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Uniform Ray Description of Physical Optics
Scattering by Finite Locally Periodic Metasurfaces

Yvo L. C. de Jong, Senior Member, IEEE

Abstract—This paper presents a uniform ray description of
electromagnetic wave scattering by locally periodic metasurfaces
of polygonal shape. The model is derived by asymptotically
evaluating the critical-point contributions of a physical optics
scattering integral. It is valid for metasurfaces whose bulk
scattering coefficients are periodic functions of a phase parameter
which, in turn, is a continuous and smooth function of surface
coordinates. The scattered field is expressed in terms of reflected,
transmitted and diffracted rays that do not generally obey
conventional geometrical constraints (i.e., Snell’s law and the
Keller cone). An iterative technique is presented to determine
the locations of critical points on one or multiple interacting
metasurfaces. Numerical results demonstrating the utility and
accuracy of the asymptotic physical optics model are also
provided.

Index Terms—Radio propagation, metasurfaces, periodic sur-
faces, physical optics, geometrical optics, geometrical theory of
diffraction, uniform theory of diffraction.

I. INTRODUCTION

ENGINEERED electromagnetic surfaces (EESs) are a
class of printed metasurfaces designed specifically to

enhance wireless signal propagation (for example, to improve
coverage or reduce interference) in built-up environments [1],
[2]. They are fabricated by printing appropriately designed
conductive, dielectric, or even ferroelectric ink patterns on
substrates such as plastic coatings, window glass, ceramic
tile, or drywall. Similar to reflectarrays and transmitarrays [3],
these patterns consist of discrete, subwavelength unit cells
whose scattering properties can be designed to control the
spatial properties of the reflected and transmitted wavefronts.

Many wavefront-shaping EESs employ locally periodic unit-
cell patterns, meaning that their scattering properties are mod-
ulated periodically over space [4], or at least approximately
so over any sufficiently small subsurface. An example of a
strictly periodic EES is the uniform grating [5], capable of
deflecting incident waves in directions that do not obey Snell’s
law [6]. Examples of locally periodic EESs include reflective
diffusers [7], non-uniform diffraction gratings that can be used
to disperse wireless signal power, and planar lenses [8] capable
of focusing.

Ray tracing [9] is the method of choice for simulating
propagation characteristics in complex, electrically large en-
vironments such as office buildings and street canyons. To
perform ray-based propagation prediction for complex envi-
ronments equipped with metasurfaces, it is necessary to model
the scattering behavior of these surfaces in terms of ray optics.
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To the best of the author’s knowledge, ray-optical models of
metasurface scattering are currently not available, even though
a workaround solution has been used with some success for
impenetrable gratings and diffusers [10]. The latter approach
involves substituting the metasurface with an “equivalent”
geometrical structure with similar overall scattering charac-
teristics. Unfortunately, this workaround is costly in terms of
simulation time, does not always produce accurate results, and
cannot readily be extended to penetrable metasurface designs
[7].

The ray-optical metasurface scattering model presented in
this paper is superior to the approach in [10] with respect
to accuracy and computational complexity, and is applicable
to any type of locally periodic metasurface. Its derivation is
based in part on the approach taken by Albani et al. to model
scattering by curved surfaces [11], but has been appropriately
adapted to the related, but different problem of scattering
by geometrically planar, space-modulated metasurfaces. The
analysis begins by homogenizing [12] the reflection and trans-
mission coefficients associated with individual unit cells, thus
allowing the scattered field to be approximated in terms of
a physical optics (PO) surface integral. The high-frequency
approximation is then used to evaluate this integral as the
discrete sum of its critical-point contributions [13], which
represent specularly reflected and transmitted, as well as edge-
and corner-diffracted rays, depending on where on the surface
the critical points are located.

Other relevant prior work includes that of Borovikov et al.
on diffraction gratings with slowly varying parameters [14],
and work by Chou on scattering from periodic array structures
with a truncation boundary [15]. The main contribution of
the present work is that it is applicable to a significantly
broader class of metasurfaces, including designs with non-
uniform periodicity parameters (such as diffusers and lenses)
and arbitrary polygonal shapes, while properly accounting
for all edge effects, including corner diffraction. This paper
also proposes an iterative method for determining the critical
(ray interaction) points on one or more mutually interacting
metasurfaces – a necessary ray-tracing step. Finally, it aims to
provide insight into the relationships between the metasurface
parameters (specifically, the gradient and Hessian of its phase
parameter) and the properties of its ray-optical scattered fields
(i.e., deflection angle and wavefront curvature).

This paper is organized as follows. Section II provides a
definition and analysis of the scattering problem, and derives
mathematical expressions for the ray-optical scattered fields.
Section III presents a method for determining the locations
of the critical points. Section IV presents numerical results
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illustrating the utility and accuracy of the proposed model.
Two metasurface designs are considered: an impenetrable (re-
flective) diffuser and a binary Fresnel-zone plate lens (FZPL)
[16], the latter being an example of a penetrable metasurface
supporting multiple spatial modes. Section V contains con-
cluding remarks, and the appendices are provided as a self-
contained reference to the mathematical details necessary for
the reader to implement the equations in Section II-F.

This paper largely follows the notation used in [11], in-
cluding the use of boldface symbols for vectors and dyadic
tensors in 3-D space; for example, a and Ā. Hat notation is
used for unit vectors; for example, â. Vectors and matrices in
2-D surface space are denoted by roman symbols; for example,
a and Ā. An e jωt time-dependence is assumed and suppressed.

II. ANALYSIS

Let S denote a finite, locally periodic metasurface illumi-
nated by an incident field, as illustrated in Fig. 1. S is assumed
to be infinitely thin (geometrically), planar, and bounded by
straight edges. Its illuminated (positive) and shadow (negative)
sides are denoted by S+ and S−, respectively. The halfspace
on the positive side of S will be referred to as Region I, and
the halfspace on the negative side as Region II. The surface
normal, n̂, is chosen to always point into Region I and is,
therefore, dependent on the incident field. In the following,
the optional argument notation ·(q) indicates that a quantity
is evaluated at the surface point

q = q0 +u1û1 +u2û2, (1)

where q0, û1 and û2 are an arbitrarily chosen origin and a pair
of basis vectors in the plane of S.

