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UNIFORM UNCERTAINTY PRINCIPLE AND SIGNAL
RECOVERY VIA REGULARIZED ORTHOGONAL MATCHING

PURSUIT

DEANNA NEEDELL AND ROMAN VERSHYNIN

Abstract. This paper seeks to bridge the two major algorithmic approaches to
sparse signal recovery from an incomplete set of linear measurements – L1-mini-
mization methods and iterative methods (Matching Pursuits). We find a simple
regularized version of Orthogonal Matching Pursuit (ROMP) which has advan-
tages of both approaches: the speed and transparency of OMP and the strong
uniform guarantees of L1-minimization. Our algorithm ROMP reconstructs a
sparse signal in a number of iterations linear in the sparsity, and the reconstruc-
tion is exact provided the linear measurements satisfy the Uniform Uncertainty
Principle.

1. Introduction

Sparse recovery problems arise in many applications ranging from medical imaging
to error correction. Suppose v is an unknown d-dimensional signal with at most
n≪ d nonzero components:

v ∈ R
d, |supp(v)| ≤ n≪ d.

We call such signals n-sparse. Suppose we are able to collect N ≪ d nonadaptive
linear measurements of v, and wish to efficiently recover v from these. The mea-
surements are given as the vector Φv ∈ R

N , where Φ is some N × d measurement
matrix.1

As discussed in [2], exact recovery is possible with just N = 2n. However, recovery
using only this property is not numerically feasible; the sparse recovery problem in
general is known to be NP-hard. Nevertheless, massive recent work in the emerging
area of Compressed Sensing demonstrated that for several natural classes of measure-
ment matrices Φ, the signal v can be exactly reconstructed from its measurements
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Φv with

(1.1) N = n logO(1)(d).

In other words, the number of measurements N ≪ d should be almost linear in
the sparsity n. Survey [1] contains some of these results; the Compressed Sensing
webpage [6] documents progress in this area.

The two major algorithmic approaches to sparse recovery are methods based on
L1-minimization and iterative methods (Matching Pursuits). We now briefly de-
scribe these methods. Then we propose a new iterative method that has advantages
of both approaches.

1.1. L1-minimization. This approach to sparse recovery has been advocated over
decades by Donoho and his collaborators (see e.g. [10]). The sparse recovery prob-
lem can be stated as the problem of finding the sparsest signal v with the given
measurements Φv:

(L0) min ‖u‖0 subject to Φu = Φv

where ‖u‖0 := |supp(u)|. Donoho and his associates advocated the principle that for
some measurement matrices Φ, the highly non-convex combinatorial optimization
problem (L0) should be equivalent to its convex relaxation

(L1) min ‖u‖1 subject to Φu = Φv

where ‖u‖1 =
∑

i |ui| denotes the ℓ1-norm of the vector u = (u1, . . . , ud). The convex
problem (L1) can be solved using methods of convex and even linear programming.

The recent progress in the emerging area of Compressed Sensing pushed forward
this program (see survey [1]). A necessary and sufficient condition of exact sparse
recovery is that the map Φ be one-to-one on the set of n-sparse vectors. Candès and
Tao [5] proved that a stronger quantitative version of this condition guarantees the
equivalence of the problems (L0) and (L1).

Definition 1.1 (Restricted Isometry Condition). A measurement matrix Φ satisfies
the Restricted Isometry Condition (RIC) with parameters (m, ε) for ε ∈ (0, 1) if we
have

(1− ε)‖v‖2 ≤ ‖Φv‖2 ≤ (1 + ε)‖v‖2 for all m-sparse vectors.

The Restricted Isometry Condition states that every set of m columns of Φ forms
approximately an orthonormal system. One can interpret the Restricted Isometry
Condition as an abstract version of the Uniform Uncertainty Principle in harmonic
analysis ([4], see also discussions in [3] and [16]).

Theorem 1.2 (Sparse recovery under RIC [5]). Assume that the measurement ma-
trix Φ satisfies the Restricted Isometry Condition with parameters (3n, 0.2). Then
every n-sparse vector x can be exactly recovered from its measurements Φx as a
unique solution to the convex optimization problem (L1).

In a lecture on Compressive Sampling, Candès sharpened this to work for the
Restricted Isometry Condition with parameters (2n,

√
2−1). Measurement matrices
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that satisfy the Restricted Isometry Condition with number of measurements as in
(1.1) include random Gaussian, Bernoulli and partial Fourier matrices. Section 2
contains more detailed information.

