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Abstract. The purpose of this work is to study the internal stabilization of a coupled

system of two generalized Korteweg-de Vries equations under the effect of a localized

damping term. To obtain the decay we use multiplier techniques combined with com-

pactness arguments and reduce the problem to prove a unique continuation property for

weak solutions. A locally exponential decay result is derived.

1. Introduction. Let us consider the following Cauchy problem for the dispersive

model ⎧⎪⎨
⎪⎩

ut + uxxx + a3vxxx + uux + a1vvx + a2(uv)x = 0, x ∈ R, t > 0

b1vt + rvx + vxxx + b2a3uxxx + vvx + b2a2uux + b2a1(uv)x = 0,

u(x, 0) = u0(x) and v(x, 0) = v0(x),

(1.1)

where r, a1, a2, a3, b1, b2 are real constants with b1, b2 > 0 and r can be assumed to be

very small (see, for instance, [5,27]). The unknowns u and v are real valued functions of

the variables x and t.

This system was derived by Gear and Grimshaw in [9] as a model to describe strong

interactions of two long internal gravity waves in a stratified fluid, where the two waves

are assumed to correspond to different modes of the linearized equations of motion. It

has the structure of a pair of KdV equations with both linear and nonlinear coupling

terms and has been the object of intensive research in recent years (see, for instance,

[1–3, 5, 7, 8, 11, 14, 18, 19, 21, 27, 30]). Particularly, we refer to [5, 27] for an extensive
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194 A. F. PAZOTO AND G. R. SOUZA

discussion on the physical relevance of the system and on the existence and uniqueness

of the solution.

The analysis developed in the works mentioned above shows that solutions of (1.1)

satisfy the following conservation law∫
R

(b2u
2 + b1v

2)dx =

∫
R

(b2(u0)
2 + b1(v0)

2)dx,

which allows us to conclude that the total energy associated to the model is conserved

along every trajectory. In many real situations, however, one cannot neglect energy

dissipation mechanisms, especially for the long-time behavior. In this context, several

energy dissipation mechanisms were derived and, depending on the physical situation,

they must be taken into account, at least, as a perturbation. It is our purpose here to

establish this as a fact, at least in the context of a damped dispersive system. More

precisely, we study the exponential decay of solutions of system (1.1) under the presence

of a localized damping term represented by a function a = a(x), when a1 = a2:⎧⎪⎨
⎪⎩

ut + uxxx + a3vxxx + uux + a1vvx + a1(uv)x + a(x)u = 0, x ∈ R, t > 0

b1vt + rvx + vxxx + b2a3uxxx + vvx + b2a1uux + b2a1(uv)x + a(x)v = 0,

u(x, 0) = u0(x) and v(x, 0) = v0(x).

(1.2)

We also assume that

r, a1, a3, b1 and b2 are real constants with 0 < a23b2 < 1 and b1, b2 > 0.

According to the works mentioned above, the assumption 0 < a23b2 < 1 combined with

some conservation law satisfied by the solutions allow us to obtain a priori estimates

leading to the global well-posedness results. The constant r is a non-dimensional constant

parameter that can be assumed to be very small (see, for instance, [5, 27]). Condition

a1 = a2 is technical and will be used to simplify some computations.

The total energy associated to (1.2) is given by

E(t) =
1

2

∫
R

(b2u
2 + b1v

2)dx, (1.3)

and we can verify that

d

dt

1

2

∫
R

(b2u
2 + b1v

2)dx = −
∫
R

a(x)(b2u
2 + v2)dx ≤ 0. (1.4)

Thus, if a(x) ≥ a0 > 0 almost everywhere in R, then it is easy to prove that the energy

E(t) decays exponentially as t → ∞. However, the problem of stabilization when the

damping is effective only on a subset of R is much more subtle. In this paper we are

concerned with this problem; therefore we assume that a = a(x) is a real-valued function

that satisfies the conditions{
a ∈ L∞(R) is a positive function and a(x) ≥ a0 > 0 a. e. in ω,

where ω contains a set of the form (−∞, α) ∪ (β,+∞), for some α, β ∈ R.
(1.5)

Under the above conditions, we obtain the main result of this work:
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UNIFORM STABILIZATION OF A NONLINEAR DISPERSIVE SYSTEM 195

Theorem 1.1. Let a = a(x) be any damping function satisfying (1.5). Then, if (u0, v0) ∈
[L2(R)]2, system (1.2) is locally uniformly exponential stable; that is, for any R > 0, there

exist positive constants C = C(R) and α = α(R) satisfying

E(t) ≤ C(R)E(0)e−α(R)t, ∀ t > 0,

provided E(0) ≤ R.