A. High-Frequency Approximation

Assuming that the dimensions of S are much larger than
the wavelength, λ , its scattering properties can be well
approximated by high-frequency asymptotic techniques that
describe the incident and scattered fields in terms of rays
with associated geometrical optics (GO) fields [17]. Under the
high-frequency approximation, all ray interactions are local
phenomena that depend on the properties of the incident field
and the scattering object at the point of ray incidence only.

In the neighborhood of an arbitrary reference point q′ on S,
any incident GO field Ei can be approximated by [11]

Ei(q) = Ei(q′)e− jkϕi(q), (2)

where k is the free-space wavenumber and ϕi is a wavefront
phase function that may be expanded up to second order as

ϕi(q)' k̂i · (q−q′)+
1
2
(q−q′) · Q̄i · (q−q′). (3)

Here, k̂i denotes the incident wave direction at q′, and

Q̄i =
x̂1,ix̂1,i

ρ1,i
+

x̂2,ix̂2,i

ρ2,i
(4)

is a curvature dyadic that contains the principal radii of curva-
ture, ρ1,i and ρ2,i, and the corresponding principal directions,
x̂1,i and x̂2,i, of the incident wavefront. As with any GO field,

Fig. 1. Geometry and definitions pertaining to ray-optical modeling of
scattering by a finite, locally periodic metasurface S (side view). The scattered
field is evaluated by integrating currents over the closed surface S+ ∪S−. A
scattered (specularly reflected) ray is shown arriving at the observation point
po via the critical point qc.

the incident magnetic field near q′ is related to the electric
field by the local plane-wave approximation [11], [17]

Hi =
1
η

k̂i×Ei, (5)

where η is the intrinsic impedance of free space.

B. Physical-Optics Approximation

Starting from a specialization of the Stratton-Chu equation
for the electric field outside a bounded, source-free region of
space [18], the radiative scattered field due to S can be written
as [11], [19], [20]

Es(p) = jk
�

C

[
r̂×Jm +η r̂× r̂×Je

]e− jkr

4πr
dS, (6)

where p is an observation point, r = rr̂ is the vector from the
integration point to p, and Jm and Je are magnetic and electric
surface currents on the closed surface C = S+∪S− (see Fig. 1).
These currents are related to the tangential components of the
surface fields by

J±m =∓n̂×E± (7)

J±e =±n̂×H±, (8)

where the superscripts + and − indicate on which side of S
the currents and surface fields are evaluated.

Under the PO approximation, the surface fields at any point
of S are approximated by those that would be present on an
infinite, uniformly periodic metasurface that is locally matched
to S. While this approximation is clearly invalid near edges
and corners, and can be poor if the periodicity varies too
rapidly, it generally yields good results for the overall scattered
field provided that the surface is electrically large [11] and its
periodicity varies slowly.

The (electric) surface field is thus approximated by Ei +Er
on S+ and by Et on S−, where

Er(q) = Γ̄(q) ·Ei(q) (9a)

and
Et(q) = T̄(q) ·Ei(q) (9b)
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are the reflected and transmitted surface fields for a locally
matching, infinite periodic metasurface. Γ̄ and T̄ are dyadic
reflection and transmission coefficients that characterize the
localized bulk scattering behavior of S, meaning that the
microscopic responses of individual unit cells and their inner
structures are homogenized into a (locally periodic) bulk
material description. These coefficients generally depend on
the propagation direction of the incident field, but this is not
made explicit in the notation. If the metasurface is locally
periodic, Er and Et can be locally expanded into GO and
evanescent surface fields, as will be discussed below.

The subwavelength location-dependence of Γ̄ and T̄, in
particular their phase characteristics, can be engineered so
as to shape, e.g., deflect and/or (de)focus, the reflected and
transmitted wavefronts. These coefficients can be directly
measured, or computed with the aid of full-wave simulation
tools [12], [21]. In this analysis they, or rather, the deriva-
tive parameters introduced below, are simply assumed to be
computable on demand for any arbitrary surface location and
incidence direction, and for fixed λ .

C. Local Periodicity

As they are approximately periodic in the vicinity of q′, Γ̄
and T̄ can be expressed by the Fourier series

Γ̄(q)' Γ̄(ψ;q′) =
∞

∑
m=−∞

Γ̄(m)(q′)e jkmψ (10a)

T̄(q)' T̄(ψ;q′) =
∞

∑
m=−∞

T̄(m)(q′)e jkmψ , (10b)

where m is an integer index referred to as the (spatial) mode
number, and ψ denotes a phase parameter. The dependence of
Γ̄ and T̄ on ψ is periodic with a constant period equal to one
wavelength, λ ; ψ , in turn, is a continuous and smooth function
of q, and describes the local subwavelength periodicity1 of the
metasurface, which may vary gradually over S. Assuming that
the scale of periodicity variation is much longer than λ , the
Fourier coefficients

Γ̄(m)(q′) =
1
λ

�
λ

0
Γ̄(ψ;q′)e− jkmψ dψ (11a)

T̄(m)(q′) =
1
λ

�
λ

0
T̄(ψ;q′)e− jkmψ dψ (11b)

may be approximated as being stationary over subdomains of
S whose dimensions are on the order of several wavelengths
or less. In practice, the magnitudes of these coefficients often
become negligibly small for sufficiently large |m|, so that Γ̄
and T̄ are accurately described by the coefficients of truncated
Fourier series.

The variation of ψ near q′ can be approximated by the
quadratic expansion

ψ(q)' ψ(q′)+gψ(q′) · (q−q′)

+
1
2
(q−q′) · H̄ψ(q′) · (q−q′),

(12)

1It is conceptually straightforward to extend the analysis to (locally)
biperiodic surface profiles, which are dependent on two phase parameters
with different location dependencies, cf. [14, Sec. 3.6].

where
gψ = ∇ψ =

∂ψ

∂u1
û1 +

∂ψ

∂u2
û2 (13)

and

H̄ψ = ∇∇ψ =
∂ 2ψ

∂u2
1

û1û1 +
∂ 2ψ

∂u2∂u1
û2û1

+
∂ 2ψ

∂u1∂u2
û1û2 +

∂ 2ψ

∂u2
2

û2û2

(14)

denote the first- and second-order spatial derivatives of ψ , also
referred to as the gradient and Hessian, respectively [11], [13].
The latter can be expressed in terms of a two-element vector
and a 2×2 matrix, respectively, referenced to the surface basis
vectors.