1.2. Orthogonal Matching Pursuit (OMP). An alternative approach to sparse
recovery is via iterative algorithms, which find the support of the n-sparse signal v
progressively. Once S = supp(v) is found correctly, it is easy to compute the signal v
from its measurements x = Φv as v = (ΦS)−1x, where ΦS denotes the measurement
matrix Φ restricted to columns indexed by S.

A basic iterative algorithm is Orthogonal Matching Pursuit (OMP), popularized
and analyzed by Gilbert and Tropp in [21], see [22] for a more general setting. OMP
recovers the support of v, one index at a time, in n steps. Under a hypothetical
assumption that Φ is an isometry, i.e. the columns of Φ are orthonormal, the signal
v can be exactly recovered from its measurements x = Φv as v = Φ∗x.

The problem is that the N × d matrix Φ is never an isometry in the interesting
range where the number of measurements N is smaller than the ambient dimension
d. Even though the matrix is not an isometry, one can still use the notion of
coherence in recovery of sparse signals. In that setting, greedy algorithms are used
with incoherent dictionaries to recover such signals, see [8], [9], [13]. In our setting,
for random matrices one expects the columns to be approximately orthogonal, and
the observation vector u = Φ∗x to be a good approximation to the original signal v.

The biggest coordinate of the observation vector u in magnitude should thus be
a nonzero coordinate of the signal v. We thus find one point of the support of v.
Then OMP can be described as follows. First, we initialize the residual r = x. At
each iteration, we compute the observation vector u = Φ∗r. Denoting by I the
coordinates selected so far, we solve a least squares problem and update the residual

y = argmin
z∈RI

‖x− Φz‖2; r = x− Φy,

to remove any contribution of the coordinates in I. OMP then iterates this procedure
n times, and outputs a set I of size n, which should equal the support of the signal
v.

Tropp and Gilbert [21] analyzed the performance of OMP for Gaussian measure-
ment matrices Φ; a similar result holds for general subgaussian matrices. They
proved that, for every fixed n-sparse d-dimensional signal v, and an N × d ran-
dom Gaussian measurement matrix Φ, OMP recovers (the support of) v from the
measurements x = Φv correctly with high probability, provided the number of mea-
surements is N ∼ n log d.

1.3. Advantages and challenges of both approaches. The L1-minimization
method has strongest known guarantees of sparse recovery. Once the measurement
matrix Φ satisfies the Restricted Isometry Condition, this method works correctly for
all sparse signals v. No iterative methods have been known to feature such uniform
guarantees, with the exception of Chaining Pursuit [14] and the HHS Algorithm
[15] which however only work with specifically designed structured measurement
matrices.
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The Restricted Isometry Condition is a natural abstract deterministic property
of a matrix. Although establishing this property is often nontrivial, this task is
decoupled from the analysis of the recovery algorithm.

L1-minimization is based on linear programming, which has its advantages and
disadvantages. One thinks of linear programming as a black box, and any develop-
ment of fast solvers will reduce the running time of the sparse recovery method. On
the other hand, it is not very clear what this running time is, as there is no strongly
polynomial time algorithm in linear programming yet. All known solvers take time
polynomial not only in the dimension of the program d, but also on certain condition
numbers of the program. While for some classes of random matrices the expected
running time of linear programming solvers can be bounded (see the discussion in
[20] and subsequent work in [23]), estimating condition numbers is hard for specific
matrices. For example, there is no result yet showing that the Restricted Isometry
Condition implies that the condition numbers of the corresponding linear program
is polynomial in d.

Orthogonal Matching Pursuit is quite fast, both theoretically and experimentally.
It makes n iterations, where each iteration amounts to a multiplication by a d×N
matrix Φ∗ (computing the observation vector u), and solving a least squares problem
in dimensions at most N × n (with matrix ΦI). This yields strongly polynomial
running time. In practice, OMP is observed to perform faster and is easier to
implement than L1-minimization [21]. For more details, see [21].

Orthogonal Matching Pursuit is quite transparent: at each iteration, it selects
a new coordinate from the support of the signal v in a very specific and natural
way. In contrast, the known L1-minimization solvers, such as the simplex method
and interior point methods, compute a path toward the solution. However, the
geometry of L1 is clear, whereas the analysis of greedy algorithms can be difficult
simply because they are iterative.

On the other hand, Orthogonal Matching Pursuit has weaker guarantees of exact
recovery. Unlike L1-minimization, the guarantees of OMP are non-uniform: for
each fixed sparse signal v and not for all signals, the algorithm performs correctly
with high probability. Rauhut has shown that uniform guarantees for OMP are
impossible for natural random measurement matrices [18].