Since the energy associated to the model is decreasing, the problem of proving the

exponential decay of solutions can be stated in the following equivalent form: Find

T > 0 and C > 0 such that

E(0) ≤ C

∫ T

0

∫
R

a(x)(b2u
2 + v2)dxdt (1.6)

holds for every finite energy solution of (1.2). If the above inequality holds, from (1.4) we

have that E(T ) ≤ γE(0) with 0 < γ < 1, which combined with the semigroup property

allow us to derive the exponential decay of E(t). Our analysis extends Theorem 1.1 in [6]

where the same issue was addressed for the corresponding scalar models. It is also worth

mentioning some results obtained for the scalar KdV equation in connection with the

analysis developed here [10,12,13,16,22,24–26]. In fact, in system (1.2), the problem was

addressed only in a bounded domain [3, 15, 21], and estimate (1.6) was proved following

the ideas introduced for the analysis of the corresponding scalar case.

The proof of our main result combines multipliers and the so-called compactness-

uniqueness argument that leads one to apply a unique continuation result. It is precisely

at that point when we use the assumption (1.5) on the support of the damping function.

Indeed, using multipliers, estimate (1.6) will not hold directly since lower-order additional

terms will appear. So, to absorb them we shall use the compactness-uniqueness argument

which reduces the problem to show that the solution that satisfies a(x)u = a(x)v = 0

a.e. for all time t has to be the trivial one. This problem can be viewed as a unique

continuation problem since a(x)u = a(x)v = 0 implies that (u, v) ≡ (0, 0) in {a(x) >

0} × (0, T ). However, the existing unique continuation result (see [21]) does not apply

directly since we are dealing with weak solutions (with initial data in [L2(R)]2). To

overcome this problem we use the fact that ω satisfies (1.5) to get a compactly supported

(in space) solution of the Cauchy problem. We then proceed as in [21], Corollary 3,

showing that the solution is smooth. This allows applying the unique continuation results

in [21] to conclude that u = v ≡ 0. The main difficulty in this context comes from the

structure of the nonlinear terms and the loss of compactness in the whole line. Both

problems require more delicate analysis and lead us to estimate the solutions in terms of

the energy estimates concentrated on bounded sets of the form {|x| ≤ r} × (0, T ).

Similar conclusions remain valid when we consider model (1.2) posed on a quarter

plane with homogeneous boundary conditions, i.e.,

u(0, t) = v(0, t) = 0, t > 0.

The initial boundary value problems for KdV type models arise naturally in modeling

small-amplitude long waves in a channel with a wavemaker mounted at one end (see, for

instance, [4]). Such mathematical formulations have received considerable attention in
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196 A. F. PAZOTO AND G. R. SOUZA

the past, and a satisfactory theory of global well-posedness is available in the literature.

Here, making the same assumptions on the coefficients ai, bi and r, we can also prove

the exponential decay of the energy if we consider ω = (0, α) ∪ (β,+∞) for some α, β ∈
R

+. Our analysis extends the work [12] where the same issue was addressed for the

corresponding scalar model.

In both cases, where either x ∈ R or R
+, the problem is open when ω = (x0,+∞),

for some x0 > 0, for example. This is probably a purely technical problem that could be

overcome by proving unique continuation results for weak solutions. But, as far as we

know, this remains to be done.

The paper is organized as follows: in Section 2 we present some preliminaries, the

global well-posedness result and some a priori estimates. Section 3 is devoted to the

proof of Theorem 1.1, and in Section 4 we present this theorem in the case of the quarter

plane.

2. Preliminary results. The first result of this section is concerned with the global

well-posedness of (1.2). We follow closely the arguments developed in [27] for the study

of the corresponding conservative system, i.e., when a ≡ 0.

We introduce the Hilbert space

X = [L2(R)]2

endowed with the inner product

((u, v), (ϕ, ψ))X =
b2
b1

∫
R

uϕdx+

∫
R

vψdx.

For s, b ∈ R, we also introduce the Bourgain spaces Xs,b related to the system (1.2) as

follows:

X1
s,b = {f : ‖(1 + |τ − ξ3|)b(1 + |ξ|)sf̂(τ, ξ)‖X < ∞}

X2
s,b = {f : ‖(1 + |τ − ξ3 + rξ|)b(1 + |ξ|)sf̂(τ, ξ)‖X < ∞}.

Here, f̂ denotes the Fourier transform of f in both x and t variables:

f̂(ξ, t) =
1

2π

∫
R2

e−i(xξ+tτ)f(x, t)dxdτ.

We also observe that, for b > 1
2 ,

X1
s,b, X2

s,b ⊂ C(R;Hs(R)).

The following basic lemma will be needed:

Lemma 2.1. For ε > 0 sufficiently small, there exists ε′ =
ε

1− ε
> 0 such that

||f ||
H

− 1
2
+ε

t

≤ ||f ||
L1+ε′

t

for all f ∈ L1+ε′

t .
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UNIFORM STABILIZATION OF A NONLINEAR DISPERSIVE SYSTEM 197

Proof. If
1

p
=

1

2
− s, where p > 2 and s > 0, there exists a positive constant c > 0

such that

||f ||Lp
t
≤ c ||f ||Hs

t
.

