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Abstract. Let E ⊂ Rn+1, n ≥ 2, be a uniformly rectifiable set of dimension n.

Then bounded harmonic functions in Ω := Rn+1 \ E satisfy Carleson measure

estimates, and are “ε-approximable”. Our results may be viewed as general-

ized versions of the classical F. and M. Riesz theorem, since the estimates that

we prove are equivalent, in more topologically friendly settings, to quantitative

mutual absolute continuity of harmonic measure, and surface measure.
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1. Introduction

In this paper, we establish generalized versions of a classical theorem of F. and
M. Riesz [RR], who showed that for a simply connected domain Ω in the complex
plane, with a rectifiable boundary, harmonic measure is absolutely continuous with
respect to arclength measure. Our results are scale-invariant, higher dimensional
versions of the result of [RR], whose main novelty lies in the fact that we com-
pletely dispense with any hypothesis of connectivity. Despite recent successes of
harmonic analysis on general uniformly rectifiable sets, for a long time connectiv-
ity seemed to be a vital hypothesis from the PDE point of view. Indeed, Bishop and
Jones [BJ] have produced a counter-example to show that the F. and M. Riesz The-
orem does not hold, in a literal way, in the absence of connectivity: they construct
a one dimensional (uniformly) rectifiable set E in the complex plane, for which
harmonic measure with respect to Ω = C \ E, is singular with respect to Hausdorff
H1 measure on E. The main result of this paper shows that, in spite of Bishop-
Jones counterexample, suitable substitute estimates on harmonic functions remain
valid in the absence of connectivity, in general uniformly rectifiable domains. In
more topologically benign environments, the latter are indeed equivalent to (scale-
invariant) mutual absolute continuity of harmonic measure ω and surface measure
σ on ∂Ω.

Let us be more precise. In the setting of a Lipschitz domain Ω ⊂ Rn+1, n ≥ 1,
for any divergence form elliptic operator L = − div A∇ with bounded measurable
coefficients, the following are equivalent:

(i) Every bounded solution u, of the equation Lu = 0 in Ω, satisfies the Carleson

measure estimate (1.2) below.

(ii) Every bounded solution u, of the equation Lu = 0 in Ω, is ε-approximable,
for every ε > 0 (see Definition 1.8).

(iii) ω ∈ A∞(σ) on ∂Ω (see Definition 1.14).

(iv) Uniform Square function/Non-tangential maximal function (“S/N”) estimates
hold locally in “sawtooth” subdomains of Ω.

Item (iii) says, of course, that harmonic measure and surface measure are mutu-
ally absolutely continuous, in a quantitative, scale-invariant way. We will not give
a precise definition of the terms in item (iv), since these estimates are not the pri-
mary concern of the present paper (but see, e.g., [DJK], as well as our forthcoming
companion paper to this one). On the other hand, the Carleson measure estimate
(1.2) is a special case (which in fact implies the other cases) of one direction of the
S/N estimates (the direction “S < N”, in which one controls the square function, in
some Lp norm, in terms of the non-tangential maximal function). We shall discuss
the connections among these four properties in more detail below.

In the present work, we show that if Ω := Rn+1 \ E, where E ⊂ Rn+1 is a
uniformly rectifiable set (see Definition 1.6) of co-dimension 1, then (i) and (ii)
continue to hold (see Theorems 1.1 and 1.3 below), even though (iii) may now
fail, by the example of [BJ] mentioned above. Moreover, we develop a general
technique that yields transference from NTA sub-domains to the complement of a
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uniformly rectifiable set and ultimately will allow us to attack a wide range of PDE
questions on uniformly rectifiable domains. In a forthcoming sequel to the present
paper, we shall show that in this setting, both local and global “S < N” estimates
hold for harmonic functions and for solutions to general elliptic PDEs (topological
obstructions preclude the opposite direction). We shall also present there a general
transference principle by which one may transmit Carleson measure estimates and
S < N bounds from Lipschitz sub-domains to NTA domains (as a companion to the
transference from NTA sub-domains to the complement of a uniformly rectifiable
set achieved here).

The main results of this paper are as follows. The terminology used in the
statements of the theorems will be defined momentarily, but for now let us note
that in particular, a UR set is closed by definition, so that Ω := Rn+1 \ E is open,
but need not be a connected domain. For the sake of notational convenience, we
set δ(X) := dist(X, E). As usual, B(x, r) will denote the Euclidean ball of center x

and radius r in Rn+1.

Theorem 1.1. Let E ⊂ Rn+1 be a UR (uniformly rectifiable) set of co-dimension

1. Suppose that u is harmonic and bounded in Ω := Rn+1 \ E. Then we have the

Carleson measure estimate

(1.2) sup
x∈E, 0<r<∞

1

rn

"
B(x,r)

|∇u(Y)|2δ(Y) dY ≤ C ‖u‖2L∞(Ω) ,

where the constant C depends only upon n and the “UR character” of E.

Theorem 1.3. Let E ⊂ Rn+1 be a UR set of co-dimension 1. Suppose that u is

harmonic and bounded inΩ := Rn+1\E, with ‖u‖L∞ ≤ 1. Then u is ε-approximable

for every ε ∈ (0, 1).

We conjecture that converses to Theorems 1.1 and 1.3 (or perhaps the combi-
nation of the two), should hold. Such results would be analogues of our work in
[HMU].

Let us now define the terms used in the statements of our theorems. The fol-
lowing notions have meaning in co-dimensions greater than 1, but here we shall
discuss only the co-dimension 1 case that is of interest to us in this work.

Definition 1.4. (ADR) (aka Ahlfors-David regular). We say that a set E ⊂ Rn+1, of
Hausdorff dimension n, is ADR if it is closed, and if there is some uniform constant
C such that

(1.5)
1

C
rn ≤ σ

(
∆(x, r)

)
≤ C rn, ∀r ∈ (0, diam(E)), x ∈ E,

where diam(E) may be infinite. Here, ∆(x, r) := E ∩ B(x, r) is the “surface ball”
of radius r, and σ := Hn|E is the “surface measure” on E, where Hn denotes n-
dimensional Hausdorff measure.

Definition 1.6. (UR) (aka uniformly rectifiable). An n-dimensional ADR (hence
closed) set E ⊂ Rn+1 is UR if and only if it contains “Big Pieces of Lipschitz
Images” of Rn (“BPLI”). This means that there are positive constants θ and M0,
such that for each x ∈ E and each r ∈ (0, diam(E)), there is a Lipschitz mapping
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ρ = ρx,r : Rn → Rn+1, with Lipschitz constant no larger than M0, such that

Hn
(

E ∩ B(x, r) ∩ ρ
(
{z ∈ Rn : |z| < r}

) )
≥ θ rn .

We recall that n-dimensional rectifiable sets are characterized by the property
that they can be covered, up to a set of Hn measure 0, by a countable union of
Lipschitz images of Rn; we observe that BPLI is a quantitative version of this fact.

We remark that, at least among the class of ADR sets, the UR sets are precisely
those for which all “sufficiently nice” singular integrals are L2-bounded [DS1]. In
fact, for n-dimensional ADR sets in Rn+1, the L2 boundedness of certain special
singular integral operators (the “Riesz Transforms”), suffices to characterize uni-
form rectifiability (see [MMV] for the case n = 1, and [NToV] in general). We
further remark that there exist sets that are ADR (and that even form the boundary
of a domain satisfying interior Corkscrew and Harnack Chain conditions), but that
are totally non-rectifiable (e.g., see the construction of Garnett’s “4-corners Cantor
set” in [DS2, Chapter1]). Finally, we mention that there are numerous other char-
acterizations of UR sets (many of which remain valid in higher co-dimensions); cf.
[DS1, DS2].

Definition 1.7. (“UR character”). Given a UR set E ⊂ Rn+1, its “UR character” is
just the pair of constants (θ,M0) involved in the definition of uniform rectifiability,
along with the ADR constant; or equivalently, the quantitative bounds involved in
any particular characterization of uniform rectifiability.

LetΩ := Rn+1 \E, where E ⊂ Rn+1 is an n-dimensional ADR set (hence closed);
thus Ω is open, but need not be a connected domain.

Definition 1.8. Let u ∈ L∞(Ω), with ‖u‖∞ ≤ 1, and let ε ∈ (0, 1). We say that u is ε-
approximable, if there is a constant Cε, and a function ϕ = ϕε ∈ BVloc(Ω)∩L∞(Ω)
satisfying

(1.9) ‖u − ϕ‖L∞(Ω) < ε ,

and

(1.10) sup
x∈E, 0<r<∞

1

rn

"
B(x,r)

|∇ϕ(Y)| dY ≤ Cε .

We observe that (1.10) is an “enhanced” version of the Carleson estimate (1.2).
On the other hand, even in the classical case that Ω is a half-space or a ball, one
cannot expect that the L1 Carleson measure bound (1.10) should hold, in general,
with a bounded harmonic function u in place of ϕ (there are counter-examples, see
[Gar, Ch. VIII]).

The notion of ε-approximability was introduced by Varopoulos [Var], and (in
sharper form) by Garnett [Gar], who were motivated in part by its connections
with both the H1/BMO duality theorem of Fefferman [FS], and the “Corona The-
orem” of Carleson [Car]. In particular, the ε-approximability property is the main
ingredient in the proof of Varopoulos’s extension theorem, which states that ev-
ery f ∈ BMO(Rn) has an extension F ∈ C∞(Rn+1

+ ), such that |∇F(x, t)|dxdt is a
Carleson measure. Using ideas related to the proof of the Corona theorem, Gar-
nett showed that the ε-approximability property is enjoyed, for all ε ∈ (0, 1),
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by bounded harmonic functions in the half-space. Garnett then uses this fact
to establish a “quantitative Fatou theorem”, which provided the first hint that ε-
approximability is related to quantitative properties of harmonic measure.

As we have noted, the properties (i)-(iv) listed above are equivalent, given suit-
able quantitative connectivity of Ω. Let us recall, for example, the known results in
the setting of a Lipschitz domain. In that setting, Dahlberg [Da3] obtained an ex-

tension Garnett’s ε-approximability result, observing that (iv) implies (ii)1. The ex-
plicit connection of ε-approximability with the A∞ property of harmonic measure,
i.e., that (ii) =⇒ (iii), appears in [KKPT] (where this implication is established
not only for the Laplacian, but for general divergence form elliptic operators). We
note that [KKPT] uses ϕ ∈ C∞(Ω) in the definition of ε-approximability but us-
ing more general ϕ ∈ BVloc(Ω) ∩ L∞(Ω) to conclude (iii) requires only a minor
change in their argument, approximating a BVloc function by mollifiers and em-
ploying interior Hölder continuity of solutions. That (iii) implies (iv) is proved for

harmonic functions in [Da2]2, and, for null solutions of general divergence form
elliptic operators, in [DJK]. Finally, Kenig, Kirchheim, Pipher and Toro [KKiPT]
have recently shown that (i) implies (iii) in a Lipschitz domain, whereas, on the
other hand, (i) may be seen, via good-lambda and John-Nirenberg arguments, to be

equivalent to the local version of one direction of (iv) (the “S < N” direction)3.

The results of the present paper should also be compared to those of the papers
[HMU] and [AHMNT] (see also the earlier paper [HM2]) which say, in combina-
tion, that for a “1-sided NTA” (aka “uniform”) domain Ω (i.e., a domain in which
one has interior Corkscrew and Harnack Chain conditions, see Definitions 1.11,
1.12), with ADR boundary, then ∂Ω is UR if and only if ω ∈ A∞(σ) if and only
if Ω is an NTA domain (Definition 1.13). We refer the reader to these papers for
details and further historical context. This chain of implications underlines the
strength of the UR of the boundary under the background hypothesis that the do-
main is 1-sided NTA, which serves as a scale-invariant connectivity. The present
paper, on the other hand, introduces a general mechanism allowing one to dispose
of the connectivity assumption and still obtain Carleson measure bounds and ε-
approximability. We would like to emphasize that in this paper we work with a UR
set E, for which the open set Rn+1 \ E fails to satisfy the Harnack chain condition.
Otherwise, we would have that Rn+1 \ E is a 1-sided NTA domain (the Corkscrew
condition holds since E is ADR), and thus NTA, by [AHMNT]. This cannot happen
since Rn+1 \ E has null exterior.

1.1. Further Notation and Definitions.

• We use the letters c,C to denote harmless positive constants, not necessarily the
same at each occurrence, which depend only on dimension and the constants ap-
pearing in the hypotheses of the theorems (which we refer to as the “allowable

1This implication holds more generally for null solutions of divergence form elliptic equations,

see [KKPT] and [HKMP].
2And thus all three properties hold for harmonic functions in Lipschitz domains, by the result of

[Da1].
3The latter equivalence does not require any connectivity hypothesis, as we shall show in a forth-

coming sequel to the present paper.



6 STEVE HOFMANN, JOSÉ MARÍA MARTELL, AND SVITLANA MAYBORODA

parameters”). We shall also sometimes write a . b and a ≈ b to mean, respec-
tively, that a ≤ Cb and 0 < c ≤ a/b ≤ C, where the constants c and C are as
above, unless explicitly noted to the contrary. At times, we shall designate by M

a particular constant whose value will remain unchanged throughout the proof
of a given lemma or proposition, but which may have a different value during
the proof of a different lemma or proposition.

• Given a closed set E ⊂ Rn+1, we shall use lower case letters x, y, z, etc., to
denote points on E, and capital letters X,Y,Z, etc., to denote generic points in
Rn+1 (especially those in Rn+1 \ E).

• The open (n + 1)-dimensional Euclidean ball of radius r will be denoted B(x, r)
when the center x lies on E, or B(X, r) when the center X ∈ Rn+1 \ E. A “surface
ball” is denoted ∆(x, r) := B(x, r) ∩ ∂Ω.
• Given a Euclidean ball B or surface ball ∆, its radius will be denoted rB or r∆,

respectively.

• Given a Euclidean or surface ball B = B(X, r) or ∆ = ∆(x, r), its concentric dilate
by a factor of κ > 0 will be denoted κB := B(X, κr) or κ∆ := ∆(x, κr).

• Given a (fixed) closed set E ⊂ Rn+1, for X ∈ Rn+1, we set δ(X) := dist(X, E).

• We let Hn denote n-dimensional Hausdorff measure, and let σ := Hn
∣∣
E

denote
the “surface measure” on a closed set E of co-dimension 1.

• For a Borel set A ⊂ Rn+1, we let 1A denote the usual indicator function of A, i.e.
1A(x) = 1 if x ∈ A, and 1A(x) = 0 if x < A.

• For a Borel set A ⊂ Rn+1, we let int(A) denote the interior of A.

• Given a Borel measure µ, and a Borel set A, with positive and finite µ measure,

we set
>

A
f dµ := µ(A)−1

∫
A

f dµ.

• We shall use the letter I (and sometimes J) to denote a closed (n+1)-dimensional
Euclidean dyadic cube with sides parallel to the co-ordinate axes, and we let ℓ(I)
denote the side length of I. If ℓ(I) = 2−k, then we set kI := k. Given an ADR set
E ⊂ Rn+1, we use Q to denote a dyadic “cube” on E. The latter exist (cf. [DS1],
[Chr]), and enjoy certain properties which we enumerate in Lemma 1.16 below.

Definition 1.11. (Corkscrew condition). Following [JK], we say that a domain
Ω ⊂ Rn+1 satisfies the “Corkscrew condition” if for some uniform constant c > 0
and for every surface ball ∆ := ∆(x, r), with x ∈ ∂Ω and 0 < r < diam(∂Ω), there
is a ball B(X∆, cr) ⊂ B(x, r) ∩ Ω. The point X∆ ⊂ Ω is called a “Corkscrew point”
relative to ∆.We note that we may allow r < C diam(∂Ω) for any fixed C, simply
by adjusting the constant c.

Definition 1.12. (Harnack Chain condition). Again following [JK], we say that
Ω satisfies the Harnack Chain condition if there is a uniform constant C such that
for every ρ > 0, Λ ≥ 1, and every pair of points X, X′ ∈ Ω with δ(X), δ(X′) ≥ ρ
and |X − X′| < Λ ρ, there is a chain of open balls B1, . . . , BN ⊂ Ω, N ≤ C(Λ), with
X ∈ B1, X′ ∈ BN , Bk ∩ Bk+1 , Ø and C−1 diam(Bk) ≤ dist(Bk, ∂Ω) ≤ C diam(Bk).
The chain of balls is called a “Harnack Chain”.
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Definition 1.13. (NTA). Again following [JK], we say that a domain Ω ⊂ Rn+1

is NTA (“Non-tangentially accessible”) if it satisfies the Harnack Chain condition,

and if both Ω and Ωext := Rn+1 \Ω satisfy the Corkscrew condition.

Definition 1.14. (A∞). Given an ADR set E ⊂ Rn+1, and a surface ball ∆0 :=
B0 ∩ E, we say that a Borel measure µ defined on E belongs to A∞(∆0) if there are
positive constants C and θ such that for each surface ball ∆ = B ∩ E, with B ⊆ B0,
we have

(1.15) µ(F) ≤ C

(
σ(F)

σ(∆)

)θ
µ(∆) , for every Borel set F ⊂ ∆ .

Lemma 1.16. (Existence and properties of the “dyadic grid”) [DS1, DS2],
[Chr]. Suppose that E ⊂ Rn+1 is an n-dimensional ADR set. Then there exist

constants a0 > 0, γ > 0 and C1 < ∞, depending only on n and the ADR constant,

such that for each k ∈ Z, there is a collection of Borel sets (“cubes”)

Dk := {Qk
j ⊂ E : j ∈ Ik},

where Ik denotes some (possibly finite) index set depending on k, satisfying

(i) E = ∪ jQ
k
j for each k ∈ Z.

(ii) If m ≥ k then either Qm
i ⊂ Qk

j or Qm
i ∩ Qk

j = Ø.

(iii) For each ( j, k) and each m < k, there is a unique i such that Qk
j ⊂ Qm

i .

(iv) diam
(
Qk

j

)
≤ C12−k.

(v) Each Qk
j contains some “surface ball” ∆

(
xk

j, a02−k
)

:= B
(

xk
j, a02−k

)
∩ E.

(vi) Hn
({

x ∈ Qk
j : dist(x, E \ Qk

j) ≤ ̺ 2−k
})
≤ C1 ̺

γ Hn
(
Qk

j

)
, for all k, j and for

all ̺ ∈ (0, a0).

A few remarks are in order concerning this lemma.

