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Uniformization Problems and the Cofinality
of the Infinite Symmetric Group

JAMES D. SHARP and SIMON THOMAS

Abstract Assuming Martin’s Axiom, we compute the value of the cofinality
of the symmetric group on the natural numbers. We also show that Martin’s
Axiom does not decide the value of the covering number of a related Mycielski
ideal.

1 Introduction Suppose thatG is a group that is not finitely generated. ThenG
can be expressed as the union of a chain of proper subgroups. The cofinality ofG,
written c(G), is defined to be the least cardinalλ such thatG can be expressed as
the union of a chain ofλ proper subgroups. Ifκ is an infinite cardinal, thenSym(κ)

denotes the group of all permutations of the setκ = {α | α < κ}. The following result
was proved in Macpherson and Neumann [5].

Theorem 1.1 If κ is an infinite cardinal, then c(Sym(κ)) > κ.

This raises the question of computing the exact value ofc(Sym(κ)). In this pa-
per, we shall study the possibilities for the value ofc(Sym(ω)). Of course, this ques-
tion is only interesting if the Continuum Hypothesis is false.

Upon learning of Theorem 1.1, Mekler and Thomas independently pointed out
the following easy observation.

Theorem 1.2 Suppose that M � κω = κ > ω1. Let P = Fn(κ,2) be the partial
order of finite functions from κ to 2. Then MP � c(Sym(ω)) = ω1 < 2ω = κ.

Proof: Working insideM, expressκ = ∪
α<ω1

Xα as the union of an increasing chain
such that|Xα+1\Xα| = κ for eachα < ω1. From now on, we shall work inside
M[G] = MP. Let Gα = G ∩ Fn(Xα,2) and letSα = {π ∈ Sym(ω) | π ∈ M[Gα]}.
Then eachSα is a proper subgroup andSym(ω) = ∪

α<ω1
Sα. The result follows easily.

Clearly the above idea admits many variations. A second source of models of
set theory withc(Sym(ω)) < 2ω is provided by short scales.
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Definition 1.3 If f : ω → ω andg : ω → ω, then we definef <∗g iff there exists
n0 ∈ ω such thatf (n) < g(n) for all n ≥ n0.

Definition 1.4 If λ is a regular cardinal, thenS = { fα : ω → ω | α < λ} is aλ-scale
if:

(i) fα is a strictly increasing function for eachα < λ;
(ii) fα<∗ fβ wheneverα < β < λ;

(iii) for eachg : ω → ω, there existsα < λ such thatg<∗ fα.

Theorem 1.5 If a λ-scale exists, then c(Sym(ω)) ≤ λ.

Proof: Let { fα | α < λ} be aλ-scale. By passing to a suitable subsequence if nec-
essary, we can suppose thatfα ◦ fα<∗ fα+1 for all α < λ. Let L be the set of all limit
ordinalsδ such thatδ < λ. If δ ∈ L, define

Sδ = {π ∈ Sym(ω) | There existsα < δ such thatπ,π−1<∗ fα}.

Then eachSδ is a proper subgroup andSym(ω) = ∪
δ∈LSδ.

One of the main theorems in this paper is that it is also consistent that
c(Sym(ω)) = 2ω > ω1. In order to explain our approach to this result, it will be
helpful to sketch the proof of Theorem 1.1. First we need to introduce some nota-
tion. If G ≤ Sym(�) and	 ⊆ �, thenG{	} andG(	) denote respectively the set-
wise and pointwise stabilizers of	 in G. If λ is a (possibly finite) cardinal, then
[�]λ = {	 ⊆ � | |	| = λ}. The proof of Theorem 1.1 relies on the following result.

Lemma 1.6 [5] Let G ≤ Sym(κ). Suppose that there exists X ∈ [κ]κ such that G{X}
induces Sym(X) on X. Then there exists π ∈ Sym(κ) such that 〈G, π〉 = Sym(κ).