Substituting (10a) and (10b) into (9a) and (9b), it is clear
that the reflected and transmitted surface fields can be locally
expanded into spectra of plane-wave spatial harmonics, in
accordance with Floquet’s theorem for periodic surfaces [22],
[23]. The corresponding wave vectors, denoted by k(m)

a = kk̂(m)
a

with a = {r, t}, are slowly-varying functions of q. In order for
the incoming and outgoing waves to be phase-matched, these
vectors must satisfy(

Ī− n̂n̂
)
· k̂(m)

a =
(
Ī− n̂n̂

)
· k̂i−mgψ , (15)

where Ī denotes the unit dyad. Their normal components are
determined from the square roots of(

n̂ · k̂(m)
a
)2

= 1−
[(

Ī− n̂n̂
)
· k̂(m)

a
]2
, (16)

where care must be taken to select the correct roots for the
reflected and transmitted fields. If the right-hand side of (15)
does not exceed one, k̂(m)

r and k̂(m)
t are real-valued propagation

direction vectors whose normal components must be chosen
such that they point into Regions I and II, respectively.
Modes for which the roots of (16) are imaginary-valued are
evanescent and do not contribute to the radiative scattered
field. However, they must be taken into account when solving
boundary conditions, as in Section IV-B for example. The
signs of imaginary normal components of k̂(m)

r and k̂(m)
t must

be chosen such that the amplitudes of the corresponding fields
are bounded (i.e., decay exponentially) in Regions I and II,
respectively.

D. Summary of Metasurface Properties

To set up the ray-optical metasurface scattering model
presented in the remainder of this section, the following
parameters are assumed to be available:

1) an origin, q0;
2) a pair of surface basis vectors, û1 and û2;
3) an ordered set of corner points (vertices);
4) surface profiles of ψ , gψ and H̄ψ ;
5) surface profiles of Γ̄(m) and T̄(m) for mode numbers up

to a fixed mode truncation order M, i.e., |m| ≤M.
The surface profiles are understood to support the entire area
of S. It is convenient to define the surface parameters for
discrete points on a 2-D grid aligned with û1 and û2. The
grid spacing can typically be much larger than the wavelength,



4

but must be small enough to enable accurate interpolation.
Because ψ , gψ and H̄ψ are interrelated, it is sufficient to
only define, for example, the phase gradient profile and the
phase value at a reference point, and precompute the other two
profiles by means of numerical differentiation and integration.
Finally, instead of specifying Γ̄(m) and T̄(m) directly, it is
advantageous to define the scattering properties of S in terms
of intrinsic parameters from which the former can be computed
on demand, for any given incidence angle. This is illustrated in
Section IV, which presents simulation results for metasurfaces
characterized by locally periodic sheet impedance profiles.
A method for computing the reflected and transmitted GO
surface fields from locally periodic surface susceptibilities is
presented in [24].

E. Evaluation of Scattering Integral

Using the results from Section II-C, the surface fields in (7)
and (8) can be written as

(E+,H+) = (Ei,Hi)+
M

∑
m=−M

(E(m)
r ,H(m)

r )e jkmψ (17a)

(E−,H−) =
M

∑
m=−M

(E(m)
t ,H(m)

t )e jkmψ , (17b)

in which
E(m)

r = Γ̄(m) ·Ei (18a)

and
E(m)

t = T̄(m) ·Ei. (18b)

Similar to (5), the magnetic surface fields are obtained via

H(m)
a =

1
η

k̂(m)
a ×E(m)

a (19)

for a = {r, t}, which is valid for both propagating and evanes-
cent (locally) plane waves [25].

Through substitution and some algebraic manipulation, (6)
can now be rewritten as a vector sum

Es(p) = E(0)
s,i (p)+∑

m
E(m)

s,r (p)+∑
m

E(m)
s,t (p) (20)

of distinct scattering components

E(m)
s,a (p) = jk

�

S

F̄(m)
a (q) ·Ei(q)

e− jkr

4πr
dS (21)

with a ∈ {i,r, t}. Here,

F̄(m)
a =


+Ḡ(k̂i, r̂) if a = i and m = 0

+Ḡ(k̂(m)
r , r̂) · Γ̄(m)e jkmψ if a = r

−Ḡ(k̂(m)
t , r̂) · T̄(m)e jkmψ if a = t,

(22)

in which [11]

Ḡ(k̂, r̂) = (n̂ · r̂)Ī− n̂r̂+(Ī− r̂r̂) ·
[
(k̂ · n̂)Ī− k̂n̂

]
. (23)

The summations in (20) are over non-evanescent modes only.
The preceding equations show that the scattered field con-

sists of a component due to the incident field, and multiple
spatial modes due to the periodically varying reflection and
transmission coefficients. As will be shown next, the former

cancels out the incident field in the shadow zone behind S,
while the latter are responsible for the backscattered field and
the remainder of the forward-scattered field.

F. Critical-Point Contributions

In the high-frequency limit, i.e., for k→ ∞, (21) is domi-
nated by discrete contributions from a set of critical points,
also referred to as stationary-phase points, on S, resulting in
a ray description of the scattered field [11]. The scattering
contribution from any one of these critical points, denoted by
qc, can be written as

E(m)
s,a (p)'

jk
4πs

�

Sc

F̄(m)
a (q) ·Ei(q) e− jkϕs(q)dS, (24)

where

p = qc + sk̂s (25)

is the observation point, as previously, and s and k̂s are the
observation distance and scattering direction. Furthermore, Sc
is a subdomain of S spanning several wavelengths around qc
but becoming infinitesimally small as k→ ∞, and ϕs is the
phase function of the scattered wavefront originating at q.
Noting that rr̂ = sk̂s at q = qc, ϕs can be approximated by

ϕs(q)' s− k̂s · (q−qc)+
1
2
(q−qc) · Q̄s · (q−qc) (26)

with

Q̄s =
Ī− k̂sk̂s

s
. (27)