• In the setting of a general space of homogeneous type, this lemma has been
proved by Christ [Chr], with the dyadic parameter 1/2 replaced by some constant
δ ∈ (0, 1). In fact, one may always take δ = 1/2 (cf. [HMMM, Proof of
Proposition 2.12]). In the presence of the Ahlfors-David property (1.5), the
result already appears in [DS1, DS2]. Some predecessors of this construction
have appeared in [D1] and [D2].

• For our purposes, we may ignore those k ∈ Z such that 2−k
& diam(E), in the

case that the latter is finite.

• We shall denote by D = D(E) the collection of all relevant Qk
j, i.e.,

D := ∪kDk,

where, if diam(E) is finite, the union runs over those k such that 2−k
. diam(E).

• Properties (iv) and (v) imply that for each cube Q ∈ Dk, there is a point xQ ∈ E,
a Euclidean ball B(xQ, r) and a surface ball ∆(xQ, r) := B(xQ, r) ∩ E such that

r ≈ 2−k ≈ diam(Q) and

(1.17) ∆(xQ, r) ⊂ Q ⊂ ∆(xQ,Cr),



8 STEVE HOFMANN, JOSÉ MARÍA MARTELL, AND SVITLANA MAYBORODA

for some uniform constant C. We shall denote this ball and surface ball by

(1.18) BQ := B(xQ, r) , ∆Q := ∆(xQ, r),

and we shall refer to the point xQ as the “center” of Q.

• For a dyadic cube Q ∈ Dk, we shall set ℓ(Q) = 2−k, and we shall refer to this
quantity as the “length” of Q. Evidently, ℓ(Q) ≈ diam(Q).

• For a dyadic cube Q ∈ D, we let k(Q) denote the “dyadic generation” to which
Q belongs, i.e., we set k = k(Q) if Q ∈ Dk; thus, ℓ(Q) = 2−k(Q).

2. A bilateral corona decomposition

In this section, we prove a bilateral version of the “corona decomposition” of
David and Semmes [DS1, DS2]. Before doing that let us introduce the notions of
“coherency” and “semi-coherency”:

Definition 2.1. [DS2]. Let S ⊂ D(E). We say that S is “coherent” if the following
conditions hold:

(a) S contains a unique maximal element Q(S) which contains all other ele-
ments of S as subsets.

(b) If Q belongs to S, and if Q ⊂ Q̃ ⊂ Q(S), then Q̃ ∈ S.

(c) Given a cube Q ∈ S, either all of its children belong to S, or none of them
do.

We say that S is “semi-coherent” if only conditions (a) and (b) hold.

We are now ready to state our bilateral “corona decomposition”.

Lemma 2.2. Suppose that E ⊂ Rn+1 is n-dimensional UR. Then given any positive

constants η ≪ 1 and K ≫ 1, there is a disjoint decomposition D(E) = G ∪ B,

satisfying the following properties.

(1) The “Good”collection G is further subdivided into disjoint stopping time

regimes, such that each such regime S is coherent (cf. Definition 2.1).

(2) The “Bad” cubes, as well as the maximal cubes Q(S) satisfy a Carleson

packing condition:
∑

Q′⊂Q,Q′∈B
σ(Q′) +

∑

S:Q(S)⊂Q

σ
(
Q(S)

)
≤ Cη,K σ(Q) , ∀Q ∈ D(E) .

(3) For each S, there is a Lipschitz graph ΓS, with Lipschitz constant at most

η, such that, for every Q ∈ S,

(2.3) sup
x∈∆∗Q

dist(x,ΓS) + sup
y∈B∗Q∩ΓS

dist(y, E) < η ℓ(Q) ,

where B∗Q := B(xQ,Kℓ(Q)) and ∆∗Q := B∗Q ∩ E.

Before proving the lemma, we recall the “Bilateral Weak Geometric Lemma”
[DS2, p. 32].
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Lemma 2.4 ([DS2]). Let E ⊂ Rn+1 be a closed, n-dimensional ADR set. Then E

is UR if and only if for every pair of positive constants η ≪ 1 and K ≫ 1, there

is a disjoint decomposition D(E) = G0 ∪ B0, such that the cubes in B0 satisfy a

Carleson packing condition

(2.5)
∑

Q′⊂Q,Q′∈B0

σ(Q′) ≤ Cη,K σ(Q) , ∀Q ∈ D(E) ,

and such that for every Q ∈ G0, we have

(2.6) inf
H

(
sup
x∈∆∗Q

dist(x,H) + sup
y∈H∩B∗Q

dist(y, E)

)
< η ℓ(Q) ,

where the infimum runs over all hyperplanes H, and where B∗Q and ∆∗Q are defined

as in Lemma 2.2.

Proof of Lemma 2.2. A “unilateral” version of Lemma 2.2 has already appeared
in [DS1], i.e., by [DS1], we know that Lemma 2.2 holds, but with the bilateral
estimate (2.3) replaced by the unilateral bound

(2.7) sup
x∈∆∗Q

dist(x,ΓS) < η ℓ(Q) , ∀Q ∈ S.

The proof of Lemma 2.2 will be a rather straightforward combination of this result
of [DS1], and Lemma 2.4.

We choose K1 ≫ 1, and η1 ≪ K−1
1 , and let D = G1 ∪ B1, and D = G0 ∪ B0, be,

respectively, the unilateral corona decomposition of [DS1], and the decomposition
of Lemma 2.4, corresponding to this choice of η and K. Given S, a stopping time
regime of the unilateral corona decomposition, we let MS denote the set of Q ∈
S ∩ G0 for which either Q = Q(S), or else the dyadic parent of Q, or one of the

brothers4 of Q, belongs to B0. For each Q ∈ MS, we form a new stopping time
regime, call it S′, as follows. We set Q(S′) := Q, and we then subdivide Q(S′)
dyadically, stopping as soon as we reach a subcube Q′ such that either Q′ < S, or
else Q′, or one of its brothers, belongs to B0. In any such scenario, Q′ and all of
its brothers are omitted from S′, and the parent of Q′ is then a minimal cube of S′.
We note that each such S′ enjoys the following properties:

(i) S′ ⊂ S ∩ G0 (by definition).
(ii) S′ is coherent, in the sense of Lemma 2.2 (1) (by the stopping time con-

struction).

If Q ∈ S ∩ B0, for some S, then we add Q to our new “bad” collection, call it
B, i.e., B = B1 ∪ B0. Then clearly B satisfies a packing condition, since it is the
union of two collections, each of which packs. Moreover, the collection {Q(S′)}S′
satisfies a packing condition. Indeed, by construction

{Q(S′)}S′ ⊂ {Q(S)}S ∪M1 ,

whereM1 denotes the collection of cubes Q having a parent or brother in B0. Now
for {Q(S)}S we already have packing. For the cubes inM1, and for any R ∈ D(E),

4Here and below the “brothers” of Q do not include Q itself.
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with dyadic parent R∗, we have
∑

Q∈M1: Q⊂R

σ(Q) .
∑

Q̃∈B0: Q̃⊂R∗

σ(Q̃) . σ(R∗) . σ(R) ,

where Q̃ is either the parent or a brother of Q, belonging to B0, and where we
have used the packing condition for B0, and the doubling property of σ. Setting
G := D(E) \ B, we note that at this point we have verified properties (1) and (2) of
Lemma 2.2, for the decomposition D(E) = G ∪ B, and the stopping time regimes
{S′}. It remains to verify property (3).

To this end, we consider one of the new stopping time regimes S′, which by
construction, is contained in some S. Set ΓS′ := ΓS, and fix Q ∈ S′. Let us now
prove (2.3). The bound

(2.8) sup
x∈∆∗Q

dist(x,ΓS′) < η1 ℓ(Q)

is inherited immediately from the unilateral condition (2.7). We now claim that for
η1 ≪ K−1

1 ,

(2.9) sup
y∈ 1

2 B∗Q∩ΓS

dist(y, E) < CK1η1 ℓ(Q) .

Taking the claim for granted momentarily, and having specified some η, K, we may
obtain (2.3) by choosing K1 := 2K, and η1 := η/(CK1) < η.

We now establish the claim. By construction of S′, Q ∈ G0, so by (2.6), there is
a hyperplane HQ such that

(2.10) sup
x∈∆∗Q

dist(x,HQ) + sup
y∈HQ∩B∗Q

dist(y, E) < η1ℓ(Q) .

There is another hyperplane HS = HS′ such that, with respect to the co-ordinate
system {(z, t) : z ∈ HS, t ∈ R}, we can realize ΓS as a Lipschitz graph with constant
no larger than η1, i.e., ΓS = {(z, ϕS(z)) : z ∈ HS}, with ‖ϕ‖Lip ≤ η1. Let πQ be the
orthogonal projection onto HQ, and set x̂Q := πQ(xQ). Thus |xQ − x̂Q| < η1ℓ(Q), by
(2.10). Consequently, for η1 small, we have

B1 := B

(
x̂Q,

3

4
K1ℓ(Q)

)
⊂ 7

8
B∗Q ,

and

(2.11)
1

2
B∗Q ⊂

7

8
B1 .

Therefore, by (2.10)

(2.12) dist(y, E) ≤ η1ℓ(Q) , ∀y ∈ B1 ∩ HQ ,

and also, for K1 large,

A1 :=
{

x ∈ E : dist(x, B1 ∩ HQ) ≤ ℓ(Q)
}
⊂ 15

16
B∗Q .

Thus, A1 ⊂ ∆∗Q, so that, in particular, for x ∈ A1, we have dist(x,ΓS) < η1ℓ(Q), by
(2.7). Combining the latter fact with (2.12) and the definition of A1, we find that

(2.13) dist(y,ΓS) ≤ 2η1ℓ(Q) , ∀y ∈ B1 ∩ HQ .



UNIFORM RECTIFIABILITY, CARLESON MEASURE ESTIMATES, AND APPROXIMATION 11

We cover (7/8)B1 ∩ HQ by non-overlapping n-dimensional cubes Pk ⊂ B1 ∩ HQ,
centered at yk, with side length 10η1ℓ(Q), and we extend these along an axis per-
pendicular to HQ to construct (n+1)-dimensional cubes Ik, of the same length, also
centered at yk. By (2.13), each Ik meets ΓS. Therefore, for η1 small, HQ “meets”
HS at an angle θ satisfying

θ ≈ tan θ . η1 ,

and ΓS is a Lipschitz graph with respect to HQ, with Lipschitz constant no larger
than Cη1. Also, by (2.13), applied to y = x̂Q, there is a point yQ ∈ ΓS with
|x̂Q − yQ| ≤ 2η1ℓ(Q). Thus, for y ∈ (1/2)B∗Q ∩ ΓS ⊂ (7/8)B1 ∩ ΓS (where we have
used (2.11)), we have

(2.14) dist(y,HQ) ≤ CK1η1ℓ(Q) ≪ ℓ(Q) ,

so that πQ(y) ∈ B1 ∩ HQ ⊂ B∗Q ∩ HQ. Hence,

(2.15) dist(πQ(y), E) ≤ η1ℓ(Q) ,

by (2.10). Combining (2.14) and (2.15), we obtain (2.9), as claimed. �

3. Corona type approximation by NTA domains with ADR boundaries

In this section, we construct, for each stopping time regime S in Lemma 2.2, a
pair of NTA domains Ω±S , with ADR boundaries, which provide a good approxi-
mation to E, at the scales within S, in some appropriate sense. To be a bit more
precise, ΩS := Ω+S ∪ Ω−S will be constructed as a sawtooth region relative to some
family of dyadic cubes, and the nature of this construction will be essential to the
dyadic analysis that we will use below. We first discuss some preliminary matters.

Let W = W(Rn+1 \ E) denote a collection of (closed) dyadic Whitney cubes
of Rn+1 \ E, so that the cubes inW form a pairwise non-overlapping covering of
Rn+1 \ E, which satisfy

(3.1) 4 diam(I) ≤ dist(4I, E) ≤ dist(I, E) ≤ 40 diam(I) , ∀ I ∈ W
(just dyadically divide the standard Whitney cubes, as constructed in [Ste, Chapter
VI], into cubes with side length 1/8 as large) and also

(1/4) diam(I1) ≤ diam(I2) ≤ 4 diam(I1) ,

whenever I1 and I2 touch.

Let E be an n-dimensional ADR set and pick two parameters η ≪ 1 and K ≫ 1.
Define

(3.2) W0
Q :=

{
I ∈ W : η1/4ℓ(Q) ≤ ℓ(I) ≤ K1/2ℓ(Q), dist(I,Q) ≤ K1/2ℓ(Q)

}
.

Remark 3.3. We note that W0
Q is non-empty, provided that we choose η small

enough, and K large enough, depending only on dimension and the ADR constant
of E. Indeed, given a closed n-dimensional ADR set E, and given Q ∈ D(E),
consider the ball BQ = B(xQ, r), as defined in (1.17)-(1.18), with r ≈ ℓ(Q), so that
∆Q = BQ∩E ⊂ Q. By [HM2, Lemma 5.3] , we have that for some C = C(n, ADR),

∣∣{Y ∈ Rn+1 \ E : δ(Y) < ǫr} ∩ BQ

∣∣ ≤ C ǫ rn+1 ,

for every 0 < ǫ < 1. Consequently, fixing 0 < ǫ0 < 1 small enough, there exists

XQ ∈ 1
2 BQ, with δ(XQ) ≥ ǫ0 r. Thus, B(XQ, ǫ0 r/2) ⊂ BQ \ E. We shall refer to
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this point XQ as a “Corkscrew point” relative to Q. Now observe that XQ belongs

to some Whitney cube I ∈ W, which will belong toW0
Q, for η small enough and

K large enough.

Assume now that E is UR and make the corresponding bilateral corona decom-
position of Lemma 2.2 with η ≪ 1 and K ≫ 1. Given Q ∈ D(E), for this choice
of η and K, we set (as above) B∗Q := B(xQ,Kℓ(Q)), where we recall that xQ is the
“center” of Q (see (1.17)-(1.18)). For a fixed stopping time regime S, we choose
a co-ordinate system so that ΓS = {(z, ϕS(z)) : z ∈ Rn}, where ϕS : Rn 7→ R is a
Lipschitz function with ‖ϕ‖Lip ≤ η.
Claim 3.4. If Q ∈ S, and I ∈ W0

Q, then I lies either above or below ΓS. Moreover,

dist(I,ΓS) ≥ η1/2ℓ(Q) (and therefore, by (2.3), dist(I,ΓS) ≈ dist(I, E), with implicit
constants that may depend on η and K).

Proof of Claim 3.4. Suppose by way of contradiction that dist(I,ΓS) ≤ η1/2ℓ(Q).
Then we may choose y ∈ ΓS such that

dist(I, y) ≤ η1/2ℓ(Q) .

By construction ofW0
Q, it follows that for all Z ∈ I, |Z − y| . K1/2ℓ(Q). Moreover,

|Z − xQ| . K1/2ℓ(Q), and therefore |y − xQ| . K1/2ℓ(Q). In particular, y ∈ B∗Q ∩ ΓS,
so by (2.3), dist(y, E) ≤ η ℓ(Q). On the other hand, choosing Z0 ∈ I such that
|Z0 − y| = dist(I, y) ≤ η1/2ℓ(Q), we obtain dist(I, E) ≤ 2η1/2ℓ(Q). For η small, this
contradicts the Whitney construction, since dist(I, E) ≈ ℓ(I) ≥ η1/4ℓ(Q). �

Next, given Q ∈ S, we augment W0
Q. We split W0

Q = W
0,+
Q ∪W0,−

Q , where

I ∈ W0,+
Q if I lies above ΓS, and I ∈ W0,−

Q if I lies below ΓS. Choosing K large

and η small enough, by (2.3), we may assume that bothW0,±
Q are non-empty. We

focus onW0,+
Q , as the construction forW0,−

Q is the same. For each I ∈ W0,+
Q , let

XI denote the center of I. Fix one particular I0 ∈ W0,+
Q , with center X+Q := XI0 . Let

Q̃ denote the dyadic parent of Q, unless Q = Q(S); in the latter case we simply set

Q̃ = Q. Note that Q̃ ∈ S, by the coherency of S. By Claim 3.4, for each I inW0,+
Q ,

or inW0,+

Q̃
, we have

dist(I, E) ≈ dist(I,Q) ≈ dist(I,ΓS) ,

where the implicit constants may depend on η and K. Thus, for each such I, we
may fix a Harnack chain, call itHI , relative to the Lipschitz domain

Ω+ΓS
:=
{

(x, t) ∈ Rn+1 : t > ϕS(x)
}
,

connecting XI to X+Q. By the bilateral approximation condition (2.3), the definition

of W0
Q, and the fact that K1/2 ≪ K, we may construct this Harnack Chain so

that it consists of a bounded number of balls (depending on η and K), and stays a
distance at least cη1/2ℓ(Q) away from ΓS and from E. We letW∗,+

Q denote the set of

all J ∈ W which meet at least one of the Harnack chainsHI , with I ∈ W0,+
Q ∪W

0,+

Q̃

(or simply I ∈ W0,+
Q , if Q = Q(S)), i.e.,

W∗,+
Q :=

{
J ∈ W : ∃ I ∈ W0,+

Q ∪W
0,+

Q̃
for which HI ∩ J , Ø

}
,
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where as above, Q̃ is the dyadic parent of Q, unless Q = Q(S), in which case we

simply set Q̃ = Q (so the union is redundant). We observe that, in particular, each

I ∈ W0,+
Q ∪W

0,+

Q̃
meetsHI , by definition, and therefore

(3.5) W0,+
Q ∪W

0,+

Q̃
⊂ W∗,+

Q .

Of course, we may constructW∗,−
Q analogously. We then set

W∗
Q :=W∗,+

Q ∪W
∗,−
Q .

It follows from the construction of the augmented collectionsW∗,±
Q that there are

uniform constants c and C such that

cη1/2ℓ(Q) ≤ ℓ(I) ≤ CK1/2ℓ(Q) , ∀I ∈ W∗
Q,(3.6)

dist(I,Q) ≤ CK1/2ℓ(Q) , ∀I ∈ W∗
Q.

Observe that W∗,±
Q and hence also W∗

Q have been defined for any Q that be-
longs to some stopping time regime S, that is, for any Q belonging to the “good”
collection G of Lemma 2.2. On the other hand, we have definedW0

Q for arbitrary

Q ∈ D(E).

