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Abstract. We investigate computing modcls that are presented as familics of finite computing de-
vices with a uniformity condition on the entire family. Fxamples of such models include Bocelean
circuits, membrane systems, DNA computers, chemical reaction networks and tile assembly sys-
tems, and there are many others. However, in such models there are actually two distinet kinds of
uniformity condition. The first is the most commeoen and well-understood, where each input length
is mapped to a single computing device (e.g. a Boolean circuit) that computes on the finite set of
inputs of that Iength. The second, called semi-unitormity, is where each input is mapped to a com-
puting device for that input (e.g. a circuit with the input encoded as constants). The former notion
1s well-known and used in Boolean circnit complexity, while the latter notion is frequently found in
literature on nature-inspired computation from the past 26) years or so.

Are these two notions distinet? For many models it has been found that these notions are in fact the
same, in the sense that the choice of uniformity or semi-uniformity leads to characterisations of the
samc complexity classes. In other related work, we showed that these notions arc actually distinet
for certain classes of Boolean circuits, Here, we give analogous results for membrane systems by
showing that certain classes of uniform membrane systems are strictly weaker than the analogous
scmi-uniform classes, 'This solves a known open problem in the theory of membrane systems, We
then go on to present results towards characterising the power of these semi-uniform and uniform
membranc models in terms of NL and languages reducible to the unary languages in NL, respectively.
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1. Introduction

Many of the early DNA computing algorithms [22, 28, 29, 39] involved mapping an instance of an NP-
hard problem (such as Maximal Clique) to a set of DNA strands and lab protocols, and then using well-
known biomolecular techniques to solve the problem. To assert generality for such an algorithm one
would define a mapping from arbitrary problem instances to scts of DNA polymers and experimental
protocols. 1n order to claim that this mapping is not doing the cssential computation, it would have to be
easily computable (for example, logspace computable). Circuit uniformity {introduced by Borodin [117)
provides a well-cstablished framewark where we map cach input length n € N to a cireuit €, € €, with
a suitably simplc mapping. [lowever, some of the DNA computing algorithms cited above do something
difTerent, they map an instance x ol the problem 1o a computing deviee €, that 1s unique to that inpul
(via a suitably simplc cneoding function). This latter notion is called semi-tiniformity [48, 45], and in fact
quitle a number ol nature-inspired compulational models use semi-unilormily. This raises the immediate
question ol whether the notions of uniformity and semi-unilormily arc compulationally cquivalent. We
nvesligate this question in the feld ol membrane computing or P-sysiems [48, 43]. This is a branch ol
natural compuling which explores the power ol computational models thal are inspired by the structure
and function of living cells.

It has been shown in a number of models that whether one chooses to use uniformity or semi-
unilormily does noi allect the power ol the model. However, our main resull shows that unilormity
is computationally strictly weaker than semi-uniformity f{or a number of classes of membrane systems.
Specifically, we prove that choosing one notion over another in this setting gives characterisations of
complexity classes that are known to be distinct. The uniform versus semi-uniform question that we
address has been stated as Open Problem C in [49].

Why is this result surprising? We know that the class of problems solved by a uniform family of
devices is contained in the analogous scmi-uniform class, since the former is a restriction of the latter.
Llowevet, it is also the case that in almost all membrane system models studied to date, the classes of
problems solved by semi-uniform and uniform familics turned oul 1o be cqual, sce, c.g., [4, 34, 55].
Specifically, if we want to solve some problem, by specifying a family of membranc systems (or sonic
other model), it is oftcn much casier to first use the more general notion of semi-uniformity, and then
subscquently (ry o find a uniform solution. In almost all cases where a polynomial time semi-unilorm
family of membranc sysiems was given for some problem [3, 43, 55], at a later point a uniform version
ol'the same result was published [2, 4, 45]. Here we prove that this improvement is not always possible.

We go on 1o give a number ol other resulls thal lease oul the computational power ol semi-uniform
and uniform tamilies of membrane systems.

Our main result proves something general about uniform and semi-uniform families of finite devices
that is independent of particular models and formalisms. Our techniques can be applied (o other compu-
tational models besides membrane systems and we have demonstrated this by showing similar results for
Boolean circuits [38]. Indeed, a number of other models explicitly, or implicitly, use notions of unifor-
mity and semi-uniformity. Models presented as uniform families of devices include membrane systems
and Boolean circuits as noted above, as well as DNA computers [1, 9, 53, 50, 8], chemical reaction
networks [17, 16, 57, 58], neural networks [42] and other models studied in computational complexity
theory. Besides membrane systems, a surprising number of models, including some just mentioned,
are presented as semi-uniform families of devices, including DNA computers [28. 29], chemical reac-
tion networks [17, 57], the abstract tile asscmbly model [51, 54], the nubots modcl of active molccular
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sclf-assembly and robotics [60, 13], and an insertion-based polymer model [18, 30]. Uniform and semi-
unilorm [amilies ol devices are both natural ways o present a model of computation and elucidaling the
distinction between them scoms a worlhy goal.

Furthermore, although we do not formally show it, our results hold for a version of the stochastic
chemical reaction network model [52] that meets our definitions for membranc systems and in particular
where there are familics of networks deciding languages and urimolecular reactions only (in the model
there arc diserete natural number moleeular counts and all reactions are of the lorm A — M, where M
is a mutlisct of molocular specics). Interestingly, these results also hold if we generalise this model to use
maximally parallel synchronous reaction updales. This shows that adding the seemingly strong and unre-
alistic ability of maximal parallclism in this contexi conveys no exira power to the model (despite the
[act that it does ncrease the power ol more general, bimolecular [or example, chemical reaction network
models),

Our main result is of importanee to work on modcls of computation and natural computing since it
highlights thal the (seemingly harmless) choice between unilormity and semi-uniformity in these models
may lead to drastic changes in computational power. How drastic? Roughly speaking, we find that the
semi-unilorm models sludied here characlerise the class NL, while the analogous unilorm models have
power comparable 1o, or more [ormally redueible 1o, the unary languages in NL. Cur work here and on
Boolean circuits suggests that this question should be asked of other computational models.

1.1. Overview of results

Roughly speaking, a membrane sysiem consists ol a membrane-bound compariment that contains other
(possibly nested) membrane-bound compartments that in turn contain odjects that interact with each
other and with membranes to carry out a computation, A family, or set, of recogniser membrane systems
decides a language . Families can be uniform or semi-uniform. For a uniform family there is an
associated pair of functions {f, e, where f maps a binary input word «, of length n, to a membrane
system 1L, that may be uscd to process any word of length n, and e cncodes » as a multisct of input
objects to IT,, (for each of the 2" words of length » € N we have a single membrane system IT,,). Fora
semi-uniform family, a single function % maps the input word « to a membrane system IT,, (for each word
wce have a membrane system). In cither case, rules arc applied to objects in the membrane system until
it produces special object(s) indicating that x is accepted or rejected. Of course the encoding functions
£, e, hshould be suitably simple so that the membranc system, and not the encoding functions, arc doing
the interesting work. In this paper we use FACY uniformity and semi-uniformity, that is, the functions
fo e, hoare in FACY, the class of functions compuled by uniform constant depth polynomial sive Boolean
circuits; this is a class of fairly simple problems and is mostly known for what it does nof contain.

In Section 3 we give our main result, that uniform families of active membrane systems without
charges and dissolution (denoted AAMY ;) that run in polynomial time are strictly weaker than their
semi-uniform counterpart. We prove this by showing that these uniform families solve no more than
non-uniform-ACY, a class that docs not cven contain Parity (the set of words over {0, 1} with an odd
number of 18). The analogous semi-uniform systems can indeed solve Parity and do much clse besides.
In [act, [or iwo out of throe models thal we congider, the semi-unilorm (amilics exactly characterise NL.
This is shown in Scction 4 and illustrated as Thearem 4.1 at the top of Figure 1.

