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Abstrnct. We investigate computing models that arc prcsmtcd as families of finite computing de­

vices with a unifonnity condition on the entire family. Examples of such models include Boolean 

circuits, membrane systems, DNA computers, chemical reaction networks and tile assembly sys­

tems, and there arc many others. However, in such models there arc actually tv..-o distinct kinds of 

uniformity condition. The first is the most common and well-understood, where each input length 

is mapped to a single computing device (e.g. a Hoolean circuit) that computes on the finite set of 

inputs of that length. The second, called semi-uniformity, is where each input is mapped to a com­

puting device for that input (e.g. a circuit with the input encoded as constants). The former notion 

is well-known and used in Boolean circuit complexity, while the latter notion is frequently found in 

literature on nanire-inspired computation from the past 20 years or so. 

Are these two notions distinct? For many models it has been found that these notions are in fact the 

same, in the sense that the choice of uniformity or semi-uniformity leads to characterisations of the 

same complexity classes. ln other related work, we showed that these notions arc actually distinct 

for certain classes of Boolean circuits. Here, we give nnalogous results for membrane systems by 

showing tl1at certain classes of uniform membrane systems are strictly weaker than the analogous 

semi-uniform classes. This solves a known opc'Il problem in the theory ofmembnme systems. We 

then go on to present results towards characterising the power of these semi-uniform and uniform 

membrane models in terms of NL and languages reducible to the unary languages in NL, respectively. 
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1. Introduction 

Many of the early DNA computing algorithms [22, 28, 29, 39] involved mapping an instance of an NP­

hard problem (such as Maximal Clique) to a set of DNA strands and lab protocols, and then using i,,vcll­

known biomolecular techniques to solve the problem. To assert generality for such an algorithm one 

would define a mapping from arbitra1y problem instances to sets of DNA polymers and experimental 

protocols. ln order to claim that this mapping is not doing the essential computation, it vmuld have to be 

easily computable (for example, logspace computable). Circuit uniformity (introduced by Borodin [11]) 

provides a well-cstabl ished framework where we map each input length n E N to a circuit C11 E ([,with 

a suitably sin1plc mapping. llowevcr, some of the DNA computing algorithms cited above do something 

dilTerent, they map an instance ;r ol the problem to a computing device Cx that is unique to that input 

(via a suitably simple encoding function). This latter notion is cal led semi-unifhrmi(v [ 48, 45], and in fact 

quite a number or nature-inspired computational models use semi-uni f"ormity. This raises the immediate 

question orwhcthcr the notions olunironnity and scrni-unifonnity arc computationally equivalent. We 

investigate this question in the Iield of membrane computing or P-systems [ 48, 43]- This is a branch of 

natural computing which explores the power or computational models that are inspired by the structure 

and function of living cells. 

It has been sho\\<TI in a number of models that whether one chooses to use uniformity or semi­

uniformity does not affect the power of the model. However, our main result shows that uniformity 

is computationally strictly weaker than semi-uniformity for a number of classes of membrane systems. 

Specifically, we prove that choosing one notion over another in this setting gives characterisations of 

complexity classes that are known to be distinct. The uniform versus semi-uniform question that \Ve 

address has been stated as Open Problem C in [49]. 

Why is this result surprising? We know that the class of problems solved by a uniform family of 

devices is contained in the analogous semi-uniform class, since the former is a restriction of the latter. 

However, it is also the case that in almost all membrane system models studied to date, the classes of 

problems solved by semi-uni fonn and uni lonn families turned out to be equal, sec, e.g., [ 4, 34, 55]. 

Specifically, if we want to solve some problem, by specifying a family of membrane systems (or some 

other model), it is often much easier to first use the more general notion of semi-uniformity, and then 

subsequently try to find a uni lorm solution. Jn almost all cases where a polynomial time scmi-unilonn 

family of membrane systems was given for some problem [3, 45 , 55], at a later point a uniform version 

ol'the same result was published [2, 4, 45]. Here we prove that this improvement is not always possible. 

We go on to give a number or other results that tease out the computational pmver or semi-unif"orn1 

and uniform families of membrane systems. 

Our main result proves something general about uniform and semi-uniform families of finite devices 

that is independent or particular models and formalisms. Our techniques can be applied to other compu­

tational models besides membrane systems and we have demonstrated this by showing similar results for 

Boolean circuits [38]. Indeed, a number of other models explicitly, or implicitly, use notions of unifor­

mity and semi-uniformity. Models presented as uniform families of devices include membrane systems 

and Boolean circuits as noted above, as well as DNA computers [1 , 9, 53, 50. 8], chemical reaction 

networks [17, 16, 57, 58], neural networks [42] and other models studied in computational complexity 

theory. Besides membrane systems, a surprising number of models, including some just mentioned, 

are presented as semi-uniform families of devices, including DNA computers [28, 29], chemical reac­

tion networks [17, 57], the abstract tile assembly model [51 , 54 ], the nubots model of active molecular 
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self-assembly and robotics [60, 15], and an inse1tion-bascd polymer model [18, 30]. Uniform and scmi­

unil"onn families of' devices are both natural >vays to present a model or computation and elucidating the 

distinction between them seems a worthy goal. 

Funhermore, although we do not formally show it, our results hold for a version of the stochastic 

chemical reaction ncn.vork model [52] that meets our definitions for membrane systems and in patticular 

where there arc families of networks deciding languages and unimolecular reactions on(v (in the model 

there arc discrete natural number molecular counts and all reactions arc or the fo1111 /l ---+ }v1, where M 

is a mutlisct of molecular species). Interestingly, these results also hold if we generalise this model to use 

maximally parallel synchronous reaction updates. This sh0>vs that adding the seemingly strong and unre­

alistic ability of maximal parallelism in this context conveys no extra power to the model (despite the 

fact that it does increase the power or more general, bimolecular for example, chemical reaction network 

models). 

Om main result is of importance to work on models of computation and natural computing since it 

highlights that the (seemingly ha11111css) choice between unifonnity and scmi-unifonnity in these models 

may lead to drastic changes in computational power. How drastic? Roughly speaking, we find that the 

semi-unifi.11111 models studied here characterise the class NL, while the analogous unironn models have 

power comparable to, or more formally reducible to, the unary languages in NL. Our work here and on 

Boolean circuits suggests that this question should be asked of other computational models. 

1.1. Overview of results 

Roughly speaking, a membrane system consists of' a membrane-bound compartment that contains other 

(possibly nested) membrane-bound compartments that in tum contain objects that interact with each 

other and with membranes to carry out a computation. A family, or set, of recogniser membrane systems 

decides a lan1:,•1.iage L. Families can be uniform or semi-uniform. For a uniform family there is an 

associated pair of functions (f, e ). where f maps a binary input word x. of length n. to a membrane 

system IIn that may be used to process any word of length n, and e encodes :.r as a multiset of input 

objects to II11 (for each of the 2" \Vords oflength n E N we have a single membrane system IIn)· For a 

semi-uniform family. a single function h maps the input word x to a membrane system n" (for each word 

we have a membrane system). ln either case, mlcs arc applied to objects in the membrane system until 

it produces special object(s) indicating that J.; is accepted or rejected. Of course the encoding functions 

f, e, h should be suitably simple so that the membrane system, and not the encoding fimctions, arc doing 

the interesting work. ln this paper we use FAC0 uniformity and semi-uniformity, that is, the functions 

f, e, h arc in FAC0
, the class or functions computed by unifonn constant depth polynomial size Boolean 

circuits; this is a class of fairly simple problems and is mostly knov.;n for what it docs not contain. 

In Section 3 we give our main result, that uniform families of active membrane systems >vithout 

charges and dissolution (denoted A/vt{]_d) that mn in polynomial time arc strictly '..vcakcr than their 

semi-uniform counterpart We prove this by showing that these uniform families solve no more than 

non-uniform-AC0
, a class that docs not even contain Parity (the set of words over {O, 1} with an odd 

number of ls). The analogous semi-uniform systems can indeed solve Parity and do much else besides. 

In fact, for lwo out oflhrcc models that we consider, the scmi-unifo1111 families exactly characterise NL. 

This is shown in Section 4 and illustrated as Theorem 4. 1 at the top of F igurc 1. 