We now set

(3.7) WQ :=

{
W∗

Q , Q ∈ G,
W0

Q , Q ∈ B
,

and for Q ∈ G we shall henceforth simply writeW±
Q in place ofW∗,±

Q .

Next, we choose a small parameter τ0 > 0, so that for any I ∈ W, and any
τ ∈ (0, τ0], the concentric dilate I∗(τ) := (1+τ)I still satisfies the Whitney property

(3.8) diam I ≈ diam I∗(τ) ≈ dist
(
I∗(τ), E

)
≈ dist(I, E) , 0 < τ ≤ τ0 .

Moreover, for τ ≤ τ0 small enough, and for any I, J ∈ W, we have that I∗(τ)
meets J∗(τ) if and only if I and J have a boundary point in common, and that, if
I , J, then I∗(τ) misses (3/4)J. Given an arbitrary Q ∈ D(E), we may define an
associated Whitney region UQ (not necessarily connected), as follows:

(3.9) UQ = UQ,τ :=
⋃

I∈WQ

I∗(τ).

For later use, it is also convenient to introduce some fattened version of UQ: if
0 < τ ≤ τ0/2,

(3.10) ÛQ = UQ,2 τ :=
⋃

I∈WQ

I∗(2 τ).

If Q ∈ G, then UQ splits into exactly two connected components

(3.11) U±Q = U±Q,τ :=
⋃

I∈W±
Q

I∗(τ) .

When the particular choice of τ ∈ (0, τ0] is not important, for the sake of notational
convenience, we may simply write I∗, UQ, and U±Q in place of I∗(τ), UQ,τ, and U±Q,τ.
We note that for Q ∈ G, each U±Q is Harnack chain connected, by construction (with
constants depending on the implicit parameters τ, η and K); moreover, for a fixed
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stopping time regime S, if Q′ is a child of Q, with both Q′, Q ∈ S, then U+Q′ ∪ U+Q
is Harnack Chain connected, and similarly for U−Q′ ∪ U−Q.

We may also define “Carleson Boxes” relative to any Q ∈ D(E), by

(3.12) TQ = TQ,τ := int


 ⋃

Q′∈DQ

UQ,τ


 ,

where

(3.13) DQ :=
{

Q′ ∈ D(E) : Q′ ⊂ Q
}
.

Let us note that we may choose K large enough so that, for every Q,

(3.14) TQ ⊂ B∗Q := B
(

xQ,Kℓ(Q)
)
.

For future reference, we also introduce dyadic sawtooth regions as follows.
Given a family F of disjoint cubes {Q j} ⊂ D, we define the global discretized

sawtooth relative to F by

(3.15) DF := D \
⋃

Q j∈F
DQ j
,

i.e., DF is the collection of all Q ∈ D that are not contained in any Q j ∈ F . Given
some fixed cube Q, the local discretized sawtooth relative to F by

(3.16) DF ,Q := DQ \
⋃

Q j∈F
DQ j
= DF ∩ DQ.

Note that in this way DQ = DØ,Q.

Similarly, we may define geometric sawtooth regions as follows. Given a fam-
ily F of disjoint cubes {Q j} ⊂ D, we define the global sawtooth and the local

sawtooth relative to F by respectively

(3.17) ΩF := int

( ⋃

Q′∈DF

UQ′

)
, ΩF ,Q := int

( ⋃

Q′∈DF ,Q

UQ′

)
.

Notice that ΩØ,Q = TQ. For the sake of notational convenience, given a pairwise
disjoint family F ∈ D, and a cube Q ∈ DF , we set

(3.18) WF :=
⋃

Q′∈DF

WQ′ , WF ,Q :=
⋃

Q′∈DF ,Q

WQ′ ,

so that in particular, we may write

(3.19) ΩF ,Q = int

( ⋃

I∈WF ,Q

I∗
)
.

It is convenient at this point to introduce some additional terminology.

Definition 3.20. Given Q ∈ G, and hence in some S, we shall refer to the point
X+Q specified above, as the “center” of U+Q (similarly, the analogous point X−Q, lying

below ΓS, is the “center” of U−Q). We also set Y±Q := X±
Q̃

, and we call this point

the “modified center” of U±Q, where as above Q̃ is the dyadic parent of Q, unless

Q = Q(S), in which case Q = Q̃, and Y±Q = X±Q.
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Remark 3.21. We recall that, by construction (cf. (3.5), (3.7)),W0,±
Q̃
⊂ WQ, and

therefore Y±Q ∈ U±Q ∩ U±
Q̃

. Moreover, since Y±Q is the center of some I ∈ W0,±
Q̃

, we

have that dist(Y±Q, ∂U
±
Q) ≈ dist(Y±Q, ∂U

±
Q̃

) ≈ ℓ(Q) (with implicit constants possibly

depending on η and/or K)

Remark 3.22. Given a stopping time regime S as in Lemma 2.2, for any semi-
coherent subregime (cf. Definition 2.1) S′ ⊂ S (including, of course, S itself), we
now set

(3.23) Ω±S′ = int


⋃

Q∈S′
U±Q


 ,

and let ΩS′ := Ω+S′ ∪ Ω−S′ . Note that implicitly, ΩS′ depends upon τ (since U±Q has
such dependence). When it is necessary to consider the value of τ explicitly, we
shall write ΩS′(τ).

Our main geometric lemma is the following.

Lemma 3.24. Let S be a given stopping time regime as in Lemma 2.2, and let S′ be

any nonempty, semi-coherent subregime of S. Then for 0 < τ ≤ τ0, with τ0 small

enough, each of Ω±S′ is an NTA domain, with ADR boundary. The constants in the

NTA and ADR conditions depend only on n, τ, η,K, and the ADR/UR constants for

E.

Proof. We fix a small τ > 0 as above, defining the dilated Whitney cubes I∗, and
we leave this parameter implicit.

We note that in the notation of (3.17),ΩS′ is the dyadic sawtooth regionΩF ,Q(S′),
where Q(S′) is the maximal cube in S′, and F is the family consisting of the sub-
cubes of Q(S′) that are maximal with respect to non-membership in S′. Then ∂ΩS′

satisfies the ADR property, by Appendix A below. The upper ADR bound for each
of ∂Ω+S′ and ∂Ω−S′ is then trivially inherited from that of ∂ΩS′ and E. With the
upper ADR property in hand, we obtain that in particular, each of Ω±S′ is a domain
of locally finite perimeter, by the criterion in [EG, p. 222]. The lower ADR bound
then follows immediately from the local isoperimetric inequality [EG, p. 190],
once we have established that each of Ω±S′ enjoys a 2-sided Corkscrew condition.
Alternatively, the lower ADR bound for Ω±S′ can be deduced by carefully following
the relevant arguments in Appendix A, and observing that they can be applied to
each of Ω±S′ individually.

We now verify the NTA properties for Ω+S′ (the proof for Ω−S′ is the same).

Corkscrew condition. We will show that B(x, r) contains both interior and exterior
Corkscrew points for Ω+S′ , for any x ∈ ∂Ω+S′ , and 0 < r ≤ 2 diam Q(S′). Let M be a
large number to be chosen, depending only on the various parameters given in the
statement of the lemma. There are several cases. We recall that δ(X) := dist(X, E).

Case 1: r < Mδ(x). In this case, x lies on a face of a fattened Whitney cube I∗

whose interior lies in Ω+S′ , but also x ∈ J for some J < W(S′) := ∪Q∈S′WQ. By
the nature of Whitney cubes, we have ℓ(I) ≈ ℓ(J) & r/M, so B(x, r) ∩Ω+S′ contains
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an interior Corkscrew point in I∗, and B(x, r) \Ω+S′ contains an exterior Corkscrew
point in J (with constants possibly depending on M).

Case 2: r ≥ Mδ(x). We recall that S′ ⊂ S, for some regime S as in Lemma 2.2.
Note that

(3.25) δ(x) ≈ dist(x,ΓS) , ∀x ∈ Ω+S (hence ∀x ∈ Ω+S′) ;

indeed the latter holds for X ∈ Ω+S , by Claim 3.4 and the construction of ΩS, and
therefore the same is true for x ∈ ∂Ω+S .

Case 2a: δ(x) > 0. In this case, x lies on a face of some I∗, with I ∈ W(S′), so
I ∈ W+

QI
, for some QI ∈ S′. We then have

ℓ(QI) ≈ ℓ(I) ≈ δ(x) ≈ dist(I,QI) . r/M ≪ r ,

if M is large depending on η and K. Thus, QI ⊂ B(x,M−1/2r). The semi-coherency

of S′ allows us to choose Q̃ ∈ S′, with ℓ(Q̃) ≈ M−1/4r, such that QI ⊂ Q̃. Set

B̃ = B(x
Q̃
, ℓ(Q̃)), and observe that for M large, B̃ ⊂ B(x, r/2). Therefore, it is

enough to show that B̃ ∩ Ω+S′ and B̃ \ Ω+S′ each contains a Corkscrew point at the

scale ℓ(Q̃). To this end, we first note that since Q̃ ∈ S′ ⊂ S, (2.3) implies that there
is a point z

Q̃
∈ ΓS such that

|x
Q̃
− z

Q̃
| ≤ η ℓ(Q̃) .

Viewing ΓS as the graph t = ϕS(y), so that z
Q̃
=: (ỹ, ϕS(ỹ)), we set

(3.26) Z±
Q̃

:=
(
ỹ, ϕS(ỹ) ± η1/8ℓ(Q̃)

)
.

Then by the triangle inequality

|Z±
Q̃
− x

Q̃
| . η1/8ℓ(Q̃) .

In particular, Z±
Q̃
∈ B̃ ⊂ B(x, r/2). Moreover, for η small, by (2.3) and the fact that

the graph ΓS has small Lipschitz constant, we have

(3.27) δ(Z±
Q̃

) ≈ dist(Z±
Q̃
,ΓS) ≈ η1/8ℓ(Q̃) .

Consequently, there exist I± ∈ W such that Z±
Q̃
∈ I±, and

(3.28) ℓ(I±) ≈ dist(I±, Q̃) ≈ η1/8ℓ(Q̃) .

Thus, I± ∈ W±
Q̃

, so Z±
Q̃
∈ I± ⊂ int(1 + τ)I± ⊂ Ω±S′ , and therefore

(3.29) dist(Z±
Q̃
, ∂Ω±S′) & τ ℓ(I

±) ≈ τη1/8ℓ(Q̃) ≈ τη1/8M−1/4r .

Consequently, Z+
Q̃

and Z−
Q̃

are respectively, interior and exterior Corkscrew points

for ΩS′ , relative to the ball B(x, r).

Remark 3.30. We note for future reference that the previous construction depended

only upon the fact that Q̃ ∈ S′ ⊂ S: i.e., for any such Q̃, we may construct Z±
Q̃

as

in (3.26), satisfying (3.27) and (3.29), and contained in some I± ∈ W satisfying
(3.28).



UNIFORM RECTIFIABILITY, CARLESON MEASURE ESTIMATES, AND APPROXIMATION 17

Case 2b: δ(x) = 0. In this case x ∈ E ∩ΓS, by (3.25). Suppose for the moment that
there is a cube Q1 ∈ S′, with max{diam(Q1), ℓ(Q1)} ≤ r/100, such that x ∈ Q1;

in this case we choose Q̃ ∈ S′, containing Q1, with ℓ(Q̃) ≈ r, and B(x
Q̃
, ℓ(Q̃)) ⊂

B(x, r/2), and we may then repeat the argument of Case 2a. We therefore need
only show that there is always such a Q1.

Since x ∈ ∂Ω+S′ , there exists a sequence {Xm} ⊂ Ω+S′ , with |Xm − x| < 2−m. For
each m, there is some Qm ∈ S′, with Xm ∈ I∗m, and Im ∈ W+

Qm
. By construction,

ℓ(Qm) ≈ ℓ(Im) ≈ dist(I∗m,Qm) ≈ dist(I∗m, E) ≤ dist(I∗m, x) ≤ |Xm − x| < 2−m ,

where the implicit constants may depend upon η and K. Thus,

dist(Qm, x) ≤ Cη,K2−m ≪ r ,

for m sufficiently large. For each such m, we choose Qm
1 with Qm ⊂ Qm

1 ⊂ Q(S′)
(hence Qm

1 ∈ S′), and c0r ≤ max{diam(Qm
1 ), ℓ(Qm

1 )} ≤ r/100, for some fixed con-
stant c0. Since each such Qm

1 ⊂ B(x, r), there are at most a bounded number of
distinct such Qm

1 , so at least one of these, call it Q1, occurs infinitely often as

m→ ∞. Hence dist(x,Q1) = 0, i.e., x ∈ Q1.

Harnack Chain condition. Fix X1, X2 ∈ Ω+S′ . Suppose |X1 − X2| =: R. Then

R . K1/2ℓ(Q(S′)). Also, there are cubes Q1,Q2 ∈ S′, and fattened Whitney boxes
I∗1 , I∗2 (corresponding to Ii ∈ W+

Qi
, i = 1, 2), such that Xi ∈ I∗i ⊂ U+Qi

, i = 1, 2, and
therefore δ(Xi) ≈ ℓ(Qi) (depending on η and K). We may suppose further that

R ≤ M−2ℓ(Q(S′)) ,

where M is a large number to be chosen, for otherwise, we may connect X1 to
X2 via a Harnack path through X+Q(S′) (the “center” of U+Q(S′), cf. Definition 3.20
above).

Case 1: max(δ(X1), δ(X2)) ≥ M1/2R; say WLOG that δ(X1) ≥ M1/2R. Then also
δ(X2) ≥ (1/2)M1/2R, by the triangle inequality, since |X1 − X2| = R. For M large
enough, depending on η and K, we then have that min(ℓ(I1), ℓ(I2)) ≥ M1/4R. Note
that dist(I∗1 , I

∗
2) ≤ R. By the Whitney construction, for sufficiently small choice of

the fattening parameter τ, if dist(I∗1 , I
∗
2) ≪ min(ℓ(I1), ℓ(I2)), then the fattened cubes

I∗1 and I∗2 overlap. In the present case, the latter scenario holds if M is chosen large
enough, and we may then clearly form a Harnack Chain connecting X1 to X2.

Case 2: max(δ(X1), δ(X2)) < M1/2R. Then, since

ℓ(Qi) ≈ ℓ(Ii) ≈ δ(Xi) ≈ dist(Ii,Qi)

(depending on η and K), we have that dist(Q1,Q2) ≤ M3/4R, for M large enough.

We now choose Q̃i ∈ S′, with Qi ⊂ Q̃i, such that ℓ(Q̃1) = ℓ(Q̃2) ≈ MR . Then

(3.31) dist(Q̃1, Q̃2) ≤ M3/4R ≈ M−1/4ℓ(Q̃i) , i = 1, 2 .

For M large enough, it then follows that U+
Q̃1

meets U+
Q̃2

, by construction. Indeed,

let Z+
Q̃1

denote the point defined in (3.26), relative to the cube Q̃1 ∈ S′ ⊂ S. Then

Z+
Q̃1

belongs to some I ∈ W, with

ℓ(I) ≈ dist(I, Q̃1) ≈ η1/8ℓ(Q̃1)
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(cf. Remark 3.30). This clearly implies that I ∈ W
Q̃1

. On the other hand by (3.31)

and since ℓ(Q̃1) ≈ ℓ(Q̃2), for M large enough we have

dist(I, Q̃2) . dist(I, Q̃1) + ℓ(Q̃1) + dist(Q̃1, Q̃2) . ℓ(Q̃2) ≤
√

K ℓ(Q̃2),

and therefore I ∈ W0
Q̃2
⊂ W

Q̃2
. Consequently, I ∈ W

Q̃1
∩W

Q̃2
, so I∗ ⊂ U+

Q̃1
∩

U+
Q̃2

. We may therefore form a Harnack Chain from X1 to X2 by passing through

Z+
Q̃1

. �

4. Carleson measure estimate for bounded harmonic functions: proof of
Theorem 1.1.

In this section we give the proof of Theorem 1.1. We will use the method of
“extrapolation of Carleson measures”, a bootstrapping procedure for lifting the
Carleson measure constant, developed by J. L. Lewis [LM], and based on the
Corona construction of Carleson [Car] and Carleson and Garnett [CG] (see also
[HL], [AHLT], [AHMTT], [HM1], [HM2]).

Let E ⊂ Rn+1 be a UR set of co-dimension 1. We fix positive numbers η ≪ 1,
and K ≫ 1, and for these values of η and K, we perform the bilateral Corona
decomposition of D(E) guaranteed by Lemma 2.2. LetM := {Q(S)}S denotes the
collection of cubes which are the maximal elements of the stopping time regimes
in G. Given a cube Q ∈ D(E), we set

(4.1) αQ :=

{
σ(Q) , if Q ∈ M ∪ B,
0 , otherwise.

Given any collection D′ ⊂ D(E), we define

(4.2) m(D′) :=
∑

Q∈D′
αQ.

We recall that DQ is the “discrete Carleson region relative to Q”, defined in (3.13).
Then by Lemma 2.2 (2), we have the discrete Carleson measure estimate

(4.3) m(DQ) :=
∑

Q′⊂Q,Q′∈B
σ(Q′) +

∑

S:Q(S)⊂Q

σ
(
Q(S)

)
≤ Cη,K σ(Q) ,

∀Q ∈ D(E) .

Given a family F := {Q j} ⊂ D(E) of pairwise disjoint cubes, we recall that the
“discrete sawtooth” DF is the collection of all cubes in D(E) that are not contained
in any Q j ∈ F (cf. (3.15)), and we define the “restriction ofm to the sawtooth DF ”
by

(4.4) mF (D′) := m(D′ ∩ DF ) =
∑

Q∈D′\(∪F DQ j
)

αQ.

We shall use the method of “extrapolation of Carleson measures” in the follow-
ing form.
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Lemma 4.5. Let σ be a non-negative, dyadically doubling Borel measure on E,

and let m be a discrete Carleson measure with respect to σ, i.e., there exist non-

negative coefficients αQ so that m is defined as in (4.2), and a constant M0 < ∞,

with

(4.6) ‖m‖C := sup
Q∈D(E)

m(DQ)

σ(Q)
≤ M0 .

Let m̃ be another non-negative measure on D(E) as in (4.2), say

(4.7) m̃(D′) :=
∑

Q∈D′
βQ , βQ ≥ 0 , ∀D′ ⊂ D(E),

where for some uniform constant M1, and for each cube Q,

(4.8) βQ ≤ M1 σ(Q) .