This leaves the question: what is the exact power of uniform families of AAMY ; systems? In previous
papers, where morc powerful membranc systems and complexity classes are studied, ¢.g. [2, 3, 4], modcl
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definitional choices were not so important. In our setting, definitional details such as the choice of uni-
formity condition and the particular kinds of acceptance modes allowed for such recogniser membrane
systcms lead to scemingly different results and some open questions as we now describe.

We give results (or three variants on the definition of recogniscr membrane system. The most pow-
erlul are acknowledger membrane syslems, where an accepting computation should produce one or
more yes objecls, and a rejecting computation should produce xero yes objects, In Section 5 we
give an exact characterisation of uniform families of acknowledger AMY ; membrane systems. It turns
oul that they decide exactly those languages that are FAC? disjunctive truth-table reducible 1o the unary
languages in NL (called tallyNL). See Theorem 5.1 in Figure 1.

In Secction & we consider recogniser | membrane systems: a restriction of acknowledger systems
whete an accepling computation produces one or more yes objeels and zero no objects, and a rejecling
computation produces one or more ne objects and zero yes objects. We give upper and lower-bounds, in
terms ol classes reducible Lo tallyNL, for uniform families ol recogniser .1 AMY, sysiems. Tn Figure 1,
iwo upper bounds are 1llustrated ag Theoroms 5.2 and 6.1, and a lower bound as Theorem 6.2,

The more standard, uniform recognises systems, are a restriction of recogniser .., membrane systems
and are defined so that an accepting computation should produce a single yes object and zero ro objects,
and a rejecting computation should produce a single no object and zero yes objects. As noted above,
our results (Figure 1, Theorem 3.2) show that these uniform recogniser systems are strictly weaker than
semi-uniform recogniser systems in our setting. We do not give a tight characterisation for the power of
uniform rccogniser systems, but discuss this as an opcn problem in Section 7.
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We note that there is a previous P characterisation for both uniform and semi-uniform familics of
aclive membrane systems withoul charges and dissolution [21]: the same syslems as we use here, but
under much more genceral unilormity conditions, namely pelyromial time, or P, unilormitly. In that work
the authors are motivated by the relationship with classes above P and so it is sullicient in their work 10
use P unilormity. When using signilicantly tighler uniformity conditions {e.g. FAC™), such polynomial-
time encoding [unctions [or uniform and semi-unilorm (amilics can be scen o be stronger than the
membrane sysiems themselves [37] (assuming NL € P). In this paper we use FACY uniformity which
15 weak enough io expose the underlying power ol certam, suilably weak, classes ol active membrane
systems without charges or dissolution. A number of other varieties of membrane systems (e.g. [20, 40])
also claim P characterisations that depend on P unilormity. We leave it as a possible direction [or [uture
work 1o investigate these, and other, membrane systems under suitably tight notions of uniformity or
semi-uniformity.

2. Definitions

For a function f: {0,1}* — {0,1}* and integers m,n = 1 let f.: {0,1}" — {0,1}™ be the restric-
tion of f to domain and range consisting of strings of length 2 and m respectively. We consider only
functions f where for each n there is an wn such that all length-n strings in f’s domain are mapped to
length-rn strings, thus f = | J— fn. Bach language 7 € {0, 1}" has an associated lotal characteristic
Junction xr: {0,117+ {0.1} defined by xr(w) = 1ifw € L and 0ifw ¢ L. We say a language L is
decided by a Turing machine A il A4 compules the characteristic [unclion x 7. For a siring w, we lel
denote s length.

Let NL be the class of languages accepled by non-deterministic logarithmic-space Turing machines.
Such machines have a read-only input tape, a write-only outpul lape and a read-write work tape whose
length is a logarithmic [unction ol nput length. The class of functions compuled by a deterministic
logarithmic-space Turing machines (with an additional write-only output tape) is denoted FL.

Let tally be the set of all languages over the one-letter alphabet {1}, We define tallyNL = tally N NL,
i.e. the class of all tally langnages and length encoded languages in NL. For more details on complexity
classes and Turing machines see [41].

A circuit ), computes a function computes a function fi,: {0, 1} — {0,1}™ on a fixed num-
ber n of Boolean variables. We consider functions of an arbitrary number of variables by defining
(possibly infinite) familics of circuits. We say a family of circuits € = {7, | n € N} compulcs a lunc-
tion f: {0, 11 — 0,11 if forall » € W and for all 2 € {0, 1}” circnit €, outputs the string fi, ().
We say a (amily ol circuits € decides a language /. < {0,1}" il Jor each w: € {0. 1}" ¢ircuit ¢, € Con
inpul w compules 7.

In a non-uniform family of circuits there is no required similarity between family members. I order
Lo specily such a requiremenl we use a uniformity function thal algorithmically specifies the similarily
between members of a circuit [amily. Roughly speaking, a wniform circuit family €18 an infinite se-
quence of circuits with an associated function f: {1}* — & that generates members of the family and is
compulable within some resource bound. For more details on Boolean circuits see [59].

When dealing with uniformity for small complexity classes one of the preferred uniformity condi-
tions is DLOGTIME-uniformity [32]. Roughly speaking, a circuit is DLOGTIME-uniform if there is a
procedure that can decide if a word is in the “connection language™ of the circuit family in time lincar

i
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in the word length. Each word of the connection language cncodes cither an input gate of the circuit, an
oulput gate ol the circuil, or a wire connecting the oulpul ol one identilied gale o the input ol a second
identificd gate. Each word also encodes, in binary, the number » (or this circuit. For more details on
DLOGTIME unilormity see [5, 32].

The depth ol a circuil is the length ol the longest path (fom an input gate 1o an outpul gate. The size
ol'a circuit is the number of wircs it contains [5].

Non-uniform-AC" is the set of languages decidable by lamilies of constant-depth polynomial-size (in
input length ») circuits with unbounded fan-in AND and OR gales, and NOT gates with fan-in*1. ACY is
the set of languages decidable by constant-depth polynomial-size (in input length n)
DLOGTIME-unilorm circuils with unbounded [an-in AXD and OR gales, and NOT gates with [an-in 1.
FAC" is the class of functions computable by polynomial-size constant-depth DLOG TIME-uniform cir-
cuits with unbounded fan-in AND and OR gates, and NOT gates with fan-in 1.

2.1. Reductions

For concreteness, we explicitly define some standard types of reductions. Let A, 8 C {0,1}". Tet Cbe
a set of functions (for example FL or FAC™), a lunction f is C-computable il f € C.

Definition 2.1. (Many-one reducible)
Set A is many-one reducible (o sel £2, writlen A <& /3, il there is a [unction f that is C-compuiable with

—1In

the property that for all w, w € A, iland only il f(w) € B.

The following definition of truth table reduction comes from [10, 12], sce also [27, 47]. The Boolcan
function & is historically called a truth table [47].

Definition 2.2. (Truth-table reduction)

Set A is C truth table reducible to set B, written A 5& B, if there exists C-computable functions 7 :
10,11 = {0,1}* = 40,1}* x ... and e : {0,1}* — 10,1} such that w: € A if and only if 7(2) =
(ay,...,06,) suchthat o (x (a1 ), ..., xilae,)) = 1, where x is the characteristic function of B.

A disjunciive truth 1able reduction (dil) is onc where al least one siring generaled by 7(w) is in 73,
in other words o(xg{ei), ..., xplu)) = \/1<_‘—,:<_:'t;w ye(w). A comjunctive ruth table reduction (ctt)
is one where all the sirings generated by (i) are in /3, in other words o(xp(a1).....xB(ae,)) =
/\lf_iiiiéw xn(ai).