Substituting (12), (3) and (26), (24) becomes

E(m)
s,a (p)'

jke− jks

4πs
F̄(m)

a (qc) ·Ei(qc)

�

Sc

e− jkϕ(m)(q)dS. (28)

The phase function in the integrand of (28) is given by

ϕ
(m)(q) = b(m) · (q−qc)+

1
2
(q−qc) · C̄(m) · (q−qc) (29)

with

b(m) = k̂i− k̂s−mgψ(qc) (30)

and

C̄(m) = Q̄i + Q̄s−mH̄ψ(qc). (31)

In the following, we consider critical points of the first,
second, and third kinds, which correspond with specular, edge-
diffracted, and corner-diffracted ray contributions, respectively
[11], [13]. These critical points must be evaluated separately
for all m. The reader is referred to the appendices for mathe-
matical details on how to evaluate the integral in (28) for each
kind of critical point.
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1) Specular Fields: Critical points of the first kind are those
points in the interior of S where (29) is stationary with respect
to movement along û1 and û2, such that

b(m) · û1,2 = 0 (32)

and û1,2 · C̄(m) · û1,2 6= 0. The latter inequality implies that
specular points must be spatially isolated, as will generally
be the case unless the observation point lies at a focal point,
or S is uniformly periodic and ρ1,i, ρ2,i and s are infinite. If
a = i and (therefore) m = 0, condition (32) is met if k̂s equals
k̂i or k̂(0)

r . In the latter case, the product F̄(0)
i ·Ei vanishes. For

k̂s = k̂i, on the other hand, the critical-point contribution (28),
if it exists, becomes equal to

E(0)
s,i (p)'−Ei(qc)

√
ρ1,iρ2,i

(ρ1,i + s)(ρ2,i + s)
e− jks. (33)

This scattered field component is equal in magnitude to
the incident field at p but has the opposite sign, therefore
cancelling it out for observation points in Region II for which
a stationary-phase point exists in the interior of S, i.e., in the
optical shadow region behind the metasurface.

If a ∈ {r, t}, condition (32) can be thought of as a gener-
alized version of Snell’s laws of reflection and transmission
[6]. For m = 0, or if gψ is uniformly zero, the reflection angle
equals the incidence angle and, because S is infinitely thin,
the transmitted ray continues along the path of the incident
ray. For |m| > 0, a non-zero phase gradient “breaks” the
conventional law by deflecting the reflected and transmitted
rays into different angles and/or planes depending on m.
Eq. (32) can be used to determine k̂s for a ray-optical field
incident at a given surface point or, as discussed in Section III,
to determine the reflection and/or transmission point(s) given
an observation point.

For any given k̂i and m, (32) has two solutions for k̂s,
denoted by k̂(m)

r and k̂(m)
t ; as discussed in Section II-C, these

are considered valid only if ‖(Ī− n̂n̂) · k̂i−mgψ‖ < 1. The
product F̄(m)

a ·Ei is non-zero for only one of these (valid)
solutions, such that the specularly reflected and transmitted
fields vanish in Regions II and I, respectively. Where they do
not vanish, these fields can be asymptotically evaluated as

E(m)
s,r (p)' Γ̄(m)(qc) ·Ei(qc)

√
ρ1,rρ2,r

(ρ1,r + s)(ρ2,r + s)
e− jks̃ (34a)

E(m)
s,t (p)' T̄(m)(qc) ·Ei(qc)

√
ρ1,tρ2,t

(ρ1,t + s)(ρ2,t + s)
e− jks̃, (34b)

in which s̃= s−mψ(qc), and ρ1,r = ρ1,t and ρ2,r = ρ2,t are the
radii of curvature of the reflected and transmitted wavefronts.
For m 6= 0, these radii are generally different from those of
the incident field. As shown in Appendix A, they can be
determined from an eigenanalysis involving the projection of
Q̄i−mH̄ψ(qc) on S.

2) Edge-Diffracted Fields: Edges are defined by two adja-
cent corner points, an edge-parallel vector ê pointing from one
to the other, and a transverse vector t̂ perpendicular to ê and
n̂, pointing into the interior of S. For a critical point of the

second kind to exist on a given edge, ϕ(m) must be stationary
with respect to movement along the edge, such that

b(m) · ê = 0 (35)

and ê · C̄(m) · ê 6= 0. Similarly as before, this condition can be
used to determine the half-angle

β = arcsin
√

1− (k̂s · ê)2 (36)

of the Keller cone [6, Sec. 13.3.3] of scattering directions k̂s
originating at a given incidence point, or to determine the
diffraction point(s) given an observation point. Referring to
Appendix B for details, the scattered field from any of these
diffraction points can be asymptotically evaluated as

E(m)
s,a (p)' D̄(m)

e,a (qc) ·Ei(qc)

√
ρe,a

s(ρe,a + s)
e− jks, (37)

where the subscript e indicates edge diffraction, and ρe,a is the
radius of curvature of the diffracted field in the plane of the
edge, which can be determined by projecting Q̄i−mH̄ψ(qc)
on ê. The dyadic edge diffraction coefficient [11]

D̄(m)
e,a =

F̄(m)
a

2
√

2π jk sinβ
(
b(m) · t̂

)F(Xe) (38)

contains the transition function F(·) used in the uniform theory
of diffraction (UTD). This function can be computed using an
approximation in [26]. Its argument is given by

Xe =
k sin2

β

2c′
(
b(m) · t̂

)2 ρe,a + s
ρe,as

(39)

with

c′ =
(
ê · C̄(m) · ê

)(
t̂ · C̄(m) · t̂

)
−
(
ê · C̄(m) · t̂

)2
. (40)

3) Corner-Diffracted Fields: Critical points of the third
kind exist at all corner points of S, regardless of the local
behavior of ϕ(m). Corners are defined by a corner point and
two edge-parallel vectors, ê1 and ê2, pointing to the previous
and next corner points. The scattering contributions from these
diffraction points can be asymptotically evaluated as

E(m)
c,a (p)' D̄(m)

c,a (qc) ·Ei(qc)
e− jks

s
, (41)

where the subscript c indicates corner diffraction, and

D̄(m)
c,a =

‖ê1× ê2‖ F̄(m)
a

4π jk
(
b(m) · ê1

)(
b(m) · ê2

)T (x1,x2,w) (42)

is a corner diffraction coefficient [11]. In (42), T (·, ·, ·) denotes
the UTD vertex transition function with arguments

x1,2 =

√
k
2

b(m) · ê1,2√
ê1,2 · C̄(m) · ê1,2

(43)

and

w =
−ê1 · C̄(m) · ê2√

ê1 · C̄(m) · ê1
√

ê2 · C̄(m) · ê2
. (44)

This function can be approximated using the algorithm in [27].
Further details are provided in Appendix C.
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Fig. 2. Ray path segments to and from candidate critical points of the first
kind on adjacent metasurfaces.