Suppose that there is a positive constant γ such that for every Q ∈ D(E) and every

family of pairwise disjoint dyadic subcubes F = {Q j} ⊂ DQ verifying

(4.9) ‖mF ‖C(Q) := sup
Q′∈DQ

m
(
DQ′ \ (∪F DQ j

)
)

σ(Q′)
≤ γ ,

we have that m̃F (defined as in (4.4), but with coefficients βQ) satisfies

(4.10) m̃F (DQ) ≤ M1 σ(Q) .

Then m̃ is a discrete Carleson measure, with

(4.11) ‖m̃‖C := sup
Q∈D(E)

m̃(DQ)

σ(Q)
≤ M2 ,

for some M2 < ∞ depending on n,M0,M1, γ and the doubling constant of σ.

Let us momentarily take the lemma for granted, and use it to prove Theorem
1.1. We begin with a preliminary reduction, which reduces matters to working
with balls of radius r < C diam(E); i.e., we claim that the desired estimate (1.2) is
equivalent to

(4.12) sup
y∈E, 0<r<100 diam(E)

1

rn

"
B(y,r)

|∇u(X)|2δ(X) dX ≤ C ‖u‖2∞ .

Of course, if E is unbounded the equivalence is obvious. Thus, we suppose that
diam(E) < ∞, and that (4.12) holds. Let u be bounded and harmonic in Rn+1 \ E.
We may assume that ‖u‖∞ = 1. Fix a ball B(y, r), with y ∈ E, and r ≥ 100 diam(E).
Set r0 := 10 diam(E). By (4.12),"

B(y,r0)

|∇u(X)|2δ(X) dX ≤ Crn
0 ≤ Crn .

Moreover,"
B(y,r)\B(y,r0)

|∇u(X)|2δ(X) dX

≤
∑

0≤k≤log2(r/r0)

"
2kr0≤|X−y|<2k+1r0

|∇u(X)|2δ(X) dX
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.

∑

0≤k≤log2(r/r0)

(
2kr0

)n
. rn ,

where in the second inequality we have used Caccioppoli’s inequality, the normal-
ization ‖u‖∞ = 1, and the fact that δ(X) ≈ |X−y| in the regime |X−y| ≥ 10 diam(E).
Thus, (4.12) implies (and hence is equivalent to) (1.2), as claimed.

We shall apply Lemma 4.5 with, as usual, σ := Hn
∣∣
E

, and withm as above, with
coefficients αQ defined as in (4.1), so that (4.6) holds with M0 = Cη,K , by Lemma

2.2 (2). For us, m̃ will be a discretized version of the measure |∇u(X)|2δ(X)dx,
where u is bounded and harmonic in Ω := Rn+1 \ E. We now claim that (1.2) is
equivalent to the analogous bound

(4.13) sup
Q∈D(E)

1

σ(Q)

"
TQ

|∇u(X)|2δ(X) dX ≤ C ‖u‖2∞ .

That (1.2) implies (4.13) is obvious by (3.14). The converse implication reduces
to showing that (4.13) implies (4.12), since, as noted above, the latter estimate is
equivalent to (1.2). We proceed as follows. Fix a ball B(x, r), with x ∈ E, and
r < 100 diam(E). We choose a collection of dyadic cubes {Qk}Nk=1, with ℓ(Qk) ≈
Mr (unless r > diam(E)/M, in which case our collection is comprised of only one
cube, namely Q1 = E), where M is a large fixed number to be chosen, such that

B(x, 10r) ∩ E ⊂
⋃

k

Qk .

Note that the cardinality N of this collection may be taken to be uniformly bounded.
We claim that ∪kTQk

covers B(x, r) \ E, in which case it follows immediately that
(4.13) implies (4.12). Let us now prove the claim. Given Y ∈ B(x, r) \ E, there is a
Whitney box I ∈ W containing Y , so that

ℓ(I) ≈ δ(Y) ≤ |x − Y | < r .

Let ŷ ∈ E satisfy |Y − ŷ| = δ(Y), and choose Q ∈ D(E) containing ŷ so that
ℓ(Q) = ℓ(I) (unless diam(I) ≈ diam(E), in which case we just set Q = E). Note
also that dist(I,Q) ≈ ℓ(Q) with harmless constants, so that I ∈ W0

Q ⊂ WQ. Thus,
Y ∈ UQ (cf. (3.9)). Moreover, by the triangle inequality, ŷ ∈ B(x, 2r) ∩ E, whence
it follows (for M chosen large enough) that Q is contained in one of the cubes Qk

chosen above, call it Qk0 . Consequently, Y ∈ TQk0
(cf. (3.12)). This proves the

claim. Therefore, it is enough to prove (4.13).

To the latter end, we discretize (4.13) as follows. By normalizing, we may
assume without loss of generality that ‖u‖∞ = 1. We fix a small τ ∈ (0, τ0/2), and
set UQ := UQ,τ, TQ := TQ,τ as in (3.9) and (3.12). We now set

(4.14) βQ :=

∫∫

UQ

|∇u(X)|2 δ(X) dX ,

and define m̃ as in (4.7). We note that (4.8) holds by Caccioppoli’s inequality
(applied in each of the fattened Whitney boxes comprising UQ), and the definition
of UQ and the ADR property of E. Moreover, the Whitney regions UQ have the
bounded overlap property:

(4.15)
∑

Q∈D
1UQ

(X) ≤ Cn, ADR .
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Consequently, for every pairwise disjoint family F ⊂ D(E), and every Q ∈ DF ,
we have

(4.16) m̃F (DQ) ≈
∫∫

ΩF ,Q

|∇u(X)|2 δ(X) dX

where we recall that (see (3.17))

ΩF ,Q := int


 ⋃

Q′∈DQ∩DF

UQ′


 .

In particular, taking F = Ø, in which case DF = D(E), and thus ΩF ,Q = TQ,
we obtain that (4.13) holds if and only if m̃ satisfies the discrete Carleson measure
estimate (4.11).

For each Q ∈ G, we set Û±Q := U±Q,2τ, as in (3.11), and for each stopping time

regime S ⊂ G, we define the corresponding NTA subdomains Ω±S = Ω
±
S (2τ) as in

(3.23) (with S′ = S). Letm be the discrete Carleson measure defined in (4.1)-(4.2).
Our goal is to verify the hypotheses of Lemma 4.5. We have already observed that
(4.8) holds, therefore, we need to show that (4.9) implies (4.10), or more precisely,
that given a cube Q ∈ D(E) and a pairwise disjoint family F ⊂ DQ, for which (4.9)
holds with suitably small γ, we may deduce (4.10).

Let us therefore suppose that (4.9) holds for some F , and some Q, and we
disregard the trivial case F = {Q}. By definition of m, and of mF (cf. (4.1)-(4.4)),
if γ is sufficiently small, then DQ ∩ DF does not contain any Q′ ∈ M ∪ B (recall
thatM := {Q(S)}S is the collection of the maximal cubes of the various stopping
time regimes). Thus, every Q′ ∈ DQ ∩DF belongs to G, and moreover, all such Q′

belong to the same stopping time regime S, since Q ∈ DQ∩DF unless F = {Q}, the
case that we excluded above. Consequently, ΩF ,Q, and more precisely, each UQ′ ,
with Q′ ∈ DQ ∩ DF , splits into two pieces, call them Ω±F ,Q, and U±Q′ , contained in

Ω±S . For Q′ ∈ DQ∩DF , we make the corresponding splitting of βQ′ into β±Q′ so that

(4.17) β±Q′ :=

∫∫

U±
Q′

|∇u(X)|2 δ(X) dX ,

and for D′ ⊂ DQ, we set

m̃
±
F (D′) :=

∑

Q′∈D′∩DF

β±Q′ .

For the sake of specificity, we shall consider Ω+F ,Q, and observe that Ω−F ,Q may be

treated by exactly the same arguments.

Since we have constructed UQ with parameter τ, and Û±Q with parameter 2τ, for

X ∈ Ω+F ,Q, we have that

δ(X) ≈ δ∗(X) ,

where δ∗(X) := dist(X, ∂Ω+S ), and where the implicit constants depend on τ. Con-
sequently (cf. (4.16)),

m̃
+
F (DQ) ≈

∫∫

Ω+F ,Q

|∇u(X)|2 δ∗(X) dX .
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As above, set B∗Q := B(xQ,Kℓ(Q)). Note that Ω+F ,Q ⊂ B∗Q ∩Ω+S , by construction of

Ω+F ,Q and (3.14). Thus, one can find a ball B∗∗Q centered at ∂Ω+S and with radius of

the order of ℓ(Q), such that

(4.18) m̃
+
F (DQ) ≤

∫∫

B∗∗Q ∩Ω+S
|∇u(X)|2 δ∗(X) dX . σ(Q) ,

where in the last step we have used thatΩ+S is an NTA domain with ADR boundary,
and is therefore known to satisfy such Carleson measure estimates (recall that we
have normalized so that ‖u‖∞ = 1). Indeed, by [DJ], for any NTA domain with
ADR boundary, harmonic measure belongs to A∞ with respect to surface mea-
sure σ on the boundary, and therefore one obtains Carleson measure estimates for
bounded solutions by [DJK]. Since a similar bound holds for m̃−F (DQ), we obtain
(4.10). Invoking Lemma 4.5, we obtain (4.11), and thus equivalently, as noted
above, (4.13).

It remains to prove Lemma 4.5. To this end, we shall require the following result
from [HM2].

Lemma 4.19 ([HM2, Lemma 7.2]). Suppose that E is an n-dimensional ADR set.

Fix Q ∈ D(E) and m as above. Let a ≥ 0 and b > 0, and suppose that m(DQ) ≤
(a+b)σ(Q). Then there is a family F = {Q j} ⊂ DQ of pairwise disjoint cubes, and

a constant C depending only on n and the ADR constant such that

(4.20) ‖mF ‖C(Q) ≤ Cb,

(4.21) σ(B) ≤ a + b

a + 2b
σ(Q) ,

where B is the union of those Q j ∈ F such that m
(
DQ j
\ {Q j}

)
> aσ(Q j).

We refer the reader to [HM2, Lemma 7.2] for the proof. We remark that the
lemma is stated in [HM2] with E = ∂Ω, the boundary of a connected domain, but
the proof actually requires only that E have a dyadic cube structure, and that σ be
a non-negative, dyadically doubling Borel measure on E.

Proof of Lemma 4.5. The proof proceeds by induction, following [LM], [AHLT],
[AHMTT], [HM2]. The induction hypothesis, which we formulate for any a ≥ 0,
is as follows:

H(a)

There exist ηa ∈ (0, 1) and Ca < ∞ such that, for every Q ∈ D(E)
satisfying m(DQ) ≤ aσ(Q), there is a pairwise disjoint family {Pk} ⊂
DQ, with

(4.22) σ
(
Q \ (∪kPk)

)
≥ ηa σ(Q) ,

such that

(4.23) m̃
(
DQ \ (∪kDPk

)
)
≤ Ca σ(Q) .

It suffices to show that H(a) holds with a = M0. Indeed, once this is done, then
invoking (4.6), we will obtain that there are constants ηa = η(M0) and Ca = C(M0),
such that for every Q ∈ D(E), there is a family {Pk} ⊂ DQ as above for which
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(4.22) and (4.23) hold. We may then invoke a standard John-Nirenberg lemma
for Carleson measures (whose proof iterates these estimates and sums a geometric
series) to conclude that (4.11) holds, as desired.

In turn, to obtain H(M0), we proceed in two steps.

Step 1: establish H(0).

Step 2: show that there is a constant b > 0, depending only upon the specified
parameters in the hypotheses of Lemma 4.5, such that H(a) implies H(a + b).

Once steps 1 and 2 have been accomplished, we then obtain H(M0) by iterating
Step 2 roughly M0/b times.

Proof of Step 1: H(0) holds. If m(DQ) = 0 then (4.9) holds, with F = Ø,
and for γ as small as we like. Thus, by hypothesis, we have that (4.10) holds,
with m̃F = m̃ (since in this case F is vacuous). Hence, (4.22)-(4.23) hold, with
{Pk} = Ø, η0 = 1/2, and C0 = M1.

Proof of Step 2: H(a) =⇒ H(a + b) Suppose that a ≥ 0 and that H(a) holds.
We set b := γ/C, where γ is specified in (4.9), and C is the constant in (4.20).
Fix a cube Q such that m(DQ) ≤ (a + b)σ(Q). We then apply Lemma 4.19 to
construct a family F with the stated properties. In particular, by our choice of b,
(4.20) becomes (4.9).

We may suppose that a < M0, otherwise we are done. Thus

a + b

a + 2b
≤ M0 + b

M0 + 2b
=: θ < 1 .

Define η := 1 − θ. We set A := Q \ (∪FQ j), and let G := (∪FQ j) \ B. Then, (4.21)
gives

(4.24) σ(A ∪G) ≥ ησ(Q) .

We consider two cases.

Case 1: σ(A) ≥ (η/2)σ(Q). In this case, we take {Pk} := F , so that (4.22) holds
with ηa+b = η/2. Moreover, since (4.9) holds by our choice of b, we obtain by
hypothesis that (4.10) holds. The latter is equivalent to (4.23), since F = {Pk},
with Ca+b = M1. Thus, H(a + b) holds in Case 1.

Case 2: σ(A) < (η/2)σ(Q). In this case, by (4.24), we have that

(4.25) σ(G) ≥ (η/2)σ(Q) .

By definition, G is the union of cubes in the subcollection Fgood ⊂ F , defined by

Fgood :=
{

Q j ∈ F : m(DQ j
\ {Q j}) ≤ aσ(Q j)

}
.

For future reference, we set Fbad := F \Fgood. We note that by pigeon-holing, each
Q j ∈ Fgood has at least one dyadic child, call it Q′j, such that

m(DQ′j
) ≤ aσ(Q′j)

(if there is more than one such child, we simply pick one). Thus, we may invoke the
induction hypothesis H(a), to obtain that for each such Q′j, there exists a pairwise
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disjoint family {P j
k} ⊂ DQ′j

, with

(4.26) σ
(
Q′j \ (∪kP

j
k)
)
≥ ηa σ(Q′j) & ηa σ(Q j)

(where in the last step we have used that σ is dyadically doubling), such that

(4.27) m̃

(
DQ′j
\ (∪kDP

j

k

)
)
≤ Ca σ(Q′j) .

Given Q j ∈ Fgood, we define F ′j to be the collection of all the dyadic brothers

of Q′j; i.e., F ′j is comprised of all the dyadic children of Q j, except Q′j. We then

define a collection {Pk} ⊂ DQ by

{Pk} := Fbad ∪
(
∪Q j∈Fgood

F ′j
)
∪
(
∪Q j∈Fgood

{P j
k}
)
.

We note that (4.22) holds for this collection {Pk}, with ηa+b & ηa η/2, by (4.25) and
(4.26):

σ
(
∪k Pk

)
= σ(B) +

∑

Q j∈Fgood

σ(Q j \ Q′j) +
∑

Q j∈Fgood

σ
(
∪k P

j
k

)

= σ(B) + σ(G) −
∑

Q j∈Fgood

σ
(
Q′j \ ∪kP

j
k

)

≤ σ(Q) − c ηa σ(G)

≤ σ(Q) − c ηa

η

2
σ(Q)

It remains only to verify (4.23). To this end, we write

m̃
(
DQ \ (∪kDPk

)
)

= m̃
(
DQ \ (∪FDQ j

)
+

∑

Q j∈Fgood

(
m̃({Q j}) + m̃

(
DQ′j
\ (∪kDP

j

k

))

= m̃F (DQ) +
∑

Q j∈Fgood

(
βQ j
+ m̃

(
DQ′j
\ (∪kDP

j

k

))

. σ(Q) +
∑

Q j∈Fgood

σ(Q j) . σ(Q) ,

where in third line we have used the definitions of m̃F (cf. (4.4)) and of m̃, and
in the last line we have used (4.10), (4.8), and (4.27), along with the pairwise
disjointness of the cubes in F . �

Remark 4.28. We note that, in fact, the proof of Theorem 1.1 did not require har-
monicity of u per se. Indeed, a careful examination of the preceding argument
reveals that we have only used the following three properties of u: 1) u ∈ L∞(Ω);
2) u satisfies Caccioppoli’s inequality in Ω; 3) u satisfies Carleson measure esti-
mates in every NTA sub-domain of Ω with ADR boundary.

5. ε-approximability: proof of Theorem 1.3

In this section we give the proof of Theorem 1.3. Our approach here combines
the technology of the present paper (in particular, the bilateral Corona decompo-
sition of Lemma 2.2), with the original argument of [Gar], and its extensions in
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[Da3] and [HKMP]). Moreover, we shall invoke Theorem 1.1 at certain points in
the argument.

The first (and main) step in our proof will be to establish a dyadic version, i.e.,
given u harmonic and bounded inΩ := Rn+1\E, with ‖u‖∞ ≤ 1, and given ε ∈ (0, 1)
and Q ∈ D(E), we shall construct ϕ := ϕεQ, defined on the “Carleson tent” TQ, such
that ‖u − ϕ‖L∞(TQ) < ε, and

(5.1) sup
Q′⊂Q

1

|Q′|

"
TQ′
|∇ϕ| . ε−2 .

Once we have established (5.1), it will then be relatively easy to construct ϕ, glob-
ally defined on Ω, and satisfying properties (1.9) and (1.10) of Definition 1.8.

We begin by refining the bilateral Corona decomposition of Lemma 2.2. We fix
η ≪ 1 and K ≫ 1, and we make the constructions of Lemma 2.2, corresponding to
this choice of η and K. We also fix ε ∈ (0, 1), and a parameter τ ∈ (0, τ0/10). For
each Q ∈ D(E), we form the Whitney regions UQ = UQ,τ as above, and we split

each UQ into its various connected components U i
Q.

Let u be a bounded harmonic function in Ω = Rn+1 \ E, with ‖u‖L∞(Ω) ≤ 1. We

say that U i
Q is a “red component” if

(5.2) oscU i
Q

u := max
Y∈U i

Q

u(Y) − min
Y∈U i

Q

u(Y) >
ε

10
,

otherwise we say that U i
Q is a “blue component”. We also say that Q ∈ D(E) is

a “red cube” if its associated Whitney region UQ has at least one red component,

otherwise, if oscU i
Q

u ≤ ε/10 for every connected component U i
Q, 1 ≤ i ≤ N, then

we say that Q is a “blue cube”.