Moreover, OMP’s condition on measurement matrices given in [21] is more restric-
tive than the Restricted Isometry Condition. In particular, it is not known whether
OMP succeeds in the important class of partial Fourier measurement matrices.

These open problems about OMP, first stated in [21] and often reverberated in the
Compressed Sensing community, motivated the present paper. We essentially settle
them in positive by the following modification of Orthogonal Matching Pursuit.

1.4. Regularized OMP. This new algorithm for sparse recovery will perform cor-
rectly for all measurement matrices Φ satisfying the Restricted Isometry Condition,
and for all sparse signals.

When we are trying to recover the signal v from its measurements x = Φv, we can
use the observation vector u = Φ∗x as a good local approximation to the signal v.
Namely, the observation vector u encodes correlations of the measurement vector x
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with the columns of Φ. Note that Φ is a dictionary, and so since the signal v is sparse,
x has a sparse representation with respect to the dictionary. By the Restricted
Isometry Condition, every n columns form approximately an orthonormal system.
Therefore, every n coordinates of the observation vector u look like correlations of
the measurement vector x with the orthonormal basis and therefore are close in the
Euclidean norm to the corresponding n coefficients of v. This is documented in
Proposition 3.2 below.

The local approximation property suggests to make use of the n biggest coordi-
nates of the observation vector u, rather than one biggest coordinate as OMP did.
We thus force the selected coordinates to be more regular (ie. closer to uniform) by
selecting only the coordinates with comparable sizes. To this end, a new regulariza-
tion step will be needed to ensure that each of these coordinates gets an even share
of information. This leads to the following algorithm for sparse recovery:

Regularized Orthogonal Matching Pursuit (ROMP)

Input: Measurement vector x ∈ R
N and sparsity level n

Output: Index set I ⊂ {1, . . . , d}
Initialize: Let the index set I = ∅ and the residual r = x.

Repeat the following steps until r = 0:
Identify: Choose a set J of the n biggest coordinates in magnitude of the

observation vector u = Φ∗r, or all of its nonzero coordinates, whichever
set is smaller.

Regularize: Among all subsets J0 ⊂ J with comparable coordinates:

|u(i)| ≤ 2|u(j)| for all i, j ∈ J0,

choose J0 with the maximal energy ‖u|J0
‖2.

Update: Add the set J0 to the index set: I ← I ∪ J0, and update the
residual:

y = argmin
z∈RI

‖x− Φz‖2; r = x− Φy.

Remark. The identification and regularization steps of ROMP can be performed
efficiently. In particular, the regularization step does not imply combinatorial com-
plexity, but actually can be done in linear time. The running time of ROMP is thus
comparable to that of OMP in theory, and is often better than OMP in practice.
We discuss the runtime in detail in Section 4.

The main theorem of this paper states that ROMP yields exact sparse recovery
provided that the measurement matrix satisfies the Restricted Isometry Condition.

Theorem 1.3 (Exact sparse recovery via ROMP). Assume a measurement ma-
trix Φ satisfies the Restricted Isometry Condition with parameters (2n, ε) for ε =
0.03/

√
log n. Let v be an n-sparse vector in R

d with measurements x = Φv. Then
ROMP in at most n iterations outputs a set I such that

supp(v) ⊂ I and |I| ≤ 2n.
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This theorem is proved in Section 3.

Remarks. 1. Theorem 1.3 guarantees exact sparse recovery. Indeed, it is easy to
compute the signal v from its measurements x = Φv and the set I given by ROMP
as v = (ΦI)

−1x, where ΦI denotes the measurement matrix Φ restricted to columns
indexed by I.

2. Theorem 1.3 gives uniform guarantees of sparse recovery. Indeed, once the
measurement matrix satisfies a deterministic condition (RIC), then our algorithm
ROMP correctly recovers every sparse vector from its measurements. Uniform guar-
antees have been shown to be impossible for OMP [18], and it has been an open
problem to find a version of OMP with uniform guarantees (see [21]). Theorem 1.3
says that ROMP essentially settles this problem.

3. The logarithmic factor in ε may be an artifact of the proof. At this moment,
we do not know how to remove it.

4. Measurement matrices known to satisfy the Restricted Isometry Condition
include random Gaussian, Bernoulli and partial Fourier matrices, with number of
measurements N almost linear in the sparsity n, i.e. as in (1.1). Section 2 contains
detailed information. It has been unknown whether OMP gives sparse recovery for
partial Fourier measurements (even with non-uniform guarantees). ROMP gives
sparse recovery for these measurements, and even with uniform guarantees.

