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A voided crossings influence spectra and intramolecular redistribution of energy. A semiclassical theory 

of these avoided crossings shows that when primitive semiclassical eigenvalues are plotted vs a parameter 

in the Hamiltonian they cross instead of avoiding each other. The trajectories for each are connected by a 

classically forbidden path. To obtain the avoided crossing behavior, a uniform semiclassical theory of 

avoided crossings is presented in this article for the case where that behavior is generated by a classical 

resonance. A low order perturbation theory expression is used as the basis for a functional form for the 

treatment. The parameters in the expression are evaluated from canonical invariants (phase integrals) 

obtained from classical trajectory data. The results are compared with quantum mechanical results for 

the splitting, and reasonable agreement is obtained. Other advantages of the uniform method are 

described. 

I. INTRODUCTION 

Potential energy curves (or surfaces) that approach each 

other closely in a narrow region without intersecting are a 

familiar feature in the description of collision processes with

in the Born-Oppenheimer approximation. The existence of 

such "avoided crossings" (or "anticrossings") for a certain 

parameter (e.g., the internuclear distance in atom-atom 

scattering) signals regions where couplings neglected in the 

Born-Oppenheimer approximation become appreciable. 1 

The behavior of a variety of atomic and molecular processes, 

such as charge transfer/ mutual neutralization,3 and predis

sociation4 are dominated by these regions. 

Recently, avoided crossings have received additional 

attention in connection with the study of coupled anhar

monic vibrations. s-
14 In that context, avoided crossings oc

cur in plots of eigenvalues of the relevant Hamiltonian vs a 

perturbation parameter coupling the vibrations. As noted 

elsewhere, there is a connection between these avoided cross

ings and the existence of an "isolated resonance" in the clas

sical mechanics of anharmonic systems, in that an isolated 

resonance can, in quantum mechanics, produce an isolated 

avoided crossing. 5•
7

· 
1

1.1
4 Whether it produces a large splitting 

or not depends on the "width" of the resonance zone, e.g., 

whether that classical width in action-variable space is large 

enough to contain the pair of quantum states, as we shall see. 

Isolated avoided crossings are of interest for several reasons: 

They produce local changes in the spectrum, extensive 

changes in the wave functions, and in the energy distribution 

among participating oscillators. When their widths overlap 

sufficiently, they can lead to the onset of a type of "chaos" in 

the wave functions and in the spectra, 7• 
1

1.
14 just as "overlap

ping" classical resonances are implicated in producing, in 

Chirikov theory, 15 the onset of classical chaos. This distinc

tion between overlapping and isolated avoided crossings 

(namely, that only the former has been related to chaos) is 

sometimes overlooked, for example. 16 

The study of classical chaos (associated with irregular 

spectra) and classical quasiperiodicity (associated with regu

lar spectra) in anharmonically coupled oscillators has been 

of considerable interest in recent years (cf. Refs. 11, 15, and 

17-22 for reviews). The corresponding study in quantum 

mechanics of coupled oscillators, the sources of regular pro

gressions in the spectrum, and of irregularities, of "regular" 

contour patterns of plots of wave functions vs highly "irreg

ular" ones, is of similar interest. The present article is part of 

a series aimed at providing a semiclassical theory of "quasi

periodic" anharmonically coupled vibrations in molecules 

and in the present case, of their avoided crossings. 

Recently, Noid eta/. 12 investigated quanta!, classical, 

and semiclassical behavior of two anharmonically coupled 

oscillators at an isolated avoided crossing. In the quantum 

mechanics, the avoided crossing arose from a term in the 

Hamiltonian which produced a classical resonance. How

ever, the "primitive semiclassical" eigenvalue plots, ob

tained by quantizing the action integrals of the classical tra

jectories, passed through the intersection instead of avoiding 

each other. The splitting is due, thereby, to a classically for

bidden process. To obtain an "avoidance," a uniform semi

classical approximation, alluded to there, is desirable and is 

given in the present article. 

The outline of the present article is as follows: to moti

vate a functional form chosen for the present uniform ap

proximation we first derive in Sec. II a low-order classical 

perturbation expression for the energy that takes into ac

count the classical internal resonance, Eq. (2.27). We then 

show in Sec. III how to evaluate the parameters in this equa

tion using canonical invariants (phase integrals) obtained 

from classical trajectory data. The uniform semiclassical 

quantization of this classical Hamiltonian demonstrates 
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how a classical resonance produces an avoided crossing. The 

expressions are given in Sec. IV. Remarks on the relation 

between widths of classical resonances and the splittings of 

avoided crossings are given in Sec. V. In Sec. VI numerical 

results are given on splittings, and primitive and uniform 

semiclassical eigenvalues are compared. A discussion and 

concluding remarks are given in Sees. VII and VIII, respec

tively. 

II. CONSTRUCTION OF THE RESONANCE 

HAMIL TON IAN 

The semiclassical study of coupled oscillator systems 

has proceeded along two different lines. One of these is the 

numerical evaluation of phase integrals ~pdq using classical 

trajectories. 11 ·23 The second consists of attempts to express 

the Hamiltonian in terms of good, or nearly so, action varia

bles using perturbation or perturbation-iteration meth

ods.11·18·24·2s An advantage ofthis second method is that the 

resulting analytic form may reveal information about the 

dependence of energy levels on the various parameters of the 

problem. (One disadvantage is that it diverges. 26) In the pres

ent section, we use the perturbative method to obtain an 

analytical functional form [Eq. (2.27)], to treat the avoided 

crossing behavior. 

To illustrate this procedure, we write the Hamiltonian 

of two coupled harmonic oscillators considered in Ref. 12 as 

(2.1) 

where I= (Ix, Iy) are action-like variables, canonically con

jugate to the angles q; x, (/Jy. These variables are related to the 

customary action-angle variables (J;, w;) (i = x,y) by 

I; = J;I21T and ({J; = 21TW;. The unperturbed Hamiltonian is 

H0 = ro
0 ·1 = w~Ix + w~IY, (2.2) 

where ro0 = (w~, w~) are the unperturbed angular frequen

cies. € V is a nonlinear coupling. Later, we shall designate 

these unperturbed I 'sand q/s appearing in Eqs. (2.1) and (2.2) 

by 0 superscripts. Progressively better action-angle variables 

(no superscript labels) can be constructed by a sequence of 

canonical transformations24'25'27 and the resulting Hamil

tonian can be quantized by semiclassical quantization rules. 

The construction of successive canonical transformations 

becomes very inefficient, or indeed may fail, when the per

turbed frequencies W; = aH /ai; satisfy a "resonance condi
tion" 

(2.3) 
I=X,y 

with I m; J denoting integers. (The exact w;'s in a quasiperio

dic motion depend on the action variables 1.) Small, or van

ishing, denominators containing the resonance condition 

will occur in the explicit construction and thus cause diffi

culty (the small divisor problem26·28) in the perturbation the

ory. 

To treat a Hamiltonian involving an isolated reso

nance29 it is convenient to use the double Fourier series of the 

Hamiltonian in the two angles q; x , q; Y, 

H = LHlx,t)/x,ly)exp[i(/xcpx + ly(/Jy)]. (2.4) 
(}(, ly 

Near a resonance, the terms with (lx, ly) that fulfill the reso

nance condition (2.3) have the slowest variation with time. 

Under such conditions, one may restrict attention to H 0 and 

to that part of €Vin Eq. (2.1) that depends on the angles in the 

combination 

(2.5) 

with (mx, my) obtained from Eq. (2.3). The resulting Hamil

tonian, known as the "resonance Hamil toni an," H R , 
1 s.20·29 is 

given explicitly as30 

N= oo 

HR = L HN(Ix, Iy)exp iNa, 
N=- oo 

where H N is the Fourier coefficient 

rz,. rz,-
nN = (21T)-

2J
0 

Jo dcpx dcpy 

X exp(- iNa)H (Ix, IY, q;x, ({Jy)· 

(2.6) 

(2.7) 

This method of secular perturbations was applied by Born in 

his studies in old quantum theoryY In this procedure, one 

makes a transformation to "fast" and "slow" phases (a is the 

slow phase), and eliminates the fast phase by averaging over 

it. Consequently, the action conjugate to the fast phase be

comes a constant of the motion. 