This leaves the question: what is the exact PO'-''er of uniform families of A.tvtCl_d systems? In previous 

papers, where more powerful membrane systems and complexity classes arc studied, e.g. [2, 3, 4], model 
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Figure 1. Summary ofresults. Numerical labels refer to theorems \Vhich arc proved in this paper, and symbols arc 

used to show inclusion type, with an unlabelled mrnw denoting <;;:. The figure shows the relationship between NL, 

tallyN L (the set of unary languages decided in non-dctenninisticlogspaee), and a number of classes FAC~ (ta! lyN L) 

oflanguages that are reducible to tallyN L by various types of FAC0 computable reductions r. 11le star(*) indicates 

the class labeled by the dashed line. Sec [38] for proofs of inclusions that do not have numcriclll labds m1d for 

more on classes reducible to tallyN L. 

definitional choices \Vere not so important. In our setting, definitional details such as the choice of uni­

formity condition and the particular kinds of acceptance modes allo,ved for such recogniser membrane 

systems lead to seemingly different results and some open questions as we now describe. 

We give results for three variants on the definition of recogniser membrane system. The most pow­

erl'ul are acknmvledger membrane systems, where an accepting computation should produce one or 

more yes objects, and a rejecting computation should produce zero yes objects. In Section 5 we 

give an exact characterisation of uniform families of ackno,vledger .A.-vt0 
d membrane systems. It turns 

out that they decide exactly those languages that are FAC
0 

disjunctive truth-table reducible to the unary 

languages in NL (called tallyNL). See Theorem 5.1 in Figure 1. 

ln Section 6 we consider recogniser ;?-1 membrane systems: a restriction of acknowledger systems 

where an accepting computation produces one or more yes objects and zero no objects, and a rejecting 

computation produces one or more no objects and zero yes objects. We give upper and lower-bounds, in 

terms or classes reducible to ta llyNL, ror unilonn families ol·recogniser:;1 AJVi~d systems. Jn Figure 1, 

two upper bounds arc illustrated as Theorems 5.2 and 6.1, and a lower bound as Theorem 6.2. 

The more standard, uniform recogniser systems, are a restriction ofrecogniser ) 1 membrane systems 

and are defined so that an accepting computation should produce a single yes object and zero no objects, 

and a rejecting computation should produce a single no object and zero yes objects. As noted above, 

our results (Figure 1, Theorem 3.2) shmv that these uniform recogniser systems are strictly weaker than 

semi-uniform recogniser systems in our setting. We do not b>ive a tight characterisation for the power of 

uniform recogniser systems, but discuss this as an open problem in Section 7. 
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\Ve note that there is a previous P characterisation for both tmiform and semi-uniform families of 

active membrane systems without charges and dissolution [21 ]: the same systems as we use here, but 

under much more general uni fonnity conditions, namely po(ynomial time, or P, uni rormity. Jn that work 

the authors are motivated by Lhe relationship with classes above P and so it is su1licient in their work to 

use P unif"ormity. When using significantly tighter unili.mniLy conditions (e.g. FAC0
), such polynomial­

time encoding functions for uni ronn and semi-uni form families can be seen to be stronger than the 

membrane systems themselves [37] (assuming NL S:: P). In this paper we use FAC0 uniformity which 

is weak enough to expose the underlying power or certain, suitably weak, classes or active membrane 

systems without charges or dissolution. A number of other varieties of membrane systems (e.g. [20, 40]) 

also claim P characterisations that depend on P uniformity. We leave it as a possible direction for future 

\Vork to investigate these, and other, membrane systems under suitably tight notions of uniformity or 

semi-uniformity. 

2. Definitions 

For a function f: {O, 1} * ---+ {O, 1} * and integers m, n ~ 1 let f ,. : {O, 1 }n ---+ {O, 1 }m be the restric­

tion off to domain and range consisting of strings of length n and m. respectively. We consider only 

functions f where for each n there is an m such that all length-n strings in f's domain are mapped to 

lcngth-m. strings, thus f = LJ;:",..,
0 

fn- Each language JJ C::: {0. 1 }* has an associated total characteristic 

function XL : { 0, 1} * r-+ { O, 1} defined by xL( w) = 1 if w E L and 0 if w rf. L. We say a language L is 

decided by a Turing machine AJ ii' Af computes the characteristic !'unction XL· For a string ·11', we leL lrnl 
denote its length. 

Let NL be the class or languages accepted by non-dctcnninistic logarithmic-space Turing machines. 

Such machines have a read-only input Lape, a write-only output tape and a read-write work tape whose 

length is a logarithmic !"unction of" input length. The class ol" f"uncLions computed by a detenninistic 

logarithmic-space Turing machines (with an additional write-only output tape) is denoted FL. 

Let tally be the set ofall languages over the one-Letter alphabet { 1 }. We define tallyNL =tally n NL, 

i.e. the class of all tally languages and length encoded languages in NL. For more details on complexity 

classes and T ming machines see [ 41]. 

A circuit Cn computes a function computes a function fn: {O, 1 }11 r-+ {O, 1 }m on a fixed num­

ber n of l3oolean variables. We consider fonctions of an arbitrary number of variables by defining 

(possibly infinite) families or circuits. We say a f"amily of"circuiLs ~ = {Cn In EN} computes a func­

tion f: {O, 1 }* r-+ {O, 1 }* if for all n EN and for all w E {O, qn circuit Cn outputs the string f 11 (w). 

We say a lamily of' circuits ~decides a language L C {O, 1} * ir for each 'W E {O, 1 }n circuit Cn E ~on 

input w computes XL· 

In a non-uniform family of circuits there is no required similarity between family members. In order 

to specily such a requirement we use a uniformity function that algorithmically specifies the similarity 

between members or a circuiL family. Roughly speaking, a uniform circuit family~ is an infinite se­

quence of circuits >vith an associated function f: { 1} * --+ ~that generates members of the family and is 

computable within some resource bound. For more details on Boolean circuits see [59]. 

When dealing with uniformity for small complexity classes one of the preferred uniformity condi­

tions is DLOGTI ME-uniformity [32]. Roughly speaking, a circuit is DLOGTl ME-uniform if there is a 

procedure that can decide if a word is in the "connection language" of the circuit family in time linear 
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in the vmrd length. Each word of the connection language encodes either an input gate of the circuit, an 

output gate or the circuit, or a wire connecting the output of' one identi fled gate Lo the input of' a second 

identified gate_ Each word also encodes, in binary, the number n ror this circuit. For more details on 

DLOGTIME uniformity see [5, 32]. 

The depth ol"a circuit is the length ol"Lhe longest path Ii-om an input gate to an output gate. The size 

of'a circuit is Lhe number of' wires iL contains [5]. 

Non-uniform-AC0 is the seL oflanguages decidable by families of constant-depth polynomial-size (in 

inpuL length n) circuits with unbounded fan-in A l\D and OR gates, and NOT gales with fan-in' l. AC0 is 

the set of languages decidable by constant-depth polynomial-size (in input length n) 

DLOGTIME-uniform circuits with unbounded fan-in AKD and OR gates, and NOT gates with fan-in 1. 

FAC0 is the class of functions computable by polynomial-size constant-depth DLOGTI ME-uniform cir­

cuits with unbounded fan-in AND and OR gates, and NOT gates with fan-in 1. 

2.1. Reductions 

For concreteness, we explicitly define some standard types of reductions_ Let .11, B C { 0, 1} *. Let C be 

a set ol- runctions (for example FL or FAC0
), a runction f is (-computable ir f E C. 

Definition 2.1. (Many-one reducible) 

Set /l is many-one reducible to set 13, written A ::;_~, 13, if' there is a li.mction f that is (-computable with 

the property that for all w, w EA, ii and only ii f(w) E n. 

The following definition oftrnth table reduction comes from [10, 12], sec also [27, 47]. The l3oolcan 

fonction u is historically called a truth table [ 4 7]. 

Definition 2.2. (Truth-table reduction) 

Set A is C truth table reducible to set B , \Vritten A ::;~. B, if there exists (-computable functions T : 

{O, 1}* --+ {O, 1}* x {O, l}* x ... and u: {O, l}*--+ {O, l} such that w EA if and only if7(w) = 

(a1, ... , ae,J such that u(:<ri(ai), .. - , xn(ar"")) = 1, where XB is the characteristic function of B. 

A disjunctive truth Lab le reduction ( dtt) is one where at least one string generated by T(w) is in J3, 

in other words u (x R ( u 1 ) , - .. , x R ( ap,.)) = V 1 < i<I:" x R (a;)- A conjunctive truth table reduction ( ctt) 

is one where all the strings generated by 7(wf are in /J , in other words (T(XB(o.1) .... , XB(ufw)) 

A. 1<:,_i~fw xn(a,;). 

Definition 2.3. (Turing reducible) 

Set ,11 is C Turing reducible to B , written _,.-1 -<;Sf B, if there is a Turing machine 1\1, that is resource­

bounded in the same •vay machines computing functions in C are., such that w E A iff AI accepts w 

\.Vith B as its oracle. 