The rest of the paper is organized as follows. In Section 2 we describe known
classes of measurement matrices satisfying the Restricted Isometry Condition. In
Section 3 we give the proof of Theorem 1.3. In Section 4 we discuss implementation,
running time, and empirical performance of ROMP.

Acknowledgment. We would like to thank the referees for a thorough reading of
the manuscript and making useful suggestions which greatly improved the paper.

2. Measurement matrices satisfying the Restricted Isometry
Condition

The only known measurement matrices known to satisfy the Restricted Isometry
Condition with number of measurements as in (1.1) are certain classes of random ma-
trices. The problem of deterministic constructions is still open. The known classes
include: subgaussian random matrices (in particular, Gaussian and Bernoulli), and
random partial bounded orthogonal matrices (in particular, partial Fourier matri-
ces).

Throughout the paper, C, c, C1, C2, c1, c2, . . . denote positive absolute constants
unless otherwise specified.

A subgaussian random matrix Φ is a matrix whose entries are i.i.d. subgaussian
random variables with variance 1. A random variable X is subgaussian if its tail
distribution is dominated by that of the standard Gaussian random variable: there
are constants C1, c1 > 0 such that P(|X| > t) ≤ C1 exp(−c1t

2) for all t > 0. Ex-
amples of subgaussian random variables are: standard Gaussian, Bernoulli (uniform
±1), and any bounded random variables.
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A partial bounded orthogonal matrix Φ is formed by N randomly uniformly chosen
rows of an orthogonal d × d matrix Ψ, whose entries are bounded by C2/

√
d, for

some constant C2. An example of Ψ is the discrete Fourier transform matrix. Taking
measurements Φv with a partial Fourier matrix thus amounts to observing N random
frequencies of the signal v.

The following theorem documents known results on the Restricted Isometry Con-
dition for these classes of random matrices.

Theorem 2.1 (Measurement matrices satisfying RIC). Consider an N × d mea-
surement matrix Φ, and let n ≥ 1, ε ∈ (0, 1/2), and δ ∈ (0, 1).

1. If Φ is a subgaussian matrix, then with probability 1 − δ the matrix 1√
N

Φ

satisfies the Restricted Isometry Condition with parameters (n, ε) provided that

N ≥ Cn

ε2
log

( d

ε2n

)

.

2. If Φ is a partial bounded orthogonal matrix, then with probability 1−δ the matrix
√

d
N

Φ satisfies the Restricted Isometry Condition with parameters (n, ε) provided

that

N ≥ C
(n log d

ε2

)

log
(n log d

ε2

)

log2 d.

In both cases, the constant C depends only on the confidence level δ and the constants
C1, c1, C2 from the definition of the corresponding classes of matrices.

Remarks. 1. The first part of this theorem is proved in [17]. The second part
is from [19]; a similar estimate with somewhat worse exponents in the logarithms
was proved in [4]. See these results for the exact dependence of C on the confidence
level δ (although usually δ would be chosen to be some small constant itself.)

2. In Theorem 1.3, we needed to use RIC for ε = c1/
√

log n. An immediate
consequence of Theorem 2.1 is that subgaussian matrices satisfy such RIC for the
number of measurements

N ∼ n log2 d

and partial bounded orthogonal matrices for

N ∼ n log5 d.

These numbers of measurements guarantee exact sparse recovery using ROMP.

3. Proof of Theorem 1.3

We shall prove a stronger version of Theorem 1.3, which states that at every
iteration of ROMP, at least 50% of the newly selected coordinates are from the
support of the signal v.

Theorem 3.1 (Iteration Invariant of ROMP). Assume Φ satisfies the Restricted
Isometry Condition with parameters (2n, ε) for ε = 0.03/

√
log n. Let v 6= 0 be an
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n-sparse vector with measurements x = Φv. Then at any iteration of ROMP, after
the regularization step, we have J0 6= ∅, J0 ∩ I = ∅ and

(3.1) |J0 ∩ supp(v)| ≥ 1

2
|J0|.

In other words, at least 50% of the coordinates in the newly selected set J0 belong to
the support of v.

In particular, at every iteration ROMP finds at least one new coordinate in the
support of the signal v. Coordinates outside the support can also be found, but
(3.1) guarantees that the number of such “false” coordinates is always smaller than
those in the support. This clearly implies Theorem 1.3.

