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Abstract
We study the initial boundary value problem for a time-dependent Ginzburg-Landau model in

superconductivity. First, we prove the uniform boundedness of strong solutions with respect to
diffusion coefficient 0 < ε < 1 in the case of Coulomb gauge. Our second result is the global
existence and uniqueness of the weak solutions to the limit problem when ε = 0.

1. Introduction

1. Introduction
This paper is concerned with the following Ginzburg-Landau model in superconductivity:

η∂tψ + iηkφψ +
(
i
ε

k
∇ + A

)2
ψ + (|ψ|2 − 1)ψ = 0,(1.1)

∂tA + ∇φ + curl 2A + Re
{(

i
ε

k
∇ψ + ψA

)
ψ
}
= 0(1.2)

in QT := (0, T ) ×Ω, with boundary and initial conditions

ε∇ψ · ν = 0, A · ν = 0, curl A × ν = 0 on (0, T ) × ∂Ω,(1.3)

(ψ, A)(x, 0) = (ψ0, A0)(x) in Ω.(1.4)

Here Ω ⊂ Rd is a bounded domain with smooth boundary ∂Ω, ν is the outward normal
to ∂Ω, and T is any given positive constant. The unknowns ψ, A, and φ are C-valued, Rd-
valued, and R-valued functions, respectively, and they stand for the order parameter, the
magnetic potential, and the electric potential, respectively. η and k are Ginzburg-Landau
positive constants. ψ denotes the complex conjugate of ψ,Reψ := (ψ + ψ)/2, |ψ|2 := ψψ is
the density of superconducting carriers, and i :=

√−1. ε is a positive constant.
It is well known that the Ginzburg-Landau equations are gauge invariant, namely if

(ψ, A, φ) is a solution of (1.1)-(1.4), then for any real-valued smooth function χ, (ψeikχ, A +
∇χ, φ− ∂tχ) is also a solution of (1.1)-(1.4). So, in order to obtain the well-posedness of the
problem, we need to impose suitable gauge condition. From the physical point of view, one
usually has four types of the gauge conditions:

• Coulomb gauge: div A = 0 in Ω and
∫
Ω
φdx = 0.

• Lorentz gauge: φ = −div A in Ω.
• Lorenz gauge: ∂tφ = −div A in Ω.
• Temporal gauge(Weyl gauge): φ = 0 in Ω.
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For the initial data ψ0 ∈ H1(Ω), |ψ0| ≤ 1, A0 ∈ H1(Ω), Chen, Elliott and Tang [1], Chen,
Hoffmann and Liang [2], Du [3] and Tang [4] proved the existence and uniqueness of global
strong solutions to (1.1)-(1.4) in the case of the Coulomb and Lorentz as well as temporal
gauges. For the initial data ψ0 ∈ H1(Ω), A0 ∈ H1(Ω), Tang and Wang [5] obtained the
existence and uniqueness of global strong solutions, while Fan and Jiang [6] showed the
existence of global weak solutions when ψ0, A0 ∈ L2. Fan and Ozawa [7] (2-D) and Fan,
Gao and Guo [8, 9] (3-D) prove the uniqueness of weak solutions for ψ0, A0 ∈ Ld with
d = 2, 3, which is critical. This comes from a scaling argument for (1.1) and (1.2). Move
precisely, if (ψ(t, x), A(t, x), φ(t, x)) is a solution of (1.1) and (1.2) associated with the initial
data (ψ0(x), A0(x)) without linear lower order term ψ, then

(1.5) (λψ(λ2t, λx), λA(λ2t, λx), λ2φ(λ2t, λx)) =: (ψλ, Aλ, φλ)

is also a solution for any λ > 0. A Banach space B of distributions on R × Rd is a critical
space if its norm verifies for any λ and any u ∈ B,

‖u‖B = ‖λu(λ2·, λ·)‖B.
If we choose B as Lr(0,∞; Lp(Rd)), then (r, p) should satisfy

2
r
+

d
p
= 1.