Remark 5.3. The number N = N(Q) of components U i
Q is uniformly bounded, de-

pending only on η,K and dimension, since each component U i
Q contains a fattened

Whitney box I∗ with ℓ(I) ≈ ℓ(Q), and since all such I∗ satisfy dist(I∗,Q) . ℓ(Q).
Of course, as noted above (cf. (3.11)), if Q ∈ G, then UQ has precisely two com-
ponents U±Q.

We now refine the stopping time regimes as follows. Given S ⊂ G as constructed
in Lemma 2.2, set Q0 := Q(S), and let G0 = G0(S) := {Q0} be the “zeroeth
generation”. We subdivide Q0 dyadically, and stop the first time that we reach a
cube Q ⊂ Q0 for which at least one of the following holds:

(1) Q is not in S.

(2) |u(Y+Q) − u(Y+
Q0)| > ε/10.

(3) |u(Y−Q) − u(Y−
Q0)| > ε/10.

(where we recall that Y±Q is the “modified center” of the Whitney region U±Q; see
Definition 3.20 and Remark 3.21).

Let F1 = F1(Q0) denote the collection of maximal sub-cubes of Q0 extracted by
this stopping time procedure, and note that the collection of all Q ⊂ Q0 that are not
contained in any Q j ∈ F1, forms a semi-coherent (cf. Definition 2.1) subregime of
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S, call it S′ = S′(Q0), with maximal element Q(S′) := Q0. Clearly, the maximality
of the cubes in F1 implies that every Q ∈ S′ belongs to S, and moreover

(5.4) max
(
|u(Y+Q) − u(Y+Q0)|, |u(Y−Q) − u(Y−Q0)|

)
≤ ε/10 , ∀Q ∈ S′ .

Let G1 = G1(Q0) := F1 ∩ S denote the first generation cubes. We observe that G1

may be empty, since F1 may not contain any cubes belonging to S. In this case,
we simply have S′(Q0) = S. On the other hand, if G1 is non-empty, then for each
Q1 ∈ G1(Q0), we repeat the stopping time construction above (with Q1 in place
of Q0), except that in criteria (2) and (3) we replace Y±

Q0 by Y±
Q1 (criterion (1) is

unchanged, so we continue to work only with cubes belonging to S). For each
Q1 ∈ G1(Q0), we may then define first generation cubes G1(Q1) in the same way,
and thus, we may define recursively

G2(Q0) :=
⋃

Q1∈G1(Q0)

G1(Q1) ,

and in general (modifying the stopping time criteria (2) and (3) mutatis mutandi)

Gk+1(Q0) :=
⋃

Qk∈Gk(Q0)

G1(Qk) , k ≥ 0 ,

where the case k = 0 is a tautology, since G0(Q0) := {Q0}, and where the set of
indices {k}k≥0 may be finite or infinite. In addition, bearing in mind that Q0 = Q(S),
we shall sometimes find it convenient to emphasize the dependence on S, so with
slight abuse of notation we write

Gk(S) := Gk(Q0) = Gk(Q(S)) , k ≥ 0 .

We also set

G(S) :=
⋃

k≥0

Gk(S) , G∗ :=
⋃

S

G(S) ,

to denote, respectively, the set of generation cubes in S, and the collection of all
generation cubes.

Remark 5.5. We record some observations concerning the “generation cubes”:
Given S as in Lemma 2.2, our construction produces a decomposition of S into
disjoint subcollections

S =
⋃

Q∈G(S)

S′ (Q) ,

where each S′(Q) is a semi-coherent subregime of S with maximal element Q.
Moreover,

(5.6) max
(
|u(Y+Q′) − u(Y+Q)|, |u(Y−Q′) − u(Y−Q)|

)
≤ ε/10 , ∀Q′ ∈ S′(Q) .

Next, we establish packing conditions for the red cubes, and for the generation
cubes. We consider first the red cubes. Our goal is to prove that for all Q0 ∈ D(E)

(5.7)
∑

Q⊂Q0: Q is red

σ(Q) ≤ Cε−2 σ(Q0) ,

where C depends upon η,K, τ, n and the ADR/UR constants of E. To this end,
let Q be any red cube, let UQ = UQ,τ be its associated Whitney region, and let
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ÛQ := UQ,2τ be a fattened version of UQ. Note that ℓ(Q)n+1 ≈ |UQ| ≈ |ÛQ|, and
similarly for each connected component of the Whitney regions. By definition, if
Q is red, then UQ has at least one red component U i

Q, and every red U i
Q satisfies

(5.8) ε2
.

(
oscU i

Q
u

)2

. ℓ(Q)1−n

"
Û i

Q

|∇u|2 . ℓ(Q)−n

"
ÛQ

|∇u(Y)|2δ(Y) dY ,

where we have used (5.2), local boundedness estimates of Moser type, Poincaré’s

inequality, and the fact that δ(Y) ≈ ℓ(Q) in ÛQ. We leave the details to the reader
(or cf. [HM2, Section 4]), but we remark that the key fact is that the Harnack Chain
condition holds in each component U i

Q. Here, the various implicit constants may
depend upon τ, η and K. By the ADR property, (5.8) implies that

∑

Q⊂Q0: Q is red

σ(Q) . ε−2
∑

Q⊂Q0

"
ÛQ

|∇u(Y)|2δ(Y) dY

. ε−2

"
B∗Q0

|∇u(Y)|2δ(Y) dY . ε−2σ(Q0) ,

where in the second inequality we have used that the Whitney regions ÛQ have the
bounded overlap property, and for Q ⊂ Q0, are contained in B∗Q0

:= B(xQ0 ,Kℓ(Q))
by (3.14); the third inequality is Theorem 1.1, since ‖u‖∞ ≤ 1.

We now augment the “bad” collection B from Lemma 2.2 by setting

(5.9) B∗ := B ∪ {Q ∈ D(E) : Q is red} .
Since the collection B is already endowed with a packing condition, estimate (5.7)
immediately improves to the following

(5.10)
∑

Q⊂Q0: Q∈B∗
σ(Q) ≤ Cε−2 σ(Q0) ,

where again C = C(η,K, τ, n,ADR/UR).

Let us now turn to the packing condition for the generation cubes. We first
establish the following.

Lemma 5.11. Let S be one of the stopping time regimes of Lemma 2.2, and for

k ≥ 0, let Qk ∈ Gk(S) be a generation cube. Then

∑

Q∈G1(Qk)

σ(Q) ≤ Cε−2

"
Ω

S′(Qk )

|∇u(Y)|2δ(Y) dY ,

where S′(Qk) is the semi-coherent subregime with maximal element Qk (cf. Re-

mark 5.5), ΩS′(Qk) is the associated “sawtooth” domain (cf. Remark 3.22), and C

depends on η,K, τ, n, and the ADR/UR constants for E.

To prove the lemma, we shall need to introduce the non-tangential maximal
function. Given a domain Ω′ ⊂ Rn+1, and u ∈ C(Ω′), for x ∈ ∂Ω′, set

NΩ
′
∗ u(x) := sup

Y∈ΓΩ′ (x)

|u(Y)| ,

where for some κ > 0,

(5.12) ΓΩ′(x) :=
{

Y ∈ Ω′ : |Y − x| ≤ (1 + κ) dist(Y, ∂Ω′)
}
.
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Proof of Lemma 5.11. Let Q ∈ G1(Qk), so in particular, Q ∈ Gk+1(S), and let Q̃ be

the dyadic parent of Q. We note that Q̃ ∈ S′(Qk), by maximality of the generation
cubes (more precisely, by maximality of the stopping time family F1(Qk) that con-
tains G1(Qk)). By the stopping time construction, since Q belongs to S, we must
have

max
(
|u(Y+Q) − u(Y+

Qk )|, |u(Y−Q) − u(Y−
Qk )|
)
> ε/10 .

Let G+1 , G
−
1 denote the subcollections of G1(Qk) for which the previous estimate

holds with “+”, and with “−”, respectively (if both hold, then we arbitrarily assign
Q to G+1 ). For the sake of specificity, we treat G+1 ; the argument for G−1 is the same.
For every Q ∈ G+1 , we have

(5.13)
ε2

100
≤ |u(Y+Q) − u(Y+

Qk )|2 .

To simplify notation, we set Ω′ := Ω+S′(Qk). By construction (cf. Definition 3.20

and Remarks 3.21 and 3.22), since Q̃ ∈ S′(Qk), we have that Y+Q ∈ int U+
Q̃
⊂ Ω′,

and

ℓ(Q) . dist(Y+Q, ∂U
+

Q̃
) ≤ dist(Y+Q, ∂Ω

′) ≤ δ(Y+Q) ≈ dist(Y+Q,Q) . ℓ(Q) ,

with implicit constants possibly depending on η and K. Consequently, there is a
point z+Q ∈ ∂Ω′, with |z+Q−Y+Q| ≈ ℓ(Q) ≈ |xQ−Y+Q|, where as usual xQ is the “center”

of Q. For each Q ∈ G+1 , we set B′Q := B(z+Q, ℓ(Q)), B′′Q := B(xQ,Mℓ(Q)), and we

fix M large enough (possibly depending on η and K), that B′Q ⊂ B′′Q. By a standard

covering lemma argument, we can extract a subset of G+1 , call it G++1 , such that
B′′Q1

and B′′Q2
are disjoint, hence also B′Q1

and B′Q2
are disjoint, for any pair of cubes

Q1, Q2 ∈ G++1 , and moreover,

(5.14)
∑

Q∈G+1

σ(Q) ≤ CM

∑

Q∈G++1

σ(Q) = Cη,K
∑

Q∈G++1

σ(Q) .

We may now fix the parameter κ large enough in (5.12), so that Y+Q ∈ ΓΩ′(z), for all

z ∈ B′Q ∩ ∂Ω′. Combining (5.13) and (5.14), we then obtain

ε2
∑

Q∈G+1

σ(Q) . ε2
∑

Q∈G++1

σ(Q)

.

∑

Q∈G++1

|u(Y+Q) − u(Y+
Qk )|2 σ(Q)

=
∑

Q∈G++1

|u(Y+Q) − u(Y+
Qk )|2 σ(Q)

?
B′Q∩∂Ω′

dHn

.

∑

Q∈G++1

∫

B′Q∩∂Ω′

(
NΩ

′
∗

(
u − u(Y+

Qk )
))2

dHn
.

∫

∂Ω′

(
NΩ

′
∗

(
u − u(Y+

Qk )
))2

dHn ,

where in the last two inequalities, we have used that ∂Ω′ is ADR (by Lemma 3.24),
and that the balls B′Q are disjoint, for Q ∈ G++1 . The implicit constants depend on

η and K. Now, by Lemma 3.24, Ω′ is NTA with an ADR boundary, and therefore
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harmonic measure for Ω′ = Ω+
S′(Qk)

is A∞ with respect to surface measure on ∂Ω′,
by [DJ]. Consequently, by [DJK], we have

(5.15) ε2
∑

Q∈G+1

σ(Q) .

∫

∂Ω+
S′(Qk )

(
NΩ

′
∗ (u − u(Y+

Qk ))
)2

.

"
Ω+

S′(Qk )

|∇u(Y)|2δ(Y) dY .

Combining the latter estimate with its analogue for G−1 and Ω−
S′(Qk)

, we obtain the

conclusion of the lemma. �

We are now ready to establish the packing property of the generation cubes.
Recall that G∗ denotes the collection of all generation cubes, running over all the
stopping time regimes S constructed in Lemma 2.2.

Lemma 5.16. Let Q0 ∈ D(E). Then

(5.17)
∑

Q⊂Q0: Q∈G∗
σ(Q) ≤ Cε−2σ(Q0) .

Proof. Fix Q0 ∈ D(E). Let M(Q0) be the collection of maximal generation cubes
contained in Q0, i.e., Q1 ∈ M(Q0) if Q1 ∈ G∗, and there is no other Q′ ∈ G∗ with
Q1 ⊂ Q′ ⊂ Q0. By maximality, the cubes in M(Q0) are disjoint, so it is enough to
prove (5.17) with Q0 replaced by an arbitrary Q1 ∈ M(Q0), i.e., to show that for
any such Q1,

(5.18)
∑

Q⊂Q1: Q∈G∗
σ(Q) ≤ Cε−2σ(Q1) .

Since Q1 is a generation cube, it belongs, by construction, to some S, say S0. Let
S = S(Q1) be the collection of all stopping time regimes S, excluding S0, such
that Q(S) meets Q1 and S contains at least one subcube of Q1. Then necessarily,
Q(S) ( Q1, for all S ∈ S. The left hand side of (5.18) then equals

∑

Q⊂Q1: Q∈G(S0)

σ(Q) +
∑

S∈S

∑

Q∈G(S)

σ(Q) =: I + II .

We treat term I first. We define G0(Q1) = {Q1}, G1(Q1), G2(Q1), . . . , etc., by
analogy to the definitions of Gk(Q0) above (indeed, this analogy was implicit in
our construction). We then have

I =
∑

k≥0

∑

Q∈Gk(Q1)

σ(Q) = σ(Q1) +
∑

k≥1

∑

Q′∈Gk−1(Q1)

∑

Q∈G1(Q′)

σ(Q) =: σ(Q1) + I′ .

By Lemma 5.11,

I′ . ε−2
∑

k≥1

∑

Q′∈Gk−1(Q1)

"
ΩS′(Q′)

|∇u(Y)|2δ(Y) dY

≤ ε−2
∑

k≥1

∑

Q′∈Gk−1(Q1)

∑

Q∈S′(Q′)

"
UQ

|∇u(Y)|2δ(Y) dY

. ε−2

"
TQ1

|∇u(Y)|2δ(Y) dY . ε−2σ(Q1) ,
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where in the second inequality we have used the definition of ΩS′(Q
′) (cf. Remark

3.22), and in the third inequality that the triple sum runs over a family of distinct
cubes, all contained in Q1 (cf. Remark 5.5), and that the Whitney regions UQ have
bounded overlaps; the last inequality is Theorem 1.1, by virtue of (3.14), since
‖u‖∞ ≤ 1. Thus, we have established (5.18) for term I.

Consider now term II. The inner sum in II, for a given S, is
∑

Q∈G(S)

σ(Q) =
∑

k≥0

∑

Q∈Gk(S)

σ(Q) .

But by definition, Gk(S) = Gk(Q(S)), so this inner sum is therefore exactly the
same as term I above, but with Q(S) in place of Q1. Consequently, we obtain,
exactly as for term I, that

∑

Q∈G(S)

σ(Q) . ε−2σ
(
Q(S)

)
.

Plugging the latter estimate into term II, and using the definition of S, we have

II . ε−2
∑

S: Q(S)⊂Q1

σ
(
Q(S)

)
. ε−2σ(Q1) ,

by the packing condition for the maximal cubes Q(S), established in Lemma 2.2.
�

Our next task is to define the approximating function ϕ. To this end, fix Q0 ∈
D(E). We shall first define certain auxiliary functions ϕ0, ϕ1, which we then blend
together to get ϕ. We are going to find an ordered family of cubes {Qk}k≥1 ∈ G
and to introduce the first cube Q1 let us consider two cases. In the first case we
assume that Q0 < G and let Q1 be the subcube of Q0, of largest “side length”,
that belongs to G. By the packing condition for B, there must of course be such
a Q1. It may be that Q0 has more than one proper subcube in G, all of the same
maximum side length, in this case we just pick one. Then Q1, being in G, and
hence in some S, must therefore belong to some subregime S′1 (cf. Remark 5.5),
and in fact Q1 = Q(S′1) (since the dyadic parent of Q1 belongs to DQ0 ∩ B). The
second case corresponds to Q0 ∈ G. Then, in particular, Q0 belongs to some S, and
therefore to some S′1, and again we set Q1 := Q(S′1). In this case, Q0 could be a
proper subset of Q1, or else Q1 = Q0. Once we have constructed Q1 ∈ G in the two
cases, we then let Q2 denote the subcube of maximum side length in (DQ0∩G)\S′1,
etc., thus obtaining an enumeration Q1, Q2, . . .∈ G such that

ℓ(Q1) ≥ ℓ(Q2) ≥ ℓ(Q3) ≥ . . . ,

Qk = Q(S′k), and G ∩ DQ0 ⊂ ∪k≥1S′k. The latter property follows easily from the
construction, since from one step to the next one, we take a cube with maximal side
length in G ∩ DQ0 that is not in the previous subregimes. This procedure exhausts
the collection of cubes G ∩ DQ0 . Further, we note that G ∩ DQ0 = ∪k≥1S′k when
Q1 ⊂ Q0. We point out that, certainly, the various subregimes S′k need not all be
contained in the same original regime S. We define recursively

A1 := ΩS′1
; Ak := ΩS′k

\
(
∪k−1

j=1A j

)
, k ≥ 2,
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so that the sets Ak are pairwise disjoint. Note that ∪k
j=1A j = ∪k

j=1ΩS′j
. We also set

Ω0 := ∪kΩS′k
= ∪kAk ,

and

A±1 := Ω±S′1 ; A±k := Ω±S′k \
(
∪k−1

j=1A j

)
, k ≥ 2 ,

which induces the corresponding splitting Ω0 = Ω
+
0 ∪Ω−0 , where Ω±0 :=

⋃
k A±k .We

now define ϕ0 on Ω0 by setting

ϕ0 :=
∑

k

(
u
(
Y+Qk

)
1A+k
+ u
(
Y−Qk

)
1A−k

)
.

Next, let {Q(k)} be some fixed enumeration of the cubes in B∗ ∩ DQ0 (cf. (5.9)
for the definition of B∗). We define recursively

V1 := UQ(1) ; Vk := UQ(k) \
(
∪k−1

j=1V j

)
, k ≥ 2 .

For each Q(k), we split the corresponding Whitney region UQ(k) into its connected

components UQ(k) = ∪iU
i
Q(k) (note that the number of such components is uni-

formly bounded; cf. Remark 5.3), and we observe that this induces a corresponding
splitting

V i
1 := U i

Q(1) ; V i
k := U i

Q(k) \
(
∪k−1

j=1V j

)
, k ≥ 2 .

On each V i
k we define

ϕ1(Y) :=

{
u(Y) , if U i

Q(k) is red

u(XI) , if U i
Q(k) is blue

, Y ∈ V i
k ,

where for each blue component U i
Q(k) we have specified a fixed Whitney box I ⊂

U i
Q(k), with center XI . In particular, we have thus defined ϕ1 on

(5.19) Ω1 := int
(
∪Q∈B∗∩DQ0

UQ

)
= int (∪kVk) .