The following implications loll ow direclly from these definitions, !or more details see [27]. 

Let FAC~ 1 
( C) be the set of all languages that are FAC0 reducible to languages in C via a reduction of 

some type r E { m, dtt, ctt, tt, T}. 
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2.2. Configuration graphs 

Definition 2.4. (Configuration Graph) 

135 

Let w E { 0, 1} * be the input to a halting s(lwl)-space bounded Turing machine Af. The configuration 

graph C,w,w of 1\1 on input w is an acyclic directed graph where for each potential configuration of M 

there is a ve1tex that encodes it and where a potential configuration consists of an input read bit, work 

tape contents, input tape head position and work tape head position. The graph G ;1.1,11. has a directed edge 

from a vcncx c to a vc1tex c' if the configuration encoded by d can be reached from the configuration 

encoded by c in one step via },!f's transition function. 

A conriguralion graph CM,w has the properly that there is a directed path from the vertex cs rep­

resenting the initial configuration, to the accept vertex c0 if an only if A1 accepts inpul w. Also, we 

consider only space bounded Turing machines that do not repeat a configuration (i.e. loop), hence >ve 

define configuration graphs to be acyclic which will be a usefol property later on. We are interested in 

O(log lwl) space bounded Turing machines, whose configuration graphs are of size (number of vertices) 

O(luflC21J. Lemma 2.5 follows from Theorem 3.16 in [25]. 

Lemma 2.5. Given the binary encoding of' a Turing machine Af, which has stale set Q and an FAC0 

computable space bound O(log lwl). and given an input 'W, the configuration graph CM,w, or size 

O(luf
2IQI). is computable in DLOGTIME-uniform-FAC

0
. 

2.3. :\fembrane systems 

In this section we define the specific variant of membrane systems \Ve use in this paper. We also define 

reco1:,'llizer membrane systems. uniform families and some complexity classes. These definitions are 

based on those from the literamrc [31, 44]. 

In this paper the term membrane systems and the notation AA1'.!.d refer to active membrane systems 

without charges and without dissolution rules [21, 44]. 

Let MS (0) represent the set of all multiscts over the clements of the finite set 0. 

Definition 2.6. A membrane system of type AA1'.!.d is a tuple II= (0, Jl, Af, H, A, R) •vhere: 

• 0 is the alphabet of objects (or the set of object types); 

• I'· = (\/µ, I'~w env) is a rooted tree representing the membrane structure. Vµ C N is Lhe finite set or 

membranes. E1, C l0, x i~, such that (p, c) E E1, if the (parent) membrane p contains the (child) 

membrane ('. The root, 1"n1.1 E l1µ, of' the tree is the only membrane with no parent and is called 

the "environment". Leaves of the tree represent "elementary membranes": i.e. membranes which 

contain no other membranes. 

• AJ: V,J. ---'t MS(O) map each membrane to an object multiset, defining the membrane's object 

contents; 

• A: 11i, ---'t His an injective mapping of membranes to H, the finite set of membrane labels. ln this 

work the environment membrane always has the label "nw"; 

• Risa finite set of developmental mles of the following types (where o, u, c E 0 and w E MS(O), 

h EH): 
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(a) r 0 ---+ w 1,, (object re>vriting), an object 0 in a membrane with label his replaced by a mul­

tiset 01· objects w. 

(h) () ri,, ---+ ru.1h (communication in). an object() in a membrane with a child membrane with 

label his moved into the child membrane and modified to become u. 

(c) [ o l1t ---+ [ l1t u (communication out), an object o in a membrane with label his moved into 

the parent membrane and modified Lo become u. 

(e) [ o l1i ---+ [ u ]1, [v Ji, (elementary membrane division), an elementary membrane >vith label h 

containing object o is duplicated, in one copy o is replaced by ·u while in the other copy it is 

replaced by v. 

The environment membrane cannot divide nor communicate out objects.1 

The missing (d) rule is the dissolution rule which we do not consider in this paper. Active membrane 

systems may also have non-elementary membrane division rules [44]. That is, membranes with child 

membranes may also divide. For the kinds or membrane systems we consider in this paper the inclusion 

or omission of non-clcmcntaiy division rules docs not affect the results [21. 37]. 

A configuration C of'a membrane system is a tuple (/J. = (l~, Fµ., .:n·11), A!, A) whose elements are 

dclincd in Dclinition 2.6 (with the exception that A may be non-injective). 

A permissible encoding ofa membrane system (lI), or ofa coniiguration (C), encodes all mullisets in 

a unary manner. For example, a multiset is encoded in the ronnat [a, a, a, b, b], rather than in the shorter 

format a3 b2
. Likewise, the membrane structure should be encoded such that each membrane child-parent 

relation is written explicitly. 

A configuration Ci transitions LO configuration C+1 by the application ora multiset or rules R from 

the set R. The rules are applied in a maximally parallel manner. That is, at each timestep, a multiset of 

applicable rules R is non-deterministically chosen such that (i) all rules in Rare applicable, and (ii) there 

does not exist a multiset of applicable rules R' such that 'R. £;; R'. Rules are applicable in a timestep 

according to the following principles: Rules are applied to the most deeply nested membranes first. In 

each timestep, an object can be involved in at most one rule of any type. A membrane can be the subject 

of at most one rule of type (b}. (c) or (e). If a membrane is divided (a rule of type ( e)) and there are 

objects in this membrane which evolve via rules of type (a), then we assume that first the type (a) rnlcs 

arc applied, and then the division rule. All other rules arc applied non-deterministically. 

A computation or a membrane system is a sequence or conligurations where each conliguration 

transitions to the next. As noted above, at a given timcstcp the multisct of applicable rules is non­

deterministically chosen: therefore on a given input there arc multiple possible computations. In other 

words, membrane systems arc non-dctcnninistic. A computation that reaches a conliguration where no 

more rules arc applicable is called a halting computation. 

2.3.1. Recogniser, recogniser ;:ei, and acknowledger membrane systems 

For the rollowing three definitions it is the case that the set ol"objects 0 contains the special objects yes 

and no and that there are no rules applicable to yes or no (hence if yes or no are created, they can 

never be destroyed). The standard [ 44] deiinition or a recogniser membrane system is as follows. 

1Dcfinitions of active membranes often include a second container membrane that cannot dissolve called the "skin" [44]. we 

omit this from our definitions. The proofs in this paper can be easily modified to account for a skin. 



N. Murpl!J! and D. Woods / Uniformity is Weaker than Semi-Uniformity.for Some P Systems 137 

Definition 2.7. A recogniser membrane system is a membrane system such that all computations halt, 

and at the halting step (and not befi.1re) exactly one of" the objects yes E 0 or no E 0 appears in the 

multi set or the environment membrane. 

A computation that halts with yes in the environment is referred to as an accepting computation while 

one with no in the environment is referred to as a rejecting computation. In this paper, and in previous 

work [36, 37], •ve also use the following more general systems: 

Definition 2.8. A recogniser::,: 1 membrane 5ystem is a membrane system such that all computations halt, 

and either (a) one or more copies of the object yes E 0 or (b) one or more copies of the object no E 0 

appear in the multiset of the environment membrane, but not both. 

As with recogniser membrane systems, a computation of a recogniser ~ :, 1 membrane system that halts 

\Vith yes in the environment is referred to as an accepting computation while one with no in the envi­

ronment is referred to as a rejecting computation. In this paper we also use the following systems that 

are more general than the nvo above: 

Definition 2.9. Acknowledger membrane systems are systems such that all computations halt (and where 

one or more copies of the distinbruished object yes may or may not appear in the en-v membrane). 

We say that a computation or an acknowledger membrane system is an accepting computation i rat least 

one yes object is present in the en:11 membrane at the final step. A computation or an acknowledger 

membrane system is in a r~jecting computation if there are zero yes objects in the env membrane at the 

final step. 

2.3.2. Families of membrane systems 

There arc two main notions of uniformity considered in the membrane computing literature defined as 

follows. 

Definition 2.10. (Semi-uniform families) 

A family of membrane systems systems II = { I1111 I w E 2:*} is said to be semi-uniform if there is a 

fonction h: 2:* H II that maps from each input word w to a description (in a permissible encoding) of 

a membrane system II,,,. 