The preceding asymptotic PO analysis, in and of itself, does
not reconstruct rays undergoing multiple successive interac-
tions with S. Examples of such rays include multiply diffracted
rays representative of coupling between different edges of the
same surface [6, Sec. 13.3.7], and so-called complex surface
rays excited and radiated back into free space at different
surface points [28]. While such ray paths are physically valid
and can even be the dominant mechanism in some applications
[29], [30], they are believed to be of secondary importance for
EESs, the main application considered in this paper.

III. DETERMINATION OF CRITICAL POINTS

Unlike conventional planar surfaces, locally periodic meta-
surfaces can contain multiple reflection or transmission points
for given source and observation points, and their locations can
generally not be determined simply using image theory. These
locations can instead be found by applying Fermat’s principle
[6], which states that the phase lag, or optical length, of any ray
path must be a local extremum with respect to displacements
of its interaction points. To evaluate the optical length, denoted
herein by s̃, of a ray path segment originating at a metasurface,
one must correct its geometrical length, s, by the additional,
location-dependent phase shift introduced by the metasurface,
i.e., s̃ = s−mψ , m being the mode number as previously.

The following approach is valid for determining critical
points of the first kind on consecutive metasurfaces. This
procedure must be followed separately for all non-zero mode
numbers; the image method [9] can be used for m = 0. It can
easily be adapted to arbitrary sequences of ray interactions,
including edge diffractions, at conventional surfaces as well as
metasurfaces. A brief discussion of how to adapt the approach
to critical points of the second kind is provided at the end of
this section.

Referring to Fig. 2, the problem at hand is to determine the
interaction points for which the overall optical length of the
ray path is stationary, i.e.,

for all n:
∂ s̃n−1

∂∆n
+

∂ s̃n

∂∆n
= 0, (45)

where ∆n denotes a scalar displacement of candidate interac-
tion point n in the direction d̂n. The geometrical length of ray
segment n after displacing interaction points n and n+1 is

s′n = sn

√
1+2(k̂n ·∆)/sn +‖∆‖2/s2

n (46)

with
∆= ∆n+1d̂n+1−∆nd̂n. (47)

For a ray interaction in the surface interior, as in Fig. 2,

∆nd̂n = ∆1,nû1,n +∆2,nû2,n (48)

considering that the interaction point has two degrees of free-
dom. For small enough displacements, the additional optical
path length induced by the metasurface at interaction point n
is equal to −m multiplied by

ψ
′
n ' ψn +(gψn · d̂n)∆n +

1
2
(d̂n · H̄ψn · d̂n)∆

2
n. (49)

Using the Taylor series of
√

1+ x, and ignoring terms of
higher than quadratic order, the partial derivatives of s̃n can
thus be approximated by

∂ s̃n

∂∆p,n
' ap

n +
2

∑
q=1

cpq
n ∆q,n +

2

∑
q=1

epq
n ∆q,n+1 (50a)

∂ s̃n

∂∆p,n+1
' bp

n+1 +
2

∑
q=1

dpq
n+1∆q,n+1 +

2

∑
q=1

eqp
n ∆q,n (50b)

with p = {1,2}, and

ap
n =−k̂n · ûp,n−mgψn · ûp,n (51a)

bp
n+1 = k̂n · ûp,n+1 (51b)

cpq
n = (ûp,n× k̂n) · (ûq,n× k̂n)/sn−m ûp,n · H̄ψn · ûq,n (51c)

dpq
n+1 = (ûp,n+1× k̂n) · (ûq,n+1× k̂n)/sn (51d)

epq
n =−(ûp,n× k̂n) · (ûq,n+1× k̂n)/sn. (51e)

The critical points are determined by iteratively updating
an initial vector of candidate points by a vector of scalar
displacements, two for each (interior) point. This vector is
determined by simultaneously solving (45) for all interaction
points, resulting in a banded system of linear equations (of
bandwidth 3). For a ray interacting in the interiors of two con-
secutive metasurfaces, for example, the displacement vector is
found by solving the matrix equation resulting from setting

c11
1 +d11

1 c12
1 +d12

1 e11
1 e12

1

c21
1 +d21

1 c22
1 +d22

1 e21
1 e22

1

e11
1 e21

1 c11
2 +d11

2 c12
2 +d12

2

e12
1 e22

1 c21
2 +d21

2 c22
2 +d22

2




∆1,1

∆2,1

∆1,2

∆2,2

+


a1
1 +b1

1

a2
1 +b2

1

a1
2 +b1

2

a2
2 +b2

2


(52)

to zero. Here, all quantities other than the displacement values
are determined by applying (51a)–(51e) to the candidate points
found in the previous iteration. The algorithm has converged
when the elements of the right-most vector of (52) are suffi-
ciently small: the condition that ap

n +bp
n = 0 for n= {1,2} and

p= {1,2} requires that all incident and outgoing ray directions
satisfy (32).

Being a Newton-search algorithm, the above procedure con-
verges quadratically if the initial vector of candidate points is
sufficiently close to the solution [31]. Suitable initial points can
be found as a by-product of a prior shooting and bouncing ray
(SBR) stage [9] or, in case of a single, isolated metasurface,
by a brute-force search over a point grid on the surface [7].

To determine the location of a critical point of the second
kind on an edge of the metasurface, the vector d̂n in (48)
is made identical to the edge-parallel vector, ên, and only a
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single linear equation is added to the system. It is not difficult
to show that the corresponding matrix elements (51a)–(51e)
can be found by substituting ên for both û1,n and û2,n.