Definition 2.3, (Turing reducible)

Set A is C Turing reducible to B, written A Sf;f B, if there is a Turing machine A4, that is resource-
bounded in the same way machines computing functions in C are, such that w &€ A iff M accepts w
with B as its oracle,

The lollowing implications [ollow directly [rom these delinilions, [or more details see [27].

e C =
A ~C B = A ngI.L B ===
~m e C
== A <o 1 =F

—ctt

A<t D = A<kEDB

Let FACY(C) be the set of all languages that are FAC" reducible to languages in C via a reduction of
some type v € {m, dtt, ctt. tt, T}.
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2.2. Configuration graphs

Definition 2.4. (Configuration Graph)

Let w « {0,1}* be the input to a halting s(|w|)-space bounded Turing machine M. The configuiration
graph Clyr . of M on input w is an acyclic directed graph where for each potential configuration of M
there is a vertex that encodes it and where a potential configuration consists of an input read bit, work
tape contents, input tape head position and work tape head position. The graph & s, has a directed edge
from a vertex ¢ to a vertex ¢ if the configuration cneoded by ¢ can be reached from the configuration
encoded by ¢ in one step via M’s transition function.

A conliguration graph (5., has thc property that there is a directed path rom the vertex e, rep-
resenting the initial confliguralion, o the accept verlex r, il an only il M accepts input w. Also, we
consider only space bounded Turing machines that do not repeal a conliguration (i.e. loop), hence we
define configuration graphs to be acyclic which will be a useful property later on. We are interested in
O (log |w]|) space bounded Turing machines, whose conliguration graphs are of size (number of vertices)
O[]?|(2)). Lemma 2.5 follows from Theorem 3.16 in [25].

Lemma 2.5. Given the binary encoding ol a Turing machine A, which has state set 2 and an FAC"
computable space bound O(log |w|), and given an inpul w, the confliguralion graph (g, of size
Q]2 @)), is computable in DLOG TIME-uniform-FAC?,

2.3. Membrane systems

In this section we define the specific variant of membrane systems we use in this paper. We also define
recognizer membrane systems, uniform families and some complexity classes. These definitions are
bascd on thosc from the litcrature [31, 44,

In this paper the term membrane svstems and the notation A" ; refer to active membrane systems
without charges and without dissolution rules [21, 44].

Let MS(() represent the set of all multiscts over the clements of the finite sct O,

Definition 2.6, A membrane system of type AMY sisatuple T = (O, . M, H, A, R) where:
e (}1s the alphabet of abjects (or the set of ohject types);

o ;= (V,, K, env)isareoled tree representing the membrane structure. V,, C I s the finile sel off
membranes. £, C V), x V,, such that (p.¢) € £, if the (parent) membrane p contains the (child)
membrane . The rool, ese € V,, of the tree is the only membrane with no parent and is called
the “environmemnt™. Leaves of the tree represent “elementary membranes™; ie. membranes which
contain no other membranes,

e M:V, - MS{O) map each membrane lo an object multiset, defining the membrane’s object
contents;

o AV, — H is an injective mapping of membrancs to K, the finite sct of membranc labels. In this
work the environment membrane always has Lhe label “ena™;

e [?isafinite set of developmental rules of the following types (where o, u, ¢ € () and w € MS(O),
he H)
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(a) [0 — w], (object rewriting), an objeet o in a membrane with label 7 is replaced by a mul-
lisel ol objects 1.

(hy of], — [u], (communication in), an objcel ¢ in a membrane with a child membrane with
label fi is moved into the child membrane and modified 1o become .

(¢) [o]y, = []; u (communication out), an object o in a membrane with label £ is moved into
the parent membrane and modilied (o become .

(e) [o], = [u],[v], (elementary membrane division), an elementary membrane with label /
containing object o is duplicated, in one copy o is replaced by u while in the other copy 1t is
replaced by .

The environment membrane cannot divide nor communicate out objects. !

The missing () rule is the dissolution rule which we do not censider in this paper. Active membranc
systcms may also have non-elementary membrane division rules [44]. That is, membrancs with child
membranes may also divide. For the kinds ol membrance systems we consider in this paper the inclusion
or omigsion of non-clementary division rules does not affect the results [21, 37].

A comfiguration C ol'a membrane system is a wple (= (V),, K. env), M, A) whose elements are
defined in Definition 2.6 {with the cxeeption thal A may be non-injective).

A permissible encoding ol a membrane system {13, or ol'a conliguration (C}, encodes all multisets in
a unary manner. For example, a mulliset is encoded in the [ormal [, «, 4. b, 8], rather than in the shorler
format «*b%. Likewise, the membrane structure should be encoded such that each membrane child-parent
relation is writlen explicitly.

A configuration C; fransitions (0 conliguration ;1 by the application of’a multisel ol rules R [rom
the set K. The rules are applied in a maximally parallel manner. That is, at each timestep, a multiset of
applicable rules R is non-deterministically chosen such that (i) all rules in ‘R are applicable, and (ii) there
does not exist a multiset of applicable rules R’ such that R C R'. Rules are applicable in a timestep
according to the following principles: Rules are applied to the most deeply nested membranes first, In
each timestep, an object can be involved in at most one rule of any type. A membrane can be the subject
of at most one rule of type (b). (¢) or (e). If a membrane is divided (a rule of type (e)) and there are
objects in this membrance which evolve via rules of type (a), then we assume that first the type (a) rules
are applicd, and then the division rule. All other rules arc applicd non-deterministically.

A computation of a membranc sysiem is a sequenee of configurations where cach configuralion
transitions to the next. As noted above, at a given timestep the multisct of applicable rulcs is non-
deterministically chosen: therefore on a piven input there are multiple possible computations. In other
words, membrane sysiems are non-determinisiic. A compulation that reaches a confliguration where no
maore rules are applicable is called a halting computaiion.

2.3.1. Recogniser, recogniser -, and acknowledger membrane systems

For the lollowing three definitions 1l is the case thal the set of objects (9 conlains the special objecls yes
and no and that there are no rules applicable to yes or ne (hence if yes or no are created, they can
never be destroyed). The standard [44] delinition ol a recogniser membrane sysiem is as (ollows.

"Diefinitions of active membrancs often include a second container membranc that cannot dissolve called the “skin® [44], we
omit this from our definitions. The proofs in this paper can be casily modificd to account for a skin.
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Definition 2.7. A recogniser membrane system is a membrane system such that all computations halt,
and at the halting slep {(and nol belore) exactly one ol the objecls yes € O or no € () appears in the
multisct of the environment membranc.

A computation that halts with yes in the environment is referred to as an accepting computation while
one with no in the environment is referred to as a refecting computation. In this paper, and in previous
work [36, 37], we also use the following more general systems:

Definition 2.8. A recogniser 1 membrane system 1s a membranc system such that all computations halt,
and either (a) one or more copies of the object yes & (2 or (b) one or more copies of the object no € O
appear in the multiset ol the environment membrane, but not both.

As with recogniser membrane systems, a computalion ol a recogniser ;7 membrane sysiem that halls
with yes in the environment is referred to as an accepting computation while one with ne in the envi-
ronment is referved to as a refecting compritation. In this paper we also use the following systems that
are more general than the two above:

Definition 2.9. Acknowledger membrane systems are systems such that all computations halt (and where
one or more copies of the distinguished object yes may or may not appear in the env membrane).

We say lhal a compulation ol'an acknowledger membrane system is an accepting computation il at least
one yes object 1s present in the enw membrane at the (inal step. A computalion ol an acknowledger
membrane system is in a refecting computation 1 there are zero yes objects in the ena membrane at the
(inal step.

2.3.2. Families of membrane systems

There arc two main notions of uniformity considered in the membranc computing literature defined as
follows.

Definition 2.10. (Semi-uniform families)

A family of membrane systems systems TT = {11, | w € X"} is said to be semi-uniform if there is a
function A : X* + T1 that maps trom each input word 20 to a description (in a permissible encoding) of
a membrane system TT,;,.

Definition 2.11. (Uniform families)
A family of membrane systems IT = {1[,, | n € N} is said to be uniform if there are two associated
functions:

I. f: 1" — II that maps 1" (the unary representation of n) to the description (in a permissible
encoding) of a membrane system 11, with a designated input membrane;

2. e: B* = MS(Q) that maps a word w € £ to the input multiset e(w) (in a permissible encoding)
where (J [s the sct of objcets of f{17), n = |w|.