Proof Proof of Theorem 1.1: Suppose thatSym(κ) = ∪
α<λGα for someλ ≤ κ. Ex-

pressκ = ∪
α<λXα as the disjoint union ofλ sets such thatXα ∈ [κ]κ for eachα < λ.

Lemma 1.6 implies that for eachα < λ, there existsπα ∈ Sym(Xα) such thatg � Xα �=
πα for all g ∈ Gα. Defineπ ∈ Sym(κ) by π � Xα = πα for eachα < λ. Thenπ /∈ Gα

for all α < λ, which is a contradiction.

Wewould like to adapt this argument so as to reach the stronger conclusion that

c(Sym(ω)) = 2ω. Suppose then thatSym(ω) = ∪
α<λGα for someλ < 2ω. By Lemma

1.6, there exists a functionπ with domain [ω]ω × λ such thatπ(X, α) ∈ Sym(X) and
g � X �= π(X, α) for all g ∈ Gα. To reach a contradiction, it is enough to find an
elementπ ∈ Sym(ω) such that the set

{α < λ | There existsX ∈ [ω]ω such thatπ � X = π(X, α)}

is cofinal inλ. In order that such an elementπ might exist, it is necessary to exer-
cise some care in the choice of the elementsπ(X, α). For example, if eachπ(X, α)

consists of an infinite cycle which acts transitively onX, then it is obvious that no
suchπ exists. However, it is possible to choose eachπ(X, α) so that it contains no
infinite cycles. If we do this, there seems no obvious reason why such an elementπ

should not exist. Of course, we cannot hope to prove the existence of such an element
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in Z FC; and the main challenge is to discover which extra set-theoretic hypotheses
will suffice to produce such an element.

In order to gain insight into this problem, we shall also consider a purely com-
binatorial version.

Definition 1.7 The Mycielski idealB2 on P (ω) consists of the subsetsX ⊆ P (ω)

such that for everyA ∈ [ω]ω, P (A) �= {B ∩ A | B ∈ X}.
Arguing as in the proof of Theorem 1.1, it is easily seen thatB2 is aσ-ideal. The

covering number ofB2, writtencov(B2), is defined to be the least cardinalλ such that

P (ω) = ∪
α<λXα, where eachXα ∈ B2. The value ofcov(B2) is intimately connected

with the following set-theoretic hypothesis.

The Uniformization Principle (Uλ) Suppose thatπ : [ω]ω × λ → P (ω) satisfies
π(A, α) ∈ P (A) for all (A, α) ∈ dom π. Then there existsS ∈ P (ω) such that the
set

{α < λ | There existsA ∈ [ω]ω such thatS ∩ A = π(A, α)}
is cofinal inλ.

Proposition 1.8 cov(B2) = min{λ | Uλ is false }.
Proof: Suppose thatcov(B2) = λ. ExpressP (ω) = ∪

α<λXα as an increasing union,
where eachXα ∈ B2. Let π : [ω]ω × λ → P (ω) be a function such thatπ(A, α) ∈
P (A) andS ∩ A �= π(A, α) for all S ∈ Xα. Thenπ is a counterexample toUλ. Con-
versely, suppose thatπ is a counterexample toUλ. DefineR : [ω]ω → λ by

R(S) = sup{α < λ | There existsA ∈ [ω]ω such thatS ∩ A = π(A, α)}.

Let Xα = {S | R(S) ≤ α}. Then eachXα ∈ B2 for all α < λ andP (ω) = ∪
α<λXα.

In the statement of the following result,PFA is the Proper Forcing Axiom. (An
extremely clear account of this axiom can be found in Baumgartner [2].)

Theorem 1.9 [3] (PFA) cov(B2) = 2ω.

