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1. Let m

_
1 and n

_
be positive integers. Define the class Ss of

oardal splines of degree2 1 to be those fctions satisfying

(i) a polynoal of degree at most 2 1 on each of the teals

() [, + ], i o, , 2,

(fi) s (-, )
If addition

(2) S(z+n) S(x) all x,

we say S is a periodic spline and denote ts class by $ Let l (n) be the
space of real n-tuples possessing the norm

]y] (,,y,l), 1 p <
max y , p .

Then the periodic spline terpolation operator 2’l(n) L[0, n] is
defined by lettg 2y be that uque element of $ satisfng

2 y(i) y, i 1,2,. n.

Siarly if (y)_ is in l, the class of doubly inite real p summable
sequences, then the cardinal spline interpolation operator

’lL(--, )
is defined by letting y be that unique element of $ a L(- , which
satisfies

2y(i) y, i 0, 1, 2, ....
The problem of calcating the norms of these operators for p was

first posed by Schurer and Cheney [6], who obtained

THEOREM 1 (Schurer and Cheney). Let 2 3. Then

]2] 1+($--)(+ 1)-( 1)-, n 2k

(3) + ( ) + )( + )-’ ( )-’, n ,
Solutions were later obtained by Schurer [5] for m 3 and Richards [1] for
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arbitrary m.
fished the following:

The case p 1 was investigated by the author [2], who estab-

Then

(4)

THEOREM 2, Let a 2 /’3.

li 2 ]]1 3 - V’3 [/3 (9 /3 15)a-1
6

+ (7 /3- 12).-](- .)- n 2.
3+ 3[3_ (73-- 12)]

3

(1+ a*+)-, n= 2k 1,

The case p 21be solved in tMs paper. The contrast th the previous
results is striking.

THEOREM 3.

(5)

More precisely

(6) y h(n)

and equality holds in (6) if and only if y constant.

Toa, 4.

and

(s) "’y il,. < II y II,., y/,

The author wishes to thank Mr. D. Stegenga for several helpful comments
and suggestions.

2. Before proceeding with the proofs of the theorems, we must first discuss
some preliminary results found in [4]. Let

M(x) = 1, Iz[ <_ 1/2
=0. il>1/2

and define the central B-spline of order k, M (x), to be the k-fold convolution
of M, (x) with itself:

(9) M (x) M1 M1 M1 (x) (k times).

M, (x) is a cardinal spline of degree k 1 having support on [-k/2, k/2] and
is a symmetric function. In addition, the Fourier transform of M,(x) is
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easily computed to be

(IO)

where

(11)

Proof of Theorem 3.

(12)

(t ) ((2It) sin 1/2t)
Define

,.() Z:L- M..( + n).

Schoenberg [3] has shown that the functions 21(x 1 ), (x 2), ...,
2r. (x n) form a basis for $. Hence if y S, there exist reals
c, c, c such that

(13) S (x) = c, (x i)

and thus

(14) y, S(i) =,(i j)c, i 1, 2, ..., n.

Inverting tMs non-singular system and using matrix notation we obtain

(15) c 9y (- ).

Upon squaring both sides of (13) and then tegratg, we get

(la) il -
where

(17) A, 1FI. (x i)i’I. (x j) dx, i, j 1, 2, n.

Since M. is symmetric, (15) and (16) imply

(lS) II ll sup.,l.=l (y, Ay).

But A, and therefore A, is also symmetric. Thus if p(A) denotes the
spectral radius of flh, then

(19) II 5 Ii p (Ae).

We shM1 now compute the eigenvMues and corresponding eigenvectors of
the relevant matrices.

Because (x) has period n,,(i j),:_ is the circulant matrix

0(2(0), (i), (m 1),

,(n + 1), ..., ,(n 1)).
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For the time being let us assume that

(20) n >_ 4m
and thus each of the functions M,,,(x + vn), v 0, +/-1, -2, has disjoint
support. Then by recalling (12) and the fact that M(x) has support on
[-m, m], we see that

/l (i) M(i),

0
M,.(i n),

Hence

(21)
. C(M.,,,(O), M.,,,(1), ..., M,.,,,(m- 1),

O, ..., O, M,,,(--m + 1), ..., M,,,,(-1))

Thus if we define the function 9k by

’---+1Mk((22) 9k(O) -1 )e

and let
O 2rj/n, j O, 1,..., n- 1,

then M.has eigenvalues 9. (0) and correspondg eigenvectors
n--1(23) v= (1,,,..., ), j= 0,1, ,n-1,

where e e is an n-th root of ty. Therefore has eigenvalues
((0))-.
To handle A, we first note that the contion (20) ensues that any one

"hump" of (x i) 1 "hit" at most one other "hump" of (x -j).
Then since (see [4, p. 177])

( ,( i),( )

and using he periodieiy of (), i easily foows

() a, (i ), i, j

hus has eigenvalues (0).
hese resulgs show ghag gas eigenvalues (0)/(0) and eor-

responding eigeneeors v, j 0, 1, 1.
Ig Mll now be shown

(26) (0)/ (0) N 1

wih equality holding in (26) if and only if 0
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establish Theorem 3, as the supremum in (18) will be attained only when y
is some multiple of v0 (1, 1, 1).

Schoenberg [4] has shown that

(27) ,p(O) ,- ,,(0 + 2-i).

Since k2m (0) _> 0, we have

(0)
(28) ,=_(o + 2i) ,(0).

Ts proves (26). Note that we get equality in (28) only if 0 0 (mod 2r),
since otherse if== (0 + 2ri) > 0 for 11 i.
We mke the observation that the condition (20) my be discrded, since
n < 4m, the dt (y)=, nd y may be extended periodicay to [0, rn],

where r is some integer such that rn 4m. Theorem 3 may now be applied
on [0, rn].

Proof of Theorem 4. For y , let y S. Then there exist reals
c, i 0, 1, 2, such that

(29) S (x) ,- c,M(x i).

Proceeding as before we obtain

(30) li % ll (s(x)) d ,__x, c, (c, xc),

where

(1)
, M.m (x i)M2 (x j) dx M4 (i j),

i,j O, +/-1, +/-2,...

and

(32) y --= M2,, (i j)c,, i O, =El, +/-2, "".

Since 2(0) > 0, we may invert the sequence convolution transformation
(32) to get

(33) c, (i j)y,

where

(34) v--= ()e’V (2m (0) )-’
and by the Wiener-Lvy theorem
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Thus

(35) II
But then using the correspondence

(y)=- - (0) =-y e’,
from Parseval’s identity it follows that

Theorem 4 is an immediate consequence of (26) and (36).
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