In this paper, we will choose the Coulomb gauge.
First, we will prove

Theorem 1.1. Let d = 3 and 0 < ε < 1. Let ψ0 ∈ H1, |ψ0| ≤ 1 and A0 ∈ H1. Then the
solution (ψ, A, φ) satisfies

(1.6)
|ψ| ≤ 1, ‖ψ‖L∞(0,T ;H1) ≤ C, ‖∂tψ‖L2(0,T ;L2) ≤ C,
‖A‖L∞(0,T ;H1) + ‖A‖L2(0,T ;H2) + ‖∂tA‖L2(0,T ;L2) ≤ C,
‖φ‖L2(0,T ;H1) ≤ C

for any 0 < T < ∞. Here and later C will denote a constant independent of ε.

When ε = 0, we will prove

Theorem 1.2. Let d = 3, ε = 0, and ψ0, A0 ∈ L2. If ψ, A ∈ L2(0, T ; H1) ∩ W with
W := {(ψ, A);ψ ∈ L∞(0, T ; L3) ∩ L2(0, T ; L∞), A ∈ L∞(0, T ; L3) ∩ L

2p
p−3 (0, T ; Lp) with some

3 < p ≤ ∞}, then the problem (1.1)-(1.4) has at most a unique weak solution.

Remark 1.1. The space W is scaling invariant due to (1.5).

Theorem 1.3. Let d = 3, ε = 0, ψ0 ∈ H1, |ψ0| ≤ 1 and A0 ∈ L4. Then the problem
(1.1)-(1.4) has a unique weak solution.

Remark 1.2. Our results also hold true with the choice of Lorentz gauge.

In our proofs, we will use the following lemmas.

Lemma 1.1 ([10, 11]). Let Ω be a smooth and bounded open set in R3 . Then there exists
C > 0 such that
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(1.7) ‖ f ‖Lp(∂Ω) ≤ C‖ f ‖1−
1
p

Lp(Ω)‖ f ‖
1
p

W1,p(Ω)

for any 1 < p < ∞ and f : Ω→ R3 be in W1,p(Ω).

Lemma 1.2 ([12]). Let Ω be a regular bounded domain in R3 , let f : Ω → R3 be a
smooth enough vector field, and let 1 < p < ∞. Then, the following identity holds true:

−
∫
Ω

Δ f · f | f |p−2dx(1.8)

=

∫
Ω

| f |p−2|∇ f |2dx +
4(p − 2)

p2

∫
Ω

|∇| f | p2 |2dx −
∫
∂Ω

| f |p−2(ν · ∇) f · f dS .

2. Proof of Theorem 1.1

2. Proof of Theorem 1.1
This section is devoted to the proof of Theorem 1.1, we only need to show a priori esti-

mates (1.6).
To begin with, it is easy to show that [1, 2, 3, 4]:

(2.1) |ψ| ≤ 1 in Ω × (0, T ).

Testing (1.1) by ψ and taking the real parts, we see that

η

2
d
dt

∫
|ψ|2dx +

∫ ∣∣∣∣∣iεk∇ψ + ψA
∣∣∣∣∣
2

dx +
∫
|ψ|4dx =

∫
|ψ|2dx,

which gives

(2.2)
∫ T

0

∫ ∣∣∣∣∣iεk∇ψ + ψA
∣∣∣∣∣
2

dxdt ≤ C.

In [6], we have proved that

(2.3) ∇φ · ν = 0 on (0, T ) × ∂Ω.
Testing (1.2) by ∂tA + curl 2A, using (2.1), (2.2) and (2.3), we find that

d
dt

∫
|curl A|2dx +

∫
(|∂tA|2 + |curl 2A|2)dx

≤
∫ ∣∣∣∣∣iεk∇ψ + ψA

∣∣∣∣∣ |∂tA + curl 2A|dx

≤ 1
2

∫
(|∂tA|2 + |curl 2A|2)dx +C

∫ ∣∣∣∣∣iεk∇ψ + ψA
∣∣∣∣∣
2

dx,

which leads to

(2.4) ‖A‖L∞(0,T ;H1) + ‖A‖L2(0,T ;H2) + ‖∂tA‖L2(0,T ;L2) ≤ C,

whence

(2.5) ‖φ‖L2(0,T ;H1) ≤ C.