Proof: Suppose that the result is false. By Velickovic [10], PFA implies that 2ω =
ω2. Hence we can expressP (ω) = ∪

α<ω1
Xα, where eachXα ∈ B2. Let P denote the

Prikry-Silver notion of forcing. Thus each conditionp ∈ P is a function with values
0 and 1, defined on a co-infinite subset ofω. It is well known thatP is proper. If
S ∈ P (ω), thenχS denotes the characteristic function ofS. Foreachα < ω1, let Dα

consist of the conditionsp ∈ P which satisfy:

(1) there existsA ∈ [ dom p]ω such thatp � A �= χS � A for all S ∈ Xα.

Clearly eachDα is dense inP. By PFA, there exists a filterG ⊆ P such that
G ∩ Dα �= ∅ for all α < ω1. Let g = ∪G, and letS ∈ P (ω) satisfyχS = g. Then
S /∈ Xα for all α < ω1, which is a contradiction.

With a fairly substantial amount of effort, it is possible to modify the proof of
Theorem 1.9 so as to obtain the conclusion thatPFA also implies thatc(Sym(ω)) =
2ω. This raises the question of whether these results can be proved from the strictly
weaker hypothesis ofM A + ¬CH (Martin’s Axiom plus the negation of the
Continuum Hypothesis.) The answer is somewhat surprising.
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Theorem 1.10 ((M A)) c(Sym(ω)) = 2ω.

Theorem 1.11 [3] M A + ¬CH + cov(B2) = ω1 is consistent with Z FC.

Theorem 1.10 will be proved in Section 2. A slight strengthening of Theorem
1.11 will be proved in Section 4. Given the obvious similiarity between the two prob-
lems, it is initially puzzling whyM A +¬CH should settle one of them while leaving
the other undecided. We shall explain why this happens, by pointing out an important
difference between the two problems.

Definition 1.12 Let A ∈ [ω]ω and let{an | n < ω} be the increasing enumeration
of A.

(i) If π ∈ Sym(ω), thenπA ∈ Sym(A) is defined byπA(an) = aπ(n) for eachn <

ω.
(ii) If f : ω → 2 then f A : A → 2 is defined by f A(an) = f (n) for eachn < ω.

Suppose once again thatSym(ω) = ∪
α<λGα for someλ < 2ω. Let� ∈ [ω]ω be co-

infinite, and for eachα < λ chooseπα ∈ Sym(ω) such thatg � � �= π�
α for all g ∈ Gα.

If A ∈ [ω]ω is also co-infinite, then there existsϕ ∈ Sym(ω) such thatϕ[ A] = � and
ϕ � A is order-preserving. Thus there existsβ < λ such that for allβ ≤ α < λ, g �
A �= πA

α for all g ∈ Gα. We conclude that the following holds:

Corollary 1.13 There exists a set {πα | α < λ} ⊆ Sym(ω) and a function π with
domain [ω]ω × λ such that:

(i) π(A, α) ∈ Sym(A) andg � A �= π(A, α) for all g ∈ Gα;
(ii) for each co-infiniteA ∈ [ω]ω, there existsβ(A) < λ such thatπ(A, α) = πA

α

for all β(A) ≤ α < λ.

A major difference in our problems is the uniformity given by Corollary 1.13 (ii).
Wecan confirm that this is an essential point as follows. Consider the following set-
theoretic hypothesis.

The Weak Uniformization Principle (wUλ) Suppose thatπ : [ω]ω × λ → P (ω)

satisfiesπ(A, α) ∈ P (A) for all (A, α) ∈ domπ. Suppose further that there exists
{ fα : ω → 2 | α < λ} such that for each co-infiniteA ∈ [ω]ω, there existsβ(A) < λ

such thatχπ(A,α) � A = f A
α for all β(A) ≤ α < λ. Then there existsS ∈ P (ω) such

that the set

{α < λ | There existsA ∈ [ω]ω such thatS ∩ A = π(A, α)}
is cofinal inλ.

Theorem 1.14 ((M A)) For all λ < 2ω,wUλ holds.