Consequently, for the corresponding dual spaces we have

||f ||H−s
t

≤ c′ ||f ||
Lp′

t

for some c′ > 0, where
1

p
+

1

p′
= 1. Thus, letting s =

1

2
− ε, with 0 < ε < 1

2 , we get

p =
1

ε
and p′ =

1

1− ε
= 1 + ε′ for some ε′ > 0, since ε is sufficiently small. �

Then, the following holds.

Theorem 2.2. Let T > 0. For any (u0, v0) ∈ X, problem (1.2) admits a unique mild

solution u ∈ C([0, T ];X).

Proof. The proof is obtained following the arguments developed in [27], where the

same problem was addressed when a ≡ 0. Therefore, we omit the details.

First, observe that system (1.2) can be written as{
b1Ut +AUxxx +RUx + C(U)Ux +B(x)U = 0

U(0) = U0,
(2.1)

where U = (u, v),

A =

(
b1 b1a3
b2a3 1

)
, R =

(
0 0

r 0

)
,

C(U) =

(
b1(u+ a1v) b1(a1u+ a1v)

b2(a1u+ a1v) b2a1u+ v

)
and B(x) =

(
b1a(x) 0

0 a(x)

)
.

To find the solution we should solve the integral equation corresponding to (2.1),

W (t) = S(t)U0 −
∫ t

0

S(t− s)[C(U)Ux(s) +B(x)U(s)]ds, (2.2)

where S(t) = e(−t∂3) is the unitary group associated to the linear problem. This will be

done by applying a fixed point argument in the Hilbert space X1
0, 12+

×X2
0, 12+

introduced

above. Therefore, we consider the following cut-off version of (2.2),

W (t) = ψT (t)S(t)U0 − ψT (t)

∫ t

0

S(t− s)[C(U)Ux(s) +B(x)U(s)]ds, (2.3)

with the function ψT (t) = ψ( t
T ) and the function ψ ∈ C∞

0 (R) given by

ψT (t) =

{
1, |t| < 1,

0, |t| ≥ 2.

Hence, taking into account the bilinear estimates obtained in [27], Proposition 4.1, the

proof will be complete if we prove that

‖S(−t)B(x)U‖X1

0, 1
2
+
×X2

0, 1
2
+

≤ c‖U‖X1

0, 1
2
+
×X2

0, 1
2
+

, (2.4)
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198 A. F. PAZOTO AND G. R. SOUZA

for some positive constant c. Indeed, in [27] the fixed point principle was applied when

B ≡ 0.

Let 0 ≤ t ≤ T . Then, (2.4) is obtained following the arguments developed in [20],

estimate (3.48):

‖S(−t)a(x)u‖
H− 1

2
+(0,T ;X)

= ‖‖a(x)u‖X‖
H− 1

2
+ = ‖a(x)u‖X1

0,− 1
2
+

≤ c‖a(x)u‖L1+(0,T ;L2(R)) ≤ c‖a‖L∞(R)‖u‖L1+(0,T ;L2(R))

≤ T γ‖a‖L∞(R)‖u‖L∞(0,T ;L2(R)) ≤ cT γ‖a‖L∞(R)‖u‖X1

0,− 1
2
+

,

for some c > 0, where γ = 1
1+ . The other inequality is obtained in the same way.

The above discussion allows us to conclude the local well-posedness of (1.2) in X. To

prove that the system is globally well-posed we use the energy dissipation law proved in

the next proposition. �
Now we establish a series of estimates that will be useful in the proof of our main

result.

Proposition 2.3. Let u be the solution of problem (1.2) given by Theorem 2.2. Then,

for any T > 0 and x0 ≥ 0, there exists a positive constant C = C(T, ‖(u0, v0)‖X) such

that ∫ T

0

∫ x0+1

x0

(u2
x + v2x)dxdt ≤ C,

‖(u(., T ), v(., T ))‖2X − ‖(u0, v0)‖2X = − 2

b1

∫ T

0

∫
R

a(x)
(
b2u

2 + v2
)
dxdt,

‖(u0, v0)‖2X ≤ 1

T

(∫ T

0

∫
R

(
b2
b1
u2 + v2)dxdt

)
+

2

b1

∫ T

0

∫
R

a(x)(b2u
2 + v2)dxdt.