Before proving Theorem 3.1 we explain how the Restricted Isometry Condition
will be used in our argument. RIC is necessarily a local principle, which concerns
not the measurement matrix Φ as a whole, but its submatrices of n columns. All
such submatrices ΦI , I ⊂ {1, . . . , d}, |I| ≤ n are almost isometries. Therefore, for
every n-sparse signal v, the observation vector u = Φ∗Φv approximates v locally,
when restricted to a set of cardinality n. The following proposition formalizes these
local properties of Φ on which our argument is based.

Proposition 3.2 (Consequences of Restricted Isometry Condition). Assume a mea-
surement matrix Φ satisfies the Restricted Isometry Condition with parameters (2n, ε).
Then the following holds.

(1) (Local approximation) For every n-sparse vector v ∈ R
d and every set I ⊂

{1, . . . , d}, |I| ≤ n, the observation vector u = Φ∗Φx satisfies

‖u|I − v|I‖2 ≤ 2.03ε‖v‖2.
(2) (Spectral norm) For any vector z ∈ R

N and every set I ⊂ {1, . . . , d}, |I| ≤
2n, we have

‖(Φ∗z)|I‖2 ≤ (1 + ε)‖z‖2.
(3) (Almost orthogonality of columns) Consider two disjoint sets I, J ⊂ {1, . . . , d},
|I ∪ J | ≤ 2n. Let PI , PJ denote the orthogonal projections in R

N onto
range(ΦI) and range(ΦJ), respectively. Then

‖PIPJ‖2→2 ≤ 2.2ε.

Proof. Part 1. Let Γ = I ∪ supp(v), so that |Γ| ≤ 2n. Let IdΓ denote the identity
operator on R

Γ. By the Restricted Isometry Condition,

‖Φ∗
ΓΦΓ − IdΓ ‖2→2 = sup

y∈RΓ, ‖y‖2=1

∣

∣‖ΦΓy‖22 − ‖y‖22
∣

∣ ≤ (1 + ε)2 − 1 ≤ 2.03ε.

Since supp(v) ⊂ Γ, we have

‖u|Γ − v|Γ‖2 = ‖Φ∗
ΓΦΓv − Id

Γ
v‖2 ≤ 2.03ε‖v‖2.

The conclusion of Part 1 follows since I ⊂ Γ.
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Part 2. Denote by QI the orthogonal projection in R
d onto R

I . Since |I| ≤ 2n,
the Restricted Isometry Condition yields

‖QIΦ
∗‖2→2 = ‖ΦQI‖2→2 ≤ 1 + ε.

This yields the inequality in Part 2.

Part 3. The desired inequality is equivalent to:

|〈x, y〉|
‖x‖2‖y‖2

≤ 2.2ε for all x ∈ range(ΦI), y ∈ range(ΦJ).

Let K = I ∪ J so that |K| ≤ 2n. For any x ∈ range(ΦI), y ∈ range(ΦJ ), there are
a, b so that

x = ΦKa, y = ΦKb, a ∈ R
I , b ∈ R

J .

By the Restricted Isometry Condition,

‖x‖2 ≥ (1− ε)‖a‖2, ‖y‖2 ≥ (1− ε)‖b‖2.
By the proof of Part 2 above and since 〈ab〉 = 0, we have

|〈x, y〉| = |〈(Φ∗
KΦK − IdΓ)a, b〉| ≤ 2.03ε‖a‖2‖b‖2.

This yields
|〈x, y〉|
‖x‖2‖y‖2

≤ 2.03ε

(1− ε)2
≤ 2.2ε,

which completes the proof. �

We are now ready to prove Theorem 3.1.

The proof is by induction on the iteration of ROMP. The induction claim is that
for all previous iterations, the set of newly chosen indices J0 is nonempty, disjoint
from the set of previously chosen indices I, and (3.1) holds.

Let I be the set of previously chosen indices at the start of a given iteration. The
induction claim easily implies that

(3.2) |supp(v) ∪ I| ≤ 2n.

Let J0, J , be the sets found by ROMP in the current iteration. By the definition of
the set J0, it is nonempty.

Let r 6= 0 be the residual at the start of this iteration. We shall approximate r by
a vector in range(Φsupp(v)\I). That is, we want to approximately realize the residual
r as measurements of some signal which lives on the still unfound coordinates of the
the support of v. To that end, we consider the subspace

H := range(Φsupp(v)∪I)

and its complementary subspaces

F := range(ΦI), E0 := range(Φsupp(v)\I).
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The Restricted Isometry Condition in the form of Part 3 of Proposition 3.2 ensures
that F and E0 are almost orthogonal. Thus E0 is close to the orthogonal complement
of F in H ,

E := F⊥ ∩H.