We let 11, (e(w)) denote the membrane system f(1") = 1, with the multiset e(w) in its designated
input membranc. Notc that both IL,, and I1,,(e{w)) arc membranc systems.
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In this paper, wo deal only with confluent membrane systems: in a confluent membrane system 1 all
computations ol 1I agree on the answer, that 13, either all ol 1I's compulalions are accepting (in which
casc II aceepts) or clsc all of II's computations arc rejecting (in which case 11 rejects).

A semi-unilorm [amily, I1, recognises a language L C >* confluently il [or all w € »3* there exists
1L, € IIsuch thal w £ L implies that 1L, accepls conlluently and w & L implies 11, rejects conluently.
A uniform (amily, L1, with encoder ¢, recogniscs a language L € % confluently il (or all w0 € E* there
exists 1, (e(w)) where 1, € 11 such that w € L implies that 11}, (e()) accepts coniluently and
w ¢ f implies ][|,,,|(f:(-ar:)) rejecls conlluently. Such a (semi-)uniform (amilies are called a confluent
families of recogniser, recogniser -1, or acknowledger membrane systems.

That is, each membrane system 11 in a conlluenl family starts [rom a (ixed initial confliguration and
then IT non-deterministically chooses one from a number of valid computations. All of these valid
computations give the same result; either all accepting (if w € L) or else all rejecting (it w & L).

If the functions f(l'w‘) and e(w) (or respectively the single function h(w)) for a (semi-)uniform
family are computable in time polynomial in |w| on a Turing machine we say the family uses polvnomial
time (semi-)uniformity. If the uniformity functions are computable by DLOGTIME uniform constant
depth circuits, that is, f,e, h € FACY, then the family is said to use constant depth uniformity.

In this paper we consider two classes of problems, those that can be solved by FACY-uniform families
of confluent AM,; (active membranes without charges or dissolution rules) that run in time polyno-
mial in |w|, denoted (FAC", FAC")-uniform-PMCAAM 4, and FAC"-semi-uniform families of confluent
AMY 4 systems that run in time pelynomial in ], denoted FACY-semi-uniform-PMC* AAM" ;.

2.4. Context-freeness in membrane systems

Lemma 2.12. Let o be an object in a membrane with label % in a configuration ; of a membrane
system 1. Remove all other objects from C; to get configuration (’? If there is a tule r in LI such that by
applying thal rule to o, ki in C? gives a configuration C? '\, with object o’ in /', then il is the case thal [rom
configuration ; there exists a configuration (; | reachable in a single step that contains ¢ in /'

Proof:

The rule r 15 ol the lype (1), (b)), (¢) or () as deseribed in Definition 2.6. 1L is sullicient io show that there
is always at lcast one maximal st of rule applications for configuration C; that creatcs ¢ in A’ in Ciy 1.

Recall that an object in a conliguration can be involved in al most one Tule olany 1ype, Il the rule » is
ol type (), it has the form [0 — ofwe ], where w is a (possibly empty) string over O and it is nceessarily
the case that b = &' (rules ol type (a) are applied within a single membrane).

Let the notation C; — {o} denote the confliguration C; without the instance ol the object o under
consideration and consider any maximal multiset & of rules that can be applied to the configuration
C: — {o}. Also, consider the muliset ol rule applications £ unioned with the application of the rule
[0 — o'w], to our object instance o in the relevant membrane with label % in C;. We claim that this new
multiset is a maximal multiset of rules that can be applied to C,. To see this notice that object instance o
has a rule being applied to it, and each object can have at most one rule applied to it, and no other objects
with applicable rules are without rules because [T was maximal. [lence there is a maximal multiset of
tule applications for C, that applies  and hence when it is applied €, | | contains o' in a membrane with
label i = A'.

Rules of type (b), (¢) and (e) involve both an object and a membrane. Consider C; — {0} defined
as above, and consider any maximal multisct It of rule applications to C; — {o}. Furthermore, if in 12
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there is a rule that involves the membrane with label & whore object instance o was, then remove that
rule applicalion [rom £ lo get R. We claim that the multisel ol rule applications R, unioned logether
with the rule application “rule v applicd 10 our object instance o contained in the membranc with label /7
is a maximal muliiset ol rule applications (or ;. To see this noie thai (1) v is now being applied to the
relevant instances ol o, fr 50 no other rule can be applied Lo thal object nor Lo the membrane with that
label, and (it} there are no other rules that can be applicd because R was maximal. Aller the application
ol this maximal multisel of rules the new conliguralion (’; | 1 conlains o in a membrane with label £/, [

The following lemma generalises Lemma 2.12 from one to multiple computation steps, and applics
it to the selling ol systems thal recognise languages. Intuitively, it slates thal il a sequence ol rules » can
be applicd starling [rom some configuration it is not possible 1o prevent this from happening by adding
new objects Lo thal conliguration.

Lemma 2.13. Lel 1I be a recogniser, recogniser . or acknowledger membrane system. Let o be an
object in a membrane with label % in a configuration C; of II. Remove all other objects from C; to
get configuration C? . If starting from configuration C? there is a computation that halts after £ steps
on configuration C;4¢ that contains object yes in the environment then it is the case that starting from
configuration C; there exists a halting computation with yes in the environment.

Proof:

By hypothesis we know that there is a sequence of # rules r;,rs, ..., r that can be applied to C? to get
yes in the environment. We apply Lemma 2.12 ¢ times, first to confipuration C; with » = +, then to
C;, 1 with » = 12, and so on until we get configuration C; ; which contains yes in the environment.

If 11 is a recogniser system then we are done: recogniser systems produce yes in the halting step.
IfII is a recogniser .| or acknowledger membrane system we add the fact (from Section 2.3.1) that no
rules can be applied to the object yes, and since there is a computation where yes is in the environment
at configuration C;4, then it remains there until the computation eventually halts. O

Lemma 2.13 shows that the kind of membrane systems studied in this paper inwitively exhibit some
notion of context-freeness. Essentially, there is a sense in which an object o, can be said to trigger a
sequence of rules that eventually result in the production of object o; on some computation, and specifi-
cally, the production of o, can not be prevented by starting over with more objects (more context) in the
system. Ilence, the ideas used in the proof of Lemma 2.13 justify the use of the following definition in
our proofs.

Definition 2.14. (Eventually evolves)

Let C, be a configuration of a membrane system LI, containing an object of type o, in a membrane
labelled /1, (along with any number ol other objects and membranes). Let C¥ denole C with all objects
removed excepl one instance ol o, in the relevanl membrane with label 4. We say thal o, in A, in
conliguration C, eventually evolves on some computation path, ot lor shorl eventually evolves, object
type o; in a membrane labelled 4, 1l there is a computation {(sequence ol conligurations) starling [rom CE
where the final configuration in the computation has object type o, in a membrane labelled h;.

Note that it o, in A, in C; eventally evolves yes n ene this means that by Lemma 2,13 there is
at least one computation (sequence of configurations) that leads to a configuration with yes in env
from C,. Ilowever, since membrane systems are nondeterministic, this does not necessarily happen for
all computations.
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3. Uniformity is strictly weaker than semi-uniformity

Theorem 3.2 proves that uniform families of membrane systems are strictly weaker than semi-uniform
families of the same type. The result holds for all three definitions of acknowledger, recogniser;,; and
recogniscr membrane systems.

Lemma 3.1. (FACO, FACD)-Llﬂilbﬂﬂ-PMCA.J’MO“' C non-uniform-ACY, (or acknowledger, recogniser s
and recogniser membrane systems.

Proof:
Let I € (FACY, FAC?)-uniform-PMCAAM? ,;, and let TT be the FAC"-uniform family of that type that
decides L. That is, givenw € {0, 1}" there is a membrane system 1I},,| € TI that aceepts ¢(w) illw € L.