Proof. The second identity, i.e., the energy dissipation law, is obtained by multiplying

the first equation of (1.2) by u, the second one by v and integrating over R× (0, T ). We

observe that∫ T

0

∫
R

uutdxdt =
1

2
‖u(., T )‖2L2(R) −

1

2
‖u0‖2L2(R)∫ T

0

∫
R

u2uxdxdt =
1

3

∫ T

0

∫
R

∂

∂x
u3dxdt = 0∫ T

0

∫
R

uuxxxdxdt = −1

2

∫ T

0

∫
R

∂

∂x
u2
xdxdt = 0∫ T

0

∫
R

uvxxxdxdt = −
∫ T

0

∫
R

uxvxxdxdt∫ T

0

∫
R

uvvxdxdt =
1

2

∫ T

0

∫
R

u
∂

∂x
v2dxdt = −1

2

∫ T

0

∫
R

uxv
2dxdt∫ T

0

∫
R

u(uv)xdxdt = −
∫ T

0

∫
R

uxuvdxdt =
1

2

∫ T

0

∫
R

u2vxdxdt.
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UNIFORM STABILIZATION OF A NONLINEAR DISPERSIVE SYSTEM 199

Similar computations can be done when we multiply the second equation by v. Since∫ T

0

∫
R
uxvxxdxdt = −

∫ T

0

∫
R
vxuxxdxdt, we can multiply the first equation in (1.2) by b2

and add the resulting identities to obtain

b2
2
‖u(., T )‖2L2(R) +

b1
2
‖v(., T )‖2L2(R)

+b2

∫ T

0

∫
R

a(x)u2dxdt+

∫ T

0

∫
R

a(x)v2dxdt =
b2
2
‖u0‖2L2(R) +

b1
2
‖v0‖2L2(R) ,

and the result follows. A proof of the third identity is similar. We first multiply the

first equation of (1.2) by (T − t)b2u and add it to the second one multiplied by (T − t)v.

Performing integration by parts we get

b2
2

∫ T

0

∫
R

u2dxdt+
b1
2

∫ T

0

∫
R

v2dxdt− Tb2
2

∫
R

(u0)
2dx− Tb1

2

∫
R

(v0)
2dx

= −b2

∫ T

0

∫
R

(T − t)a(x)u2dxdt−
∫ T

0

∫
R

(T − t)a(x)v2dxdt,

that is,

b2
2

∫
R

(u0)
2dx+

b1
2

∫
R

(v0)
2dx ≤ 1

T

(
b2
2

∫ T

0

∫
R

u2dxdt+
b1
2

∫ T

0

∫
R

v2dxdt

)

+

∫ T

0

∫
R

a(x)(b2u
2 + v2)dxdt.

The above identity allows us to obtain the bound for (u0, v0) in X.

To prove the first inequality, we introduce a convenient cut-off function. Let ψ0 ∈
C∞(R) be a nondecreasing function such that ψ0(x) = 0 for x ≤ 1

2 and ψ0(x) = 1 for

x ≥ 1. For α ≥ 0 we set ψα(x) = xαψ0(x) and note that ψα ∈ C∞(R) and ψ′
α(x) ≥ 0 for

any x ∈ R.

We multiply the first equation of (1.2) by b2uψα(x − x0) and the second one by

vψα(x− x0) to obtain the identity

∫
R

(b2uut + b1vvt)ψα(x− x0)dx+

∫
R

(b2uuxxx + vvxxx)ψα(x− x0)dx

+

∫
R

(a3b2uvxxx + a3b2vuxxx)ψα(x− x0)dx+

∫
R

(b2u
2ux + v2vx)ψα(x− x0)dx

+

∫
R

(a1b2uvvx + a1b2uvux)ψα(x− x0)dx+

∫
R

a1b2u(uv)xψα(x− x0)dx

+

∫
R

a1b2v(uv)xψα(x− x0)dx+

∫
R

rvvxψα(x− x0)dx

+

∫
R

a(x)(b2u
2 + v2)ψα(x− x0)dx = 0.

(2.5)
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200 A. F. PAZOTO AND G. R. SOUZA

The next steps are devoted to splitting (2.5). First observe that∫
R

uuxxxψα(x− x0)dx = −
∫
R

uxx(uxψα + uψ′
α)dx

= −1

2

∫
R

(u2
x)xψα(x− x0)dx+

∫
R

ux(uxψ
′
α + uψ′′

α)dx

=
3

2

∫
R

u2
xψ

′
α(x− x0)dx− 1

2

∫
R

u2ψ′′′
α (x− x0)dx.

Then, we have∫
R

(b2uuxxx + vvxxx)ψα(x− x0)dx

=
3

2

∫
R

(b2u
2
x + v2x)ψ

′
α(x− x0)dx− 1

2

∫
R

(b2u
2 + v2)ψ′′′

α (x− x0)dx.

(2.6)

A similar computation gives us that∫
R

(a3b2vuxxx + a3b2uvxxx)ψα(x− x0)dx

= −a3b2

∫
R

uxx(vxψα + vψ′
α)dx− a3b2

∫
R

vxx(uxψα + uψ′
α)dx

= 3a3b2

∫
R

uxvxψ
′
α(x− x0)dx− a3b2

∫
R

uvψ′′′
α (x− x0)dx.