0E

x0

E

F

H

x r

We will also consider the signal we seek to identify at the current iteration, its
measurements, and its observation vector:

(3.3) v0 := v|supp(v)\I , x0 := Φv0 ∈ E0, u0 := Φ∗x0.

Lemma 3.5 will show that ‖(u − u0)|T‖2 for any small enough subset T is small,
and Lemma 3.8 will show that ‖u|J0

‖2 is not too small. First, we show that the
residual r has a simple description:

Lemma 3.3 (Residual). Here and thereafter, let PL denote the orthogonal projection
in R

N onto a linear subspace L. Then

r = PEx.

Proof. By definition of the residual in the algorithm, r = PF⊥x. Since x ∈ H , we
conclude from the orthogonal decomposition H = F +E that x = PFx+PEx. Thus
r = x− PFx = PEx. �

To guarantee a correct identification of v0, we first state two approximation lem-
mas that reflect in two different ways the fact that subspaces E0 and E are close to
each other. This will allow us to carry over information from E0 to E.

Lemma 3.4 (Approximation of the residual). We have

‖x0 − r‖2 ≤ 2.2ε‖x0‖2.
Proof. By definition of F , we have x−x0 = Φ(v−v0) ∈ F . Therefore, by Lemma 3.3,
r = PEx = PEx0, and so

x0 − r = x0 − PEx0 = PF x0 = PFPE0
x0.

Now we use Part 3 of Proposition 3.2 for the sets I and supp(v) \ I whose union
has cardinality at most 2n by (3.2). It follows that ‖PFPE0

x0‖2 ≤ 2.2ε‖x0‖2 as
desired. �
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Lemma 3.5 (Approximation of the observation). Consider the observation vectors
u0 = Φ∗x0 and u = Φ∗r. Then for any set T ⊂ {1, . . . , d} with |T | ≤ 2n, we have

‖(u0 − u)|T‖2 ≤ 2.4ε‖v0‖2.
Proof. Since x0 = Φv0, we have by Lemma 3.4 and the Restricted Isometry Condition
that

‖x0 − r‖2 ≤ 2.2ε‖Φv0‖2 ≤ 2.2ε(1 + ε)‖v0‖2 ≤ 2.3ε‖v0‖2.
To complete the proof, it remains to apply Part 2 of Proposition 3.2, which yields
‖(u0 − u)|T‖2 ≤ (1 + ε)‖x0 − r‖2. �

We next show that the energy (norm) of u when restricted to J , and furthermore
to J0, is not too small. By the approximation lemmas, this will yield that ROMP
selects at least a fixed percentage of energy of the still unidentified part of the signal.
By the regularization step of ROMP, since all selected coefficients have comparable
magnitudes, we will conclude that not only a portion of energy but also of the
support is selected correctly. This will be the desired conclusion.

Lemma 3.6 (Localizing the energy). We have ‖u|J‖2 ≥ 0.8‖v0‖2.
Proof. Let S = supp(v) \ I. Since |S| ≤ n, the maximality property of J in the
algorithm implies that

‖u0|J‖2 ≥ ‖u0|S‖2.
Furthermore, since v0|S = v0, by Part 1 of Proposition 3.2 we have

‖u0|S‖2 ≥ (1− 2.03ε)‖v0‖2.
Putting these two inequalities together and using Lemma 3.5, we conclude that

‖u|J‖2 ≥ (1− 2.03ε)‖v0‖2 − 2.4ε‖v0‖2 ≥ 0.8‖v0‖2.
This proves the lemma. �

We next bound the norm of u restricted to the smaller set J0. We do this by first
noticing a general property of regularization:

Lemma 3.7 (Regularization). Let y be any vector in R
m, m > 1. Then there exists

a subset A ⊂ {1, . . . , m} with comparable coordinates:

(3.4) |y(i)| ≤ 2|y(j)| for all i, j ∈ A,

and with big energy:

(3.5) ‖y|A‖2 ≥
1

2.5
√

log m
‖y‖2.

Proof. We will construct at most O(log m) subsets Ak with comparable coordinates
as in (3.4), and such that at least one of these sets will have large energy as in (3.5).

Let y = (y1, . . . , ym), and consider a partition of {1, . . . , m} using sets with com-
parable coordinates:

Ak := {i : 2−k‖y‖2 < |yi| ≤ 2−k+1‖y‖2}, k = 1, 2, . . .
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Let k0 = ⌈log m⌉ + 1, so that |yi| ≤ 1
m
‖y‖2 for all i ∈ Ak, k > k0. Then the set

U =
⋃

k≤k0
Ak contains most of the energy of y:

‖y|Uc‖2 ≤
(

m(
1

m
‖y‖2)2

)1/2
=

1√
m
‖y‖2 ≤

1√
2
‖y‖2.