Definition 2.11. (Uniform families) 

A family of membrane systems II = { U,,_ I n E N} is said to be uniform if there are t>vo associated 

fi.mctions: 

1. f: 1 * H II that maps in (the unary representation of n) to the description (in a permissible 

encoding) of a membrane system II,. with a designated input membrane; 

2. e: E* --+ MS (O) that maps a >'·Wd w E 2:* to the input multiset e(w) (in a permissible encoding) 

where 0 is the set ofobjccts off(F' ), n = lwl. 

We let Il11 (e(w)) denote the membrane system f(l n) = II,, with the multiset e(w) in its desibrnated 

input membrane. Note that both II,, and IIn(e(tL')) arc membrane systems. 
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ln this paper, >vc deal only with confluent membrane systems: in a cot?ff.uent membrane system II all 

computations or lI agree on the answer, that is, either all or lI's computations are accepting (in which 

case IT accepts) or else all or IT's computations arc rejecting (in which case IT rejects). 

A semi-uniform family, II, recognises a language L i;:: L:* conlluently if for all w E ~* there exists 

lfw E TI such that w E L implies that lfw accepts confluently and w rf_ f, implies lfw rejects confluently. 

A uniform ramily, TI, with encoder 1:, recognises a language L i;:: E* confluently ir ror all ·11.• E E* there 

exists 1I1w1(c(w)) where lilwl E TI such that w E L implies that 1I1101(e('w)) accepts conlluently and 

w ti:- f, implies lflwl ( e(w)) rej eels conlluently. Such a (semi-)uni rorm (amilies are called a cm?fiuent 

families of recogniser, recogniser> 1 • or acknov.rledger membrane systems. 

That is. each membrane system lI in a conlluent family starts from a fixed initial coniiguration and 

then II non-deterministically chooses one from a number of valid computations. All of these valid 

computations give the same result: either all accepting (ifw EL) or else all rejecting (ifw rf_ L). 

If the functions f(Il10I) and e(w) (or respectively the single function h(u:)) for a (semi-)uniform 

family are computable in time polynomial in [w[ on a Turing machine we say the family uses polynomial 

time (semi~)un{formity. If the uniformity functions arc computable by DLOGTI ME uniform constant 

depth circuits, that is, f , e, h E FAC0
, then the family is said to use constant depth uniformity. 

In this paper we consider two classes of problems, those that can be solved by FAC0 -uniform families 

of confluent A.A.1~ d (active membranes without charges or dissolution rules) that run in time polyno­

mial in [wl, denoted (FAC0
, FAC0 )-uniform-PMCA.M:1.d, and FAC0 -semi-uniform families of confluent 

AA12-d systems that 111n in time polynomial in lwl, denoted FAC0 -scmi-uniform-PMC* AJVi~d-

2.4. Context-freeness in membrane systems 

Lemma 2.12. Let o be an object in a membrane with label h in a configuration C; of a membrane 

system II. Remove all other objects from C, to get configuration Cf. Ifthere is a rnle r in lI such that by 

applying that rule too, h in er gives a coniiguration cr+l with object o' in h', then it is the case that from 

configuration C; there exists a confib'llration C; 1 reachable in a single step that contains o' in h'. 

Proof: 

The ruler is or the type (a), (h), (c) or (c~) as described in Definition 2.6. It is sufficient to show that there 

is always at least one maximal set of rule applications for configuration C; that creates o' in h' in C;+ l · 

Recall that an object in a configuration can be involved in at most one rule o(·any type. ff the ruler is 

or type (a), it has the rorn1 r () --+ o'w 1,, where '/I) is a (possibly empty) string over 0 and it is necessarily 

the case that h = h1 (rules or type (a) are applied within a single membrane). 

Let the notation C; - { o 1 denote the configuration Ci without the instance or Lhe obj eel o under 

consideration and consider any maximal multiset R of rnles that can be applied to the configuration 

C1 - { o}. Also, consider the multiset or rule applications R unioned with the application or the rule 

[ o --+ o'w] h to our object instance o in the relevant membrane with label h in C;. We claim that this new 

multiset is a maximal multiset ofrnles that can be applied to C;. To see this notice that object instance o 

has a rule being applied to it, and each object can have at most one rule applied to it, and no other objects 

>vith applicable rules are without rules because fl was maximal. Hence there is a maximal multiset of 

rule applications for C; that applies r and hence when it is applied C; 
1 1 contains o' in a membrane with 

label h = h'. 

Rules of type (b ). (c) and (e) involve both an object and a membrane. Consider C; - { o} defined 

as above, and consider any maximal multiset fl of rule applications to C; - { o }. Furthermore, if in fl 
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there is a rnlc that im'olves the membrane with label h where object instance o was, then remove that 

rule application fi·om H to get H. We claim that the mulliset of.rule applications H, unioned together 

with the rule application "ruler applied to our object instance o contained in the membrane with label h" 

is a maximal multiset or rule applications for Ci- To see this note that (i) r is now being applied to the 

relevant instances of" o, h so no other rule can be applied to that object nor to the membrane with that 

label, and (ii) there arc no other rules that can be applied because R was maximal. Ancr the application 

oflhis maximal multiset of rules the new configuration C;, 
1 1 contains o' in a membrane with label//. D 

The following lemma generalises Lemma 2.12 from one to multiple computation steps, and applies 

it to the setting of"systems that recognise languages. Intuitively, it states that ira sequence of"rules r can 

be applied starting rrom some eonrlguration it is not possible to prevent this from happening by adding 

new objects to that configuration. 

Lemma 2.13. Let lI be a recogniser, recogniser :;,1 or acknowledger membrane system. Let o be an 

object in a membrane with Label h in a configuration Ci of II. Remove all other objects from C; to 

get configuration er. If starting from configuration er there is a computation that halts after t steps 

on configuration C;+t that contains object yes in the environment then it is the case that starting from 

confib'llration C; there exists a halting computation with yes in the environment. 

Proof: 

By hypothesis we know that there is a sequence oft rules r 1, 1»2, ••• , r 1 that can be applied to Cf to get 

yes in the environment. We apply Lemma 2.12 t times, first to configuration C; with r = r 1, then to 

C; 1 1 >vith r = r2, and so on until we get configuration C; t which contains yes in the environment. 

If lI is a recogniser system then we are done: recogniser systems produce yes in the halting step. 

IfII is a recogniser_:d or acknowledger membrane system we add the fact (from Section 2.3.1) that no 

rules can be applied to the object yes , and since there is a computation \vhere yes is in the environment 

at configuration Ci+t, then it remains there until the computation eventually halts. D 

Lemma 2.13 shows that the kind of membrane systems studied in this paper inmitively exhibit some 

notion of context-freeness. Essentially, there is a sense in which an object 0 8 can be said to trigger a 

sequence of rules that eventually result in the production of object o1. on some computation, and specifi­

cally, the production of Ot can not be prevented by sta11ing over with more objects (more context) in the 

system. IIence, the ideas used in the proof of Lemma 2.13 justify the use of the following definition in 

our proofs. 

Definition 2.14. (Eventually evoh'es) 

Let C8 be a configuration of a membrane system II, containing an object of type Os in a membrane 

labelled h 8 (along with any number of' other objects and membranes). Let C2 denote Cs with all objects 

removed except one instance of" o5 in the relevant membrane with label h. 'Ve say that Os in hs in 

conliguration Cs eventually evolves on some computation path, or for short eventually evolves, object 

type O[ in a membrane labelled h1 i rt here is a computation (sequence Of' configurations) starting from C2 
where the final configuration in the computation has object type o1 in a membrane labelled h1• 

Note that if o,. in h8 in C.. evenmally evolves yes in en-v this means that by Lemma 2.13 there is 

at least one computation (sequence of configurations) that leads to a configuration with yes in env 

from C,.. However. since membrane systems are nondeterministic, this does not necessarily happen for 

all computations. 
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3. Uniformity is strictly weaker than semi-uniformity 

Theorem 3.2 proves that uniform families of membrane systems are strictly >veaker than semi-uniform 

families of the same type. The result holds for all three definitions of acknowledger, recog ni ser;~ i and 

recogniser membrane systems. 

Lemma 3.1. (FAC0
, FAC0 )-unifonn-PMCAJvt0 

d <::: non-unifonn-AC0
, ror acknowledger, recogniser ~~ 1 

and recogniser membrane systems. 

Proof: 

Let L E ( FAC0
, FAC0 )-unifonn-PMC..4Jvt0 

r1 , and let II be the FAC0 -unilonn family of that type that 

decides L. That is, given w E { 0, 1 }* \.here is a membrane system lilwl E II that accepts c (w) iffw E L. 