IV. SIMULATION EXAMPLES

This section presents simulation results for two examples of
locally periodic metasurfaces, and provides a comparison of
the asymptotic PO model proposed herein to direct numerical
integration of the scattering integral (21) over a uniform point
grid with λ/10 spacing, using the trapezoid rule. The latter
method is computationally expensive, but does not invoke the
high-frequency approximation.

A. Simulation Setup

The simulation setup is similar for both metasurfaces. Each
is centered at the origin of a Cartesian coordinate system, lies
in the plane defined by z = 0, and is X ×Y = 100λ × 100λ

in size. Each is illuminated by a plane wave that is normally
incident, along the negative z-direction, and whose electric
field is polarized along the y-direction (TMy). The observation
points lie in the y = 0 plane. The surface parameter profiles
for the asymptotic PO model are defined on a 10λ point grid,
and parameter values in between grid points are computed by
means of bilinear interpolation.

The reflection and transmission properties at each grid
point are governed by the isotropic sheet impedance boundary
conditions [32], which can be written in the form

(Ī− n̂n̂) · (E++E−) = 2Ze(ψ) n̂× (H+−H−) (53a)

(Ī− n̂n̂) · (E+−E−) =
1
2

Zm(ψ) n̂× (H++H−). (53b)

Here, Ze and Zm denote the electric and magnetic sheet
impedances, assumed to vary as a locally periodic function of
ψ . They are related to the scalar reflection and transmission
coefficients for normal incidence, Γ and T , by

Ze =
1
2

η
1+Γ+T
1−Γ−T

(54a)

Zm = 2η
1+Γ−T
1−Γ+T

. (54b)

These equations are used to synthesize the impedance profile
required to achieve a given desired reflection and/or transmis-
sion behavior. Γ̄(m) and T̄(m), |m| ≤ M, the modal reflection
and transmission coefficients for arbitrary incidence directions,
are computed from k̂i, gψ , and the spatial harmonics of Ze and
Zm at the ray incidence point, using the method presented next.
The mode truncation order, M, is set to 5.

B. Computation of Γ̄(m) and T̄(m)

After substitution of (17)–(19) and a transformation to
the spatial frequency domain (i.e., multiplication by e− jknψ

followed by integration over one period of ψ), the boundary
conditions (53a) and (53b) can be written as

Γ
(n)
p +T (n)

p +∑
m

2Z(n−m)
e

η

3

∑
q=1

[
Apq(k̂

(m)
r )Γ

(m)
q −Apq(k̂

(m)
t )T (m)

q

]

=−Ipδn−
2Z(n)

e

η

3

∑
q=1

Apq(k̂i)Iq (55a)

Γ
(n)
p −T (n)

p +∑
m

Z(n−m)
m

2η

3

∑
q=1

[
Apq(k̂

(m)
r )Γ

(m)
q +Apq(k̂

(m)
t )T (m)

q

]

=−Ipδn−
Z(n)

m

2η

3

∑
q=1

Apq(k̂i)Iq, (55b)

which must be satisfied for p = {1,2}. Here,

Γ
(m)
q = ûq · Γ̄(m) ·Ei (56a)

T (m)
q = ûq · T̄(m) ·Ei, (56b)

with q = {1,2,3}, are the unknown quantities of interest;

Iq = ûq ·Ei (57a)

Apq(k̂) = (ûp× n̂) · (ûq× k̂) (57b)

can be computed a priori; û1 and û2 are the surface basis
vectors, as before, and û3 is identical to n̂. Furthermore, δn
denotes the Kronecker delta function, and Z(n)

e and Z(n)
m are

the nth spatial harmonics of Ze(ψ) and Zm(ψ); see also [24].
Eqs. (55a) and (55b) form a system of linear equations that

can be solved for Γ
(m)
q and T (m)

q , |m| ≤M, by also requiring
that

3

∑
q=1

(k̂(m)
r · ûq)Γ

(m)
q =

3

∑
q=1

(k̂(m)
t · ûq)T

(m)
q = 0, (58)

which follows from the fact that all field components must be
perpendicular to their corresponding propagation directions.
If desired, the full dyadics Γ̄(m) and T̄(m) can be constructed
from the solutions for two orthogonal polarizations of Ei.

C. Results

1) Diffuser: The first type of metasurface considered is a
reflective diffuser designed to disperse a normally incident
wave into a continuous range of horizontal deflection angles
[7]. In order to achieve this behavior, the periodicity of the
surface profile is chosen such that

gψ(x,y) =
[

sinα1 + sinα2

2
+

x
X
(sinα1− sinα2)

]
x̂ (59)

for |x| ≤ X/2 and |y| ≤Y/2. In (59), α1 and α2 are the desired
deflection angles for rays normally incident at x = ±X/2,
respectively. The sheet impedance profile is modulated so as
to force T in (54a) and (54b) to be uniformly zero, and Γ to
be equal to

Γ(ψ) = Γ
(1)e jkψ (60)

for 0 ≤ ψ < λ , thus supporting a single mode (m = 1). Γ(1)

is set to 0.9, which corresponds to an approximately 1-dB
reflection loss.

Figs. 3 and 4 show simulated distributions of the field
scattered by a 30–60◦ diffuser (α1 = 30◦ and α2 = 60◦).
They show the expected behavior for normal wave incidence,
consisting of a deflected and divergent reflected field that is
uniform (i.e., continuous) across the 30◦ and 60◦ reflection
shadow boundaries associated with the surface edges parallel
to the y-axis. The scattered field in the area behind the surface
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Fig. 3. Scattered power distribution due to a 30–60◦ diffuser, computed using
asymptotic PO. The incident field is a TMy plane wave propagating along the
−z direction. The dashed semicircle corresponds to the observation points of
Fig. 4.
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Fig. 4. Scattered power due to a 30–60◦ diffuser, computed for φi = 0◦ and
45◦ using asymptotic PO and numerical integration. The observation distance
from the diffuser origin is 500λ (see Fig. 3).

as seen from its illuminated side, visible in Fig. 3, is the
shadow field that partially cancels the incident field and thus
attenuates the total field in the shadow region.