Thus
(

∑

k≤k0

‖y|Ak
‖22

)1/2
= ‖y|U‖2 =

(

‖y‖22 − ‖y|Uc‖22
)1/2 ≥ 1√

2
‖y‖2.

Therefore there exists k ≤ k0 such that

‖y|Ak
‖2 ≥

1√
2k0

‖y‖2 ≥
1

2.5
√

log m
‖y‖2,

which completes the proof. �

In our context, Lemma 3.7 applied to the vector u|J along with Lemma 3.6 directly
implies:

Lemma 3.8 (Regularizing the energy). We have

‖u|J0
‖2 ≥

0.32√
log n

‖v0‖2.

We now finish the proof of Theorem 3.1.
To show the first claim, that J0 is nonempty, we note that v0 6= 0. Indeed,

otherwise by (3.3) we have I ⊂ supp(v), so by the definition of the residual in the
algorithm, we would have r = 0 at the start of the current iteration, which is a
contradiction. Then J0 6= ∅ by Lemma 3.8.

The second claim, that J0 ∩ I = ∅, is also simple. Indeed, recall that by the
definition of the algorithm, r = PF⊥ ∈ F⊥ = (range(ΦI))

⊥. It follows that the
observation vector u = Φ∗r satisfies u|I = 0. Since by its definition the set J
contains only nonzero coordinates of u we have J ∩ I = ∅. Since J0 ⊂ J , the second
claim J0 ∩ I = ∅ follows.

The nontrivial part of the theorem is its last claim, inequality (3.1). Suppose it
fails. Namely, suppose that |J0 ∩ supp(v)| < 1

2
|J0|, and thus

|J0\supp(v)| > 1

2
|J0|.

Set Λ = J0\supp(v). By the comparability property of the coordinates in J0 and
since |Λ| > 1

2
|J0|, there is a fraction of energy in Λ:

(3.6) ‖u|Λ‖2 >
1√
5
‖u|J0

‖2 ≥
1

7
√

log n
‖v0‖2,

where the last inequality holds by Lemma 3.8.
On the other hand, we can approximate u by u0 as

(3.7) ‖u|Λ‖2 ≤ ‖u|Λ − u0|Λ‖2 + ‖u0|Λ‖2.
Since Λ ⊂ J and using Lemma 3.5, we have

‖u|Λ − u0|Λ‖2 ≤ 2.4ε‖v0‖2
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Furthermore, by definition (3.3) of v0, we have v0|Λ = 0. So, by Part 1 of Proposi-
tion 3.2,

‖u0|Λ‖2 ≤ 2.03ε‖v0‖2.
Using the last two inequalities in (3.7), we conclude that

‖u|Λ‖2 ≤ 4.43ε‖v0‖2.
This is a contradiction to (3.6) so long as ε ≤ 0.03/

√
log n. This proves Theorem 3.1.

�

4. Implementation and empirical performance of ROMP

4.1. Running time. The Identification step of ROMP, i.e. selection of the subset
J , can be done by sorting the coordinates of u in the nonincreasing order and
selecting n biggest. Many sorting algorithms such as Mergesort or Heapsort provide
running times of O(d log d).

The Regularization step of ROMP, i.e. selecting J0 ⊂ J , can be done fast by ob-
serving that J0 is an interval in the decreasing rearrangement of coefficients. More-
over, the analysis of the algorithm shows that instead of searching over all intervals
J0, it suffices to look for J0 among O(log n) consecutive intervals with endpoints
where the magnitude of coefficients decreases by a factor of 2. (these are the sets
Ak in the proof of Lemma 3.7). Therefore, the Regularization step can be done in
time O(n).

In addition to these costs, the k-th iteration step of ROMP involves multiplication
of the d×N matrix Φ∗ by a vector, and solving the least squares problem with the
N × |I| matrix ΦI , where |I| ≤ 2k ≤ 2n. For unstructured matrices, these tasks
can be done in time dN and O(n2N) respectively. Since the submatrix of Φ when
restricted to the index set I is near an isometry, using an iterative method such
as the Conjugate Gradient Method allows us to solve the least squares method in
a constant number of iterations (up to a specific accuracy.) Using such a method
then reduces the time of solving the least squares problem to just O(nN). Thus in
the cases where ROMP terminates after a fixed number of iterations, the total time
to solve all required least squares problems would be just O(nN). For structured
matrices, such as partial Fourier, these times can be improved even more using fast
multiply techniques.