We now describe a non-uniform lamily ol constani-depth cireuits & = {& | n € ¥ and ), accepls
L 1 {0,1}"} that recognizes £. For any input w € {0,1}*, we claim that circuit C),,| € € decides
whether or not « € L. The [irst conslant number ol'layers ol the circuil Cf,,| compute the inpul encoding
function e(tw) € FACY, This generates a polynomial (in |w|) number of binary words that encode
elemenis [rom the polynomially sized objecl sel (J as well ag their multiplicities (in unary).

The circuit ), then converts the list of encoded e(w) objects into a single binary string y of
length |y| = |Q such that forall ¢ € {1,2,...,|0|}, the ithbit x; = 1iffo; € Qisine(w), Thatis, y
is a characteristic sequence lor (), ignoring multiplicities.

For each 4, the bit y; is wired into a uniqgue AND gate «;, giving a total of |(J] AND gates at this
level. The second input to the AND gate o, is from a constant gate ¢;, where ; = 11if 0; € () in the
input membrane eventually evolves (Definition 2.14) to the yes object in the env membrane and ¢; = 0
otherwise.

The next layer contains a single OR gate ¢ such that for cach ¢, AND gatc o, is wired to ¢. This OR
gate is the output gate of the circuit. Also wired into the OR are |(}| x |H| consant gates such that gate
¢op = 1ilboth (i) 0 € O is in membranc labelled & € H in the initial conliguration ol IT);| and (ii) o in
h eventually evolves to yes in the env membrane, otherwise ¢, 5, = ).

We now argue thal the above consiruction of ), aceepts € /.. Recall that L, (e(w)) is a
confluent membranc system and so 1l the computation is an accepting one, then all possible computation
paths arc accepting. For a computation to be accepting, a yes object must appear in the env membrane.
Therelore al least one object in the initial configuration ol 1}, (e{#)) must eventually evolve 1o be a
yes in the env membrane. Also Tl ((x0)) is confluent, thercfore if at least one object in the initial
configuration of 1, (e(ir)) eventually evolves yes in the ¢ns membrane, the system accepts. Since the
property ol whether an ohject in some membrane eventually evolves W objecl yes in the enw membrane
depends only on R and j in 11}, and hence in turn depends only on || (by Lemma 2,13), it can be
encoded (non-uniformly) in the constants ¢; in ¢ircuil C-'|.w|.

Suppose 11}, accepts regardless of the input e{x). In this case one of the objects, say o, in the
initial configuration ol 11}, will eventally evolve to yes in the env membrane. This means the relevant
gate ¢, , will be a 1-constant gate and so the output OR will evaluate to 1 and so C,,| accepts regardless
of input.

Suppose w £ L, therefore at least one of the objects in in e(i), when placed in the input membrane
of I}, yields a computation that ends with a configuration with object yes in membrane env. In turn
this implies that at least one of the AND gates «; has inputs ¢; = 1 and y; = 1 and so evaluates to 1.
Finally this causcs the OR to cvaluate to 1 and so €, aceepts input w.
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Suppose w ¢ L, in this case nonc of the objects in e(w) will eventually cvolve to yes in the env
membrane. Thus any ol the a; AND gales thal have a constant ¢; = 1 as inpul will have y; = 0 and so
will evaluate 1o 0. With all 0 inputs, the output OR evaluates 1o 0 and the circuil rejects.

This cireuil is of polynomial size and its depth is the sum ol the depths of the FAC” encoding [unction
(which has depth Of1), by deflinition), the depth ol the circuil thal converls e(w) into ¥ (which is O{1)
using masking and comparison), and 2 [or the inal layer o AND gales and the single ORr gate. Henee €
is a non-unilorm-AC” circuil family that recognizes . O

Theorem 3.2. (FACO, FACO)-uniform-PMCAJ\/[U aC FACY-semi-uniform-PMC* A A1Y . for acknowl-
edger, recogniser . and recogniser membrane systems.

Proof:

(C) By definition, wuniform  [familics arc a resiriction  of semi-uniform  familics and  so
(FAC", FAC")-uniform-PMCAAM" ; € FAC"-semi-uniform-PMC* AM ;.

(£) Parity C {0,1}" is the set of binary sirings thal contain an odd number ol ls. We claim that
Parity € FAC"-semi-uniform-PMC* AM ; Tor recogniser sysiems (and henee also for acknowledger
and recogniser .1 membrane systems). Let w € {0,1}, n = ,and lel w = wq. ... . w,, We will
define the function /: {0, 1} — TI, where each A(w) = 1I,, compules xparity (ur) as (ollows. Each 11,
has a single membrane, env, the set O contains 2n + 2 objects: O = {ey|l £ i < n}U{gll <
i < n} ) {yes.ne}. The initial confliguration is the membrane eno conlaining a single object o
i ene il = 1 or object ¢ in ene 104y = 0. The rules ol 1L, are as [ollows: 1 w; = 1 then
[0i = € 1]y 80 = 05 1] 8nd if ey = O0then [e; — 1], [06 = 011 There are also
the rules (e, — no |, and [0, — yes |,

By starting with object o, if vy = 1, and then changing between e; and o; if w; = 1, and not
changing if w; = 0 at each timestep then we ensure that the object o, represents “the parity of the first ¢
bits of w is odd”, and e; represents that they are even. Thus, o, evolves to a single yes object if there is
an odd number of 1s in w and e, evolves to a single ne if there is an even number of 1s in w.

To end we note that it is known [19] that Parity ¢ non-uniform-AC”. Lemma 3.1 shows that
(FAC", FACY)-uniform-PMCAAMY; C non-uniform-ACY, for acknowledger, recogniser -, and recog-
niser membrane systems. O

uw

et

4. The computational power of semi-uniform families

In prior work [37], we have shown that semi-uniform [amilics ol recogniser ;1 membranc sysicms char-
acterisc NL. We give an alternative proof here to demonstrate techniques that we will use in later sections
for unilorm lamilies.

Theorem 4.1, ([37])
FAC!-semi-uniform-PMC" AA" ; = NL, for both acknowledger and recogniser -,; membrane systems.

Proof:
Lemmas 4.2 and 4.3 give the prool [or acknowledger and recogniser 5.1 membrane systems. O

Lemma 4.2, ([37])
FAC"-semi-uniform-PMC" AA"; € NL, for acknowledger, recogniser.,; and recogniser membrane
Systems.
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Proof:

Let I1 be a semi-unilorm (amily of acknowledget, recognisers ot recogniser membrane systems thal
recognises 7. € FAC -semi-uniform-PMC* AMY ;. Let 22 {0, 1} — TT be the semi-uniformily [une-
tion ol T1, thal is, on input @« € {0, 1}*, 1, = A(x) accepts il € L. We present a non-deterministic
logspace Turing machine A that recognises L.

The computation of M proceeds as follows: First 3/, on input 2, non-deterministically chooses a
single object from C;, the initial configuration of IT,., and stores (a string representation of) the object
and its containing membrane on its work tape. Then A enters a loop where at each iteration it non-
deterministically chooses one of the rules applicable to the object on its work tape. If the rule is of
type (a) or (¢} (Definition 2.6) then A replaces the current objeet on the work tape (the membrane
remains unchanged) with a non-deterministically chosen object from the right hand side of the rule. If
the rule 1s of type (h) or () then the object on the work tape 1s replaced by the objeet on the right hand
sidc of the rule and the membrane on the work tape is replaced by the parent (type (¢)) or child membranc
{type (1) ol the current membrane. [ during the computaiion the work tape is lound Lo store the object
yes in the ene membrane then A () halls and aceepts. Otherwise, 1l there are no rules applicable io
the objcet and membrane on the work tape, and it is not yes in enw, then M () halts and rejocts.