We apply this method to the avoided crossing problem 

studied by Noid et a/. 12 They examined the energy levels of 

two coupled harmonic oscillators using the Hamiltonian 

H = ~(p; + p~ + w~'x 2 + w~'y 2 ) 

- a(x3 + y3) + A.xzyz - bxyJ (2.8) 
. h 0 0 wtt wx = 3wY = 3. The energy levels were computed quan-

tum mechanically and semiclassically as a function of A. at 

fixed a and b. Because of the zeroth order commensurability 

of the unperturbed frequencies w~ and w~, a nearly exact 3:1 

resonance occured for some (Ix, Iy) interval at relatively 

small A.. We examine the energy levels of this Hamiltonian 

using its resonance Hamiltonian HR. 

. H can be expressed in terms of the action-angle-like variables (I0 ({J;) of the unperturbed problem using the transforma-
tion 

X= (2Ixlw~)
112

Sin (/Jx, Px = (2Ixw~) 112 cos (/Jx, 

and similarly for y. H becomes 

H = 3Ix + IY - : [ (2IJ3)
312

( - sin 3q;x + 3 sin (/Jx) + (2IY )312( - sin 3q;Y + 3 sin (/Jy)] 

~ (/.J;)
112

sin (/Jx(- sin 3q;Y + 3 sin ({Jy) + ~ IJy(l- cos 2q;y)(1- cos 2q;x)· 

J. Chern. Phys., Vol. 79, No.9, 1 November 1983 
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The commensurability or "resonance condition" 

wx = 3wY (2.10) 

for some A and I (thew's are the actual frequencies) indicates 

that one should make a canonical transformation31 to a set of 

slow and fast angles. We use the generating function 

Fz(rpx, (/Jy;Ja, I)= (rpx- 3rpy + 1T)fa/2 + frpy (2.11) 

and find from 

a= aFzlaJa, IX= aF2/arpx, etc., 

2a = rpx - 3rpy + 1T, e = rpy, 

fa = 2/x, J = 3/x + Jy. (2.12) 

The! and the 1T in Eq. (2.11) are introduced so as to obtain the 

+ cos 2a in Eq. (2.27) later, without requiring a second 

transformation. 

The Fourier components HN associated with the slow 

phase a can be found from Eq. (2.6) as 

HN = (27T)- 2 f1T f1T drpx drpy H(Jx, JY' rpx, (/Jy) 

Xexp[- iN(rpx- 3rpY + JT)/2]. (2.13) 

One obtains 

HN = (31x + IY + ~ Ixlv )oN,o 

- _b_(JJy 3
)
112(0N -2 +ONz). 

4~ , ' 
(2.14) 

The resonance Hamiltonian is, from Eq. (2.7), 

N= oo 

HR = I HN expiNa 
N= --oo 

_b_ (IJ ~) 1 12cos 2a. 

2~ 
(2.15) 

The resulting expression does not contain any terms 

due to the other perturbation - a(x
3 + y 3

), and without 

them the avoided crossings would occur only at A = 0. The 

effect of that particular perturbation, calculated by second 

order canonical perturbation theory, 27 is E !2): 

15 2 ( J2 [2 ) E (2)(1) = - _a_ __x _Y • 

4 O' + O' 
{))X {))y 

(2.16) 

Thus, a resonance Hamiltonian that includes the effects of 

all three perturbations to their lowest orders is 

HR = 3/x + fy + .i_JJY- _b_ (JJ~)I/Z 
3 2~ 

15a
2 

( I~ 2 ) xcos2a- -- -- +1 . 
4 81 y 

(2.17) 

The above deviation of Eq. (2.17) is somewhat piece

meal but with some physical insight. A systematic but more 

cumbersome derivation of the same expression is obtained 

using Birkhoff-Gustavson perturbation theory. 25
•
32 That 

formalism collects various perturbations in powers of co

ordinates and momenta rather than in powers of a single 

perturbation parameter and is therefore suited to our prob

lem of multiple perturbations. It is given and applied in Ap

pendix A. 

2,---------------------------, 

~I ~0.5 0 05 

FIG. I. Typical lx vs cpx plots. Curves (a) and (e) are rotational, (d) is libra~ 

tiona!, and (b) and (c) are the two branches of the separatrix. 

One point is worth noting: The Birkhoff-Gustavson 

derivation ofEq. (2.17) reveals that thelx, IY appearing there 

are no longer the original variables I~, I~ but are related to 

them by the successive canonical transformations. From 

Appendix A, Eq. (A 18), we see that the first generating func

tion of this succession of generating functions, relating old 

and new Cartesian variables, is 

2 a 2 o- 5/2 3 2 

F2(q, P) = I Pkqk - - I wk (2P k + 3Pkqk) (2.18) 
k~l 3 k=l 

which, to lowest order in a, gives the relation between the 

"old" and the "new" action-angle variables as 

lk =I~-(:~ r
12

a(n? 12 sin 3 rp~, 
(2.19) 

tan rpk =tan rp ~ - w~-
512

(21~ )112a(2 + sin
2 rp ~)sec rp ~. 

Consequently, I~ vs rp ~ graphs, obtained from trajectories, 

are distorted from the Ix vs rpx curves obtained from pertur

bation theory. This difference can be seen, for example, by 

examining symmetric separatrix in the present Fig. 1 and 

comparing it with Fig. 9 of Ref. 12. 

However, since the phase integral ¢p·dq is a canonical 

invariant, 33 we have 

(2.20) 

where the cyclic integral follows some path C. In the first 

integral we choose C to bey = constant, and hence in the 

second, rp ~ = constant, then in the third we deform the path 

(without cutting new caustics of the trajectory when they are 

not too distorted by the perturbation) so that Cis along rpY 

=constant. We have 

¢pxdx = ¢J~drp ~ = ¢Jxdrpx = ¢/ada, (2.21) 

where in the last equality we used Eq. (2.12). 34 We make use 

of this result in the next section, where we evaluate ¢pxdx or 

¢I~drp ~ from trajectory data and introduce Eq. (2.28) be

low for Ia into ¢/ada. In all our subsequent work, we use 

J. Chern. Phys., Vol. 79, No. 9, 1 November 1983 
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canonical invariants such as Eq. (2.20), rather than individ

ual points on trajectories, to evaluate parameters, since the 

actions and angles we are using are distorted from the zeroth 

order actions by the perturbations, as seen in the canonical 

transformation formulas. 

In terms of I and I a the resonance Hamiltonian is 

HR =I+ .Ua(U- 3/a)/12- .!!._ (IJ;/3)
112

cos 2a 
2 

- 15a2 (/2- 3// + .2.._[2 + I! ) (2.22) 
4 a 4 a ll4 ' 

where Ix and ly are given by Eq. (2.12). 

In resonant Hamiltonians such as Eq. (2.22) it is cus

tomary15 (e.g., Ref. 35) to replace the coefficient of the tri

gonometric term by its value at the resonance center. In the 

present case, we can show (see Appendix B) that the values of 

lx and IY at the resonant center are their average values 

lx, IY between the pair of states that undergo the avoided 

crossing. Using these (constant) average actions, replacing 

H R by E, and defining 

/3= 2./(U + 135a2)(4A + 135a2)- 1, (2.23) 
3 

q = 4b (lJ;/3)112(4A + 135a2)- 1, (2.24) 

C= 16(/- 15a2/ 2/4)(4A + 135a2)- 1, (2.25) 

D = 16(4A + 135a2)- 1, (2.26) 

Eq. (2.22) can be rearranged to give 

I! - 2{3/a + 2q cos 2a +DE-C= 0 (2.27) 

which has two solutions at any energy E, 

/~· 2 ' = /3 ± [ C + /3 2
- DE- 2q cos 2a] 112

• (2.28) 

In Eqs. (2.23)-(2.26) a term I!/324 in Eq. (2.22), which is 

729 times smaller than the 91!/4, was neglected. This neg

lect does not affect the functional form of Eq. (2.27). 