In other cases, however, ROMP may need more than a constant number of it-
erations before terminating, say the full O(n) iterations. In this case, it may be
more efficient to maintain the QR factorization of ΦI and use the Modified Gram-
Schmidt algorithm. With this method, solving all the least squares problems takes
total time just O(n2N). However, storing the QR factorization is quite costly, so
in situations where storage is limited it may be best to use the iterative methods
mentioned above.

ROMP terminates in at most 2n iterations. Therefore, for unstructured matrices
using the methods mentioned above and in the interesting regime N ≥ log d, the
total running time of ROMP is O(dNn). This is the same bound as for OMP [21].



14 DEANNA NEEDELL AND ROMAN VERSHYNIN

4.2. Non-sparse signals. In many applications, one needs to recover a signal v
which is not sparse but close to being sparse in some way. Such are, for example,
compressible signals, whose coefficients decay at a certain rate (see [7], [4]). To
make ROMP work for such signals, one can replace the stopping criterion of exact
recovery r = 0 by “repeat n times or until r = 0, whichever occurs first”. Note that
we could amend the algorithm for sparse signals in this way as well, allowing for a
specific level of accuracy to be attained before terminating.

We recently proved that ROMP is stable and guarantees approximate recovery of
non-sparse signals with noisy measurements; this will be discussed in a forthcoming
paper.

4.3. Experiments. This section describes our experiments that illustrate the signal
recovery power of ROMP. We experimentally examine how many measurements N
are necessary to recover various kinds of n-sparse signals in R

d using ROMP. We
also demonstrate that the number of iterations ROMP needs to recover a sparse
signal is in practice at most linear the sparsity.

First we describe the setup of our experiments. For many values of the ambient
dimension d, the number of measurements N , and the sparsity n, we reconstruct
random signals using ROMP. For each set of values, we generate an N ×d Gaussian
measurement matrix Φ and then perform 500 independent trials. The results we
obtained using Bernoulli measurement matrices were very similar. In a given trial,
we generate an n-sparse signal v in one of two ways. In either case, we first select the
support of the signal by choosing n components uniformly at random (independent
from the measurement matrix Φ). In the cases where we wish to generate flat signals,
we then set these components to one.2 In the cases where we wish to generate sparse
compressible signals, we set the ith component of the support to plus or minus i−1/p

for a specified value of 0 < p < 1. We then execute ROMP with the measurement
vector x = Φv.

Figure 1 depicts the percentage (from the 500 trials) of sparse flat signals that
were reconstructed exactly. This plot was generated with d = 256 for various levels
of sparsity n. The horizontal axis represents the number of measurements N , and
the vertical axis represents the exact recovery percentage. We also performed this
same test for sparse compressible signals and found the results very similar to those
in Figure 1. Our results show that performance of ROMP is very similar to that of
OMP which can be found in [21].

Figure 2 depicts a plot of the values for N and n at which 99% of sparse flat
signals are recovered exactly. This plot was generated with d = 256. The horizontal
axis represents the number of measurements N , and the vertical axis the sparsity
level n.

Theorem 1.3 guarantees that ROMP runs with at most O(n) iterations. Figure 3
depicts the number of iterations executed by ROMP for d = 10, 000 and N = 200.

2Our work as well as the analysis of Gilbert and Tropp [21] show that this is a challenging case
for ROMP (and OMP).



15

ROMP was executed under the same setting as described above for sparse flat sig-
nals as well as sparse compressible signals for various values of p, and the number
of iterations in each scenario was averaged over the 500 trials. These averages were
plotted against the sparsity of the signal. As the plot illustrates, only 2 iterations
were needed for flat signals even for sparsity n as high as 40. The plot also demon-
strates that the number of iterations needed for sparse compressible is higher than
the number needed for sparse flat signals, as one would expect. The plot suggests
that for smaller values of p (meaning signals that decay more rapidly) ROMP needs
more iterations. However it shows that even in the case of p = 0.5, only 6 iterations
are needed even for sparsity n as high as 20.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Number of Measurements (N)

P
er

ce
nt

ag
e 

re
co

ve
re

d

Percentage of input signals recovered exactly (d=256) (Gaussian)

 

 

n=4
n=12
n=20
n=28
n=36

Figure 1. The percentage of sparse flat signals exactly recovered by
ROMP as a function of the number of measurements N in dimension
d = 256 for various levels of sparsity n.
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