Fig. 4 indicates excellent agreement between asymptotic
PO and numerical integration, confirming the validity of ray-
optical modeling of scattering by the class of finite, locally
periodic metasurfaces considered in this work. This figure
also shows the individual contributions of specular, edge-
diffracted and corner-diffracted fields to the total scattered
field. While the specular field dominates the main lobe of
the scattering pattern, edge diffraction is the most significant
contribution everywhere else; corner diffraction is negligible
in this example.

2) Fresnel-Zone Plate Lens: The second example is for a
simplified variant of the binary Fresnel-zone plate lens (FZPL)
described in [16], and illustrates the capability of asymptotic
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Fig. 5. Scattered power due to a binary FZPL with focal line at (x f ,z f ) =
(350,−350)λ , computed using asymptotic PO. The incident field is a TMy

plane wave propagating along the −z direction. The dashed semicircle
corresponds to the observation points of Fig. 6.
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Fig. 6. Scattered power due to a binary FZPL with focal point (x f ,z f ) =
(350,−350)λ , computed using asymptotic PO and numerical integration. The
observation distance from the FZPLA origin is 500λ (see Fig. 5).

PO to simulate metasurfaces that give rise to concave wave-
fronts and support transmitted as well as reflected modes.
Binary FZPLs consist of patterns of alternatingly transparent
and opaque rings or, in the present example, strips that pass
the odd, and reflect the even Fresnel zones on a surface
(e.g., a window) between the source of the incident wave and
the desired focal point or, in this example, focal line. The
periodicity of the surface considered here is defined by

gψ(x,y) =
x− x f√

(x− x f )2 + z2
f

x̂ (61)

for |x| ≤X/2 and |y| ≤Y/2; x f and z f are the (x,z) coordinates
of the focal line. The impedance profile is modulated such that
Γ = 0 and T = 0.9 for 0≤ ψ < λ/2, and Γ = 0.9 and T = 0
for λ/2≤ ψ < λ .
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Figs. 5 and 6 show simulated scattered field intensities for
a binary FZPL with a focal line at (x f ,z f ) = (350,−350)λ .
Similar to the previous example, the scattered field around
φs = 0◦ is a shadow field that partially cancels the incident
field in the shadow region. The scattered field around φs = 45◦

is the m = 1 transmitted mode, and exhibits the narrow width
and high field intensity expected of a focused beam. The lobe
around φs =−45◦ is the m=−1 transmitted mode; it and other
undesired modes can be suppressed by more sophisticated,
non-binary FZPL designs employing dielectric strips, for ex-
ample, thereby improving aperture efficiency [16]. Fig. 6 again
shows excellent agreement between the asymptotic PO model
and numerical integration, with the exception of a small region
around the focal line at φs = 45◦, where the former method
fails to accurately predict the gain of the focused beam. This
failure is due to an inherent limitation of ray-optical methods
at and near so-called caustics [6], or observation points where
the divergence factors of the specular and edge-diffracted fields
possess singularities. Finally, as in the previous example, the
relative contribution of corner diffraction to the total scattered
field is small.

V. CONCLUSIONS

This paper has presented a uniform ray description of
scattering by locally periodic metasurfaces with polygonal
shapes. This broad class of metasurfaces includes many of the
EES designs that have recently received increased attention
due to their potential to enhance propagation conditions in
fifth-generation mobile communications networks operating
at millimeter-wave frequency bands. Ray-based models of
wireless signal propagation are uniquely suitable for predict-
ing and optimizing wireless performance in electrically large
environments, such as the urban areas envisioned to be served
by such networks. The work presented herein extends the
applicability of these models to large environments outfitted
with EESs. Work is currently under way to incorporate the
methods presented in this paper in commercial ray-tracing
software marketed to wireless engineers and researchers.

Numerical results presented in this paper show excellent
agreement between the new ray-based approach and numer-
ical integration of the PO integral. It is important, however,
that its accuracy also be compared to methods that do not
invoke the PO approximation but, instead, rigorously enforce
a given set of metasurface boundary conditions such as, for
example, the generalized sheet transition conditions (GSTCs)
[32]. This is the topic of an accompanying paper [24], in
which the accuracy of the new approach is verified, with
generally very good results, against an Integral Equation based
Boundary Element Method (BEM) solver applied to a variety
of electrically large, 2D scattering geometries. As discussed in
[24], full-wave analysis of large 3D geometries similar to those
considered in Section IV is beyond the capability of currently
available computational hardware, even without considering
the interaction of the metasurface with its potentially much
larger propagation environment. This reinforces the need for
computationally efficient simulation methods, even if they are
approximate and therefore sacrifice some of the accuracy of
full-wave solvers.

Possible directions for future research include the incor-
poration of scattering contributions due to rays undergoing
multiple successive interactions with the metasurface, such
as the complex surface rays [28] that are of special interest
for metasurface antenna applications [30], and extensions to
more complex scattering geometries involving (collections of)
conformal and compound metasurfaces. Additional validations
against full-wave simulations or measurements are desirable in
order to gain increased confidence in the ray-optical approach.

APPENDIX A
ASYMPTOTIC EVALUATION OF SPECULAR FIELDS

Consider the integral

I(k) =
�

S

A(q)e− jkϕ(q)dS (62)

over the planar surface S, in which A(q) is a slowly-varying
amplitude function,

ϕ(q) = ϕ(q′)+b · (q−q′)+
1
2
(q−q′) · C̄ · (q−q′) (63)

is a quadratic phase function, and C̄ is of the form

C̄ = C̄′+
Ī− k̂sk̂s

s
, (64)

where C̄′ is independent of s, and s > 0.
The surface point qc is a critical point of the first kind if it

lies in the interior of S and the integrand phase is stationary
with respect to movement around qc, such that the linear phase
term vanishes. If this is the case, I(k) can be asymptotically
approximated for k→ ∞ by [13, Eq. (35)] or, alternatively,
using the method of stationary phase [33, Sec. 4.7] [34,
Sec. 4.4]. This yields

I(k)' 2π

k
A(qc)e− jkϕ(qc)

e− jσπ/4

|det C̄|1/2 , (65)

where the 2×2 matrix

C̄ =

[
û1 · C̄ · û1 û1 · C̄ · û2
û2 · C̄ · û1 û2 · C̄ · û2

]
(66)

denotes the projection of C̄ on the plane spanned by the surface
basis vectors of S, û1 and û2. Furthermore, σ is an integer
quantity defined such that σ = 2 if the eigenvalues of C̄ are
both positive, σ =−2 if they are both negative, and σ = 0 if
they have opposite signs.