We now describe a non-uni !onn family or constant-depth circuits ![ = { Cn I n E N and Cn accepts 

L n { 0. 1 }"} that recognizes L. For any input w E { 0, 1} *, we claim that circuit Ciwl E e:. decides 

whether or not w E L. The 1irst constanl number oflayers oflhe circuit C'iwl compute the input encoding 

fimction e(w) E FAC
0

. This generates a polynomial (in lwl) number of binary "vords that encode 

elements from the polynomially sized object set 0 as well as their multiplicities (in unary). 

The circuit q 11,1 then converts the list of encoded e(w) objects into a single binary string x of 

length lxl =IOI such that for all i E {l, 2, ... , IOI}, the ith bit X; = 1 iffo; E 0 is in e(w ). That is, x 
is a characteristic sequence for e(w), ignoring multiplicities. 

For each i , the bit Xi is wired into a unique AND gate a.;, giving a total of IOI AND gates at this 

level. The second input to the AND gate a.; is from a constant gate c;, where c; = 1 if o; E 0 in the 

input membrane eventually evolves (Definition 2.14) to the yes object in the env membrane and c; = 0 

otherwise. 

The next layer contains a single OR gate g such that for each i, AND gate a.; is wired to .9· This OR 

gate is the output gate of the circuit. Also wired into the OR are IOI x IHI constant gates such that gate 

c0 ,h = 1 ilboth (i) o E 0 is in membrane labelled h E H in the initial conriguration ofIIl xl and (ii) o in 

h cvcnhially evolves to yes in the en v membrane, otherwise c0 .1i = 0. 

We now argue that the above construction or Cite! accepts w E L Recall that lfltcl (c (w)) is a 

connuent membrane system and so if the computation is an accepting one, then all possible computation 

paths arc accepting. For a computation to be accepting, a yes object must appear in the env membrane. 

Therefore al least one object in the initial configuration or lflwl (({ w)) must eventually evolve to be a 

yes in the 1~nv membrane. Also Jllwl(1:(w)) is confluent, therefore i l at least one object in the initial 

configuration orlflwl (c (w)) eventually evolves yes in the cn11 membrane, the system accepts. Since the 

property 01·,vhether an object in some membrane eventually evolves to object yes in the cru> membrane 

depends only on Rand pin lilwl• and hence in tum depends only on lwl (by Lemma 2.13), it can be 

encoded (non-uniformly) in the constants c.i in circuit C'iwl· 

Suppose Illwl accepts regardless of the input e(x ). In this case one of the objects, say o, in the 

initial configuration oflilwl will eventually evolve to yes in the env membrane. This means the relevant 

gate c0 ,h will be a 1-constant gate and so the output OR will evaluate to 1 and so Cl ,"I accepts regardless 

of input. 

Suppose w E L, therefore at least one of the objects in in e(w ), when placed in the input membrane 

of rr, ,,,I, yields a computation that ends with a configuration >vith object yes in membrane erw. In h1rn 

this implies that at least one of the AND gates a ; has inputs c; = 1 and )(; = 1 and so evaluates to 1. 

Finally this causes the OR to evaluate to 1 and so q 11,1 accepts input u:. 
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Suppose w t/c L , in this case none of the objects in e (w) will eventually evolve to yes in the env 

membrane. Thus any or the u1 A ND gates that have a constant c1 = 1 as input >vill have Xi = 0 and so 

will evaluate to 0. With all 0 inputs, the output OR evaluates to 0 and the circuit rejects. 

This circuit is of polynomial size and its depth is the sum of the depths of the FAC0 encoding function 

(which has depth 0(1), by definition), the depth or the circuit that converts c(w) into x (which is 0 (1) 

using masking and comparison), and 2 ror the final layer or AND gates and the single OR gate. Hence Q: 

is a non-uniform-AC0 circuit family that recognizes L. O 

Theorem 3.2. (FAC0
, FAC0 )-uniform-PMCA/vl0 

d s;; FAC0-semi-uniform-PMC*A..vt0 
d, for acknovvl­

edger, recogniser> 1 and recogniser membrane systems. 

Proof: 

( ~) By dcunition, unironn families arc a rcstnct10n or semi-uniform ramilics and so 

(FAC0
, FAC0 )-uniform-PMCAA1° d C: FAC0-scmi-uniform-PMC*AA1° d-

(f) Parity ~ {O, 1} * is the set or binary strings that contain an odd number ol- 1 s. We claim that 

Parity E FAC0 -scmi-unirorm-PMC*AJvt0 
d ror recogniser systems (and hence also ror acknowledger 

and recogniser:; ~ 1 membrane systems). Let w E {O, 1}, n = lwl, and let w = w 1 : ... , wn. We will 

define the Ji_mction h: {O, 1} H II, where each h( w) = lfu; computes XParity(w) as lollows. Each lfw 

has a single membrane, env , the set 0 contains 2n + 2 objects: 0 = { o, I l :::; i :::; n} U { e, I l :::; 

i ::; n} U {yes, no}. The initial configuration is the membrane en·l' containing a single object u1 

in eTu' ir ·w1 = 1 or object c1 in env ii- w 1 = 0. The rules or lfw are as rollows: ir w1 = 1 then 

[ o ; --+ e; 1 lerw• [ e., --+ o, 1 lun• and if w, = 0 then [ e; --+ e.; 1 1 lenr' [ 0 1 --+ o, 1 1 lenv· There are also 

the rules [en --+ no lem· and [ o., --+ yes lenv · 

By starting with object o1 if w1 = 1, and then changing between e ;, and Oi if w; = 1, and not 

changing if w, = 0 at each timestep then we ensure that the object o, represents ''the parity of the first i 

bits ofw is odd", and e; represents that they are even. Thus, o,. evolves to a single yes object ifthere is 

an odd number of ls in ·wand e,, evolves to a single no ifthere is an even number of ls in w. 

To end >ve note that it is known [19] that Parity r/c non-uniform-AC0
. Lemma 3.1 shows that 

(FAC0
, FAC0 )-uniform-PMCA..iV1lld C non-uniform-AC0

, for acknowledger, recogniser _;,.. 1 , and recog­

niser membrane systems. D 

4. The computational power of semi-uniform families 

In prior work [37], we have shown that semi-uniform families or recogniser A membrane systems char­

acterise NL. Vv'e give an alternative proof here to demonstrate techniques that we will use in later sections 

ror unifonn families. 

Theorem 4.1. ([37]) 

FAC0 -semi-uniform-PM C* A.:\ltlld = NL. for both acknmvledger and reco6rniser ;,. 1 membrane systems. 

Proof: 

Lemmas 4.2 and 4.3 give the proof for acknowledger and recogniser : ~ 1 membrane systems. 0 

Lemma 4.2. ([37]) 

FAC0 -semi-uniform-PMC*A.:\lllld C NL, for acknmvledger, recogmser ;,.1 and recogniser membrfille 

systems. 
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Proof: 

Lel II be a semi-uni 1(11111 lamily or acknowledger, recogniser A or recogniser membrane systems Lhal 

recognises J, E FAC0 -semi-unirorm-PMC*AM0
d. Leth: {O, 1}*--+ II be the semi-uniron11ity runc­

tion or II, !hat is, on input :i: E { 0, 1} *, lix = h(:i:) accepts iff :r: E L We present a non-deterministic 

logspace Turing machine M that recognises L 

The computation of AI proceeds as follows: First lvf, on input x, non-deterministically chooses a 

single object from C 1, the initial configuration of II"'' and stores (a string representation of) the object 

and its containing membrane on its \York tape. Then 1\1 enters a loop where at each iteration it non­

deterministically chooses one of the rules applicable to the object on its wmk tape. If the mle is of 

type (a) or (c) (Definition 2.6) then Af replaces the current object on the work tape (the membrane 

remains unchanged) ·with a non-deterministically chosen object from the right hand side of the rule. lf 

the rule is or type (h) or(('.) then the object on the work Lape is replaced by the object on the right hand 

side of the rule and the membrane on the work tape is replaced by the parent (type (r:)) or child membrane 

(type (b)) or the cuffent membrane. ff during the computation lhe work tape is f()und to store the object 

ye.sin the en1 1 membrane then l\I(:!.') halts and accepts. Otherwise, irthcrc arc no rules applicable to 

the object and membrane on the work tape, and it is not ye.s in env, then Af(:r) halts and rejects. 