Multiplying (1.1) by −Δψ, integrating by parts and taking the real part, using (2.1), (2.4)
and (2.5), we obtain
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η

2
d
dt

∫
|∇ψ|2dx +

ε2

k2

∫
|Δψ|2dx

≤
∣∣∣∣∣Re
∫

iηkφψ · Δψdx
∣∣∣∣∣ + 2
∣∣∣∣∣Re

ε

k

∫
iA∇ψ · Δψdx

∣∣∣∣∣
+Re
∫

A2ψΔψdx + Re
∫

(|ψ|2 − 1)ψ · Δψdx

≤ 1
2
ε2

k2

∫
|Δψ|2dx +C

∫
|∇φ||∇ψ|dx

+C‖A‖2L∞‖∇ψ‖2L2 +C‖A‖L∞‖∇A‖L2‖∇ψ‖L2 +C‖∇ψ‖2L2 ,

which yields

(2.6) ‖ψ‖L∞(0,T ;H1) + ε‖ψ‖L2(0,T ;H2) ≤ C,

whence

(2.7) ‖∂tψ‖L2(0,T ;L2) ≤ C.

This completes the proof.
�

3. Proof of Theorem 1.2

3. Proof of Theorem 1.2
In this section, we will prove the uniqueness. To this end, let (ψi, Ai, φi) (i = 1, 2) be the

two weak solutions and let

ψ := ψ1 − ψ2, A := A1 − A2, φ := φ1 − φ2.

Then it is easy to verify that

η∂tψ + iηkφψ1 + iηkφ2ψ + A2
1ψ1 − A2

2ψ2 + |ψ1|2ψ1 − |ψ2|2ψ2 − ψ = 0,(3.1)

∂tA + ∇φ + curl 2A + |ψ1|2A1 − |ψ2|2A2 = 0,(3.2)

−Δφ = div (|ψ1|2A1 − |ψ2|A2).(3.3)

Testing (3.1) by ψ and taking the real part, we get

η

2
d
dt

∫
|ψ|2dx(3.4)

≤ ηk
∣∣∣∣∣
∫

φψ1ψdx
∣∣∣∣∣ +
∣∣∣∣∣
∫

(A2
1 − A2

2)ψ2ψdx
∣∣∣∣∣ +
∫
|ψ2|2|ψ|2dx +

∫
|ψ|2dx

≤ C‖φ‖L2‖ψ1‖L∞‖ψ‖L2 +C‖A1 + A2‖Lp‖A‖
L

2p
p−2
‖ψ2‖L∞‖ψ‖L2 +

∫
|ψ2|2|ψ|2dx +

∫
|ψ|2dx

≤ δ‖φ‖2L2 +C(‖ψ1‖2L∞ + ‖ψ2‖2L∞ + 1)‖ψ‖2L2 +C‖A1 + A2‖2Lp‖A‖2
L

2p
p−2

for any 0 < δ < 1.
On the other hand, we have

‖φ‖L2 ≤ C‖∇φ‖
L

6
5
≤ C‖|ψ1|2A1 − |ψ2|2A2‖L 6

5
(3.5)

≤ C‖|ψ1|2A‖
L

6
5
+C‖(|ψ1| − |ψ2|)(|ψ1| + |ψ2|)A2‖L 6

5
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≤ C‖ψ1‖3L3‖A‖L6 +C‖|ψ1| + |ψ2|‖L∞‖ψ‖L2‖A2‖L3

≤ C‖A‖L6 +C(‖ψ1‖L∞ + ‖ψ2‖L∞)‖ψ‖L2

≤ C‖curl A‖L2 +C(‖ψ1‖L∞ + ‖ψ2‖L∞)‖ψ‖L2 .