Suppose that # € L and so 1I,; = A{x) accepts, This implies that there is one (or more) objects in the
initial configuration of I, that will, by the application of rules to this object and its successors, become
the object yes in the env membrane by the end of the computation of 1T, (this claim follows from the
kind of rules we allow—they arc cssentially context frecc—and can be formally proven using dependency
graphs [21]). Indeed, this observation holds for all three kinds of membrane systems: acknowledger,
recogniser ., and recogniser. By non-deterministically choosing an object in the initial configuration,
and non-deterministically choosing the rules that arc applicd to this object and its successors we chsure
that there is a compulation o’ M (:) [or each possible sequence ol rule applications ol 11 (or cach object
in the initial configuration I, (this follows from Lemma 2.13). Thercfore at least one computation of
M () will produce the object yes in the env membranc and so M () accepts, by conflucnee. That is,
il'll; accepls then A accepls on input

Suppose that « ¢ I and so IT,, = h(x) rejects. This implies that there is no valid computation of TT,,
where an object in the initial configuration evolves to yes in the eny membrane, Indeed, this observation
holds for all three kinds of membrane systems: acknowledger, recogniser . and recogniser. ln this case
all computation branches of M (x) will reach an object to which ne further rules are applicable (that is
not yes) and so will halt in the rejecting state. That is, if [T, rejects then M rejects on input 2.

To simulate the computation of I, in logspace, M (2) recomputes relovant logarithmic sized picees
ol h(a) = 1, via the classic technique for composing logspace algorithms (see Chapler 4.3 ol [7]) each
time it necds mlormation aboul 1L, 1.c. nilial configuration, rules, or membrane structure. From the
statement, /s is computable in FAC”. This means that the number of unique objects and labels in 1[,, are
polynomial in » = || and so each can be uniquely identified in binary with a string of length log .
M (x) uses a constant number of log n sized binary strings to encode the current object and membrane,
as well as some counters and temporary storage needed to re-compute k().

Thercfore L is decided by a non-deterministic logspace Turing machine. O

Lemma 4.3, ([37])
NL C FACY-semi-uniform-PMC* AMY ,, for acknowledger and recogniser ;,; membrane systems.
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Proof:
Let £ € NL. That is, there 13 a non-delerministic logspace Turing machine A with one or more accepling
computalion paths exaclly for input words = € L C {0,1}".

We show that there is an FAC semi-uniform family of polynomial-time membrane systems IT that
recognises L. We now describe a function #: {0, 1}* — II, computable in FACY, such that if z € L
then h{z) = TI, accepts, otherwise T, rejects.

Consider the configuration graph Gy, for M on input z & {0,1}*, which is FACY computable
from M and x (see Section 2.2 and Lemma 2.5). Also consider the Turing machine Nas (and its con-
figuration graph (7 ;) that on input 2 accepts only if all computations of M reject on input z, that is,
x ¢ L. Nay uses the standard un-reachability algorithm [24, 56] for non-deterministic logspace.

The [unction /() constructs the confliguration graph (Vas ., and modifies it 1o produce a membrane
system 11 as (ollows. (2, the setl o unique objecis ol 11, has an object encoding each verlex in the con-
figuration graphs Gar ., and v, as well as two extra objects, yes and no. The initial configuration of
LI, has a single membrane labelled env that conlaing lwo objects: ¢; which encodes the initial conligura-
tion of M {x); and ¢; which encodes the initial configuration of Ny (x). The edges of the configuration
graphs G as, and Gy, are encoded as object rewriting rules in the membrane system. If vertex « has k&
edges to vertices vy, . . ., 1y then () encodes all k edges as asingle type () rule: [w — v1,..., % |,
Let vertex (object) ¢, encode the accepting configuration of the Turing machine M., and let 2{x) include
the rule [¢, — yes |.,,,. Likewise for the vertex (object) ¢;, that encodes an accepting configuration of

the Turing machine Ny, A(z) includes the rule [er — no |,

We now argue that each member LI, = A(x) ol the semi-unilorm (amily I1, accepts il « € L.

Suppose x € L, therefore Turing machine A4 () accepts. This implics that conliguration graph Gaz,
has the property that there is a direeted path from the vertex o representing the initial configuration, to
the accepl vertex ¢,. The assumplion also implies that Ny (i) must reject, and so conliguration graph
G v e does nol have a directed path [rom the object ¢; encoding its initial configuration 1o ¢, ils acecpl
confliguration, Since 1L, = fi(x) directly encodes the conligyration graphs as objects and rules then the
existence ol a path [rom ¢; 10 ¢, implies that the membrane system will produce the objecl yes during
ity computation. The absence of a path (fom ¢; Lo ¢, implics thal the membrane system will not produce
the object ne during its computalion. Therelore 1L, accepts il o € L.

Suppose z ¢ L, therefore no computation paths of Turing machine M (z) accept. This implics that
conliguration graph (737, has the properly that there is no dirceled path from Lhe verlex ¢; tepresenting
the initial configuration, to the accept vertex ¢,. The assumption also implies that Nr{) must aceept,
and so configuration graph (/. has a direcled path [rom the object ¢; encoding its inilial configuration
Lo ey, Tls aceept conliguration. Since 11, = A{x) dircetly encedes the configuration graphs as objects and
rules then the existence ol a path [rom ¢; Lo ¢, implies thal the membrane sysiem will produce the object
no during its computation. The absence ol a path [rom ¢ 1o ¢, implies that the membrane system will
not produce the object yes during its computation, Therefore 11, rejects if = & L.

Since cach configuration graph is acyclic and has p(|#|) nodes where p is some polynomial function,
it follows that the membrane system itsclf is of polynomial size and halts in polynomial timc. The
conliguration graph can be computed in FACY by Lemma 2.5,

In conclusion, function 4 defines a semi-uniform family of polynomial time AAY ; recogniser s,
(and so also acknowledger) membranc systems that accept the language in £ & NL. o
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Note that tho above proof fails for recogniser membrane systems sinee if there is more than onc
accepling computation (or in the rejecling case, more than one rejecling compulation) then muliiple
copics ol the object yes (or ne) are produced in violation ol the definition ol recogniser membranc
syslems.

5. The computational power of uniform families of acknowledger mem-
brane systems

In this section we focus on acknowledger membrane systems (Definition 2.9) where the accepting condi-
tion 1s met by the presence of one or more yes object in the environment in the last step of a computation,
and the absence of yes implies rejection. We give a characterisation of uniform families of acknowledger
membrane systems:

Theorem 5.1. (FACY, FAC")-uniform-PMCAMY, = FACY, (tallyNL), for acknowledger membrance
systemms.

The prool of this result is the combination of Lemmas 5.2 and 5.3, Belore giving the lemmas we first
introduce the (ollowing FAC? computable (unctions that will be used in the proofs.

Pairing function We regquire an injective function that pairs two binary strings into one and is ex-
tremely easy (FAC") to compute. We use the pairing function that interleaves the bits of two binary
string arguments « and b. For example, the binary strings @ = aga)ap and b = bab by are paired as the
interleaved string {a,%) = baazbiaibpag. The circuits for interleaving and de-interlcaving have only a
single input gate layer and a single output gate layer (and so have 2 layers). The wiring between each
input and output gate can be shown to be DLOGTIME-uniform.

Binary to Unary There is a conslant depth circuit [amily where circuil (), takes as inpul some word
w € {0, 1} and outputs 1% where 2 is the positive integer encoded in the first [log, »] bits of w [14].
It can be shown thal this circuit [amily is DLOGTIME unilorm and so this conversion [rom short binary
sirings Lo unary is in FACY,

Unary to Binary There is a constant depth circuit family where circuit (7, takes as input some word
w = 0"""1% where 0 < < n, and outputs the binary encoding of = [14]. It can be shown that this
circuit family is DLOGTIME uniform and so unary 1o binary conversion is in FACY.

Lemma 5.2, (FACY, FAC")-uniform-PMCAAM" , © FACY, (tallyNL), for acknowledger, Tecogniser -
and recogniser membrane systems.

Proof:
Let Z € (FAC”, FAC")-uniform-PMCAAMY ;. That is, there exist two functions e, f £ FACY, such that e
maps © € {0,1}" 10 a multiset of membrane system objects (the input), and f maps « € {1}* to a
membrane system, f{11*1) = 1L}, € I1, such that II},| accepts input e(z) iff » ¢ L.