Suppose that x E L and so 11,r. = h( x) accepts. This implies that there is one (or more) objects in the 

initial configuration of II1 , that will, by the application of rules to this object and its successors, become 

the object yes in the env membrane by the end of the computation of II" (this claim follows from the 

kind of rules we allow-they arc essentially context free-and can be formally proven using dependency 

graphs [21]). Indeed, this observation holds for all three kinds of membrane systems: acknmvledger, 

rccogn iser >l and recogniser. By non-deterministically choosing an object in the initial configuration, 

and non-deterministically choosing the rules that arc applied to this object and its successors we ensure 

that there is a computation or M (J:) for each possible sequence or rule applications orlix lor each object 

in the initial configuration IIx (this follows from Lemma 2.13). Therefore at least one computation of 

A1(x) will produce the object yes in the env membrane and so A1(x) accepts, by confluence. That is, 

i rL Ix accepts then Al accepts on input :r:. 

Suppose that x ~Land so II,, = h(x) rejects. This implies that there is no valid computation of II,, 

>vhere an object in the initial configuration evolves to yes in the env membrane. Indeed, this observation 

holds for all three kinds of membrane systems: acknowledger, recogniser ;:d and recogniser. ln this case 

all computation branches of .iVI(x) will reach an object to •vhich no further rnles are applicable (that is 

not yes) and so will halt in the rejecting state. That is, if II~ rejects then M rejects on input x. 

To simulate the computation of IIx in logspace, M (:r ) recomputes relevant logarithmic sized pieces 

or h(:r:) = lix via the classic technique for composing logspace algorithms (see Chapter 4.3 or [7]) each 

time it needs inl'ormation about lfx, i.e. initial conllguration, rules, or membrane structure. From lhe 

statement, his computable in FAC0
. This means that the number of unique objects and labels in lI,,, are 

polynomial in n = [:r:[ and so each can be uniquely identilled in binary with a string or length log n. 

]vf(x) uses a constant number oflog n sized binary strings to encode the current object and membrane, 

as well as some counters and temporary storage needed to re-compute h(cr) . 

Therefore Lis decided by a non-deterministic logspacc Turing machine. D 

Lemma 4.3. (f371) 

NL ~ FAC0 -semi-uniform-PMC* A.:vt0 
d, for acknowledger and recogniser;;, 1 membrane systems. 
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Proof: 

Let /, E NL. That is, there is a non-detern1inistic logspace Turing machine AI with one or more accepting 

computation paths exactly for input words J: E LC {O, 1 }• . 

\Ve shov,1 that there is an FAC0 semi-uniform family of polynomial-ti.me membrane systems II that 

recognises L. We now describe a fonction h: {O, 1} * -+ II, computable in FAC0
, such that if :r E L 

then h(:r) = II,,, accepts. othenvise II,,_ rejects. 

Consider the configuration graph G ""·" for M on input x E { 0, 1 }*, which is FAC0 
computable 

from J.\1 and x (see Section 2.2 and Lemma 2.5). Also consider the Tl.iring machine N.u (and its con­

figuration graph G,v.:iJ that on input J.; accepts only if all computations of 1\f reject on input :r, that is. 

x tf:. L. NM uses the standard un-reachability algorithm [24. 56] for non-deterministic logspace. 

The function h(:i.:) constructs the configuration graph G,w,.r and modifies it Lo produce a membrane 

system llx as Collows. 0, the set o('unique objects ol'llx has an object encoding each vertex in the con­

figuration graphs G,11,:r and GN,:1: as well as two extra objects, yes and no. The initial configuration of 

lI,,, has a single membrane labelled cnv that contains two objects: e; which encodes the initial conligura­

tion of Af(x); and cJ which encodes the initial configuration of N.w(x). The edges of the configuration 

graphs Chr.:1: and G;v,,,. are encoded as object re'-'<Titing rules in the membrane system. If vertex -u has k 

edges to venices v,, . .. , vi., then h(,r.) encodes all k edges as a single type (a) rule: [ -u -+ v1, ... , vk lenv· 

Let venex (object) c0 . encode the accepting configuration of the Turing machine kl, and let h(:r) include 

the rule [ c,, -+ yes lenv· Likewise for the vertex (object) Cb that encodes an accepting configuration of 

the Tming machine l(w. h(i:) includes the rule [Cb -+ no lenv· 

We no>v argue that each member llx = h(:i;) or the semi-uni ronn (amily II, accepts ilT :r: E /,. 

Suppose :i: E l, therefore Turing machine A1(:r;) accepts. This implies that configuration graph C .'-1,x 

has the propc1ty that there is a directed path from the vc1tex r:i representing the initial configuration, to 

the accept vertex ca. The assumption also implies that iVM (:r) must reject, and so configuration graph 

CN,x docs not have a directed path fi·om the object c.i encoding its initial configuration to c1,, its accept 

configuration. Since LI:~ = h(:c) directly encodes the conliguration graphs as objects and rules then the 

existence or a path from ci to ca implies that the membrane system will produce the object yes during 

its computation. The absence ora path (rom r:.1 to ci, implies that the membrane system will not produce 

the object no during its computation. Therefore lI,r. accepts if :i: E L. 

Suppose x tf. L, therefore no computation paths of Turing machine A1(x) accept. This implies that 

configuration graph CM,x has the property that there is no directed path from the vertex c1 representing 

the initial configuration, to the accept vc1tcx r:a. The assumption also implies that JV,11(.r) must accept, 

and so configuration graph CN,x has a directed path (i·om the object (;.i encoding its initial configuration 

to c;,, its accept configuration. Since llx = h(:i:) directly encodes the configuration graphs as objects and 

rules then the existence ofa path from c:i to q, implies that the membrane system will produce the object 

no during its computation. The absence or a path from ci to ca implies that the membrane system will 

not produce the object yes during its computation. Therefore II" rejects if.T rf. L. 

Since each configuration graph is acyclic and has p(IJ:I) nodes where pis some polynomial function, 

it follows that the .membrane system itself is of polynomial size and halts in polynomial time. The 

configuration graph can be computed in FAC0 
by Lemma 2.5. 

In conclusion, function h defines a semi-uniform family of polynomial time AJVi~d recogniser ~ ,. I 

(and so also acknowledger) membrane systems that accept the language in L E NL. D 
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Note that the above proof fails for recogniser membrane systems since if there is more than one 

accepting computation (or in the rejecting case, more than one rejecting computation) then multiple 

copies or Lhc object yes (or no) arc produced in violation or the definition or recogniser membrane 

systems. 

5. The computational power of uniform families of acknowledger mem­

brane systems 

In this section vve focus on acknowledger membrane systems (Definition 2.9) where the accepting condi­

tion is met by the presence of one or more yes object in the environment in the last step of a computation, 

and the absence of yes implies rejection. We give a characterisation of uniform families ofacknowledger 

membrane systems: 

Theorem 5.1. (FAC0
, FAC 0 )-uniform-PMCA.A1~<1 

systems. 

FAC3lt (tallyNL), for acknowledger membrane 

The proor or this result is the combination or Lemmas 5.2 and 5.3. Before giving the lemmas we fast 

introduce Lhe following FAC0 computable functions that will be used in the proolS. 

Pairing function We require an injective function that pairs two binary strings into one and is ex­

tremely easy (FAC0
) to compute. We use the pairing function that interleaves the bits of two binary 

string arguments a and b. For example, the binary strings a = ci2a 1 ao and b = b2b 1 bo are paired as the 

interleaved string (a , b) = b2a.2b1a1bo ao . The circuits for interleaving and de-interleaving have only a 

single input gate layer and a single output gate layer (and so have 2 layers) . The wiring between each 

input and output gate can be shown to be DLOGTIME-uniform. 

Binary to Unary There is a constant depth circuit family where circuit C,1 Lakes as input some word 

w E {lL l }" and outputs F where :r is the positive i ntcgcr encoded in the first po g ~ nl bits of w [14 ]. 

It can be shown that this circuit family is DLOGTI ME uni lonn and so this conversion from short binary 

strings to unary is in FAC0
. 

Unary to Binary There is a constant depth circuit family where circuit C.,, takes as input some >vord 

w = on-xp where 0 :::; .Y :::; n, and outputs the binary encoding of x [14]. It can be sho>Vn that this 

circuit family is DLOGTIME uniform and so unary to binary conversion is in FAC0
. 

Lemma5.2. (FAC0
, FAC 0 )-uniform-PMC.AA1~ d C FAC3u (tallyNL) , for acknowledger, recogniser ;:, 1 

and recogniser membrane systems. 

Proof: 

Let LE (FAC0
, FAC 0 )-uniform-PMCAA1~ 11 . That is, there exist two functions e, f E FAC0

, such that e 

maps x E { 0, 1} * to a multiset of membrane system objects (the input), and f maps -u E { 1 }* to a 

membrane system, f (1lxl) = II1:rl E II, such that II1,,1 accepts input e(x ) iff :r E L. 