Using the Gagliardo-Nirenberg inequality

(3.6) ‖A‖
L

2p
p−2
≤ C‖A‖1−

3
p

L2 ‖A‖
3
p

H1 ,

we have

(3.7) C‖A1 + A2‖2Lp‖A‖2
L

2p
p−2
≤ δ‖A‖2H1 +C‖A1 + A2‖

2p
p−3

Lp ‖A‖2L2

for any 0 < δ < 1.
Inserting (3.5) and (3.7) into (3.4), we have

η

2
d
dt

∫
|ψ|2dx(3.8)

≤ Cδ‖A‖2H1 +C(1 + ‖ψ1‖2L∞ + ‖ψ2‖2L∞)‖ψ‖2L2 +C(‖A1‖
2p
p−3

Lp + ‖A2‖
2p
p−3

Lp )‖A‖2L2

for any 0 < δ < 1.
Testing (3.2) by A, we deduce that

1
2

d
dt

∫
A2dx +

∫
|curl A|2dx +

∫
|ψ1|2Adx(3.9)

= −
∫

(|ψ1|2 − |ψ2|2)A2Adx

≤ (‖ψ1‖L∞ + ‖ψ2‖L∞)‖ψ‖L2‖A2‖Lp‖A‖
L

2p
p−2

≤ (‖ψ1‖2L∞ + ‖ψ2‖2L∞)‖ψ‖2L2 +C‖A2‖2Lp‖A‖2
L

2p
p−2

≤ δ‖A‖2H1 + (‖ψ1‖2L∞ + ‖ψ2‖2L∞)‖ψ‖2L2 +C‖A2‖
2p
p−3

Lp ‖A‖2L2

for any 0 < δ < 1.
Using the well-known Poincaré inequality

(3.10) ‖A‖H1 ≤ C‖curl A‖L2 ,

summing up (3.8) and (3.9), taking δ small enough, using the Gronwall inequality, we arrive
at

ψ = 0, A = 0

and thus φ = 0, whence ψ1 = ψ2, A1 = A2 and φ1 = φ2.
This completes the proof.

�

4. Proof of Theorem 1.3

4. Proof of Theorem 1.3
This section is devoted to the proof of Theorem 1.3, we only need to show a priori esti-

mates.
We still have (2.1).
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Testing (1.2) by A, we see that

(4.1) ‖A‖L2(0,T ;H1) ≤ C.

Testing (1.2) by |A|2A and using (1.8), we have

1
4

d
dt

∫
|A|4dx +

∫
|A|2|∇A|2dx +

1
2

∫
|∇|A|2|2dx +

∫
|ψ|2|A|4dx(4.2)

=

∫
∇φ · |A|2Adx +

∫
∂Ω

|A|2(ν · ∇)A · AdS =: I1 + I2.

Using the formula

(ν · ∇)A · A = (A · ∇)A · ν + (curl A × ν) · A
= (A · ∇)A · ν
= −(A · ∇)ν · A,

we observe that

I2 = −
∫
∂Ω

|A|2(A · ∇)ν · AdS ≤ C
∫
∂Ω

|A|4dS

= C
∫
∂Ω

f 2dS ≤ C‖ f ‖L2(Ω)‖ f ‖H1(Ω)( f := |A|2)

≤ 1
8

∫
|∇ f |2dx +C‖ f ‖2L2 .

Using (2.1), we bound I1 as follows

I1 ≤ ‖∇φ‖L4‖A‖3L4

≤ C‖|ψ|2A‖L4‖A‖3L4 ≤ C‖A‖4L4 .

Inserting the above estimates into (4.2), we have

(4.3) ‖A‖L∞(0,T ;L4) +

∫ T

0

∫
|A|2|∇A|2dxdt ≤ C,

whence

‖A‖L5(0,T ;L5) ≤ C,(4.4)

‖∇φ‖L∞(0,T ;L4) ≤ C.(4.5)

Taking ∇ to (1.1), testing by ∇ψ and taking the real part, using (2.1), (4.3) and (4.5), we
have

η

2
d
dt

∫
|∇ψ|2dx ≤ ηk

∫
|∇φ||∇ψ|dx +

∫
|∇|A|2||∇ψ|dx +C

∫
|∇ψ|2dx

≤ C‖∇φ‖L2‖∇ψ‖L2 +C‖∇ψ‖2L2 +C
∫
|A|2|∇A|2dx,

which implies

‖ψ‖L∞(0,T ;H1) ≤ C.

This completes the proof. �
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