Instead of using the perturbation equations (2.23)

(2.26) to evaluate the parameters in Eq. (2.27) we show in the 

next section how they may be evaluated directly from the 

classical trajectory data. Some comparison with the pertur

bation expressions is given later. 

We shall later need integrals of Ia over a 36
: 

i1Tlada = /3rr ± 2~a + 2qE[ ~4q/(a + 2q)] (2.29) 

when a - 2q > 0. The function E is the complete elliptic inte

gral of the second kind and 

a=C-DE+/3 2
• (2.30) 

Ill. EVALUATION OF PARAMETERS IN EQ. (2.27) FROM 

CLASSICAL TRAJECTORY DATA 

In this section, we first consider the primitive semiclas

sical quantization (Sec. A), and then evaluate the parameters 

in Eq. (2.27) in Sec. B. 

A. Primitive semiclassical quantization 

We begin by noting that since HR is independent of(}, 

its canonically conjugate momentum I is a constant of the 

motion. Its semiclassical eigenvalues are 

I= 3/x + ly = n + 2, (3.1) 

where we have used units of li = 1 and introduced an integer 

n given by 

n = 3nx + ny. (3.2) 

The quantum number n is actually the principal quantum 

number for the motion. It can be evaluated either by evaluat

ing the phase integrals ~pxdx and ~pydy separately to ob

tain nx and ny or by integrating the phase along the trajec

tory over one or more near cycles and using the 

"trajectory-closure" methods (in which one joins along a 

surface of section the end points of a near-cycle trajectory). 
37 

We now have 

(3.3) 

trajectory 

The 2 in Eqs. (3.1) and (3.3) arises from a sum of the constants 

in 3(nx +~)and (ny +~).It can also be seen to arise by noting 

that a trajectory touches the caustics eight times during the 

near cycle-six times because of the three x cycles and two 

times because of they cycle in the overall near cycle ( cf. Fig. 6 

of Ref. 12). Since each time the trajectory touches a caustic, 

there is a loss of phase in the primitive semiclassical wave 

function by rr/2, the total loss of phase due to touching the 

caustics in 4rr. This loss corresponds to the 2 added to the 

main quantum number n in Eq. (3.3) when the condition of 

single valuedness of the semiclassical wave function is im

posed. 

The primitive semiclassical quantization of the a coor

dinate is given, using Eq. (2.12), as Eq. (3.4) when a has the 

full (0, rr) range. 38 

i1Tlada = J~ }xd(/Jx = 2rr(nx + !), (3.4) 

where the lx -q;x phase integral has been evaluated at 

(/Jy = 0. 

Using Eqs. (2.28) and (3.4) it can be shown (Appendix C) 

that the two primitive semiclassical eigenvalues cross, rather 

than avoid each other. 

B. Evaluation of the parameters In the resonance 

equation (2.27) from trajectory data 

We consider a series of trajectory calculations per

formed at a given I. To find qat the crossing point (or indeed 

any A ) and at the given/, the separatrix of the motion at that 

A and I will be used. The separatrix is that trajectory which 

separates the two kinds of motion possible in the (Ia,a) 

plane, namely "rotation" and "libration," as seen in Fig. 1, 

and indeed also separates the rotational trajectories above 

the separatrix from the rotational trajectories below it. 

On the separatrix (/a - /3 )2 
vanishes at a = 0 and 

a = rr. Thereby, the energy of the separatrix at any A is seen 

from Eq. (2.27) to be 

Es = (C + /3 2
- 2q)/D. (3.5) 

At that energy, Eq. (2.28) yields the two branches of the 

separatrix: 

/~· 2 ' = {3 ± 2q
112

sin a. (3.6) 

J. Chern. Phys., Vol. 79, No. 9, 1 November 1983 
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The separatrix is "self-crossing" at a = 0 and 11'. A Poincare 

surface of section in the (/x, CJ?x) plane can be obtained by 

taking a cut through the trajectory on the plane y = 0. This 

choice of cpY corresponds to 2a = CJ?x + 11', and the two 

branches (3.6) are transformed to Eq. (3.7), on using Eq. 

(2.12) for Ia. 

/~· 2 1 = fl /2 ± q112cos(cpxl2) (3. 7) 

resulting in a surface of section plot similar to the curves (b), 

(c) of Fig. 1. The area enclosed between the two branches is 

S = fr [ /~ 1 - I~ 1 ]da 

= J~) J~)- J~ 1 ]dcpx = 8q
112

• (3.8) 

Hence, q can be determined from 

q = S 2/64. (3.9) 

This equation applies, incidentally, regardless of whether A. 
is at the avoided crossing or not. In trajectory calculations, S 

can be determined as follows: when the separatrix has been 

found, a Poincare surface of section in the (px,x) plane is 

drawn (for an example, see Fig. 8 of Ref. 12). The areaS 

enclosed by the branches of the separatrix is the difference 

between areas of the two elliptic curves [using EiJ. (2.21)].39 

We next determine fl. From Eqs. (2.28) and (2.21) we 

have 

2{311' = Lr (I~ 1 (E) + /~ 1 (E)]da = J~ ,.(/~ 1 + l~ 1 )dcpx, 
(3.10) 

where the two CJ?x integrals can also be obtained from the 

~pxdx phase integrals for the pair of trajectories [Eq. (2.21)]. 

The integrals are calculated at the same I and at the same E, 

e.g., an E in the vicinity of E 01 and E (2). At the avoided cross

ing Eqs. (3.10) and (3.4) yield 

fl = n~ 1 + n~ 1 + 1 (at the avoided crossing), (3.11) 

where n~ 1 • 21 are the x-quantum numbers (integers) of the 

primitive semiclassical pair of states involved in the crossing. 

To obtain C and D at any A we can use two integrals 

derived from Eq. (3.4), knowing q and fl at that A, for two 

values of E and hence of n x: 

i""Iada = /l1r ± i""[ C + /l 2
- DE- 2q cos 2a] 112da 

=21T'[nx +!]· (3.12) 

When the system is not at an avoided crossing, the two n x 's 

can be simply chosen to be then x 's of the pair of states under 

consideration. Equation (3.12) applies regardless of whether 

or not one uses eigentrajectories (i.e., trajectories with in

teger n~· 2 '). E 11.
21 are primitive semiclassical energies of the 

two states. The integral (3.12) is expressed in terms of an 

elliptic integral, as in Eq. (2.29), thereby leading to two tran

scendental equations for C and D in terms of the known 

quantities{J, q, n~· 2 ', and E 11
•
21

• In an iterative scheme, a first 

approximation for C and D may be obtained by neglecting q: 

[2nx + 1] 2 -2/l[2nx + 1] +DE-C~o. (3.13) 

The two equations in Eq. (3.12) for E 01 and E 121 are not 

distinct at the A where there is an avoided crossing, as was 

shown in Appendix C. In this case one applies Eq. (3.12) or 

(3.13) using data at noninteger nx 's. For example, Eq. (3.13) 

yields forD, 

D~- 8(d 2E /dn;)- 1
• (3.14) 

With that value of D, Eq. (3.13) yields a zeroth order value 

for C. These values can be refined by iteration, using the 

rigorous expression ( 3.12) to give improved values of C and D 

due to the neglect of q was less than 1% at b = 0.005 and 

around 6% at b = 0.02. 40 An error of this size in D causes a 

similar error in the calculation of splitting at the avoided 

crossing, which is minor. 

In evaluating C and D from Eq. (3.13) or (3.14) it is 

desirable to use trajectories which are not too close to the 

separatrix, for then the correction due to the q term in Eq. 

