812)n+1>
© <(8; s
045 = <(S:’:Z)n+1>
< (312),”1 > and < (Szz)m1 > theoretical curve
0.40 - P B < (332)I1+1 > theoretical curve
N ’ N
x 3
S “\
y~ 0,35
)
A%
0,30 4
0,251
—_—— —_——
0 5 10 15 20

Polarization controllers number, n

Fig. 9. Mean square of the Stokes parameters as function of PC number,
considering the initial SOP §; = [0, 0, 1]T. Numerical values and theoretical
curves are shown.

V. IMPORTANCE OF UNIFORM POLARIZATION
SCATTERING IN PMD EMULATION

We consider in this section an application of the uniform
polarization scattering using fiber-coil-based PCs to PMD
emulation.

When this paper was about to be finished and without any
relation with this paper, results were published [16] that propose
a PMD emulator based on a QWP-HWP-QWP fiber-coil-based
PC. Even if the analysis presented here is not directly applied to
the emulator presented in [16], due to the fact that we assume
statistical independence between PCs and, in [16], only a PC
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is used, that work confirms the feasibility of building a PMD
emulator based on this simple device.

We consider a system composed of several PMFs with one
or more PCs between adjacent PMFs to scatter the light polar-
ization. Each PMF is described by the matrix [15]

1 0 0
R,= |0 cos(2¢) —sin(2¢) (41)
0 sin(2¢) cos(29¢)

where ¢ = wATy is the birefringence-induced phase mismatch
directly related to the differential group delay (DGD) of the
PMF Ar,, and w is the angular frequency of the light. The
polarization scattering between PMFs can be modeled as

m

Rs = H Fn(el,nv 92.,?% 03,?1)

n=1

(42)

where F is given by (27), and m is the number of PCs used to
scatter the light polarization.

A. System With Two PMF's

In order to assess the effect of the polarization-scattering
uniformity, we simulated three systems resulting from the
concatenation of two PMFs, with DGD equal to 12 ps and
with a polarization-scattering section between PMFs. The
polarization-scattering section comprises one PC in the first
case, two in the second, and three in the third. The magnitude
of the resulting first-order PMD vector (the DGD) was obtained
using the matrices presented in (41) and (42) and the well-
known concatenation rule of PMD vectors [18], [19]. The
simulation results for each system are represented in Fig. 10,
where 10° realizations were performed. The three considered
cases are presented, respectively, in Fig. 10(a)—(c). Note that
each realization is related with an ensemble of three angles
01, 65, and 05 randomly chosen for each PC. The angles are
uniformly distributed between —m and 7 and are statistically
independent.

For two PMFs fibers with an ideal uniform polarization
scattering between them, Djupsjobacka [20] has proven that the
pdf for the magnitude of the resulting first-order PMD vector
AT is given by

AT

f(AT) = m, AT c [0, QATS] (43)

where Aty is the DGD of each single PMF. Comparing our
simulation results with (43), represented in Fig. 10 with a solid
line, we observe that as the number of PCs used to scatter
the polarization increases, the simulation points are closer to
the expected theoretical value. We can say that the three PCs
used in the simulation depicted in Fig. 10(c) provide a uniform
polarization scattering over the Poincaré sphere. This result
corroborates the one obtained in the last section, where we
have shown that the uniformity of the polarization scattering
increases with the number of PCs, and, with three PCs, the
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Fig. 10. Pdf for the DGD in a system with two equal-length PMFs, using
between them (a) one, (b) two, and (c) three PCs to scatter the light polarization.
Solid lines represent the theoretical values, given by (43), and marks represent
values obtained from the numerical simulations.

variance of each Stokes vector component approach the one
third value [see (37) and Fig. 9].

B. Emulator Based on PMFs and Fiber-Coil-Based PCs

In this section, we investigate the ability to produce accu-
rate first- and second-order PMD statistics using PMFs and
fiber-coil-based PCs. We are going to use n PMFs and n — 1
polarization-scattering sections.

In a first stage, between PMFs, a light-scattering section
comprising three PCs is placed. As we saw previously, the
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three PCs produce a more uniform scattering over the Poincaré
sphere. PMD vectors were simulated using the Miiller matrix
method, with a 0.025-nm step and a 0.0083-nm interleave step
[21]. We considered 120 different wavelengths, and for each
wavelength, 250 statistically independent combinations for the
PCs configuration angles were applied. The length of PMFs
was obtained from a Gaussian distribution with a mean L,,
and standard deviation equal to 20%. The mean length was
chosen in order to generate a DGD distribution with a mean
value around 41 ps. The pdfs of first-order PMD, which were
obtained for systems with 3, 5, 10, and 15 PMFs, are shown in
Fig. 11(a)—(d), respectively. In Fig. 11(a) and (b), we observe
that both three and five PMFs are insufficient to mimic the the-
oretical distribution of the first-order PMD, i.e., a Maxwellian
[22]. Fig. 11(c) and (d) shows that a system with ten and more
PMFs can reproduce a large range of first-order PMD values
with a statistic close to the Maxwellian distribution, including
the tail distribution.