We claim that L is FAC0 disjunctive reducible to a unary language T, where T is decided by a 

non-deterministic logspace Tming machine T. 
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Let T be the set ohvords of the form i «»l "li >vhcrc, for all Ix I E N and then for all o E Ol:rl• mem­

brane system lflxl E II accepts i r object o in the input membrane eventually evolves to the object yes 

in the C'TU.' membrane (where Olxl is the set or objects orrrlxl· where both ;r; and() arc encoded in binary, 

( ·, ·) is the binal)' interleaving function defined at the start of Section S, and 1 b denotes the unary word 

over {11 or length b for a binary number Ii). Turing machine T decides words in T by lirst converting 

the input word to bina1y and then reversing the pairing function to find n1 and I :rl. T then proceeds by 

simulating lflxl in non-detern1inistic logspace using a similar method as described in Lemma 4.2, that 

is, by storing a constant number of objects and membranes on its work tape and recomputing .f (ll xl) as 

needed (the main difference is that T uses 0 1 as its starting object instead of non-deterministically choos­

ing one). As in Lemma 4.2, T accepts if there exists a valid computation in II1:rJ where o ; in the input 

membrane becomes yes in the env membrane. T rejects if there are no valid computations that lead 

to a yes object in the en v membrane. Therefore T is a tally language decided by a non-deterministic 

logspacc Turing machine and so TE tallyNL. 

\Ve now de line the fonction r E FAC0
, that maps rrom { lL 1} * to the set or tuples or unary words, 

and later prove that if :r E L then r(1:) n T ¥- 0. otherwise if :r tj. L then r(:r) IT = 0. Let 

r(:r) = (u1, ... , 11 q()x!) ), where q(l:rl) is the number ot· object types 0 1 in d:r:), and u; = 1 (u,,)xl). Nole 

that the set or unique words in T(.1:) is a bijection onto the set or objects 1· (:1: ) so q(l:i:I ) is polynomial 

in l:i: I. Since c, the pairing function, binary-unary conversions, as well as calculation of q(l:rl ) are in 

FAC0
, it is not di nicult lo see that r E FAC0

. 

We now prove that 7 is a disjunctive reduction from L to T. Suppose x E L, this implies that at least 

one oft.he objects in c (:r ), when placed in the input membrane oflilxl evolves Lo a yes object in the cnv 

membrane by the end 0 r the computation or lIJ:i: )· Then, by the detinition or T, it" ;i; E /, then ::lo E r(:r ) 

such that o E T. 

Let x ~ L, this implies none of the objects in e(x), when placed in the input membrane of II1:1: I• 

evolve to a yes object in the env membrane by the end of the computation of ITl ,, I· Then, by the 

definition of7, if x ~ L then ~o E T(x) such that o ~ T. D 

Lemma 5.3. FAC2u (tallyNL) ~ (FAC0
, FAC0 )-uniform-PMCA_..vt(J_d· for acknowledger membrane sys­

tems. 

Proof: 

Let L E FAC2tl(tallyNL). That is, there exists a unary language T c:; {l}* that is recognised by a 

non-deterministic logspace Turing machine T, and a function r E FAC0 that maps :r E {O, l}* to a 

set of unary words such that r(x ) n T ¥- l/J if x EL, and r (x ) 'l T = l/J otherwise. Let q'(l x l) = 
max( {max (Ir( w) I) I w E { 0, 1} 1~·1} ), that is, the length oflargcst word produced by r on any input of 

length l:r l. Note that q'(l:rl) is computable by .f since r· E FAC0
. 

\Ve present an FAC0 uniform polynomial-time AJ\112. d membrane family II that recognises l. The 

family is composed of two functions: the uniformity function f: { 1} * -+ II; and e that maps from 

binary words to the multiset or unique objects in the appropriate member or II. 

Each member Illxl = j(l l"I) of II has one single membrane, env, that is both the environment and 

the input membrane. On input i lxl, the function f produces a configuration graph GT.,, for machine T 
on input l " for each u E { 1, 2, ... , q' (I :r I)}. (Note that this is a generalization of the technique used in 

the proof of Lemma 4.3.) Since we have unary input words we can include the input word as part of the 

configuration to ensure that there is a unique input configuration for each GT,11 • 
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Each oftbc q'(lxl) configuration graphs arc convc11cd to membrane mies and objects, using the same 

technique (without lhe second Turing machine thal solves un-reachabilily) from the proof" of" Lemma 4.3, 

ora single membrane system Illxl· In summary, the vertices of the conriguration graphs become objects 

in lilxl and the edges in the graph become type (a) rules. There is a type (a) rule that maps the object 

encoding the accepting configuration or T to yes. We do not include the second Turing machine that 

solves un-rcachability from Lemma 4.3. Tis a logspace machine and so its conriguration graph is or 

polynomial size, it follows lhat the membrane system is or polynomial size. It is relatively straightfor­

ward to verify lhat f E FAC0 _ 

The input encoder f:(:r:) simulates T(.r) to find the set or unary words ('u.1, ... , u1J, then outputs an 

object ci .u for each 11. E r(;1:), which encode the vertex or the configuration graph corresponding to lhe 

initial configurations of Turing machine T input 11. Since r E FAC0 it is not difficult to sec that P. E FAC0 
_ 

We now show that the membrane system I11 ~ 1 on input P(:i:) accepts if:1; E J, and otherwise rejects. 

Suppose x E L. This implies that at least one word in r(x) is in the tally set T and so T accepts on at 

least one of these inputs. The input membrane oflI
1

"

1 

contains e(x) which includes the object cu,. which 

encodes the configmation graph vertex that represents the initial configmation of Tming machine T on 

input 1 tt. In the proof of Lemma 4.3 vve show how the construction of III": I is such that there is a sequence 

of rules from the input object c;,a to the yes object and so Ilf:rl on input e(x) 'Nill accept. 

Suppose u ~ L. This implies that none of the unary words r(x) are in the tally set T and that T does 

not have any accepting computations on any of the words lJ in r(:c). So, as in the proof of Lemma 4.3, 

this implies that none of the objects in e(x) in the input membrane of IIl,:f can evolve to the object yes 

in the env membrane. In this case the membrane system IIlxl on input e(x) vvill halt without yes object; 

a rejecting computation for an acknmvledger membrane system. 

Therefore the pair of functions f and e provide a uniform family or polynomial time AJvt0 
d mem-

brane systems lhat accept/, E FAC~tt(tallyNL). D 

6. The computational power of recogniser;;, 1 membrane systems 

In this section we further investigate how the details in the definition of acceptance and rejection for 

recohrniser membrane systems affect the computational pmver of uniform families of AA1~d systems. 

In Section 5 we consider acknowledger membrane systems (Definition 2.9) where the absence of a 

yes object in the environment in the last step of any computation of a membrane system is sufficient to 

say that the system rejected its input. However, if we restrict lo recogniser:,,:1 membrane systems, which 

must produce one or more yes objects in the case of an accepting computation and one or more no 

objects in the case of a rejecting computation (Definition 2.8) it is no longer clear if our characterisation 

of (FAC0
, FAC0)-uniform- PM CA)\/t~d for acknowledger systems can still hold. The best lower-bound 

we find is FAc;~ 1 (tallyNL), and we obtain upper-bounds of FAC'.:u (tallyNL) and FAC'.!
11 

(tallyNL). 

In the semi-uniform case the upperbound FAC0 -semi-unif"orrn-PMC* A;vt0 
r1 C NL is unafTected by 

the restriction from acknow·ledger to recogniser> 1 membrane systems. It also turns out that these more 

restricted recogniser ;;:, 1 membrane systems have the same NL Lower-bound on their power as acknowl­

edger membrane systems (see Lemma 4.3). 

Lemma 6.1. (FAC0
, FAC 0 )-unifonn-PMCAJ\1~d C FAC~tt (tallyNL), ror recogniser :;1 and recogniser 

membrane systems. 
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Proof: 

(Sketch) This prool' closely lollows that or Lemma 5.2 so we just highlight the differences. In the proor 

of Lemma 5.2 the language Tis the seL of words 1 (o,J.rl) where membrane system f (1 l:1:I) = IT Ix I accepts 

if object u in lhe input membrane eventually evolves to the object yes in Lhe enu membrane. In this 

proorwe consider the language T' that is the set or words 11°- l"I) where in the membrane system lflxl the 

object o docs not evolve lo the object no in the nu.> membrane, in any computation. Via Lemma 2.13, this 

language is well-defined, i.e. can defined in terms ofo and i:cl. Also, Turing machine 7 from Lemma 5.2 

(that solves reachability) can be modified [24, 56] Lo give 7' (that solves unreachability) that accepts the 

language T'. That is, 7' accepts if no object with the desired, and easy to check, property can be evolved 

by rule applications. 