(3.12) is less. 

We note in passing that the perturbation expressions 

(2.23)-(2.26) yield q!D and C !D ratios which are indepen

dent of A, and so this feature could be used to obtain these 

constants away from the crossing, knowing their values at 

the crossing. 

IV. UNIFORM SEMICLASSICAL QUANTIZATION 

We denote the two dimensional primitive semiclassical 

wave function of our system in the (lx, ly, CJ?x• cpy) action

angle variables by l{l'(cp). Single valuedness of the quantum 

mechanical or semiclassical wave function yields the follow

ing periodicity result: 

1{1 '(cpx + 21T'k, C}?y + 211'/) = 1{1 '(cpx, C}?y ). (4.1) 

The primitive semiclassical wavefunction is equal to, 41 apart 

from a preexponential factor (the van Vleck determinant), 

l{l'(cpx, C}?y)-exp{i[fq>x(Jx ~ !)dcpx + fq>Y(Jy- !JdCJ?y ]J. 
(4.2) 

The fs in Eq. (4.2) ensure that the semiclassical wave 

function satisfies the correct periodicity property in Eq. 

(4.1): an increase of phase of CJ?x by 211', for example, increases 

the phase of 1{1' by ~(Ix- ~)dcpx, and since ~lxdCJ?x equals 

21T'(nx + !) in the present case, with nx being an integer, the 

phase of !{I' inEq. (4.2)changesby211'nx. Hence, this 1{1' given 

by Eq. (4.2) satisfies Eq. (4.1 ). 

We next make the following substitution in Eq. (2.27): 

1 a 
I---- +1. 

y • a 2 
I C}?y 

(4.3) 

The! permits this substitution, in conjunction with the wave 

function (4.2), to yield, on differentiation, the original classi

cal Eq. (2.27) in terms of Ix and IY. 
If we make the canonical transformation (2.12), the pe

riodicity condition (4.1) yields 

1{1 [a + (k - 3/ )1r,8 + 21rl] = 1{1 (a,8 ), (4.4) 

where 1{1 is numerically equal to 1{1' at any point in angle 

space. Since I is a constant of the motion and 8 a cyclic 

variable, this total wave function 1{1 can immediately be fac

torized as 

W(a,8) = !f(a)G (8 ). (4.5) 

Further, one can replace k - 3/, an integer, by another in-
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teger m. Thus 

1/J(a + m1T) = 1/J(a). 

All such functions automatically satisfy 

t/J{a + 17') = t/l(a) 

(4.6) 

(4.7) 

regardless of the value of m. We will use this periodicity 

condition in solving the Schrodinger equation correspond

ing to our resonance Hamiltonian obtained from Eqs. (2.27) 

and (4.3). 

The primitive semiclassical form of 1/1 (a,O) is obtained 

byexpressingthei .. , Iy, rp .. andrpy inEq. (4.2)in termsofthe 

a and 0 variables. Using Eq. (2.12) one finds (apart from the 

van Vleck preexponential factor) 

l/l(a,O)-expHJa(Ia- 1)da + r1

(I- 2)d0] + i; }· 
(4.8) 

Since I is a constant of the motion, one sees from a 

comparison with Eq. (4.5) that 

1/J(a)-exp{if(Ia- l)daJ. (4.9) 

[The constant phase factor of + i?T/2 in Eq. (4.8) can be 

omitted without loss of generality.] 

To obtain the semiclassical energy levels in the form of a 

uniform approximation, Eq. (2.27) is next converted into a 

differential equation by replacing the actions by differential 

operators. The resulting differential equation is one dimen

sional because I can be replaced by its constant value (3.1 ). 

The choice41 

1 d 
I ---+1 

a i da 
(4.10) 

is consistent with the wave function (4.9), because one ob

tains the original classical equation (2.27) upon introducing 

Eq. (4.10) into Eq. (2.27) and operating on the wave function 

(4.9). 

The replacement transforms Eq. (2.27) into a Schro

dinger equation for 1/J(a): 

d
2

1/J - 2i(/3- 1) di/J +(A- 2q cos 2a)t/J = 0 (4.11) 
da2 da 

with 

A= C- DE+ 2{3. (4.12) 

If we solve Eq. (4.11) for an auxiliary function F (a), 

F(a) = exp[i(1 - P )a]t/l(a) (4.13) 

instead of 1/J, we find that Eq. (4.11) transforms into a Math

ieu equation42
•
43 

d 2F 
- 2 + (av - 2q COS 2a)F = 0, 
da 

where 

av = C-DE+P 2
• 

(4.14) 

(4.15) 

One sees from Eq. (4.13) that F is a complex exponential 

function of a multiplied by another function of a which has 

period 17'. Indeed, this condition is also the usual condition 

onMathieu functions of fractional order, so that our desired 
function F is such a function. 

In common with other problems that involve nonlinear 

resonances, we have obtained a pendulum ("hindered ro

tor," "restricted rotator") Hamiltonian, 15 apart, in Eq. 

(4.11), from the term containing di/J/da. In physical prob

lems involving hindered rotors,44 2q is the barrier height for 

internal rotation. 

The solution ofEq. (4.14) can be expressed in terms of 

the Floquet solution 

Fv(a) = eivaP(a), (4.16) 

where P (a) has the period 1T and v, the characteristic expo

nent (or the order of the solutions of the Mathieu equation), 

will be determined below. In terms of this Floquet solution, 

the wave function 1/J(a) can be rewritten as 

t/l(a) = exp[i(v + P- 1)a]P(a). (4.17) 

In order to determine v in terms of ~I .. drp .. phase integrals, 

we increase rp .. by 217' while leaving (/Jy the same. The semi

classical wave function (4.2) changes then as 

l/l'(rp .. + 217', rpy) = exp[if1T(I .. - !)drp .. ] l/l'(rp .. , (/Jy)· 

(4.18) 

When rp .. increases by 217' at constant rpY, a undergoes the 

concurrent change of 17'. Equation (4.7) yields 

1/J(a + 17') = exp[i(v + P- 1 )11']1/l(a). (4.19) 

Similarly, G (0) in Eq. (4.5) stays constant since 0 = (/Jy [Eq. 

(2.12)] andrpY is being held constant. Thus l/l(a + 17',0) obeys 

1/1 (a + 17',0) = exp[i(v + P- 1 )17'] 1/1 (a,O ). (4.20) 

By comparing Eqs. (4.18) and (4.20) we obtain 

r21T 
(v + P )17' = Jo I .. drp ... (4.21) 

If we recall that the phase integral is 21T(n .. +!),then 

v = 2n .. + 1 - p. (4.22) 

The characteristic exponent in vis fractional in general. 

Expansions of the characteristic value (eigenvalue) av ofEq. 

(4.14) in terms of q and vexist fornonintegerv. (We used that 

in page 20 of Ref. 42.) When vis an integer r, it is convenient 

to associate v = r with the characteristic value a,(q) and 

v = - r with b,(q). 

Uniform semiclassical eigenvalues E are then found 

from the av 's using Eq. (4.15). Thereby the relation 

E = (C- av + P2)D -I (4.23) 

completes the quantization scheme. The values of the pa

rameters C, D, q, and P are evaluated as in Sec. III B. The 

av's in Sec. VI were determined from expansions42 in powers 

of q where q was small and by interpolation from tables45 

when q was large. 

A pair of states with quantum numbers n~ 1 and n~' ap

proach each other in energy most closely when v! 0 and v!21, as 

calculated from Eq. (4.22), are integers such that 

This condition is fulfilled whenever 

p = n~' + n~' + 1. 

(4.24) 

(4.25) 

Comparison of Eq. (4.25) with Eq. (3.11) shows that the cor-
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responding minimum splittings in energy are the splittings at 

the avoided crossing. They can be calculated by 

AE =Ern- E 12
) = (av- bv)ID. (4.26) 

In particular, for small q, 

AE1 = (a 1 - b.)ID = 2qiD + O(q3
), 

8 09 

8 07 

8OS 

E 

AE2 = (a2 - b2)1 D = q
2 
12D + 0 (q4), 

AE3 = (a3 - b3)! D = l !32D + 0 (q5
). 