We claim that I is FAC” disjunctive reducible to a unary language T, where 7' is decided by a
non-deterministic logspace Turing machine 7.
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Lot 7 be the sot of words of the form 141" where, for all || € N and then for all o € Oz, mem-
brane sysiem 1, € IT accepts il object o in the inpul membrane eventually evolves to the objecl yes
in the eny membranc (where O}, 1s the scL ol objeets of T}, where both o and o arc encoded in binary,
{-,-y is the binary interleaving function defined at the start of Scction 5, and 1? denotes the unary word
over {1} ol length & for a binary number b). Turing machine 7 decides words in 7 by firsl converling
the input word to binary and then reversing the pairing function to find o; and |x|. 7 then proceeds by
simulating 1| in non-deterministic logspace using a similar method as described in Lemma 4.2, that
is, by storing a constant number of objects and membranes on its work tape and recomputing _f(l'”‘) as
needed (the main difference is that 7 uses o, as its starting object instead of non-deterministically choos-
ing onc). As in Lemma 4.2, 7 accepts if there cxists a valid computation in I1}; where g; in the input
membrane becomes yes in the env membrane. 7 rejects if there are no valid computations that lead
to a yes objcet in the enu mombrane. Therefore 7 is a tally language decided by a non-deterministic
logspace Turing machine and so T € tallyNL.

We now define the function = € FACY, that maps from {0, 1}* o the sct of tuples of unary words,
and later prove that if & € L then 7(x) N T # @, otherwise if 2 & L then v{m) 17T = §. Let
T(r) = (41, .. Uge) ), where g(|z]) is the number ol object types o; in e}, and u; = 1 oul2l Note
that the set of unique words in 7{x) is a bijection onto the sel of objects e(x) so g(|«]) is polynomial
in |x|. Since e, the pairing [unction, binary-unary conversions. as well as caleulation of ¢(|«|) are in
FAC, it is not dilTicull 1o see thal 7 € FACY.

We now prove that 7 is a disjunctive reduction from L to T Suppose x € L, this implies that at least
one of the objects in ¢ (i), when placed in the inpul membrane of 1[),| evolves 10 a yes object in the ere
membrane by the end ol the computation of' 1}, Then, by the definition of' 7, il € L then Jo € 7(x)
such thato & T.

Let » ¢ L, this implies none of the objects in e(x), when placed in the input membrane of II},,
evolve to a yes object in the env membrane by the end of the computation of 1I,|. Then, by the
definition of 7, if z ¢ L then Ao € 7(x) such thato ¢ T 0

Lemma 5.3. F;"—"\CgtL (tallyNL) C (FACY, FAC")-unitorm-PMCAAM,,. for acknowledger membrane sys-
tems.

Proof:

Let L € FAC)  (tallyNL). That is, there exists a unary language 7 C {1}* that is recognised by a
non-deterministic logspace Turing machine 7, and a function + ¢ FAC? that maps z < {0,1}" o a
set of vunary words such that v(z) N'T # #if 2 € L, and {x) " T = @ otherwise. Let ¢{|z]) =
max({max(|r(w)|) | w € {0, 1}¥}), that is, the length of largest word produced by r on any input of
length |x|. Note that ¢'(|z|} is computable by f since r € FACY.

We present an FACY uniform polynomial-time AM" ; membranc family TT that recognises £ The
family is composed of two functions: the uniformity funetion f: {1}* — IIL; and & that maps from
binary words o the multisel of unique objects in the appropriate member of I1

Each member [T, = F(11#1y af TT has onc single membrane, eni, that is both the covironment and
the input membrane. On input 117/, the function f produces a configuration graph G-, for machine 7
on input 1* for each w € {1,2,....¢'(Jz])}. (Note that this is a generalization of the technique used in
the proof of Lemma 4.3.) Since we have unary input words we can include the input word as part of the
configuration to cnsurc that there is a unique input configuration for cach Gy .
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Each of the ¢ (||} configuration graphs are converted to membrane rules and objects, using the same
technique (without the second Turing machine that solves un-reachabilily) [rom the prool ol Lemma 4.3,
ol a single membrane sysiem 1. In summary, the vertices ol the configuration graphs become objects
in 11, and the edges in the graph become type («) tules. There is a type (a) rule thal maps the ohject
encoding the accepling configuralion ol 7 o yes. We do not include the second Turing machme that
solves un-rcachabilily [rom Lemma 4.3, 7 is a logspace machine and so its configuration graph is ol
polynomial size, it [ollows that the membrane system is ol polynomial size. It is relatively straightlor-
ward 1o verily that f € FACO.

The inpul encoder «(x:) simulates »(:x) lo (ind the set ol unary words (w1, ... . ug), then oulpuls an
object ¢4, Tor cach w € r(x), which encode the vertex of the conliguration graph corresponding 1o the
initial configurations of Turing machine T input . Since r € FACY it is not difficult to scc that ¢ € FAC".

We now show that the membrane system IT|,) on input e{x) accepts if 2 € L and otherwise rejects.

Suppose = € I.. This implies that at least one word in+{z) is in the tally set T and so 7 accepts on at
least one of these inputs. The input membrane of 11}, contains e(z} which includes the object c; ,, which
encodes the configuration graph vertex that represents the initial configuration of Turing machine 7 on
input 1*. In the proof of Lemma 4.3 we show how the construction of TI},,| is such that there 1s a sequence
of rules from the input object ¢; ., 1o the yes object and so I, on input e(x) will accept.

Suppose w £ L. This implies that none of the unary words () are in the tally set 7" and that 7~ does
not have any accepling computations on any of the words 17 in («). So, as in the prool of Lemma 4.3,
this implies that none of the objects in e(x) in the input membrane of 11}, can evolve 1o the object yes
in the env membrane. In this case the membrane system IT}, on input e(z) will halt without yes object;
a rejecting computation for an acknowledger membrane system.

Therelore the pair of [unctions f and ¢ provide a uniform (amily of polynomial time AAM" ; mem-
brane systems that accepl 7. € FACY,, (tallyNL). O

6. The computational power of recogniser .| membrane systems

In this section we further investigate how the details in the definition of acceptance and rejection for
recogniser membrane systems affect the compurtational power of uniform families of AA4Y; systems.

In Section 5 we consider acknowledger membrane systems (Definition 2.9) where the absence of a
yes object in the environment in the last step of any computation of a membrane system is sufficient to
say thal the system rejected its inpul. However, il we restricl lo recogniser | membrane sysiems, which
must produce one or more yes obhjects in the case of an accepting computation and one or mote no
objects in the case of a rejecting computation (Definition 2.8) it is no longer clear if our characterisation
of (FACY, FAC")-uniform-PMC.AM" ; for acknowledger systems can still hold. The best lower-bound
we find is FACY (tallyNL), and we obtain upper-bounds of FACY,, (tallyNL) and FACY, (tallyNL).

In the semi-uniform case the upperbound FAC-semi-uniform-PMC* AAMY, € NL is unallected by
the restriction from acknowledger to recogniser:; membrane systems. It also turns out that these more
resiricted recogniser:.; membrane sysiems have the same NL lower-bound on their power as acknowl-
edger membrane systems (see Lemma 4.3).

Lemma 6.1. (FAC?, FAC")-uniform-PMCAA1?; € FACY,, (tallyNL), for recognisers and recogniser
membrane syslems.
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Proof:

(Sketch) This prool closely [ollows that ol Lemma 5.2 so we just highlight the difTerences. In the prool
ol Lemma 3.2 the language T is the set of words 1¢171F where membrane system £(117) = 11}, aceepls
il object ¢ in the inpul membrane eventually evolves to the object yes in the erie membrane. In this
prool we consider the language 7" thal is the sel ol words 1¢*1*[? where in the membrane system 1[ x| the
object o does not evolve Lo the objeel no in the ere membrane, in any compulation. Via Lemma 2.13, this
language is well-deflined, i.e. can delined in terms ol 0 and ||, Also, Turing machine 7 [rom Lemma 5.2
(thai solves reachability) can be modified [24, 56] 1o give 7' (thatl solves unreachability) thal accepts the
language 77, That is. 77 accepts if no object with the desired. and easy to check, property can be evolved
by rule applications.