The exact definition on the subsets of the boundary of Ω1 does not matter as the
(n + 1)-dimensional measure of the boundary vanishes. We extend ϕ0 and ϕ1 to all
of TQ0 by setting each equal to 0 outside of its original domain of definition. The
supports of ϕ0 and ϕ1 may overlap: it is possible that a red cube may belong to G
as well as to B∗, and in any case the various Whitney regions UQ may overlap (in
a bounded way) for different cubes Q. On the other hand, note that, up to a set of
measure 0, TQ0 ⊂ Ω0 ∪ Ω1 (with equality, again up to a set of measure 0, holding
in the case that Q1 ⊂ Q0). Finally, we define ϕ as a measurable function on TQ0 by
setting

ϕ(Y) :=

{
ϕ0(Y) , Y ∈ TQ0 \Ω1

ϕ1(Y) , Y ∈ Ω1 .

Then ‖u− ϕ‖L∞(TQ0
) < ε. Indeed, in Ω1, ϕ is equal either to u, or else to u(XI), with

XI in some “blue” component with small oscillation; otherwise, if Y ∈ TQ0 \ Ω1,
then (modulo a set of measure 0), Y lies in some A±k ⊂ Ω±S′k , and moreover, Y also

lies in some blue U±Q ⊂ Ω±S′k , whence it follows that u(Y) − ϕ(Y) = u(Y) − u(Y±Qk
) is

small by construction.
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It remains to verify the Carleson measure estimate for the measure |∇ϕ(Y)|dY .
We do this initially for ϕ0 and ϕ1 separately. Let Q′ ⊂ Q0, and consider first ϕ0.
We shall require the following:

Lemma 5.20. Fix Q ∈ D(E), and its associated Carleson box TQ. Let G(Q) be

the collection of all generation cubes Q′, with ℓ(Q′) ≥ ℓ(Q), such that ΩS′(Q′)

meets TQ. Then there is a uniform constant N0 such that the cardinality of G(Q) is

bounded by N0.

Proof. Let Q′ ∈ G∗, and suppose that ℓ(Q′) ≥ ℓ(Q), and that ΩS′(Q′) meets TQ.
Then there are two cubes P′ ∈ S′(Q′), and P ⊂ Q, such that there is some I ∈ WP′ ,
and J ∈ WP, for which I∗ meets J∗ (of course, it may even be that I = J, but not
necessarily). By construction of the collectionsWQ,

dist(P′, P) . ℓ(P′) ≈ ℓ(I) ≈ ℓ(J) ≈ ℓ(P) ≤ ℓ(Q) ≤ ℓ(Q′) .
By the semi-coherency of S′(Q′), we may then choose R′ ∈ S′(Q′) such that P′ ⊂
R′ ⊂ Q′, with ℓ(R′) ≈ ℓ(Q). Note that dist(R′,Q) . ℓ(Q). The various implicit
constants are of course uniformly controlled, and therefore the number of such R′ is
also uniformly controlled. There exists such an R′ for every Q′ ∈ G(Q); moreover,
a given R′ can correspond to only one Q′, since the regimes S′ are pairwise disjoint.
Thus, the cardinality of G(Q) is uniformly bounded by a number N0 that depends
on the ADR constant. �

Suppose now that j < k, hence ℓ(Q j) ≥ ℓ(Qk). Since ΩS′ ⊂ TQ(S′) by construc-
tion (cf. Remark 3.22), ΩS′j

meets ΩS′k
only if ΩS′j

meets TQk
. By Lemma 5.20,

the number of indices j for which this can happen, with k fixed, is bounded by N0.
Consequently, since ∪k−1

j=1A j = ∪k−1
j=1ΩS′j

, it follows that for each k ≥ 2, there is a

subsequence { j1, j2, . . . , jN(k)} ⊂ {1, 2, . . . , k − 1}, with supk N(k) ≤ N0, such that

Ak = ΩS′k
\
(
∪N(k)

i=1 ΩS′ji

)
,

and hence,

(5.21) ∂A±k ⊂ ∂Ω±S′k ∪
(
Ω±S′k
∩
(
∪N(k)

i=1 ∂ΩS′ji

))
.

Observe that by definition of ϕ0, in the sense of distributions

∇ϕ0 =
∑

k

(
u
(
Y+Qk

)
∇1A+k

+ u
(
Y−Qk

)
∇1A−k

)
,

so that, since ‖u‖∞ ≤ 1,"
TQ′
|∇ϕ0| ≤

∑

k

"
TQ′

(
|∇1A+k

| + |∇1A−k
|
)

≤
∑

k

Hn(TQ′ ∩ ∂A+k ) +
∑

k

Hn(TQ′ ∩ ∂A−k ) =: I+ + I− .

Consider I+, which we split further into

I+ =
∑

k:Qk⊂Q′

Hn(TQ′ ∩ ∂A+k ) +
∑

k:Qk*Q′

Hn(TQ′ ∩ ∂A+k ) =: I+1 + I+2 .
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We treat I+1 first. Note that by Proposition A.2 in Appendix A below, and (5.21),
∂A±k satisfies the upper ADR bound, because it is contained in the union of a uni-

formly bounded number of sets with that property. In addition, ∂A±k ⊂ ΩS′k
, which

has diameter diam(ΩS′k
) . ℓ(Qk). Therefore,

I+1 .
∑

k:Qk⊂Q′

ℓ(Qk)n ≈
∑

k:Qk⊂Q′

σ(Qk) . ε−2σ(Q′) ,

by the packing condition (5.17), since each Qk is a generation cube.

Next, we consider I+2 . Recall that Ak ⊂ ΩS′k
, and note that

(5.22) TQ′ meets ΩS′k
=⇒ dist(Q′,Qk) . min(ℓ(Q′), ℓ(Qk))

(with implicit constants depending on η and K). By Lemma 5.20, the number of
such Qk with ℓ(Qk) ≥ ℓ(Q′) is uniformly bounded (depending on η,K, and the
ADR constant). Moreover, as noted above, ∂A±k satisfies the upper ADR bound.
Thus, ∑

k:Qk*Q′, ℓ(Qk)≥ℓ(Q′)
Hn(TQ′ ∩ ∂A+k ) .

(
diam(TQ′)

)n ≈ σ(Q′) .

On the other hand, if ℓ(Qk) ≤ ℓ(Q′), then by (5.22), every relevant Qk is contained
either in Q′, or in some “neighbor” Q′′ of Q′, of the same “side length”, with
dist(Q′,Q′′) ≤ Cℓ(Q′) for some (uniform) constant C. Since the number of such
neighbors Q′′ is uniformly bounded, the terms in I+2 with ℓ(Qk) < ℓ(Q′) may be
handled exactly like term I+1 .

The term I− may be handled just like I+, and therefore, combining our estimates
for I±, we obtain the Carleson measure bound

(5.23) sup
Q⊂Q0

1

|Q|

"
TQ

|∇ϕ0| . ε−2 .

Next, we consider ϕ1. As above, let Q′ ⊂ Q0. Recall that Vk ⊂ UQ(k), and note
that

(5.24) UQ(k) meets UQ(k′) =⇒ dist(Q(k),Q(k′)) . ℓ(Q(k)) ≈ ℓ(Q(k′)) ,

and thus, for any given Q(k), there are at most a uniformly bounded number of such
Q(k′) for which this can happen. Therefore, since ∪k

j=1V j = ∪k
j=1UQ( j), it follows

that for each k ≥ 2, there is a subsequence { j1, j2, . . . , jN′(k)} ⊂ {1, 2, . . . , k − 1},
with supk N′(k) ≤ N′0, such that

Vk = UQ(k) \
(
∪N′(k)

i=1 UQ( ji)

)
,

and hence

∂Vk ⊂ ∂UQ(k) ∪
(

UQ(k) ∩
(
∪N′(k)

i=1 ∂UQ( ji)

))
,

where each Q( ji) has side length comparable to that of Q(k). Consequently, by
construction of the Whitney regions, ∂Vk is covered by the union of a uniformly
bounded number of faces of fattened Whitney boxes I∗, each with ℓ(I∗) ≈ ℓ(Q(k)),
so that

(5.25) Hn(∂Vk) . ℓ(Q(k))n ≈ σ(Q(k)) .
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Remark 5.26. Recall that supp(ϕ1) ⊂ Ω1 = ∪kVk (cf. (5.19)), and note that since
Vk ⊂ UQ(k), the closure of a given Vk can meet TQ′ only if ℓ(Q(k)) . ℓ(Q′) and
dist(Q(k),Q′) . ℓ(Q′), thus, there is a collection N(Q′), of uniformly bounded
cardinality, comprised of cubes Q∗ with ℓ(Q∗) ≈ ℓ(Q′), and dist(Q∗,Q′) . ℓ(Q′),
such that Q(k) ⊂ Q∗ for some Q∗ ∈ N(Q′), whenever Vk meets TQ′ . Here, the
various implicit constants may depend upon η, K and the ADR bounds.

Using the notation of the Remark 5.26, we then have that"
TQ′
|∇ϕ1| =

"
TQ′∩Ω1

|∇ϕ1|

≤
∑

Q∗∈N(Q′)

∑

Q(k)⊂Q∗

"
Vk

|∇ϕ1| =
∑

Q∗∈N(Q′)

∑

Q(k)⊂Q∗

∑

i

"
V i

k

|∇ϕ1| .

If U i
Q(k) is a blue component, then, since ‖u‖∞ ≤ 1,"

V i
k

|∇ϕ1| ≤
"

V i
k

|∇1V i
k
| ≤ Hn(∂V i

k) ≤ Hn(∂Vk) . σ(Q(k)) ,

where in the last step we have used (5.25). Since for all Q, the number of compo-
nents U i

Q is uniformly bounded (cf. Remark 5.3), we obtain

∑

Q∗∈N(Q′)

∑

Q(k)⊂Q∗

∑

i:U i
Q(k) blue

"
V i

k

|∇ϕ1| .
∑

Q∗∈N(Q′)

∑

Q(k)⊂Q∗

σ(Q(k)) . ε−2σ(Q′) ,

by the packing condition for B∗ (cf. (5.10), and recall that {Q(k)} is an enumeration
ofB∗∩DQ0), and the nature of the cubes Q∗ inN(Q′) along with the ADR property.

On the other hand, if U i
Q(k) is a red component (cf. (5.2)), then by (5.8) and the

ADR property,

(5.27) σ(Q(k)) . ε−2

"
ÛQ(k)

|∇u(Y)|2δ(Y) dY ,

where ÛQ(k) := UQ(k),2τ is a fattened version of UQ(k). Consequently, for any red

component U i
Q(k), bearing in mind that δ(Y) ≈ ℓ(Q(k)) in UQ(k), we have

"
V i

k

|∇ϕ1| =
"

V i
k

|∇u| .
("

V i
k

|∇u|2
)1/2

ℓ(Q(k))(n+1)/2

≈
("

V i
k

|∇u(Y)|2δ(Y)dY

)1/2

ℓ(Q(k))n/2
. ε−1

"
ÛQ(k)

|∇u(Y)|2δ(Y) dY ,

where in the last step we have used (5.27) and the ADR property. Thus,

∑

Q∗∈N(Q′)

∑

Q(k)⊂Q∗

∑

i:U i
Q(k) red

"
V i

k

|∇ϕ1|

. ε−1
∑

Q∗∈N(Q′)

∑

Q(k)⊂Q∗

"
ÛQ(k)

|∇u(Y)|2δ(Y) dY
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. ε−1

"
B∗

Q′

|∇u(Y)|2δ(Y) dY . ε−1σ(Q′) ,

where B∗Q′ := B(xQ′ ,Kℓ(Q
′)), and in the last two steps we have used the bounded

overlap property of the Whitney regions ÛQ, the nature of N(Q′), and Theorem
1.1. Combining these estimates, we obtain the Carleson measure bound

(5.28) sup
Q⊂Q0

1

|Q|

"
TQ

|∇ϕ1| . ε−2 .

Finally, we consider ϕ. By definition, in the sense of distributions,

∇ϕ =
(
∇ϕ0

)
1TQ0

\Ω1
+
(
∇ϕ1

)
1Ω1 + J ,

where J accounts for the jump across ∂Ω1. The contributions of the first two terms
on the right hand side may be treated by (5.23) and (5.28), respectively. To handle
the term J, note that ϕ has a uniformly bounded jump across ∂Ω1, since ‖u‖∞ ≤ 1,
and note also that we need only account for the jump across ∂Ω1 in the interior of
TQ0 , thus, across the boundary of some Vk. Note also that ∂Vk meets TQ only if
Q(k) ⊂ Q∗, for some Q∗ ∈ N(Q) (see Remark 5.26). Hence, for Q ⊂ Q0, we have

"
TQ

|J| . Hn(TQ ∩ ∂Ω1) ≤
∑

k

Hn(TQ ∩ ∂Vk)

≤
∑

Q∗∈N(Q)

∑

Q(k)⊂Q∗

Hn(∂Vk) .
∑

Q∗∈N(Q)

∑

Q(k)⊂Q∗

σ(Q(k)) . ε−2σ(Q) ,

where in the last two steps we have used (5.25), the packing condition for B∗ (cf.
(5.10)), and the nature of the cubes Q∗ inN(Q) along with the ADR property. Since
Q0 ∈ D(E) was arbitrary, we have therefore established the existence of ϕ = ϕεQ,
satisfying ‖u − ϕ‖L∞(TQ) < ε and (5.1), for every Q.

The next step is to construct, for each x ∈ E and each ball B = B(x, r), and
for every ε ∈ (0, 1), an appropriate ϕ = ϕεB defined on B \ E. Suppose first that
r < 100 diam(E). Exactly as in the proof that (4.13) implies (4.12), there is a
collection {Qk}, of uniformly bounded cardinality, such that ℓ(Qk) ≈ r, for each k,
and such that B \ E ⊂ ∪kTQk

. For each Qk, we construct ϕεQk
as above. Following

our previous strategy, we recursively define

S 1 := TQ1 , and S k := TQk
\
(
∪k−1

j=1S j

)
,

and we define ϕ = ϕεB :=
∑

k ϕ
ε
Qk

1S k
. The bound on ‖u − ϕ‖L∞(B\E) follows imme-

diately from the corresponding bounds for ϕεQk
in TQk

. Moreover, we obtain the
Carleson measure estimate

sup
z∈E,s>0,B(z,s)⊂B

1

sn

"
B(z,s)

|∇ϕ(Y)|dY . ε−2

from the corresponding bounds for ϕεQk
along with a now familiar argument to

handle the jumps across the boundaries of the sets S k, using that the latter are
covered by the union of the boundaries of the Carleson boxes TQk

, which in turn
are ADR by virtue of Proposition A.2. We omit the details.
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Next, if diam(E) < ∞, and r ≥ 100 diam(E), we set B̃ := B(x, 10 diam(E)), and

ϕ = ϕεB := ϕε
B̃
1

B̃\E + u1
B\B̃ ,

and we repeat mutatis mutandi the argument used above to show that (4.12) implies

(1.2), along with our familiar arguments to handle the jump across ∂B̃. Again we
omit the details.

Finally, we construct a globally defined ϕ = ϕε onΩ, satisfying (1.9) and (1.10),
as follows. Fix x0 ∈ E, let Bk := B(x0, 2

k), k = 0, 1, 2, . . . , and set R0 := B0, and
Rk := Bk \ Bk−1, k ≥ 1. Define ϕ = ϕε :=

∑∞
k=0 ϕ

ε
Bk

1Rk
. The reader may readily

verify that ϕ satisfies (1.9) and (1.10). This concludes the proof of Theorem 1.3.

Remark 5.29. We note that the preceding proof did not require harmonicity of u,
per se, but only the following properties of u: 1) u ∈ L∞(Ω), with ‖u‖∞ ≤ 1; 2)
u satisfies Moser’s local boundedness estimates in Ω; 3) u satisfies the Carleson
measure estimate (1.2).

Appendix A. Sawtooth boundaries inherit the ADR property

A.1. Notational conventions. Let us set some notational conventions that we
shall follow throughout this appendix. If the set E under consideration is merely
ADR, but not UR, then we set WQ = W0

Q as defined in (3.2). If in addition,

the set E is UR, then we define WQ as in (3.7). In the first case, the constants
involved in the construction of WQ depend only on the ADR constant η and K,
and in the UR case, on dimension and the ADR/UR constants (compare (3.2) and
(3.6)). Therefore there are numbers m0 ∈ Z+, C0 ∈ R+, with the same dependence,
such that

(A.1) 2−m0 ℓ(Q) ≤ ℓ(I) ≤ 2m0ℓ(Q), and dist(I,Q) ≤ C0ℓ(Q) , ∀I ∈ WQ .

This dichotomy in the choice ofWQ is convenient for the results we have in mind.
The main statements will pertain to the inheritance of the ADR property by local
sawtooth regions and Carleson boxes whose definitions are built upon the exact
choices ofWQ’s described above, different for the ADR-only and ADR/UR case.

We fix a small parameter τ > 0, and we define the Whitney regions UQ, the
Carleson boxes TQ and sawtooth regions ΩF ,Q, as in Section 3 (see (3.9), (3.12),
(3.16) and (3.17)), relative toWQ as in the previous paragraph. We recall that if
τ0 is chosen small enough, then for τ ≤ τ0, and for I, J ∈ W, if I , J, then I∗(τ)
misses (3/4)J.

For any I ∈ W such that ℓ(I) < diam(E), we write Q∗I for the nearest dyadic
cube to I with ℓ(I) = ℓ(Q∗I ) so that I ∈ WQ∗I . Notice that there can be more
than one choice of Q∗I , but at this point we fix one so that in what follows Q∗I is
unambiguously defined.

A.2. Sawtooths have ADR boundaries.
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Proposition A.2. Let E ⊂ Rn+1 be a closed n-dimensional ADR set5. Then all

dyadic local sawtooths ΩF ,Q and all Carleson boxes TQ have n-dimensional ADR

boundaries. In all cases, the implicit constants are uniform and depend only on

dimension, the ADR constant of E and the parameters m0 and C0.

The proof of this result follows the ideas from [HM2, Appendix A.3] (see also
[HMM]).

We now fix Q0 ∈ D and a family F of disjoint cubes F = {Q j} ⊂ DQ0 (for the
case F = Ø the changes are straightforward and we leave them to the reader, also
the case F = {Q0} is disregarded since in that case ΩF ,Q0

is the null set). We write
Ω⋆ = ΩF ,Q0

and Σ = ∂Ω⋆ \ E. Given Q ∈ D we set

RQ :=
⋃

Q′∈DQ

WQ′ , and ΣQ = Σ
⋂( ⋃

I∈RQ

I

)
.