(4.27) 8 03 

In the present case, these are the splittings for the pair of 

states (n .. , ny) = [(1,0),(0,3)], [(2,0),(0,6)], and [(3,0),(0,9)], re

spectively. 

V. WIDTHS OF RESONANCES AND SPLITTINGS OF 

QUANTAL ENERGY LEVELS 

In standard Chirikov resonance theory, 15 a Hamilton

ian containing a classical resonance can be expanded as a 

quadratic function of fa around the resonance center I~ as 

(using the notation of Ref. 13) 

H = H 0(1')- !ll (fa - 1~)
2 +A (J~,J~)cos ka, (5.1) 

k is an integer. The coefficient of the trigonometric term is 

evaluated at the center of the nonlinear resonance defined in 

Appendix B. The vertical extrema of the separatrix of I a vs a 

are ± 2(A Ill )112
, thusleadingtoafull width Win fa space of 

4 (A Ill )112
• The maximum Ia in Eq. (5.1) occurs atka= 1T, 

whereas that in Eq. (2.27) occurs at 2a = 0. This difference 

can be removed by replacing the ka in Eq. (5.1) by ka + 1T. 

Further comparison then shows that A, ll, 1~, and k are 

equal to 2q, 2, {3, and 2. The classical resonance width 

4(A Ill )112 then becomes 

W= 4qll2. (5.2) 

The difference in a-quantum numbers na for the pair of 

states undergoing the avoided crossing, n~ 1 - n:;', is seen 

from the relation between Ia and I .. in Eq. (2.12) to be 

2(n~1 - n~ 1 ). One might expect that whenever this difference 

exceeds the resonance width W, i.e., whenever 

In~ I- n~ll > 2qll2, (5.3) 

the splitting at the point of closest approach of quantum 

mechanical energy levels of the two states undergoing the 

avoided crossing is small. We give later in Table IV a com

parison of both sides ofEq. (5.3), and also give the splitting. 

VI. CALCULATIONS 

In this section, we compare energy eigenvalues ob

tained by quantum, primitive semiclassical, uniform semi

classical, and perturbation methods. In particular, we use 

the uniform expression Eq. (4.23) and show how it can be 

used to improve the primitive semiclassical eigenvalues. In 

all these calculations, we have taken a = 0.02. 

A. Quantum results 

In their recent comparison of quantal, classical, and 

semiclassical behavior at an avoided crossing, Noid eta/. 12 

examined perturbations of the (n .. , ny) = (1,0) and (0,3) pair 

of levels which show an avoided crossing near A = 0.055 

when b = 0.005. A plot oftheir quantum mechanical eigen-

8 01 

793L-~~_L~~L_l_J__L~~--L-~-L-L~~ 

OC£ 007 008 009 010 011 012 013 014 

FIG. 2. Plot of eigenvalues of the pair of states (2,0) and (0,6) vs perturbation 

parameter A. forb= 0.005. 

values vsA appears in Fig. 1 of Ref. 12. Plots for other condi

tions are given in their Figs. 2 and 3. 

We extended their calculations to several other pairs of 

states that show avoided crossings. A 400 element basis set of 

harmonic oscillator wavefunctions was used and the result

ing matrices were diagonalized using the EISPACK matrix 

diagonalization package.46 The eigenvalues EQ in Table I so 

obtained were accurate to one part in 104
• A plot of the pair 

[(2,0),(0,6)] at b = 0.005 is given in Fig. 2 and, for compari

son, the pair [(1,0),(0,3)] of Ref. 12 at b = 0.005 is given in 

Fig. 3. For brevity, we have omitted a pair [( 1,2),(0,5)] which 

shows an avoided crossing near A= - 0.11, a pair 

[( 1,1 ),(0,4)] which gave parallel (i.e., nonapproaching) 

curves, both at b = 0.005, and the pair [(2,0), (1,3)] which 

shows an avoided crossing near A.= 0.013. 

B. Primitive semiclassical trajectory eigenvalues 

Primitive semiclassical eigenvalues were obtained by 

quantizing classical trajectories. 23 Trajectories were ob

tained by integrating the equations of motion for the Hamil

tonian (2.8) using the DEROOT program.47 Poincare sur

face of section results were recorded for Px vs x every time 

the trajectory crossed the line y = 0 in a particular direction 

(e.g., y > 0). The evaluation of the area enclosed by the sur-

506~------------------------------------

504 

E 

498L_-L __ L-~--~_J--~ __ L__L __ L__L __ ~_J 

001 002 003 004 005 006 007 

FIG. 3. Same as Fig. 2, except for pair (1,0), (0,3). 
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TABLE 1. Comparison of quantum with primitive semiclassical trajectory and perturbation eigenvalues for the (2,0)(0,6) pair of states, b = 0.005, a = 0.02. 

E • 
Q EPSCT 

A. (2,0)d (0,6)d (2,0) 

0.06 8.0237 7.9981 8.0239 

O.o7 8.0276 8.0086 8.0279 

0.08 8.0315 8.0189 8.0316 

0.10 8.0394 8.0392 8.0395 

0.12 8.0469 8.0593 8.0473 

0.14 8.0544 8.0788 8.0548 

• Full quantum calculation using a basis of 400 harmonic oscillator states. 

b Primitive semiclassical calculation using trajectories. 

c Primitive semiclassical calculation using perturbation theory. 

d These labels are not meaningful in the avoided crossing region. 

face of section can be evaluated more conveniently with the 

aid of the action-angle plot/~ vs rp ~. When evaluating the 

area ~I~drp ~,the variables involved were deduced from the 

(x,pxl set by usual transformation (2.9), to which should be 

added 0 superscripts. Similarly, we calculated the area 

~I~drp~ for x = 0. These integrals are set equal to 21T(nx + !l 
and 21T(ny +~),respectively, and the initial conditions of the 

trajectory were varied until the nx and ny are the desired 

integers. The results for the [(2,0),(0,6)) pair are given in Ta

ble I. As can be seen from Table I, the primitive semiclassical 

eigenvalues again agree very well with the quantum results 

for all A. except, of course, near the avoided crossing which 

we did not examine for these data. This aspect had been 

extensively investigated in Ref. 9 for the data shown in Figs. 

1 and 3 there. As shown in that article, the primitive semi

classical eigenvalues cross instead of avoiding each other. 

The last column in Table I gives a comparison between 

quantum and primitive semiclassical trajectory eigenvalues 

and the primitive semiclassical perturbation eigenvalues ob

tained from Eqs. (2.23)-(2.26), (2.29), and (3.4), iterating the 

latter to obtain theE's. Theoretical arguments given in Ap

pendix C show that the primitive semiclassical eigenvalues 

should cross instead of avoiding each other. When compared 

with the quantum ones, the trajectory values are seen to be 

superior to the perturbation ones. 

C. Uniform semiclassical trajectory treatment 

We next apply the uniform scheme of the Sec. IV to 

obtain the splitting at the avoided crossing. The characteris

tic exponent (orders of the Mathieu function) for the pair of 

states are obtained from Eqs. (4.22), (4.24), and (4.25). For 

example, for the (1,0) and (0,3) states, denoted by (1) and (2), 

respectively, one sees from Eq. (4.25) that/3is 2 at the avoid-

TABLE II. Splitting .JE and other properties at an avoided crossing A.= A. c. 