In Lemma 5.2 \Ve defined the function T E FAC0
, that maps from { 0, 1} * to the set of tuples of unary 

words. Recall that T(x) maps to a list that contains a unary string 1 (o,l~:I) for each o in e(x). We novi 

prove that T is a conjunctive reduction from L to T'. 

Assume x E L, this implies that no object in ITl:r.i \Vith input e(x) eventually evolves to no in the 

env membrane. Hence x EL implies that Vw E T(x), w ET'. 

Assume x r/:. L, this implies that at least one object in the initial configuration of IT l:rl (e(:r)) eventu­

ally evolves a no object in the en·v membrane in each computation of Illxl. Hence x ~ L implies that 

:Jw E T(x) such that w t/c T'. D 

Lemma 6.2. FAC~ 1 (tallyNL) i;;;; (FAC0
, FAC0 )-uniform-PMCA}vt0 

r1. .• for acknmvledger and recogniser :., 1 

membranes systems. 

Proof: 

Let L E FAC~ 1 (tallyNL). That is, there exists a unary language T ~ {1}* that is recognised by non­

detenninistic logspace Turing machine 7. and a function r E FAC0 that maps :r E {O, 1}* to a unary 

word such that r(x) E Tiff x E L. Let q(lxl) =max( {lr(w)I I w E {O, 1 }''"I}), that is, the largest word 

produced by r on any input oflength Ix!. Note that q(l,rl) is computable by f since r E FAC0
. 

We present an FAC0 unifonn polynomial-time .A.Jvt0 
r1 membrane family II that recognises L. The 

family is composed of two fonctions: f: { 1 }* ---+ II. and e that maps each binary word to a multiset of 

objects from the appropriate member of II. 

Each member ITl:r.i = f(1lxl) of II has one single membrane, env, that is both the environment and 

the input membrane. On input 1 lxl the function f produces one configuration graph CTu for machine T 
(that accepts T) on each input 111

, 1 ::: u::: q(l:rl), and one conliguration graph C,v,u for machine 1Vr 

(that accepts Lhe compliment of'T) on each input l'", 1 S v. S r1(l:r:i). (Note that this is a generalization 

of the technique used in the proor of Lemma 4.3.) 

Each of the 2q(I xi) configuration graphs are modified to give a set of rnles and objects of a single 

membrane system lilxl using the same technique as used in the proof of Lemma 4.3. In summary, the 

vertices of the configuration graphs become objects in IIlxl and the edges in the b'Iaph become type (a) 

rules. There is a rule mapping the object encoding the accepting configuration of7 to yes and rule map­

ping object encoding the accepting configuration of JVT to no. Both T and 1\h· are logspace machines 

and so their configuration graphs are of polynomial size and so the membrane system is of polynomial 

size. It is relatively straightfonvard to verify that f E FAC0
. 

The input encoder e(x) simulates r(x) to find l", then outputs two objects c;,·u and Cj,u vvhich encode 

the vertex of the configuration graph corresponding to the initial configurations of Turing machines T 
and .J.Vr respectively on input ru = r(x). Since r E FAC0 it is not difficult to sec that e E FAC0

. 
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We now show that the membrane system II1"1 on input e(x) accepts iLr EL and otherwise rejects. 

Suppose :r; E L. This implies that Lhe word r(:r) = 1" is in the Lally seL T and so at leasl one 

computation of T accepts l". It also implies that there is no computation of Nr that accepts on input l". 

The input membrane or II Ix I conLains e(:1:) which includes r·i,u encoding the con figuration graph venex 

that represents the initial configuration of Turing machine Ton input in. In the proof of Lemma 4.3 \Ve 

show how lilxl has the property that there is a sequence of rnles from the input object c;,u to the yes 

object and so 111,,,1 ( c ( :r)) will accept. Likewise there is no path from Cj,u to no. 

Suppose a ~ L. This implies that the word r(u) = li is not in the tally set T and that therefore 

there is no accepting configmation of Ton input 1 u, however, there is at least one accepting computation 

of NT on the same input. In the proof of Lemma 4.3 we show how the construction of II,, is such that 

there is a sequence of rnlcs from the input object c.i,u to the no object and so IIn(e(x)) will reject. 

Likewise there is no path from Ci,u to yes. 

Therefore the pair of functions .f and e provide a uniform family of polynomial time AJ\;(~d mem-

brane systems that accept any language in FAC~~ 1 (tallyNL). D 

7. Open problems 

The power of recogniser membrane systems. Tn Sections 4 and 5 or this paper we characterise Lhe 

power of acknowledger membrane systems (Definition 2.9), which are a generalisation of recogniser 

membrane sysLems. Jn Section 6 we give upper and lower bounds on the power or the more restricted 

recof:,rniser;, 1 membrane systems (Definition 2. 8), which are closer in pm.ver to standard recogniser mem­

brane systems. We also give upper bounds on the power of uniform and semi-uniform recogniser mem­

brane systems (Definition 2. 7), as \Yell as shmving that these classes are distinct. 

However, we have not characterised the power of AA1fl.d recogniser membrane systems (Defini­

tion 2.7) with the kind of tight uniformity conditions used in this paper. In such systems, in an accepting 

computation exactly one yes object, or in a rejecting computation exactly one no object, is produced 

at the final step. A consequence of this is that our techniques for showing lower bounds on the power 

of acknowledger and recogniser :;:: 1 systems (Sections 4, 5 and 6) in terms of non-deterministic Logspacc­

bounded Turing machines do not immediately can-y over to recogniser sysLems. 

As i·uture work, we suggest thaL recogniser systems could be characLerised via unamhiguons non­

determinisLic logspace-bounded Turing machines [6]. An unambiguous machine accepts an inpul i rand 

only if it has exactly one accepting computation. Perhaps the class of problems solved by semi-uniform 

families or recogniser A.1v1fl.r1 systems, i.e. FAC 0 -semi-uniform-PMC*A"°\.1~"' does not contain NL­

complete problems since the system cannot control how many yes objects it produces? Perhaps these 

semi-uniform recogniser systems can solve s-t connectivity for "mangrove" graphs, i.e. graphs where 

there is exactly one path between each pair ofve1tices which is contained in unambiguous logspace [6]? 

Formally, \Ve conjecture that FAC0 -semi-uniform-PMC* A.:W~d = RUSPACE(log n) [6]. We also conje­

cture that for the analogous uniform families of recogniser systems (FAC0
, FAC 0 )-uniform-PMCAJ\;f~J 

= FAC~ 1 (RUSPACE(Log n) ). If proven, our conjectures, taken together with previous results [6], would 

give a restatement of the relationship bet\veen the classes L, unambiguous logspace and NL in the mem­

brane computing model, as >vell as the other classes shown in Figure 1. 
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Tight uniformity conditions for other classes of membrane systems. In this paper and others [33, 

34, 35, 36, 37], we have put rorward the idea or exploring the power or membrane systems under tight 

unifonnity conditions. Others have since canicd on Lhis line or investigation [46]. Besides the main result 

in this paper (exhibiting systems where uniformity is a strictly weak.er notion than semi-uniformity) this 

has led Lo various other characterisations oi'the power oi' a variety or classes or membrane systems and a 

teasing apart or their power. A number or other varieties or membrane systems (e.g. [20, 40]) characterise 

the complexity class P, but where the lower-bound actually depends on the use or P uniformity. As 

ruture work, it would be interesting to investigate these, and other, systems under suitably tight notions 

of uniformity or semi-uniformity. 

Upper-bounding tallyNL. \Vhilc we know that tallyNL r;; NL it would be interesting to find other 

classes to upper bound tallyNL. It is known that if" a sparse language is complete !or NL then NL C 
DLOGTIME unilo1111-TC0 [13, 23]. Is it possible to show that tallyNL C DLOGTIME unilorm-TC0 ? 

Classes reducible total lyN L. \Ve conjecture that FAC~:, (tal lyN L) is strictly contained in FAC~tt (tal lyN L). 

Giving an exact characterisation of recogniser _:, .. 1 membrane systems studied in Section 6 may provide 

some insights into this. We also conjecture that FAC~jtt(tallyNL) ¥- FAC~ 11 . (tallyNL). A lead to solve 

this may come from Ko [26] ·who showed that P ctt (ta I ly) !- P dtt (ta I ly). 
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