In Lemma 5.2 we defined the function 7 & FAC”, that maps from {0, 1}* to the set of tuples of unary
words. Recall that 7(z) maps to a list that containg a unary string 1{e:l«l} for each o in e(z). We now
prove that 7 is a conjunctive reduction frem L to T7.

Assume x € I, this implies that no object in II}, with input () eventually evolves to no in the
env membrane. [lence z € L implics that Ve € 7(z), w € T7.

Assume x ¢ L. this implies that at least one object in the initial configuration of IIj,(2(x)) eventu-
ally evolves a no object in the env membrane mn each computation of ITj,. Ilence = ¢ I implies that
Jw € 7{z) such that w ¢ T". O

Lemma 6.2. FACY (tallyNL) C (FACY, FAC?)-uniform-PMCAM® 4, for acknowledger and recogniser -,

membranes systems.

Proof:

Let L € FACY (tallyNL). That is, there exists a unary language T C {1}* that is recognised by non-
delerministic logspace Turing machine 77, and a [unction » & FAC” that maps = € {0, 1}* 10 a unary
word such that +(x) € Tiffx € L. Let ¢{|z|) = max({|r{w)| | w &€ {0,171}, that is, the largest word
produced by  on any input of length |z|. Note that g{|=|) is computable by f since » € FACY.

We present an FACY ynilorm polynomial-time AA" ; membrane (amily TT that recognises /.. The
family is composed of two functions: f: {1}* — TI and e that maps each binary word to a multiset of
objects from the appropriate member of IT.

Each member T}, = f(l"'”‘) of TT has one single membrane, enw, that is both the environment and
the input membrane. On input 1/#] the [unction f produces one configuration graph (7, lor machine 77
fthat accepts T on cach input 1%, 1 <X u < g{[x]), and onc configuration graph G, [or machine Ny
(that accepts the compliment of T on each inpul 1%, 1 < o < ¢(|x]). (Note that this is a generalization
ol the technique used in the prool of Lemma 4.3.)

Each of the 2¢(|«|) configuration graphs are modified to give a set of rules and objects of a single
membrane system 11, using the same technique as used in the prool ol Lemma 4.3. In summary, the
vertices of the configuration graphs become objects in 11}, and the edges in the graph become type (a)
rules. There is a rule mapping the object encoding the accepting configuration of 7 1o yes and rule map-
ping object encoding the accepting configuration of N7 1o ne. Both 7 and Ny are logspace machines
and so their configuration graphs are of polynomial size and so the membrane system is of polynomial
size. It is relatively straightforward to verify that f € FACY,

The input encoder e{:x) simulates () to find 1, then outputs two objects ¢; ,, and ¢;,, which encode
the vertex of the configuration graph corresponding to the initial configurations of Turing machines 7
and Ny respeetively on input 1% = 7 (). Since » € FACY it is not difficult to sce that e € FACY.
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We now show that the membrane system IT), on input e{x) accepts if & € L and otherwise rejects.

Suppose . This implies thal the word () = 1% is in the tally set 7" and so al least one
computation of f accepts 1*. It also implies that there is no computation of /vy that accepts on input 1*.
The input membrane of 11| contains «(::}) which includes ¢; ,, encoding the conliguration graph vertex
that represents the initial configuration of Turing machine 7 on input 1*. In the proof of Lemma 4.3 we
show how 11}, has the property that there is a sequence of rules from the mput object ¢, to the yes
object and so L[, (e(«)) will accepl. Likewise there is no path [rom ¢, 10 mo.

Suppose w ¢ L. This implies that the word r{u) = 17 is not in the tally set T and that therefore
there is no aceepting configuration of 7 on input 1%, however, there is at least one accepting computation
of Nt on the same input. [n the proof of Lemma 4.3 we show how the construction of 1I,, is such that
there is a sequence of rules from the input object ¢, to the no object and so I1,(e(xz)) will reject.
Likewise there is no path from ¢; ,, 1o yes.

Therefore the pair of functions f and e provide a uniform family of polynomial time AM" ; mem-
branc systems that accept any language in FACY, (tallyNL). O

m

7. Open problems

The power of recogniser membrane systems. In Seclions 4 and 5 ol this paper we characterise the
power of acknowledger membrane systems (Definition 2.9), which are a generalisation of recogniser
membrane systems. In Section 6 we give upper and lower bounds on the power ol the more resiricted
recogniser ;| membrane systems (Definition 2.8), which are closer in power to standard recogniser mem-
brane systems. We also give upper bounds on the power of uniform and semi-uniform recogniser meni-
brane systems (Definition 2.7), as well as showing that these classes are distinct.

However, we have not characterised the power of AM"; recogniser membrane systems (Defini-
tion 2.7) with the kind of tight uniformity conditions used in this paper. In such systems, in an accepting
computation exactly one yes object, or in a rejecting computation exactly one no object, is produced
at the final step. A conscquence of this is that our techniques for showing lower bounds on the power
of acknowledger and recogniscr . systems (Scctions 4, 5 and 6) in terms of non-deterministic logspacce-
bounded Turing machines do nel immedialely carry over Lo recogniser systems,

As (ulure work, we suggest thal recogniser sysiems could be characterised via umambiguous non-
deterministic logspace-bounded Turing machines [6]. An unambiguous machine accepls an input il and
only if'it has exactly one accepting computation. Perhaps the class of problems solved by semi-uniform
families ol recogniser AM,; systems, ie. FAC-semi-uniform-PMC* AMY,;, does not contain NL-
complete problems since the system cannot control how many yes objects it produces? Perhaps these
semi-uniform recogniser systems can solve s-f connectivity for “mangrove” graphs, i.e. graphs where
there is exactly one path between each pair of vertices which is contained in unambiguous logspace [6]?
Formally, we conjecture that FAC"-semi-uniform-PMC* AAM" ; = RUSPACE(log n) [6]. We also conje-
cture that for the analogous uniform tamilies of recogniser systems (FAC", FAC™)-uniform-PMCAM"
= FAC?n (RUSPACE(log n)). If proven, our conjectures, taken together with previous results [6], would
give a restatement of the relationship between the classes L, unambiguous logspace and NL in the mem-
branc computing modcl, as well as the other classes shown in Figure 1.
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Tight nniformity conditions for other classes of membrane systems. In this paper and others [33,
34, 35, 36, 37], we have pul [orward the idea ol exploring the power ol membrane syslems under tight
uniformity conditions. Others have since carricd on this linc ol investigation [46]. Besides the main result
in this paper (exhibiling systems where unilormily is a siriclly weaker notion than semi-unilormily) this
has led lo various other characterisations ol the power ol'a variely ol classes ol ' membrane systems and a
teasing apart ol their power. A number ol other varictics ol membrane sysiems (c.g. [20), 40]) characlerise
the complexity class P, but where the lowerbound actually depends on the use of P unilormity. As
fulure work, it would be interesting 1o nvestigale these, and other, sysiems under suilably tight notions
of uniformity or semi-uniformity.

Upper-bounding tallyNL. Whilc we know that tallyNL € NL it would be intcresting to find other
classes 1o upper bound tallyNL. Tt is known that il'a sparse language is complete lor NL then NL C
DLOGTIME uniform-TCY [13, 23]. Is it possiblc 1o show that tallyNL € DLOGTIME uniform-TC"?

Classes reducible to tallyNL. We conjecture that FACY, (tallyNL) is strictly contained in FACY,  {tallyNL).
Giving an cxact characterisation of recogniser . membranc systcms studicd in Scction 6 may provide
some insights inlo this. We also conjecture that FACY, (tallyNL) # FACY, (tallyNL}. A lcad o solve
this may come from Ko [26] who showed that P (tally) #£ Pgy (tally).
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