(2.7)

Finally, we have∫
R

(b2u
2ux + v2vx)ψα(x− x0)dx = −1

3

∫
R

(b2u
3 + v3)ψ′

α(x− x0)dx (2.8)

and ∫
R

a1b2u(uv)xψα(x− x0)dx+

∫
R

a1b2v(uv)xψα(x− x0)dx

= −
∫
R

a1b2uvvxψα(x− x0)dx−
∫
R

a1b2v
2uψ′

α(x− x0)dx

−
∫
R

a1b2uvuxψα(x− x0)dx−
∫
R

a1b2u
2vψ′

α(x− x0)dx.

(2.9)

Combining (2.5) and the above estimates (2.6)-(2.10), we obtain

1

2

d

dt

∫
R

(b2u
2 + b1v

2)ψα(x− x0)dx+
3

2

∫
R

(b2u
2
x + v2x)ψ

′
α(x− x0)dx

=
1

2

∫
R

(b2u
2 + v2)ψ′′′

α (x− x0)dx− 3a3b2

∫
R

uxvxψ
′
α(x− x0)dx

+a3b2

∫
R

uvψ′′′
α (x− x0)dx+

1

3

∫
R

(b2u
3 + v3)ψ′

α(x− x0)dx

+a1b2

∫
R

u2vψ′
α(x− x0)dx+ a1b2

∫
R

uv2ψ′
α(x− x0)dx

+
r

2

∫
R

v2ψ′
α(x− x0)dx−

∫
R

a(x)(b2u
2 + v2)ψα(x− x0)dx.

(2.10)
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Now we estimate the terms on the right-hand side of (2.10):

1

3

∫
R

(
b2u

3 + v3
)
ψ′
α(x− x0)dx ≤ 1

3
sup
x∈R

∣∣∣u√ψ′
α(x− x0)

∣∣∣ ∫
R

u2
√
ψ′
α(x− x0)dx

+
1

3
sup
x∈R

∣∣∣v√ψ′
α(x− x0)

∣∣∣ ∫
R

v2
√
ψ′
α(x− x0)dx.

(2.11)

To estimate sup
x∈R

|u(x, t)
√
ψ′
α(x− x0)| we use the following inequality:

sup
x∈R

w2(x) ≤ 1

2

∫
R

|w(x)||w′(x)|dx, ∀w ∈ H1(R).

Then, letting w = u(x, t)
√
ψ′
α(x− x0) it follows that

sup
x∈R

|u
√
ψ′
α| ≤ 1√

2

(∫
R

|u
√
ψ′
α| |ux

√
ψ′
α +

uψ′′
α

2
√
ψ′
α

|dx
) 1

2

≤ 1√
2

(∫
R

u2
xψ

′
αdx

) 1
4
(∫

R

u2ψ′
αdx

) 1
4

+
1

2

(∫
R

u2ψ′′
αdx

) 1
2

.

For 0 ≤ α ≤ 1 and k ≥ 1, the function ψα introduced above satisfies

|ψ(k)
α (x)| ≤ ck,

where ck is a positive constant that depends on k. Then, combining Hölder inequality

and the energy dissipation law we get

1

3

∫
R

(
b2u

3 + v3
)
ψ′
α(x− x0)dx

≤ c

[
1 +

(∫
R

u2
xψ

′
α(x− x0)dx

) 1
4

+
(∫

R

v2xψ
′
α(x− x0)dx

) 1
4

]

≤ c

[
1 + δ

∫
R

(u2
x + v2x)ψ

′
α(x− x0)dx

] (2.12)

for any δ > 0 and c > 0 that depends on E(0).

Proceeding as in the previous computations we have∫
R

u2vψ′
α(x− x0)dx ≤ sup

x∈R

|v(x, t)
√
ψ′
α(x− x0)|

∫
R

u2
√

ψ′
α(x− x0)dx

≤
[

1√
2

(∫
R

v2xψ
′
αdx

) 1
4
(∫

R

v2ψ′
αdx

) 1
4

+
1

2

(∫
R

v2ψ′′
αdx

) 1
2

] ∫
R

u2
√
ψ′
αdx

≤ c

[
1 + δ

∫
R

v2xψ
′
α(x− x0)dx

]

for any δ > 0 and c = c(E(0)) > 0. Thus,

−a1b2

∫
R

u2vψ′
α(x− x0)dx− a1b2

∫
R

uv2ψ′
α(x− x0)dx

≤ c

[
1 + δ

∫
R

(u2
x + v2x)ψ

′
α(x− x0)dx

] (2.13)
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for any δ > 0 and c = c(E(0)) > 0. Moreover,