The magnitude distributions of the first- and second-order
PMD vectors were compared by a commonly used parameter:
the normalized deviation factor (NDF) [15], [16]. Fig. 12
presents the NDF of the first- and second-order PMD, for the
cases where the scattering sections comprise one and three PCs,

70
. —m— 1 PC - PMD 1% order
60 O —o0—3PC - PMD 1% order
1% ~@--1PC - PMD 2" order
..... o 3 PC - PMD 2™ order
L 401
[m)
P4
30
204
104
T T T i ' ! I
5 10 15
Number of PMFs

Fig. 12. NDEF for first- and second-order PMD as function of the number of
PMFs. Scattering sections comprising one and three PCs are represented as
solid and open symbols, respectively.

as function of the number of PMFs. In a global analysis, results
show that as the number of PMFs increases, the NDF parameter
decreases, which is in good agreement with the previous results
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presented in [15]. For a fixed number of PMFs, a statistical
improvement is, in general, also observed when a more uniform
distribution is performed, i.e., when using three PCs instead
of just one PC. Nevertheless, the number of PMFs seems to
be a more critical parameter when accurate PMD statistics are
required.

Fig. 13 represents the pdfs for the emulator with 15 PMFs,
with a polarization scattering between PMFs using three and
one PCs. The magnitude of the first-order PMD vector is
represented in Fig. 13(a). The magnitude and one compo-
nent of the second-order PMD vector 7,, are represented
in Fig. 13(b) and (c), respectively. The second-order PMD
component associated with the polarization-dependent chro-
matic dispersion (PCD) [23] is represented in Fig. 13(d). The
Maxwellian correspondent to the first-order pdf, represented in
Fig. 13(a) as a solid line, has a mean value equal to 41 ps.
The remaining theoretical pdfs, which are also represented
as solid lines, are plotted with the fit parameter equal to the
mean value of 41 ps. For both cases (polarization scattering
with one and three PCs), the simulation results are in good
agreement with the theory. Using these results in conjugation

with the ones presented in Fig. 12, we conclude that a large
number of PMFs should be considered in an emulator design
and that the uniformity of the polarization scattering is a less
relevant factor.

VI. CONCLUSION

In this paper, we have presented a detailed study of fiber-
coil-based PCs. First, a method to deterministically calculate
the PC configuration in order to transform the polarization
between any two SOPs was presented. Second, an expression
for the mean-square values of the Stokes parameters when
several fiber-coil-based PC devices are concatenated was
derived. This expression was extensively confirmed with sim-
ulation results. We showed that with three PCs, a uniform
polarization scattering is obtained. An application of the po-
larization scattering to PMD emulation was also presented.
First- and second-order PMD statistics are well generated when
15 PMFs are interconnected with 14 polarization-scattering
sections. We also conclude that with these high numbers
of polarization-scattering sections, the number of PCs used
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Fig. 14. Poincaré sphere representation of the area element of the surface of
revolution.

in each section to scatter the light polarization becomes
less critical.

APPENDIX
UNIFORM DISTRIBUTION OVER THE
POINCARE SPHERE

In this Appendix, a uniform distribution of Stokes vectors
over the Poincaré sphere is considered. The distribution proper-
ties of each vector component s; are derived. The area element
of a surface revolution obtained around the s3 axis is given by

dS = 2nrds (44)

where ds is a curve element, and r is the distance between the s3
axis and the sphere surface (see Fig. 14). The ds curve element
can be written as

ds® = dr? + ds% (45)
where dr and ds3 are infinitesimal increments on r and s,
respectively. Taking the square root, (45) can be written as

dr \ 2
ds =141+ () dss. (46)
ng
The distance r can be written as a function of s3
r(s3) =4/1—s3. 47)

These results can be used to derive ds. Taking the derivative of
r with respect to s3 and using it in (46), we get the following
expression for ds:

d83

Using (48) and (47) in (44), we get the following expression
for dS:

ds = (48)

dS = 2mdss. (49)
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Thus, the area S between s3 = a and s3 = b, with b — a = h,
is just
b
S = 27r/ dsz = 2mh.

a

(50)

Notice how the integrand reduces to a constant. This proof
also works for the s; and so axes. Using this result, we can
conclude that if we have a uniform distribution of points
over the sphere surface, the respective projections are also
uniformly distributed between —1 and 1. Therefore, observing
the normalization condition, the three coordinate pdfs g, have
the constant value 1/2.

As the mean value of each coordinate is zero, the variances
o; are given by the mean squares

(D

1
0; = <83> = /gsisz2 ds;.
-1

Using g5, = 1/2 in (51), we obtain for the variances the one
third value.
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