States b S{A.c) q(A.cl D (A.J .J.Eusc 

(I, 0)(0, 3) 0.005 2.73 0.117 60 3.9x w- 3 

{2,0)(0, 6) 0.005 3.24 0.164 36 3.8xw-• 

(I, 0)(0, 3) 0.03 4.81 0.362 43 1.1x to- 2 

"Estimated from d 2E/dn! using Eq. (3.14). 

b 
Epscv ' 

(0, 6) (2, 0) {0, 6) 

7.9983 8.0243 8.0014 

8.0087 8.0286 8.0123 

8.0191 8.0328 8.0231 

8.0394 8.0411 8.0448 

8.0594 8.0495 8.0665 

8.0784 8.0579 8.0881 

ed crossing, and hence from Eq. (4.22) that v( 0 and v<2
i equal 

+ 1 and - 1, respectively. Similarly, for the (2,0) and (0,6) 

pair, they equal + 2 and - 2, respectively. Thus, the differ

ences (a 1 - b.)ID and (a2 - b2)/D yield the splittings at the 

respective avoided crossing for the two pairs. In the case of 

D, the second derivative in Eq. (3.14) was calculated as fol

lows for a (n,O), (0,3n) pair. Typically, first derivatives were 

calculated from E 'sat nx 's equal to (n- 0.01 and n) and to 

(n, n + 0.01) and averaged. They were also calculated from 

nx 's equal to {- 0.01,0) and to (0,0.01) and again averaged. 

This pair of first derivatives then yielded a second derivative. 

We had to use n x 's not near the separatrix, which occurred at 

an nx intermediate between 0 and n. 

The values of S, q, and D calculated at the avoided 

crossing point are given in Table II, together with the split

ting ..::1Eusc calculated from the values of a, - b, using Eq. 

(4.26), and with the quantum values ..::1EQ. 

D. Semiclassical perturbation treatment 

In order to see the improvements provided by the uni

form formula, we have made some comparisons between 

primitive and uniform semiclassical results, using the per

turbation expressions (2.23)-(2.26) for the parameters. To 

obtain q in Eq. (2.24) one needs the average actions Ix and Iy. 
They are 

Ix = [ /~ 1 + /~ 1 ]/2 = !(n111 + n121 + 1), 

(6.1) 

IY = [11•' + J12']12 = !(n~l + n~l + 1). 

,<o and v(Z) for the [(1,0),(0,3)] pair are the same as in Eq. 

(4.22) with f3 now being found using the known values ofthe 

perturbation parameters in Eq. (2.23). 

.JEQ 

3.3x w- 3 

1.7x w-• 
1.9x w- 2 
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TABLE III. Comparison of primitive and uniform semiclassical eigenvalues (perturbation theory). 

E;sc EGsc 
b A (1,0) (0, 3) (I, 0)' (0, 3)' 

0.005 0.01 a 4.987 5.003 4.987 
0.03 5.007 4.999 5.008 4.999 
0.05 5.012 5.011 5.009 5.009 
0.055 5.013 5.014 5.012 5.012 
0.060 5.015 5.016 5.013 5.014 
0.080 5.020 5.028 5.019 5.029 

0.03 0.01 a b 5.012 4.985 
0.04 a b 5.021 4.996 
0.07 5.014 5.016 5.008 5.033 
0.10 5.023 5.036 5.018 5.048 
0.13 5.031 5.054 5.027 5.063 

• In these cases the smallest value of the integral (3.4) exceeded 31T and so a rotational-type integral could not be used. In all cases Ix >I /3 at places. 

h In these cases, the largest value of the integral (3.4) was less than 1T, and so a rotational type integral could not be used. Ix was greater than I /3 at many places. 

cThese labels are not meaningful in the avoided crossing region. 

In examining the Ix vs CfJx plots from Eqs. (2.17) and 

(2.27) we found it convenient to plot CfJx as a function of Ix, 

rather than the reverse. The primitive semiclassical energies 

are obtained from Eqs. (2.29) and (3.4), and the unif()rm val

ues are obtained from Eq. (4.23). The results are given in 

Table III. 

The relation between semiclassical and quantum me

chanical perturbation theory for the splitting of pairs of 

states [(vx, vy), (vx -1, vY + 3)] was discussed in Ref. 12, 

using first order degenerate perturbation theory. The 

[(2,0),(0,6)] pair belongs instead to the class [ (vx, vy), 

(vx -2, vY + 6)] and requires second order perturbation 

theory since the off-diagonal matrix elements directly con

necting the two states are zero. We have treated this system, 

and the results are more or less comparable to those obtained 

from the uniform semiclassical perturbation theory. We 

omit giving the details, since the main focus of the present 

paper is to show how to convert the trajectory data to uni

form semiclassical eigenvalues. 

E. Comparison of widths and splittings 

In Table IV we compare the two sides of Eq. (5.3) for a 

series of pairs of states (m,O), (0,3m) for b = 0.005. Here 

ln~ 1 - n~ 1 1 equals m. (For simplicity we have used perturba

tion theory to illustrate the comparison between widths and 

m.) For the pairs of states (m,O) (0,3m) it is established by Eq. 

(4.27) that their splittings vary as qm when q is small. There-

TABLE IV. Comparison of resonance widths•·h and energy splittings". 

A at avoided Forb= 0.005 

Pair of states crossing )n~ 1 l- n~l) q w J.E 

( 1,0), (0,3) 0.0540 0.121 1.39 0.0041 

(2,0), (0,6) 0.0945 2 0.214 1.85 6x w- 4 

(3,0), (0,9) I. 1350 3 0.307 2.22 6x w-' 
(4,0), (0,12) 0.1755 4 0.400 2.53 I X 10- 6 

(5,0), (0,15) 0.2160 5 0.493 2.81 2x w-• 

• Calculated from perturbation theory. 

fore the correlation between condition (5.3) and small level 

splittings is evident. This connection can be corroborated 

further by increasing band thereby q [Eq. (2.24)], and calcu

lating the splitting of the quantum levels. The width of the 

resonance and the splitting at avoided crossing both in

crease, as can be seen both by perturbation theory and by the 

data in Table II. 

VII. DISCUSSION 

We have seen that in the uniform semiclassical theory 

of avoided crossings the pair of states do indeed avoid each 

other, whereas the primitive semiclassical ones cross. As dis

cussed in Ref. 12, one of the principal approximations is the 

replacement of the Fourier coefficient of cos 2a by its "aver

age" or "resonance" value. It leads to poorer agreement 

between quantum and semiclassical values for the case 

where the splittings are associated with large changes of 

quantum numbers. Other researchers in the field have en

countered the same problem. In their recent work on the 

local modes of ABA triatomic molecules35
'
48 Sibert et a/. 

used that approximation to calculate splittings between pairs 

of local modes. Their semiclassical results agreed well with 

quantum mechanical calculations when the splittings were 

large. The discrepancies were considerable, however, for 

small splittings, associated with large variations in II; -I~ I 
(e.g., the 14,0) ± 10,4) and 15,0) ± 10,5) pairsoflocal modes 

in Table II of Ref. 48). 

Forb= 0.03 

q w J.E 

0.726 3.40 0.0227 

1.284 4.53 0.0194 

1.842 5.44 0.0071 

2.400 6.20 0.0016 

2.958 6.88 0.0002 

hCJassical resonance width defined by Eq. (5.2). The right-hand side ofEq. (5.3) is W 12. 
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We see from Tables II and III that the uniform semi

classical theory supplements the primitive semiclassical the

ory in two respects: ( 1) it produces the avoided crossing, (2) it 

permits the calculation of eigenvalues in other cases where 

primitive semiclassical theory fails (or perhaps requires an 

alternative procedure). Interestingly enough, three of the 

five cases in Table III [those under (1,0)] for which primitive 

semiclassical perturbation eigenvalues were not obtained 

were also not obtained from trajectories in Ref. 12 using the 

simple quantization employed there. 

We note in passing that uniform semiclassical theory 

has been used, in conjunction with perturbation theory, to 

treat the Henon-Heiles problem.49 In that case, the linear 

term in Eq. (2.27), which plays an important role in our sys

tem was either absent or not discussed. 