3a3b2

∫
R

uxvxψ
′
α(x− x0)dx ≤ 3|a3|

√
b2

2

∫
R

(b2u
2
x + v2x)ψ

′
α(x− x0)dx. (2.14)

Then, combining (2.10) and the estimates (2.11)-(2.14), we deduce that

1

2

d

dt

∫
R

(b2u
2+b1v

2)ψα(x− x0)dx+ (
3

2
(1− |a3|

√
b2)− cδ)

∫
R

(b2u
2
x + v2x)ψ

′
α(x− x0)dx

≤ c1 + c2

∫
R

(u2 + v2){ψ′
α(x− x0) + |ψ′′′

α (x− x0)|}dx
(2.15)

where c1 and c2 are positive constants. Now, choosing δ > 0 such that 3
2 (1−a23b2)−cδ > 0

and using the energy dissipation law, we obtain the first estimate by integrating the

identity above with respect to t and considering the form of the function ψα when α =

0. �
As a consequence of Theorem 2.2, we have a global existence result in [H1(R)]2.

Corollary 2.4. If a ∈ W 1,∞(R) and (u0, v0) ∈ [H1(R)]2, then system (1.2) has a

unique solution (u, v) ∈ L∞(0, T ; [H1(R)]2), for all T > 0.

Proof. The ideas involved in the proof follow closely the previous arguments and those

presented in [5], Proposition 5.3; therefore, it will be omitted. �

3. Proof of the main result. In this section we prove the uniform exponential

decay of the total energy E(t).

Proof of Theorem 1.1. As we pointed out in Section 1, to obtain the exponential decay

of E(t) we claim that, for any R > 0, the following inequality holds:

E(0) ≤ C

∫ T

0

[ ∫
R

a(x)(b2u
2 + v2)dx

]
dt, (3.1)

provided that E(0) ≤ R, where C = C(R, T ) is a positive constant. This fact, together

with the energy dissipation law and the semigroup property, suffices to obtain the uniform

exponential decay. Let us prove (3.1).

From Proposition 2.3, it follows that

‖(u0, v0)‖2X ≤ 1

T

(∫ T

0

∫
R

(
b2
b1
u2 + v2)dxdt

)
+

2

b1

∫ T

0

∫
R

a(x)(b2u
2 + v2)dxdt. (3.2)

Thus, in order to show (3.1) it suffices to prove that for any T > 0 and R > 0, there

exists a positive constant C = C(R, T ) satisfying∫ T

0

∫
R

(
b2
b1
u2 + v2)dxdt ≤ C

∫ T

0

∫
R

a(x)(b2u
2 + v2)dxdt. (3.3)

Let us argue by contradiction following the so-called “compactness-uniqueness” argument

(see for instance [31]). Suppose that (3.3) is not valid. Then, we can find a sequence of

functions {Un}n∈N = {(un, vn)}n∈N ∈ C([0, T ];X) solving (1.2), such that

‖(un(·, 0), vn(·, 0))‖X ≤ R (3.4)
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and

lim
n→∞

‖(un, vn)‖2L2(0,T ;X)∫ T

0

∫
R

a(x)(b2u
2
n + v2n)dxdt

= +∞.

Let λn = ‖Un‖L2(0,T ;X) and define Wn(x, t) = Un(x, t)/λn = (yn, zn). Then, for each

n ∈ N, the function Wn solves⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yn,t + yn,xxx + a3zn,xxx + λn(ynyn,x + a1znzn,x + a1(ynzn)x) + a(x)yn = 0,

b1zn,t + rzn,x + zn,xxx + b2a3yn,xxx

+λn(znzn,x + b2a1ynyn,x + b2a1(ynzn)x) + a(x)zn = 0,

yn(x, 0) = y0,n(x), zn(x, 0) = z0,n(x),
(3.5)

where x ∈ R, t > 0. Moreover,

‖(yn, zn)‖L2(0,T ;X) = 1, ∀n ∈ N, (3.6)

and ∫ T

0

∫
R

a(x)(b2y
2
n + z2n)dxdt −→ 0, (3.7)

as n → ∞. Observe that the energy dissipation law and (3.4) guarantee that {λn}n∈N is

bounded. Then, by extracting a subsequence still denoted by the same index n, we can

assume that

λn → λ ≥ 0. (3.8)

Now, from (3.2), (3.6) and (3.7), it follows that

Wn(x, 0) = Un(x, 0)/λn = (yn(x, 0), zn(x, 0)) = W0,n(x)

is bounded in X. Then, by Proposition 2.3, we deduce that

‖(yn, zn)‖L2(0,T ;[H1
loc(R)]

2) ≤ C, (3.9)

for all n ∈ N, where C > 0. On the other hand, since

‖ynzn,x‖L2(0,T ;L1
loc(R))

≤ ‖(yn, zn)‖L∞(0,T ;[L2
loc(R)]

2)‖(yn, zn)‖L2(0,T ;[H1
loc(R)]

2),

due to the above estimates, we obtain a positive constant C such that

‖ynzn,x‖L2(0,T ;L1
loc(R))

≤ C, ∀n ∈ N.