Let C1 be a sufficiently large constant, to be chosen below, depending on n, the
ADR constant of E, m0 and C0. Let us introduce some new collections:

F|| :=
{

Q ∈ D \ {Q0} : ℓ(Q) = ℓ(Q0), dist(Q,Q0) ≤ C1 ℓ(Q0)
}
,

F⊤ :=
{

Q′ ∈ D : dist(Q′,Q0) ≤ C1 ℓ(Q0), ℓ(Q0) < ℓ(Q′) ≤ C1 ℓ(Q0)
}
,

F ∗|| : =
{

Q ∈ F|| : ΣQ , Ø
}
=
{

Q ∈ F|| : ∃ I ∈ RQ such that Σ ∩ I , Ø
}
,

F ∗ : =
{

Q ∈ F : ΣQ , Ø
}
=
{

Q ∈ F : ∃ I ∈ RQ such that Σ ∩ I , Ø
}
,

We also set

R⊥ =
⋃

Q∈F ∗
RQ, R|| =

⋃

Q∈F ∗||

RQ, R⊤ =
⋃

Q∈F⊤

WQ.

Lemma A.3. SetWΣ = {I ∈ W : I ∩ Σ , Ø} and define

W⊥
Σ =

⋃

Q∈F ∗
WΣ,Q, W||

Σ =
⋃

Q∈F ∗||

WΣ,Q, W⊤
Σ =

{
I ∈ WΣ : Q∗I ∈ F⊤

}
.

where for every Q ∈ F ∗ ∪ F ∗|| we set

WΣ,Q =
{

I ∈ WΣ : Q∗I ∈ DQ};
and where we recall that Q∗I is the nearest dyadic cube to I with ℓ(I) = ℓ(Q∗I ) as

defined above. Then

(A.4) WΣ =W⊥
Σ ∪W||

Σ ∪W⊤
Σ ,

where

(A.5) W⊥
Σ ⊂ R⊥, W||

Σ ⊂ R||, W⊤
Σ ⊂ R⊤.

As a consequence,

(A.6) Σ = Σ⊥ ∪ Σ|| ∪ Σ⊤ :=
( ⋃

I∈W⊥
Σ

Σ ∩ I

)⋃( ⋃

I∈W||
Σ

Σ ∩ I

)⋃( ⋃

I∈W⊤
Σ

Σ ∩ I

)
.

5Thus, E may be UR, or not; in the former case, the parameters m0 and C0 may depend implicitly

on n and the UR constants of E, as well as on η and K; in either case, we follow the notational

convention described above.
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Proof. Let us first observe that if I ∈ WΣ, that is, I ∈ W is such that I∩Σ , Ø, then
int(I∗) meets Rn+1 \Ω⋆ and therefore (3/4)I ⊂ Rn+1 \Ω⋆. In particular I <WQ, for
any Q ∈ DF ,Q0

. Also, I meets a fattened Carleson box J∗ such that int(J∗) ⊂ Ω⋆.
Then there exists QJ ∈ DF ,Q0

such that J ∈ WQJ
.

As above, let Q∗I denote the nearest dyadic cube to I with ℓ(I) = ℓ(Q∗I ) so that
I ∈ WQ∗I . Then necessarily, Q∗I < DF ,Q0

= DF ∩ DQ0 .

Case 1: Q∗I < DF . This implies that there is Q ∈ F such that Q∗I ⊂ Q. Then I ∈ RQ,
since I ∈ WQ∗I , and also Q ∈ F ∗ since Σ ∩ I , Ø. Hence I ∈ WΣ,Q ⊂ W⊥

Σ .

Case 2: Q∗I ∈ DF . We must have Q∗I < DQ0 . Since QJ ⊂ Q0 we have

ℓ(Q∗I ) = ℓ(I) ≈ ℓ(J) ≈ ℓ(QJ), max{ℓ(Q∗I ), ℓ(QJ), ℓ(I), ℓ(J)} ≤ C1 ℓ(Q0),

and

dist(Q∗I ,Q0) . d(Q∗I , I) + ℓ(I) + ℓ(J) + dist(J,QJ) + ℓ(Q0) ≤ C1ℓ(Q0),

where the implicit constants depend on n, the ADR constant of E, m0 and C0, and
C1 is taken large enough depending on these parameters.

Sub-case 2a: ℓ(Q∗I ) ≤ ℓ(Q0). We necessarily have Q∗I ⊂ Q ∈ F||. Then I ∈ RQ

since I ∈ WQ∗I and also Q ∈ F ∗|| since Σ ∩ I , Ø. Hence I ∈ WΣ,Q ⊂ W||
Σ.

Sub-case 2b: ℓ(Q∗I ) > ℓ(Q0). We observe that

ℓ(Q0) < ℓ(Q∗I ) ≤ C1 ℓ(Q0) and dist(Q∗I ,Q0) ≤ C1ℓ(Q0),

and therefore Q∗I ∈ F⊤ and thus I ∈ W⊤
Σ .

This completes the proof of (A.4). Note that (A.5) follows at once by our con-

struction. Let us note that for further reference the three setsW⊥
Σ ,W||

Σ, andW⊤
Σ

are pairwise disjoint by the nature of the families F , F|| and F⊤.

To prove (A.6) we observe that Σ consists of (portions of) faces of certain fat-
tened Whitney cubes J∗, with int(J∗) ⊂ Ω⋆, which meet some I ∈ W —there
could be more than one I but we chose just one— for which I < WQ, for any

Q ∈ DF ,Q0
(so that (3/4)I ⊂ Rn+1 \ Ω⋆) and I ∩ Σ , Ø. In particular we can apply

(A.4) and (A.6) follows immediately. �

Lemma A.7. Given I ∈ WΣ, we can find QI ∈ D, with QI ⊂ Q∗I , such that

ℓ(I) ≈ ℓ(QI), dist(QI , I) ≈ ℓ(I), and in addition,

(A.8)
∑

I∈WΣ,Q

1QI
. 1Q, for any Q ∈ F ∗ ∪ F ∗|| ,

and

(A.9)
∑

I∈W⊤
Σ

1QI
. 1B∗Q0

∩E ,

where the implicit constants depend on n, the ADR constant of E, m0 and C0,

and where B∗Q0
= B(xQ0 ,C ℓ(Q)) with C large enough depending on the same

parameters.



UNIFORM RECTIFIABILITY, CARLESON MEASURE ESTIMATES, AND APPROXIMATION 39

Proof. Fix I ∈ WΣ, take Q∗I and note that, as observed before, Q∗I < DF ,Q0
. As

in the previous proof I meets a fattened Carleson box J∗ such that int(J∗) ⊂ Ω⋆.
Then there exists QJ ∈ DF ,Q0

such that J ∈ W∗
QJ

.

We start with the case I ∈ WΣ,Q with Q∗I ∈ DQ and Q ∈ F ∗. Notice that QJ is
not contained in Q and therefore QJ meets E \ Q. Hence

dist(Q∗I , E \ Q) ≤ dist(Q∗I ,QJ) + diam(QJ) . dist(Q∗I , I) + dist(J,QJ) ≈ ℓ(Q∗I ).

We claim that we may select a descendant of Q∗I , call it QI , of comparable size,
in such a way that

(A.10) dist(QI , E \ Q) ≈ ℓ(I) ≈ ℓ(QI) ,

while of course retaining the property that dist(QI , I) ≈ ℓ(I). Indeed, let M be a
sufficiently large, but uniformly bounded integer to be chosen momentarily, and let
QI be the cube of “length” ℓ(QI) = 2−Mℓ(Q∗I ), that contains xQ∗I ( the “center” of
Q∗I ). Since there is a ball BQ∗I := B(xQ∗I , r), with r ≈ ℓ(Q∗I ), such that BQ∗I ∩E ⊂ Q∗I ,
we may choose M to be the smallest integer that guarantees that diam(QI) ≤ r/2.
Hence,

ℓ(QI) ≈ r/2 = dist
(
∆(xQ∗I , r/2), E \ ∆(xQ∗I , r)

)

≤ dist(QI , E \ Q∗I ) ≤ dist(QI , E \ Q)

and the claim holds.

Once we have selected QI ⊂ Q∗I ⊂ Q with the desired properties we shall see
that the cubes {QI}I∈WΣ,Q

have bounded overlap. Indeed, given QI , suppose that
QI′ meets QI (it could even happen that they are indeed the same cube). By (A.10),
ℓ(I) ≈ ℓ(I′) in which case dist(I, I′) . ℓ(I). But the properties of the Whitney cubes
easily imply that the number of such I′ is uniformly bounded and therefore the QI

have bounded overlap.

We now consider the case I ∈ WΣ,Q with Q∗I ∈ DQ and Q ∈ F ∗|| . As before QJ

is not contained in Q since QJ ⊂ Q0 and Q ∈ F|| means that Q , Q0 and ℓ(Q) =
ℓ(Q0). Then, as before, dist(Q∗I , E \ Q) . ℓ(Q∗I ) and we may select a descendant
of Q∗I , call it QI , of comparable size, such that (A.10) holds and dist(QI , I) ≈ ℓ(I).
Notice that QI ⊂ Q∗I ⊂ Q and the fact that the cubes {QI}I∈WΣ,Q

have bounded
overlap follows as before.

Finally let I ∈ W⊤
Σ then Q∗I ∈ F⊤. In this case we set QI = Q∗I which clearly

has the desired properties. It is trivial to show that QI ⊂ B∗Q0
. To obtain the

bounded overlap property we observe that if QI ∩ Q′I , Ø with QI ,Q
′
I ∈ F⊤ then

ℓ(I) ≈ ℓ(QI) ≈ ℓ(Q0) ≈ ℓ(Q′I) ≈ ℓ(I′) and also dist(I, I′) . ℓ(I). Thus only for
a bounded number of I′’s we can have that QI′ meets QI . This in turns gives the
bounded overlap property. �

Lemma A.11. For every x ∈ ∂Ω⋆ and 0 < r . ℓ(Q0) ≈ diam(Ω⋆), if Q ∈ F ∗ ∪F ∗||
then

(A.12)
∑

I∈WΣ,Q

Hn
(
B(x, r) ∩ Σ ∩ I

)
.
(

min{r, ℓ(Q)}
)n
,

where the implicit constants depend on n, the ADR constant of E, m0, C0.
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Proof. We set B := B(x, r). We first assume that ℓ(Q) . r. Then we use the
estimate Hn(Σ ∩ I) . ℓ(I)n (which follows easily from the nature of the Whitney
cubes), Lemma A.7 and the ADR property of E to obtain as desired that
∑

I∈WΣ,Q

Hn(B∩Σ∩I) .
∑

I∈WΣ,Q

ℓ(I)n ≈
∑

I∈WΣ,Q

ℓ(QI)
n ≈

∑

I∈WΣ,Q

σ(QI) . σ(Q) . ℓ(Q)n.

Suppose next that ℓ(Q) ≫ r and that δ(x) ≫ r (in particular x < E). By the nature
of the Whitney cubes B ∩ Σ ∩ I consists of portions (of diameter at most 2r) of
faces of Whitney boxes and only a bounded number of I’s can contribute in the
sum. Hence, ∑

I∈WΣ,Q

Hn(B ∩ Σ ∩ I) . rn.

Finally, consider the case where ℓ(Q) ≫ r and that δ(x) . r (which includes the
case x ∈ E). Pick x̂ ∈ E such that |x − x̂| = δ(x). Let I ∩ B , Ø and pick
z ∈ I ∩ B , Ø. Then

ℓ(I) ≈ dist(I, E) ≤ |z − x| + δ(x) . r.

Also, by Lemma A.7 we have that QI ⊂ B(x̂,C r) for some uniform constant C > 1:
for every y ∈ QI we have

|y − x̂| . ℓ(QI) + dist(QI , I) + ℓ(I) + |z − x| + |x̂ − x| . r.

Proceeding as before, Lemma A.7 and the ADR property of E yield
∑

I∈WΣ,Q

Hn(B ∩ Σ ∩ I) .
∑

I∈WΣ,Q

σ(QI) . σ
( ⋃

I∈WΣ,Q

QI

)
. σ(B(x̂,C r) ∩ E) . rn.

�

Proof of Proposition A.2: Upper ADR bound. We are now ready to establish that
for every x ∈ ∂Ω⋆ and 0 < r . ℓ(Q0) we have that

(A.13) Hn
(
B(x, r) ∩ ∂Ω⋆

)
. rn

where the implicit constant only depends on dimension, the ADR constant of E

and the parameters m0 and C0.

Write B := B(x, r) and note first that

Hn(B ∩ ∂Ω⋆) ≤ Hn(B ∩ ∂Ω⋆ ∩ E) + Hn(B ∩ Σ).

For the first term in the right hand side, we may assume that there exists x′ ∈
B ∩ ∂Ω⋆ ∩ E in which case we have that B(x, r) ⊂ B(x′, 2 r) and therefore

Hn(B ∩ ∂Ω⋆ ∩ E) ≤ Hn
(
B(x′, 2 r) ∩ E

)
. rn,

by the ADR property of E since r . ℓ(Q0) . diam(E).

Let us then establish the bound for the portion corresponding to Σ. We use (A.6)
to write

Hn(B ∩ Σ) ≤
∑

I∈W⊥
Σ

Hn(B ∩ Σ ∩ I) +
∑

I∈W||
Σ

Hn(B ∩ Σ ∩ I) +
∑

I∈W⊤
Σ

Hn(B ∩ Σ ∩ I).

≤
∑

Q∈F̃B

∑

I∈WΣ,Q

Hn(B ∩ Σ ∩ I) +
∑

I∈W⊤
Σ

Hn(B ∩ Σ ∩ I) =: S 1 + S 2,
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where F̃B is the collection of cubes in Q ∈ F ∗ ∪ F ∗|| such that there is I ∈ WΣ,Q

with B ∩ Σ ∩ I , Ø. For S 1 we write

F̃B = F1 ∪ F2 :=
{

Q ∈ F̃B : ℓ(Q) < r
}
∪
{

Q ∈ F̃B : ℓ(Q) ≥ r
}
.

Suppose first that Q ∈ F1 ⊂ F̃B and pick z ∈ B ∩ Σ ∩ I with I ∈ WΣ,Q. Then, for
any y ∈ Q we have

|y − x| . ℓ(Q) + dist(Q, I) + ℓ(I) + |z − x| . r

and therefore Q ⊂ B∗ = B(x,C r). Then (A.12) gives
∑

Q∈F1

∑

I∈WΣ,Q

Hn(B ∩ Σ ∩ I) .
∑

Q∈F1

ℓ(Q)n
. Hn

( ⋃

Q∈F1

Q

)
≤ Hn(B∗ ∩ E) . rn,

where we have used that F1 ⊂ F ∪ F|| and each family is comprised of pairwise
disjoint sets. In the last estimate we have employed that E is ADR: note that
although B∗ is not centered at a point in E, we have that either B∗ ∩ E = Ø (in
which case the desired estimate is trivial) or B∗ ⊂ B(x′, 2 C r) for some x′ ∈ E (in
which case we can legitimately use the ADR condition).

We next see that the cardinality of F2 is uniformly bounded. Let Q1, Q2 ∈ F2

and assume, without loss of generality, that r ≤ ℓ(Q1) ≤ ℓ(Q2). For i = 1, 2 pick
zi ∈ B ∩ Σ ∩ Ii with Ii ∈ WΣ,Qi

. Then

ℓ(I2) ≈ dist(I2, E) ≤ |z2 − z1| + dist(z1, E) . r + ℓ(I1) ≤ ℓ(Q1) + ℓ(Q∗I1
) . ℓ(Q1)

and consequently

dist(Q2,Q1) . dist(Q∗I2
, I2) + ℓ(I2) + |z2 − z1| + ℓ(I1) + dist(Q∗I1

, I1) . ℓ(Q1).

Therefore, for any pair Q1, Q2 ∈ F2 we have that dist(Q1,Q2) . min{ℓ(Q1), ℓ(Q2)}
and, since the cubes in F2 are disjoint we clearly have that the cardinality of F2 is
uniformly bounded. Thus (A.12) easily gives the desired estimate

∑

Q∈F2

∑

I∈WΣ,Q

Hn(B ∩ Σ ∩ I) . sup
Q∈F2

∑

I∈WΣ,Q

Hn(B ∩ Σ ∩ I) . rn.

This and the corresponding estimate for F1 gives that S 1 . rn.

We next consider S 2. We first observe that #W⊤
Σ is uniformly bounded. Indeed

if I, I′ ∈ W⊤
Σ then Q∗I , Q∗I′ ∈ F⊤ and therefore ℓ(I) ≈ ℓ(Q∗I ) ≈ ℓ(Q0) ≈ ℓ(Q∗I′) ≈

ℓ(I′) and also dist(I, I′) . ℓ(Q0). This readily implies that #W⊤
Σ ≤ C. On the other

hand for every I ∈ W⊤
Σ we have that ℓ(I) ≈ ℓ(Q0) and, since 0 < r . ℓ(Q0), we

clearly have that Hn(B ∩ Σ ∩ I) . rn. Thus,

S 2 =
∑

I∈W⊤
Σ

Hn(B ∩ Σ ∩ I) . sup
I∈W⊤

Σ

Hn(B ∩ Σ ∩ I) . rn.

This completes the proof of the upper ADR condition. �

The following results are adaptations of some auxiliary lemmas from [HM2].

Proposition A.14. Suppose that E is a closed ADR set. Fix Q0 ∈ D, and let

F ⊂ DQ0 be a disjoint family. Then

(A.15) Q0 \
(
∪FQ j

)
⊂ E ∩ ∂ΩF ,Q0

⊂ Q0 \
(
∪F int

(
Q j

))
.
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Proof. We first prove the right hand containment. Suppose that x ∈ E ∩ ∂ΩF ,Q0
.

Then there is a sequence Xk ∈ ΩF ,Q0
, with Xk → x. By definition ofΩF ,Q0

, each Xk

is contained in I∗k for some Ik ∈ WF ,Q0
(cf. (3.18)-(3.19)), so that ℓ(Ik) ≈ δ(Xk)→

0. Moreover, again by definition, each Ik belongs to some WQk , Qk ∈ DF ,Q0
so

that,

dist(Qk, Ik) ≤ C0 ℓ(Q
k) ≈ C0 ℓ(Ik)→ 0.