Using (64), C̄ can be written as

C̄ = C̄′+ Θ̄
T
[

1/s 0
0 1/s

]
Θ̄

= Θ̄
T
{

Θ̄
−T C̄′Θ̄−1 +

[
1/s 0
0 1/s

]}
Θ̄, (67)

where
Θ̄ =

[
x̂′1 · û1 x̂′1 · û2
x̂′2 · û1 x̂′2 · û2

]
(68)

is a projection matrix that premultiplies a surface point q in
(u1,u2) coordinates such that the 2-D matrix-vector product
Θ̄q is its projection in a local frame spanned by x̂′1,2. The
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basis vectors x̂′1,2 may be chosen arbitrarily, as long as they
are orthogonal to each other and the scattering direction k̂s.
Recognizing that the determinant of a matrix product of square
matrices equals the product of their determinants, and that

detΘ̄ = detΘ̄
T = k̂s · n̂ (69)

for any valid choice of x̂′1,2, the determinant of C̄ can be written
as

det C̄ = (k̂s · n̂)2
(

1
ρ1

+
1
s

)(
1
ρ2

+
1
s

)
. (70)

In this expression, ρ1 and ρ2 denote the radii of curvature
of the scattered wavefront, which are determined from the
eigenvalues of the curvature matrix

Θ̄
−T C̄′Θ̄−1 = Ē

[
1/ρ1 0

0 1/ρ2

]
ĒT . (71)

Ē is a matrix whose columns, which represent the eigenvectors
of the curvature matrix, yield the principal directions of the
scattered wavefront with respect to the arbitrarily chosen basis
vectors x̂′1,2 [35], [36].

Eq. (65) can now be evaluated as

I(k)' 2πs
jk|k̂s · n̂|

A(qc)e− jkϕ(qc)

√
ρ1ρ2

(ρ1 + s)(ρ2 + s)
, (72)

in which the so-called divergence factor is computed as√
ρ1ρ2

(ρ1 + s)(ρ2 + s)
=

∣∣∣∣ ρ1ρ2

(ρ1 + s)(ρ2 + s)

∣∣∣∣ 1
2

e jνπ/2 (73)

ν ∈ {0,1,2} being the number of negative eigenvalues of C̄.
This number is equal to the number of singular points, or
caustics, crossed at s = −ρ1 and/or s = −ρ2, when moving
from s = 0 to the observation distance s > 0 [17]. Such
crossings can only occur if at least one of the two radii of
curvature is negative.

APPENDIX B
ASYMPTOTIC EVALUATION OF EDGE-DIFFRACTED FIELDS

Consider again the surface integral given by (62)–(64). The
surface point qc is a critical point of the second kind if it
lies on an edge of S and the integrand phase is stationary
with respect to movement along the edge, such that b · ê = 0,
where ê is parallel to the edge. If this is the case, I(k) can be
asymptotically approximated as [13, Eq. (36)]

I(k)'
√

2π

k3/2 A(qc)e− jkϕ(qc)
e jπ/4

(b · t̂)
√

ê · C̄ · ê
F(Xe) (74)

with

Xe =
k
2

ê · C̄ · ê
det C̄

(b · t̂)2. (75)

Here, t̂ is the transverse vector defined in Section II-F2, F(·)
is the UTD Fresnel transition function [13], and the square-
root function is defined such that it returns negative imaginary
values for negative real arguments. Eq. (74) is uniform in the
sense that it causes the total (specular plus edge-diffracted)
scattered field to be continuous across the shadow boundary,
where critical points of the first and second kinds cannot be
treated as being isolated from each other [34].

Using (64), the product ê · C̄ · ê, which is the second-order
derivative of the phase function along the edge, can be written
as

ê · C̄ · ê = sin2
β

(
1
s
+

1
ρe

)
, (76)

where β is the diffraction angle defined by (36), and

ρe =
sin2

β

ê · C̄′ · ê
(77)

is the radius of curvature of the diffracted field in the plane
of the edge. The radius of curvature in the transverse plane is
zero, characteristic of cylindrical waves.

Eq. (74) can now be evaluated as

I(k)'
√

2πse jπ/4 F(Xe)

k3/2(b · t̂)sinβ
A(qc)e− jkϕ(qc)

√
ρe

ρe + s
, (78)

where the divergence factor is computed as√
ρe

ρe + s
=

∣∣∣∣ ρe

ρe + s

∣∣∣∣ 1
2

e jνπ/2 (79)

with ν defined as previously. The determinant of C̄ can be
computed as follows:

det C̄ = (ê · C̄ · ê)(t̂ · C̄ · t̂)− (ê · C̄ · t̂)2. (80)

APPENDIX C
ASYMPTOTIC EVALUATION OF CORNER-DIFFRACTED

FIELDS

Consider once again the surface integral given by (62)–(64).
The surface point qc is a critical point of the third kind if it
lies on a corner (vertex) of S. If this is the case, I(k) can be
asymptotically approximated by the uniform expression [13,
Eq. (37)]

I(k)' ‖ê1× ê2‖T (x1,x2,w)
k2(b · ê1)(b · ê2)

A(qc)e− jkϕ(qc) (81)

with

x1,2 =

√
k
2

b · ê1,2√
ê1,2 · C̄ · ê1,2

(82)

and

w =
−ê1 · C̄ · ê2√

ê1 · C̄ · ê1
√

ê2 · C̄ · ê2
. (83)

Here, ê1 and ê2 are parallel to the two edges constituting
the corner; each points from the corner point along its edge.
T (·) denotes the UTD vertex transition function [13] and, as
previously, the branch of the square-root function is chosen
such that it returns negative imaginary values for negative real
arguments. As a result, x1 and x2 can be both real or both
imaginary (and w is real), or x1 (x2) can be real and x2 (x1)
and w are both imaginary [27]. Note that (81) is independent
of s, which makes the corner-diffracted fields proportional to
1/s, characteristic of spherical waves, for which both radii of
curvature are zero.
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