The remaining nonlinear terms can be estimated in a similar way. Consequently,

{(yn, zn)}n∈N is bounded in L2(0, T ; [H−3
loc (R)]

2). (3.10)

Indeed, according to (3.5),

yn,t = −yn,xxx − a3zn,xxx − λn(ynyn,x − a1znzn,x − a1(ynzn)x)− a(x)yn,

b1zn,t = −rzn,x − zn,xxx − b2a3yn,xxx
−λn(znzn,x − b2a1ynyn,x − b2a1(ynzn)x)− a(x)zn

in D′(0, T ; [H−2(R)]2), and (3.9)-(3.10) guarantee the boundedness of the terms appear-

ing on the right-hand side of both equations in L2(0, T ; [H−2
loc (R)]

2). Then, using the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



204 A. F. PAZOTO AND G. R. SOUZA

estimates above and classical compactness results [[28], Corollary 4], we obtain a subse-

quence of {(yn, zn)}n∈N, still denoted by the same index n, and a function W = (y, z)

such that ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(yn, zn) ⇀ (y, z) weakly ∗ in L∞(0, T ; [L2
loc(R)]

2)

(yn, zn) ⇀ (y, z) weakly in L2(0, T ; [H1
loc(R)]

2)

(yn, zn) → (y, z) strongly in L2(0, T ; [L2
loc(R)]

2)

(yn, zn) → (y, z) strongly in C([0, T ]; [H−1
loc (R)]

2).

(3.11)

In particular,

Wn(x, 0) = W0,n(x) → W (x, 0) = (y(x, 0), z(x, 0)) := W0(x). (3.12)

Since W ∈ L∞(0, T ; [L2
loc(R)]

2) ∩ C([0, T ]; [H−1
loc (R)]

2), from [[29], Chapter III, Lemma

4.1], we have

W ∈ Cw([0, T ]; [L2
loc(R)]

2),

where Cw([0, T ]; [L2
loc(R)]

2) denotes the space of sequentially weakly continuous functions

from [0, T ] into [L2
loc(R)]

2. Moreover, convergences (3.7) and (3.11) allow us to conclude

that

0 = lim inf
n→∞

{∫ T

0

∫
R

a(x)(b2y
2
n + z2n)dxdt

}
≥

∫ T

0

∫
K

a(x)(b2y
2 + z2)dxdt (3.13)

for all K ⊂ R compact. Also, ∫ T

0

∫
ωc

(y2n + z2n)dxdt −→ 0. (3.14)

Consequently, from the structure of ω, (3.6), (3.11) and (3.14), we obtain

‖W‖2L2(0,T ;X) =

∫ T

0

∫
ω

|W |2dxdt+
∫ T

0

∫
ωc

|W |2dxdt = 1. (3.15)

Combining the results above, we can conclude that the weak limit W = (y, z) solves⎧⎪⎨
⎪⎩

b1Wt +AWxxx +RWx + λC(W )Wx = 0

W ≡ 0 on ω × (0, T )

W (x, 0) := W0(x) ∈ X,

(3.16)

where A,R,C and B were introduced in the proof of Theorem 2.2. Then, according to the

unique continuation property (UCP) proved in [[21], Corollary 3] for the subset ω, we have

W ≡ 0 in R× (0, T ). This contradicts (3.15) and the proof is complete. We note that in

order to apply the result proved in [21] we need to show that W ∈ L∞
loc(0, T ; [H

1
loc(R)]

2).

But since W is a compactly supported (in space) solution, we can proceed as in [21],

Corollary 3, to guarantee that the solution is smooth enough. In this context, Corollary

2.4 is crucial. �
Remark 3.1. Following the approach used in [3], Theorem 4.1, we could also obtain

similar results on the exponential decay as t → ∞.
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4. The quarter plane. Similar conclusions remain valid when we consider model

(1.2) posed on a quarter plane with homogeneous boundary conditions:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut + uxxx + a3vxxx + uux + a1vvx + a1(uv)x + a(x)u = 0,

b1vt + rvx + vxxx + b2a3uxxx + vvx + b2a1uux + b2a1(uv)x + a(x)v = 0,

u(0, t) = v(0, t) = 0,

u(x, 0) = u0(x) and v(x, 0) = v0(x),

(4.1)

where x, t ∈ R
+. In this case we assume the same conditions on the coefficients r, a1, a3,

b1, b2 and the function a = a(x) with ω being

ω = (0, α) ∪ (β,+∞), for some α, β ∈ R
+.