Consequently, dist(Qk, x) → 0. Since each Qk ⊂ Q0, we have x ∈ Q0. On the
other hand, if x ∈ int(Q j), for some Q j ∈ F , then there is an ǫ > 0 such that
dist(x,Q) > ǫ for every Q ∈ DF ,Q0

with ℓ(Q) ≪ ǫ, because no Q ∈ DF ,Q0
can be

contained in any Q j. Since this cannot happen if ℓ(Qk) + dist(Qk, x)→ 0, the right
hand containment is established.

Now suppose that x ∈ Q0 \ (∪FQ j). By definition, if x ∈ Q ∈ DQ0 , then

Q ∈ DF ,Q0
. Therefore, we may choose a sequence {Qk} ⊂ DF ,Q0

shrinking to x,
whence there exist Ik ∈ WQk ⊂ WF ,Q0

(where we are using thatWQk , Ø) with
dist(Ik, x)→ 0. The left hand containment now follows. �

Lemma A.16. Suppose that E is a closed ADR set. Let F ⊂ D be a pairwise

disjoint family. Then for every Q ⊆ Q j ∈ F , there is a ball B′ ⊂ Rn+1 \ ΩF ,

centered at E, with radius r′ ≈ ℓ(Q)/C0, and ∆′ := B′ ∩ E ⊂ Q.

Proof. Recall that there exist BQ := B(xQ, r) and ∆Q := BQ ∩ ∂Ω ⊂ Q where
r ≈ ℓ(Q). We now set

B′ = B
(

xQ, (M C0)−1r
)
,

where M is a sufficiently large number to be chosen momentarily. We need only
verify that B′∩ΩF = Ø. Suppose not. Then by definition ofΩF , there is a Whitney
cube I ∈ WF (see (3.18)) such that I∗ meets B′. Since I∗ meets B′, there is a point
YI ∈ I∗ ∩ B′ such that

ℓ(I) ≈ dist(I∗, ∂Ω) ≤ |YI − xQ| ≤ r/(M C0) ≈ ℓ(Q)/(M C0).

On the other hand, since I ∈ WF , there is a QI ∈ DF (hence QI is not contained
in Q j) with ℓ(I) ≈ ℓ(QI), and dist(QI ,YI) ≈ dist(QI , I) ≤ C0 ℓ(I) . ℓ(Q)/M. Then
by the triangle inequality,

|y − xQ| . ℓ(Q)/M , ∀y ∈ QI .

Thus, if M is chosen large enough, QI ⊂ ∆Q ⊂ Q ⊂ Q j, a contradiction. �

Lemma A.17. Suppose that E is a closed ADR set. There exists 0 < c < 1 de-

pending only in dimension, the ADR constant of E and m0, C0 such that for every

Q0 ∈ D, for every disjoint family F ⊂ DQ0 , for every surface ball ∆⋆ = ∆⋆(x, r) =
B(x, r) ∩ ∂ΩF ,Q0

with x ∈ ∂ΩF ,Q0
and 0 < r . ℓ(Q0) there exists X∆⋆ such that

B(X∆⋆ , c r) ⊂ B(x, r) ∩ΩF ,Q0
.

This result says that the open set ΩF ,Q0
satisfies the (interior) corkscrew condi-

tion.

Proof. We fix Q0 ∈ D, and a pairwise disjoint family {Q j} = F ⊂ DQ0 . Set

∆⋆ := ∆⋆(x, r) := B(x, r) ∩ ∂ΩF ,Q0
,

with r . ℓ(Q0) and x ∈ ∂ΩF ,Q0
.
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We suppose first that x ∈ ∂ΩF ,Q0
∩ E. Let M ≥ 1 large enough to be chosen.

Following the proof of Proposition A.14 we can find k ≥ 1 such that dist(Qk, x) +
ℓ(Qk) < r/M2 with Qk ∈ DF ,Q0

. In particular, we can pick x′ ∈ Qk such that

|x − x′| < r/M2. We now take an ancestor of Qk, we call it Q, with the property
that ℓ(Q) ≈ r/M < ℓ(Q0). Clearly Qk ∈ DF ,Q0

implies that Q ∈ DF ,Q0
. Let us pick

IQ ∈ WQ (sinceWQ is not empty) and write X(IQ) for the center of IQ.

Set X∆⋆ = X(IQ) and we shall see that B(X∆⋆ , r/M
2) ⊂ B(x, r) ∩ ΩF ,Q0

pro-
vided M is large enough. First of all, by construction IQ ⊂ ΩF ,Q0

and therefore

B(X∆⋆ , r/M
2) ⊂ ΩF ,Q0

since r/M2 ≈ ℓ(Q)/M ≤ 2m0 ℓ(IQ)/M < ℓ(IQ)/4 if M is

large. On the other hand for every Y ∈ B(X∆⋆ , r/M
2) we have

|Y − x| . |Y − X∆⋆ | + ℓ(IQ) + dist(IQ,Q) + ℓ(Q) + |x′ − x|

.
r

M2
+ (2m0 +C0) ℓ(Q) .

r

M2
+

(2m0 +C0) r

M
< r,

provided M is taken large enough depending on dimension, ADR, m0 and C0. This
completes the proof of the case x ∈ ∂ΩF ,Q0

∩ E.

Next, we suppose that x ∈ ∂ΩF ,Q0
\ E, where as above ∆⋆ := ∆⋆(x, r). Then by

definition of the sawtooth region, x lies on a face of a fattened Whitney cube I∗ =
(1+τ)I, with I ∈ WQ, for some Q ∈ DF ,Q0

. If r . ℓ(I), then trivially there is a point
X⋆ ∈ I∗ such that B(X⋆, cr) ⊂ B(x, r) ∩ int(I∗) ⊂ B(x, r) ∩ ΩF ,Q0

. This X⋆ is then
a Corkscrew point for ∆⋆. On the other hand, if ℓ(I) < r/M, with M sufficiently
large to be chosen momentarily, then there is a Q′ ∈ DF ,Q0

, with ℓ(Q′) ≈ r/M, and

Q ⊆ Q′. Now fix IQ′ ∈ WQ′ and set X∆⋆ = X(IQ′). We see that B(X∆⋆ , r/M
2) ⊂

B(x, r) ∩ ΩF ,Q0
provided M is large enough. By construction IQ′ ⊂ ΩF ,Q0

and

therefore B(X∆⋆ , r/M
2) ⊂ ΩF ,Q0

since r/M2 ≈ ℓ(Q′)/M ≤ 2m0 ℓ(IQ′)/M < ℓ(IQ)/4

provided M is large. On the other hand for every Y ∈ B(X∆⋆ , r/M
2) we have

|Y − x| . |Y − X∆⋆ | + ℓ(IQ′) + dist(IQ′ ,Q
′) + ℓ(Q′) + ℓ(Q) + dist(Q, I) + ℓ(I)

.
r

M2
+ (2m0 +C0) (ℓ(Q′) + ℓ(I)) .

r

M2
+

(2m0 +C0) r

M
< r,

if we take M large enough depending on dimension, ADR, m0 and C0. �

Proof of Proposition A.2: Lower ADR bound. We are now ready to establish that
for every x ∈ ∂Ω⋆ and 0 < r . ℓ(Q0) we have that

(A.18) Hn
(
B(x, r) ∩ ∂Ω⋆

)
& rn

where the implicit constant only depends on n, the ADR constant of E and the
parameters m0 and C0.

Write B := B(x, r) and ∆⋆ = ∆⋆(x, r) := B∩ ∂Ω⋆. We consider two main cases.
As usual, M denotes a sufficiently large number to be chosen.

Case 1: δ(x) ≥ r/(M C0). In this case, for some J with int(J∗) ⊂ Ω⋆, we have that
x lies on a subset F of a (closed) face of J∗, satisfying Hn(F) & (r/(M C0))n, and
F ⊂ ∂Ω⋆. Thus, Hn(B ∩ ∂Ω⋆) ≥ Hn(B ∩ F) & (r/(M C0))n, as desired.

Case 2: δ(x) < r/(M C0). In this case, we have that dist(x,Q0) . r/M. Indeed, if
x ∈ E ∩ ∂Ω⋆, then by Proposition A.14, x ∈ Q0, so that dist(x,Q0) = 0. Otherwise,
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there is some cube Q ∈ DF ,Q0
such that x lies on the face of a fattened Whitney

cube I∗, with I ∈ W∗
Q, and ℓ(Q) ≈ ℓ(I) ≈ δ(x) < r/(M C0). Thus,

dist(x,Q0) . dist(I,Q) ≤ C0 ℓ(Q) . r/M.

Consequently, we may choose x̂ ∈ Q0 such that |x − x̂| . r/M. Fix now Q̂ ∈ DQ0

with x̂ ∈ Q̂ and ℓ(Q̂) ≈ r/M. Then for M chosen large enough we have that

Q̂ ⊂ B(x̂, r/
√

M) ⊂ B(x, r). We now consider two sub-cases.

Sub-case 2a: B(x̂, r/
√

M) meets a Q j ∈ F with ℓ(Q j) ≥ r/M. Then in particular,

there is a Q ⊆ Q j, with ℓ(Q) ≈ r/M, and Q ⊂ B(x̂, 2r/
√

M). By Lemma A.16,

there is a ball B′ ⊂ Rn+1 \ Ω⋆, with radius r′ ≈ ℓ(Q)/C0 ≈ r/(C0 M), such that
B′ ∩ E ⊂ Q, and thus also B′ ⊂ B (for M large enough). On the other hand,
we can apply Lemma A.17 to find B′′ = B(X∆⋆ , c r) ⊂ B(x, r) ∩ Ω⋆. Therefore,
by the isoperimetric inequality and the structure theorem for sets of locally finite
perimeter (cf. [EG], pp. 190 and 205, resp.) we have Hn(∆⋆) & cC0rn (note
that ∂Ω⋆ is of local finite perimeter since we have already shown the upper ADR
property).

Sub-case 2b: there is no Q j as in sub-case 2a. Thus, if Q j ∈ F meets B(x̂, r/
√

M),
then ℓ(Q j) ≤ r/M. Since x̂ ∈ Q0, there is a surface ball

(A.19) ∆1 := ∆(x1, cr/
√

M) ⊂ Q0 ∩ B(x̂, r/
√

M) ⊂ Q0 ∩ B.

Let F1 denote the collection of those Q j ∈ F which meet ∆1. We then have the
covering

∆1 ⊂
(
∪F1

Q j

)
∪
(
∆1 \ (∪F1

Q j)
)
.

If

(A.20) σ

(
1

2
∆1 \ (∪F1

Q j)

)
≥ 1

2
σ

(
1

2
∆1

)
≈ rn,

then we are done, since ∆1 \ (∪F1
Q j) ⊂ (Q0 \ (∪FQ j)) ∩ B ⊂ ∆⋆, by Proposition

A.14.

Otherwise, if (A.20) fails, then

(A.21)
∑

Q j∈F ′1

σ(Q j) & rn,

where F ′1 is the family of cubes Q j ∈ F1 meeting 1
2∆1.

We apply Lemma A.16 with Q = Q j and there is a ball B j = B(x j, r j) ⊂ Rn+1 \
ΩF ⊂ Rn+1 \ Ω⋆ with x j ∈ E (indeed x j is the “center” of Q j), r j ≈ ℓ(Q j)/C0 and

B j ∩ E ⊂ Q j. Also, the dyadic parent Q̃ j of Q j belongs to DF ,Q0
. Thus, we can

find I j ∈ WQ̃ j
so that I j ⊂ Ω⋆. If we write X(I j) for the center of I j we have

|x j − X(I j)| . ℓ(Q̃ j) + dist(Q̃ j, I j) + ℓ(I j) . (2m0 +C0) ℓ(Q j).

Note that X(I j) ∈ I j ⊂ Ω⋆ and x j ∈ Rn+1 \ Ω⋆. Thus we can find x⋆j ∈ ∂Ω⋆ in the

segment that joins x j and X(I j). We now consider B⋆j = B(x⋆j ,C (2m0 + C0) ℓ(Q j))

which is a ball centered at ∂Ω⋆. We first see that B j ⊂ B⋆j \ Ω⋆. We already know

that B j ⊂ Rn+1 \Ω⋆ and on the other hand if y ∈ B j we have

|y − x⋆j | ≤ |y − x j| + |x j − x⋆j | < r j + |x j − X(I j)| . (2m0 +C0) ℓ(Q j),
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and therefore B j ⊂ B⋆j . On the other hand, we can also show that B(X(I j), ℓ(I j)/4) ⊂
B⋆j ∩ Ω⋆. Indeed, B(X(I j), ℓ(I j)/4) ⊂ I j ⊂ Ω⋆ and for every y ∈ B(X(I j), ℓ(I j)/4)

we have

|y − x⋆j | ≤ |y − X(I j)| + |X(I j) − x⋆j | < ℓ(I j) + |X(I j) − x j| . (2m0 +C0) ℓ(Q j)

which yields that B(X(I j), ℓ(I j)/4) ⊂ B⋆j . Therefore, by the isoperimetric inequality

and the structure theorem for sets of locally finite perimeter (cf. [EG], pp. 190 and
205, resp.) we have

(A.22) Hn(B⋆j ∩ ∂Ω⋆) & cC0,m0ℓ(Q j)
n ≈ σ(Q j).

(note that ∂Ω⋆ is of local finite perimeter since we have already shown the upper
ADR property).

On the other hand, if we write B̂Q j
= B(xQ j

,C1 ℓ(Q j)) such that Q j ⊂ B̂Q j
∩ E

(see (1.17)) we can find N = N(m0,C0) such that B⋆j ⊂ N B̂Q j
. Indeed if Y ∈ B⋆j

we have

(A.23) |Y − xQ j
| ≤ |Y − x⋆j | + |x⋆j − x j| ≤ C (2m0 +C0)ℓ(Q j) + |X(I j) − x j|

≤ C′ (2m0 +C0)ℓ(Q j) < N C1 ℓ(Q j),

where we have used that x j = xQ j
.

From (A.21) it follows that we can find a finite family F2 ⊂ F ′1 such that

(A.24)
∑

Q j∈F2

σ(Q j) ≥
1

2

∑

Q j∈F ′1

σ(Q j) & rn.

From F2, following a typical covering argument, we can now take a subcollection
F3 so that the family {N B̂Q j

}Q j∈F3
is disjoint and also satisfies that if Q j ∈ F2 \ F3

then there exists Qk ∈ F3 such that r(B̂Qk
) ≥ r(B̂Q j

) and N B̂Q j
meets N B̂Qk

. Then
it is trivial to see that⋃

Q j∈F2

Q j ⊂
⋃

Q j∈F2

B̂Q j
⊂
⋃

Q j∈F3

(2 N + 1)B̂Q j

Notice that the fact that the family {N B̂Q j
}Q j∈F3

is comprised of pairwise disjoint

balls yields that the balls {B⋆j }Q j∈F3
are also pairwise disjoint. Thus the previous

considerations and (A.22) give

Hn
( ⋃

Q j∈F3

B⋆j ∩ ∂Ω⋆
)
=
∑

Q j∈F3

Hn(B⋆j ∩ ∂Ω⋆) &
∑

Q j∈F3

σ(Q j)

& σ
( ⋃

Q j∈F3

(2 N + 1) B̂Q j
∩ E

)
≥ σ

( ⋃

Q j∈F2

Q j

)
=
∑

Q j∈F2

σ(Q j) & rn.

To complete the proof given Q j ∈ F3 ⊂ F ′1 ⊂ F we have that Q j meets 1
2∆1 and

we can pick z j belonging to both sets. Notice that by (A.19) in the present subcase
we must have ℓ(Q j) ≤ r/M. This, (A.19) and (A.23) imply that for every Y ∈ B⋆j
we have

|Y− x| ≤ |Y− xQ j
|+ |xQ j

−z j|+ |z j− x1|+ |x1− x̂|+ |x̂− x| . r√
M
+

r

M
.

r√
M
< r
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provided M is large enough, and therefore B⋆j ⊂ B. This in turn gives as desired

that

Hn(B ∩ ∂Ω⋆) ≥ Hn
( ⋃

Q j∈F3

B⋆j ∩ ∂Ω⋆
)
& rn.

�
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(French) [Pieces of Lipschitz graphs and singular integrals on a surface] Rev. Mat.

Iberoamericana 4 (1988), no. 1, 73114. 7

[D2] G. David, Wavelets and singular integrals on curves and surfaces. Lecture Notes in

Mathematics, 1465. Springer-Verlag, Berlin, 1991. 7

[DJ] G. David and D. Jerison, Lipschitz approximation to hypersurfaces, harmonic measure,

and singular integrals, Indiana Univ. Math. J. 39 (1990), no. 3, 831–845. 22, 29

[DS1] G. David and S. Semmes, Singular integrals and rectifiable sets in Rn: Beyond Lipschitz

graphs, Asterisque 193 (1991). 4, 6, 7, 8, 9

[DS2] G. David and S. Semmes, Analysis of and on Uniformly Rectifiable Sets, Mathematical

Monographs and Surveys 38, AMS 1993. 4, 7, 8, 9

[EG] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, Studies

in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. 15, 44, 45

[FS] C. Fefferman, E.M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), no.

3-4, 137–193. 4

[Gar] J. Garnett, Bounded Analytic Functions, Academic Press, San Diego, 1981. 4, 24



UNIFORM RECTIFIABILITY, CARLESON MEASURE ESTIMATES, AND APPROXIMATION 47

[HKMP] S. Hofmann, C. Kenig, S. Mayboroda, and J. Pipher, Square function/Non-tangential

maximal function estimates and the Dirichlet problem for non-symmetric elliptic oper-

ators, preprint 2012. arXiv:1202.2405 5, 25

[HL] S. Hofmann and J.L. Lewis, The Dirichlet problem for parabolic operators with singular

drift terms, Mem. Amer. Math. Soc. 151 (2001), no. 719. 18

[HM1] S. Hofmann and J.M. Martell, A∞ estimates via extrapolation of Carleson measures and

applications to divergence form elliptic operators, Trans. Amer. Math. Soc. 364 (2012),

no. 1, 65–101 18

[HM2] S. Hofmann and J.M. Martell, Uniform rectifiability and harmonic measure I: Uniform

rectifiability implies Poisson kernels in Lp, Ann. Sci. École Norm. Sup., to appear. 5, 11,
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JoséMarı́aMartell, Instituto de CienciasMatemáticas CSIC-UAM-UC3M-UCM, Consejo Su-
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