The primitive semiclassical eigenvalue plots cross and 

can be regarded as the diabatic curves, while the uniform 

semiclassical and quantum plots are the adiabatic curves. A 

remarkable feature of the results, therefore, is that the diaba

tic curves can be generated using the full Hamiltonian, pro

vided one calculates them in a primitive semiclassical way. 

Customarily, diabatic curves are obtained by neglecting 

some term or terms in the Hamiltonian. 

VIII. CONCLUDING REMARKS 

In this article, we have shown that a classical resonance 

leads to an avoided crossing and we have presented a uni

form semiclassical theory of such avoided crossings. The 

treatment involves obtaining a functional form for the Ha

miltonian by means of low-order classical perturbation the

ory and quantizing it. We used this functional form to deter

mine the parameters of the uniform approximation from 

trajectory data, and thus improve primitive semiclassical en

ergy eigenvalues. The primitive eigenvalues crossed rather 

than avoiding each other, whereas the uniform semiclassical 

eigenvalues show the correct behavior. While the formalism 

successfully describes the occurrence of avoided crossings 

and individual eigenvalues, the accuracy of the splittings it 

yields at the avoided crossings varies due to a central approx

imation of the treatment, namely using an average value for 

the Fourier coefficient of the trigonometric term. A close 

examination of this replacement showed that it gives better 

results the smaller the fractional differences in quantum 

numbers. 12 

We also examined the correlation between the width of 

the classical resonance in I a space and the splittings of the 

quantum energy levels; and found that whenever the width 

of the classical resonance was small, the energy level split

tings of almost degenerate levels were exponentially small 

also. These progressively smaller splittings across a sequence 

of avoided crossings are a classically forbidden pheno

menon, and might be termed, as has been done by Davis and 

Heller, "dynamic tunneling. " 50 It has been suggested to us 

by Dr. J. N. L. Connor that in the fa -a space in our particu

lar case it corresponds more to a reflection in an "over the 

barrier" problem, which is, of course, still classically forbid

den (cf. Ref. 48). Indeed, this is also largely the case, we find, 

in the original (Cartesian) q-p space. An analysis of the phase 

integral solution to Eq. (2.27) will be published elsewhere. In 

an interesting work on the different problem of local mode 

splittings, Lawton and Child51 connected trajectories of lo

cal modes by an approximate tunneling path, which joined 

the cusps of box-like trajectories. This tunneling proceeded 

along a real coordinate and with an imaginary momentum. 

It should be noted that the avoided crossings dealt with 

here mix nuclear wave functions, whereas at the better

known avoided crossings in the collision problem it is the 

electronic wave functions that interact strongly. An exten

sion of the present treatment to such nonadiabatic collision 

phenomena might make use of the classical analogs of elec

tronic degrees of freedom. 52 
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APPENDIX A: DERIVATION OF THE RESONANCE 

HAMIL TON IAN BY BIRKHOFF-GUSTAVSON 

PERTURBATION THEORY 

Birkhoff, in his treatment of nonseparable classical sys

tems, 53 gave a procedure to transform the original Hamil

tonian into a normal form consisting of a power series of one

dimensional uncoupled harmonic oscillator Hamiltonians. 

This procedure was modified by Gustavson32 to include sys

tems with commensurate frequencies. The resulting expres

sions are particularly easy to quantize. 25 In what follows, we 

first summarize for the purpose of the present paper, the 

method along the lines of Gustavson's work. 32 

Consider an n-dimensional system with a Hamiltonian 

H(u,v) = H 12l(u,v) + H(3)(u,v) ... (Al) 

which is a power series in the coordinates u = ! uv} and mo

menta v = ! vv}, and HIs) is a homogeneous polynomial of 

degrees 

n<s)(u,vJ = I aijuv.s = 2,3, .... 
i+j=s 

(A2) 

In these expressions, i =:I:= I iv and ui denotes n:= I u~, 

respectively. 

If H 12
) is positive definite, it can be canonically trans

formed to the harmonic oscillator Hamiltonian 

(A3) 

According to Gustavson,32 H (p,q) is in normal form if 

DH(p,q)= L 6h Pk- - qk- H(p,q) = 0, n ( a a ) 
k= 1 aqk ah 

(A4) 

i.e., that the Poisson bracket of H with H 12
) vanishes. 
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The transformation of the power-series Hamiltonian (A 1) to normal form can be achieved by successive canonical 

transformations of the so-called F2 type.31 To this effect, one defines generating functions 

n 

F~ 1 (P,q) = L Pkqk + W 151(P,q), 
k=l 

(AS) 

where I Pk J are the new momenta and s;;;-3. The transformation equations are 

awls) 
Q=q+ ap' 

awls) 
p=P+ --, 

aq 
00 

Hlp,q) = T(P,Q) = _Lr 1si(P,Q), 
S=2 

(A6) 

where Q is the new coordinate. r (2) (P,Q ) isH 1211p,q) evaluated at p = P, q = Q. Beginning with s = 3, the canonicaltransforma

tions F~ 1 given by Eq. (AS) put all terms Eq. (A 1) for H of degrees into normal form. W 1' 1 and r 1' 1 are determined from Eqs. 

(A12) and (Al3) below in the following manner. 

The working equations arise from expanding the equality 

( 
aw~) ( aw~ ) 

r P,q+ aP =H P+ -a;j'q (A7) 

in a Taylor series around (P,q) and collecting terms of equal degree i. They are 

ru1(P,q) = fiU1(P,q), i <S, (A8a) 

(A8b) DW1si(P,q) = T 1'i(P,q)- H 1si(P,q), i = s, 

ru1(P,q) = nu1(P,q) + >( fi j)) ~ 1
{[ fi ( aw1•1 )j,.] ~n1n _ [ fi ( aw1•1 )j,.] 

It! "= 1 ,= 1 aq, II aP~ V= 1 aP" 

v=l 

(A8c) i>s. 

These terms are terms used to normalize terms in H of degree 

s. In the last equation, the summation is over all combina

tions [j, J, consistent with32 

1<}.;;,1, 

(A9a) 

1;;;.2, s;;;-3, 

j is the sum l:~ = .j,; I is fixed for a particular combination of 

thej/s, and is defined by32 

I= i- j(s- 2). (A9b) 

[Incidentally, it follows from Eq. (A9) that I< i. The cpndi

tions;;;-3 arises sinceH 121 is already in normal form. For this 

reason also, 1;;;. 2.] Because of these restrictions, the r 11 1's in 

the right-hand side ofEq. (A8c) always have I <S + 1. Fur

thermore, H 1'1(P,q) and ru1(P,q) denote H 1;1lp,q)lp=P and 

Tlii(P,Q JIQ=q• respectively. 

The canonical transformation of degree s leaves all 

terms Hl'l of overall degree i <S [see Eq. (A2)] unchanged, 

e.g., Eq. (A8a), since they are already in normal form. The 

normal form is obtained in Eq. (A8b) by choosing r 1' 1 such 

that the operator D ~ 1 acting on the right-hand side gives a 

finite result; thus an equation for W1s1 is obtained. This gen

erating function, in tum, leads to additional terms of degree 

i > s. The new Hamiltonian, at this stage of the normaliza

tion, is denoted by a subscripts and Ts(P,Q ). 

(AlO) 

where r ~ 1 is unaffected by s for all i < s. All terms of r, up to 

and including degrees are in normal form after the transfor-

mation generated by W 151
• When using Eqs. (A8) (with s re

placed everywhere by s + l) to normalize terms in 

rs (P,Q ) I Q = q of degrees + l, each term of the Hamiltonian 

(A l 0), r ~1, must be identified with the H 1'1 on the right-hand 

side of Eqs. (A8). [Note, the r(s) in Eq. (A8b) is now r~s: II) 

and the His+ I) there is equal tor~+ 11 .] 

In order to solve for W 151 in Eq. (A8b), one makes a 

canonical transformation to variables ( 1J k , 5 k ) such thae
2 

pk = 2~ 1 ' 2 (1/k + iskl. 
(All) 

qk = 2 ~ 112!1Jk - isk J. 
This changes the operator D into its diagonal form bin 

{5,1J) space: 

- ( a a ) 
D(s.1J) = i+mk Sk ask -1Jk a1Jk . 