Under the above conditions, the total energy associated to (4.1) satisfies

d

dt

1

2

∫
R+

(b2u
2 + b1v

2)dx = −[
b2
2
u2
x(0, t) +

1

2
v2x(0, t) + a3b2ux(0, t)vx(0, t)]

−
∫
R+

a(x)(b2u
2 + v2)dx = −1

2

(√
b2ux(0, t) +

√
a23b2vx(0, t)

)2

−1

2

(
1− a23b2

)
v2x(0, t)−

∫
R+

a(x)(b2u
2 + v2)dx ≤ 0,

(4.2)

i.e., the energy is decreasing. So, in the light of the computations performed in the

previous section, we can also prove that it decays to zero exponentially. More precisely,

we have the following result:

Theorem 4.1. If (u0, v0) ∈ X, then system (4.1) is locally uniformly exponential stable.

Indeed, due to (4.2), to obtain the exponential decay it is sufficient to find C > 0 and

T > 0, such that

E(0) ≤ C

∫ T

0

[ ∫
R

a(x)(b2u
2 + v2)dx+

1

2

(√
b2ux(0, t) +

√
a23b2vx(0, t)

)2

+
1

2

(
1− a23b2

)
v2x(0, t)

]
dt

(4.3)

holds for every finite energy solution of (4.2). To prove (4.3) we first multiply the first

equation of (1.2) by (T − t)b2u and add to the second one multiplied by (T − t)v.

Performing integration by parts we get

b2
2

∫ T

0

∫
R+

u2dxdt+
b1
2

∫ T

0

∫
R+

v2dxdt+
b2
2

∫ T

0

(T − t)u2
x(0, t)dt

+
1

2

∫ T

0

(T − t)v2x(0, t)dt+ b2a3

∫ T

0

(T − t)ux(0, t)vx(0, t)dt

+b2

∫ T

0

∫
R+

(T − t)a(x)u2dxdt+

∫ T

0

∫
R+

(T − t)a(x)v2dxdt

=
Tb2
2

∫
R+

(u0)
2dx+

Tb1
2

∫
R+

(v0)
2dx;
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that is,

b2
2

∫
R+

(u0)
2dx+

b1
2

∫
R+

(v0)
2dx

≤ 1

T

(
b2
2

∫ T

0

∫
R+

u2dxdt+
b1
2

∫ T

0

∫
R+

v2dxdt

)

+
1

2

∫ T

0

[
(
√
b2ux(0, t) +

√
a23b2vx(0, t))

2 +
(
1− a23b2

)
v2x(0, t)

]
dt

+

∫ T

0

∫
R+

a(x)(b2u
2 + v2)dxdt.

(4.4)

Then, to obtain (4.3) we have to prove that for any T > 0 and R > 0, there exists a

constant C(R, T ) > 0 satisfying

b2
b1

∫ T

0

∫
R+

u2dxdt+

∫ T

0

∫
R+

v2dxdt

≤ C(R, T )
(∫ T

0

[
(
√
b2ux(0, t) +

√
a23b2vx(0, t))

2 +
(
1− a23b2

)
v2x(0, t)

]
dt

+

∫ T

0

∫
R+

2a(x)(b2u
2 + v2)dxdt

)
,

(4.5)

whenever ||(u0, v0)||X ≤ R. We argue by contradiction and suppose that (4.5) is not

true. Then, arguing as in (3.4)-(3.15), the problem is reduced to showing the unique

continuation property for a function W = (u, v), solution of⎧⎪⎨
⎪⎩

b1Wt +AWxxx +RWx + λC(W )Wx = 0

W (0, t) = Wx(0, t) = 0

W (x, 0) := W0(x) ∈ X,

(4.6)

which satisfies

W ≡ 0 on ω × (0, T ). (4.7)

Here, A,R,C and B were introduced in the proof of Theorem 2.2. Then, applying the

unique continuation property proved in [[21], Corollary 3] for the subset ω, we deduce that

W ≡ 0 in R
+× (0, T ). As in the previous case, in order to apply the unique continuation

result, we first need to guarantee thatW ∈ L∞(0, T ; [H1
loc(R)]

2). However, in the absence

of Corollary 2.4, we proceed as in [3], Theorem 4.1, to prove that the solution is smooth

enough. Again, this is possible because we are dealing with a compactly supported (in

space) solution.

It is also important to note that all the estimates needed for the proof are obtained

as in Proposition 2.3. In particular, if we suppose that the function ψ0 ∈ C∞(R+),

introduced in the proofs of Proposition 2.3, satisfies ψ0(x) = 0 for 0 ≤ x ≤ 1
2 , then we

deduce that

‖(u, v)‖L2(0,T ;[H1
loc(R

+)]2) ≤ C (4.8)

for some C > 0. The same argument was used in [12].
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