Since monomials of the form 

"'*' II lkf;- m, 
'*'im = 1Jk~ k 

k 

are eigenfunctions of b with eigenvalues 

n 

Elm = i L mk(mk -lk) 
k=l 

they are eigenfunctions of b ~ 1 also, 

iJ ~lcplm = E /-;,. lcptm· 

Equation (A8b) can then be solved as 

w<s) = iJ ~ l(f' Is) - ii 1•1), (A12) 
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after expressing r (s) and ii (s) in terms of the sum of mono

mials in t and 'T/ to yield r (s) and ii (s). 

To make the right-hand side of Eq. (Al2) finite, f'is) 

must be chosen such that it will cancel all terms in ii Is) which 

give a zero eigenvalue E 1m. These are terms for which 

mk = h (all k ), regardlessofthevaluesof £Uk, and, because of 

the presence of a zero-order resonance, terms such that E1m 

is proportional to the resonance condition (2.3). Using these 

two kinds of terms, both referred to as "null space terms," 

Jlrlsl, and the remainder of terms in iiisl, referred to as the 

"range space terms," R lsi, we have 

(Al3) 

we now choose r (s) so that 

(Al4) 

2 2 
~ 0 2 2 ~ 0 -

312 
3 

H =! ~ £Udh + qk) -a ~ £Uk qk 

k= I k =I 

x2y2 bxy3 
+A---- ' 

£Uo £Uo (£Uo £Uo3
)112 

X Y X y 

where q 1 denotes x, £U~ denotes £U~, etc. 

Thus, in Eq. (AI) for Hwe have 

2 

Hl21 = ~ L £U~(p~ + q~). 
p=l 

2 

H (3) = ~ 0 "' 3 
-a~ £Uk qk, 

k=l 

and 

2 2 bxy3 
nt41=..t~- , . 

£Uo £Uo (£Uo £Uo ) 112 
X y X y 

H(S) =HI6) = ... = 0. 
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(A16) 

(Al7) 

It then follows that 

(Al5) 

The application ofEqs. (A8) to obtain W 131 is as follows: H 131 

is converted to ii 131
• One then separates those terms in ii 131 

which belong to N131 from those which belong toR 131
, and 

then use Eq. (A15). This yields 

Using f'lsl and fvtsl and the inverse of the canonical transfor

mation (All) one obtains f'lsl and fvlsl, i.e., 

r 1
s
1(q,P) = f' 1s1(t,rJ), etc. 

and 

rt3)=o 

(A18) 

a 2 o- 'n 
W 131 

= - - L, (i)k (2Pk + 3Pkq~). 
3 k= I For Hamiltonian (2.8), replacing Pk in (2.8) by £U~

112

Pk 

and qk by £U~ · 
112

qk, to convert to the notation in Eq. (A3) we 

obtain 

This F 131 is now F~ 1 • We are next interested in finding F~ 41 : 

To find this F~ 41 , we evaluate Eq. (A8c), 

which simplifies to the following, using Eqs. (Al5), (Al6) and (A3): 

(Al9) 

(A20) 

For the present purposes we shall stop this iteration at s = 4. The procedure described in this appendix can readily be 

programmed using a symbolic manipulation routine, and we have used the SMP language54 to check the present formulas. 

This program can be used to obtain high-order normal forms of the Hamiltonian (2.8). 

The Hamiltonian resulting from the W 131 canonical transformation, 

H = H 121 + F ~41 + f F ~k I 

k=5 

can be put into normal form through terms of fourth degree by applying Eq. (A8) with s = 4. This normal form is 

H = ~ £U~ (P2 + Qz) _ 15a
2 

~£Uo-•(P 2 + Q 2 ) + _A._ 
~ 2 k k 16 ~ k k k A .. 0 0 

k k 'ffil x(i)y 
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Finally, a transformation into action-angle variables 

Qk =(2fd 12 Sintpk, pk =(2fk) 112 COSlpk 

completes the derivation of the resonance Hamiltonian 

(2.17). 

APPENDIX 8: AVERAGE QUANTUM NUMBERS FOR 

USE IN THE RESONANT TERM 

In their recent semiclassical study of intensities of vi

brational spectra, 55 Koszykowski eta/. found that for transi

tions between quantum states n and m, semiclassical transi

tion frequencies and intensities agreed well with the 

corresponding quantum results if they were evaluated at the 

average action 

(Bl) 

corresponding to an "average quantum number" (n + m)/2. 

This had been noted earlier by Naccache56 in the study of the 

validity of classical mechanics in the derivation of quantum

mechanical expressions. In particular, this semiclassical cor

respondence principle leads to exact agreement in the case of 

Morse oscillators. When studying avoided crossings, we are 

again dealing with two weakly coupled states, coupled by an 

internal perturbation rather than by the radiation field, and 

we use the analogous approximation of replacing I" and Iy in 

the Fourier coefficient of cos 2a by their arithmetic aver

ages. 

Such a replacement is equivalent to the customary pro

cedure35 of evaluating that Fourier coefficient at the center 

of the nonlinear resonance zone. The "resonance center" for 

a m" :my resonance is the pair of actions I' = (/ ~, I;) such 

that 

(B2) 

When the perturbed angular frequencies w1 = aH /a/1 are 

obtained from Eq. (2.27), where theE is written below asH R 

and where we neglect the cos 2a term: 

W"(l) = aHR/aJx 

= (aHR!aJ)(ai ;ai") + (aHR!aia)l(aia!ai") 

wy(l) = aHR/aly (B3) 

= (aHR!aJ)(ai ;aiy) + (aHR!aia)(aia!aiy)· 

The actions at the resonance center satisfy 

(B4) 

The substitution ofEqs. (B3) into Eq. (B4), and noting that I 

is given by Eq. (2.12), gives 

(aHR/aia)(3a/a/aly- a/alai")= 0. (B5) 

UsingEq. (2.12), one sees thataHR/aia vanishes at the reso

nance center. Thereby, from Eq. (2.27) we have at the reso

nant center 

/3=1~=21~. (B6) 

where the second equality arises from Eq. (2.12). From Eq. 

(4.25) we have 

{3 = n~ 1 1 + n~l + 1 = /~ 1 + /~ 1 • (B7) 

Using the definition of the average action "t. [Eq. (Bl)J, it is 

seen that 

/3= 2l", (B8) 

thereby showing the equality 

1: =fx (B9) 

and hence that I; = IY. 

The replacement of the Fourier coefficient by its value 

at the resonance center, like other averaging procedures, is 

expected to be valid whenever variations in l/1 -I; I when a 

varies are small. For transitions in which the quantum 

numbers vary extensively, however, it will lead to substantial 

errors. We illustrate this point in Table I. 

APPENDIX C: CROSSING OF PRIMITIVE 

SEMICLASSICAL EIGENVALUES 

In this appendix we show that the two primitive semi

classical energy eigenvalues, contained in the integral (3.12), 

cross in the eigenvalue vs A plots. Integral (3.12) gives 

/31r ± T1,2 = 2-nin~· 21 + !), 
where 

(C1) 

T1.2 = f'"[c + /3 2
- DE 11 '21 - 2q cos 2a] 112 da. (C2) 

Thus the two distinct equations for the energies are given, in 

implicit form, as 

T 1 = 21T( n~ 1 +!) - {31r, 

(C3) 

- T2 = 21T( n~ 1 +!) - /31r. 

However, at the special value of 

fl=n~ 1 +n~ 1 + 1 (C4) 

one finds from Eq. (C3) that T 1 equals T2• Since Tis a mono

tonic function of E, [cf. Eqs. (3.12), (2.29), and (3.30)] one 

concludes that when T1 = T2 then E 111 andE 121 are equal, i.e., 

the primitive semiclassical energies cross. 
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