This theorem will be proved in Section 2. It is perhaps interesting to mention
that we make use of permutation groups in the proof of Theorem 1.14. In fact, the
same idea forms the heart of the proofs of both Theorem 1.10 and Theorem 1.14.

Some readers may feel that the uniformity condition inwUλ is not the most nat-
ural one.

The Symmetric Uniformization Principle (sUλ) Suppose thatπ : [ω]ω × λ →
P (ω) satisfiesπ(A, α) ∈ P (A) for all (A, α) ∈ domπ. Suppose further that for each
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A, B ∈ [ω]ω, there exists a bijectionf : A → B such thatf [π(A, α)] = π(B, α) for
all α < λ. Then there existsS ∈ P (ω) such that the set

{α < λ | There existsA ∈ [ω]ω such thatS ∩ A = π(A, α)}

is cofinal inλ.

Theorem 1.15 M A + ¬CH + ¬sUω1 is consistent with Z FC.

This theorem will be proved in Section 4. The proof of Theorem 1.15 is quite
similar to that of Theorem 2.3 of Cichoń, Roskanowski, Steprans and We¸glorz [3].
(Our proof was found independently. We learned of [3] after completing an earlier
version of this paper.) However, there are some differences in our approach. The
point of the proof is to gradually adjoin a difficult uniformization problem. This cor-
responds to a universal statement, and hence there is the possibility that later stages
of our forcing construction might destroy our earlier work. To avoid this difficulty, in
Section 3 we find an existential reformulation of the problem by considering difficult
uniformization problems in models ofPFA. Finally the proof in Section 4 has been
written in the form of anω2-Baire forcing over a model ofPFA. This allows us to
avoid some of the notational complexities of an iterated forcing construction, and to
present the combinatorial heart of the proof in an uncluttered fashion. It also allows
us to point out an easy but striking “-like” argument which is useful in this kind of
problem.

Our notation mainly follows that of Kunen [4]. Thus if P is a notion of forcing
and p, q ∈ P, thenq ≤ p means thatq is a strengthening ofp. If M is the ground
model, then we often denote the generic extension byMP if we do not wish to specify
a particular generic filterG ⊆ P. If we want to emphasize that the termt is to be
interpreted in the modelN, then we writetN ; for example,ωN

2 or SymN (ω). We shall
refer to the following internal forcing axioms.

FAκ(P) If D is a family of dense subsets ofP with |D| ≤ κ,
then there exists a filterG ⊆ P
such thatG ∩ D �= ∅ for everyD ∈ D .

FA(P) FAκ(P) for all κ < 2ω.

M Aκ FAκ(P) for all c.c.c.P.

M A M Aκ for all κ < 2ω.

PFA FAω1(P) for all properP.

If A = {ai | i < λ} is a set with the given enumeration, then [A]n will sometimes be
identified with the set ofn-tuples〈ai1, . . . , ain〉 with i1 < · · · < in. If A andB are sets,
thenA B = { f | f : A → B}.

2 The Cofinality of the Infinite Symmetric Group In this section, we will prove
the following result.

Theorem 2.1 (M Aκ) c(Sym(ω)) > κ.

Corollary 2.2 Let M � GCH, and suppose that λ ≤ θ are regular uncountable
cardinals in M. Then there exists a c.c.c. poset P such that MP � c(Sym(ω)) = λ ≤
θ = 2ω.
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Proof: Let Mα, α ≤ λ, be an iterated finite support c.c.c. construction such that
M0 = M andMα � M A + 2ω = θ for all 0 < α < λ. ThenMλ � M Aκ for all κ < λ.
HenceMλ � c(Sym(ω)) ≥ λ. SinceSymMλ (ω) = ∪

α<λ SymMα (ω), it follows that
Mλ � c(Sym(ω)) = λ.

Definition 2.3 Let g ∈ ωω be a strictly increasing function.

(a) Pg =
∏

n<ω
Sym(Fn), whereF0 = g(0) andFn = g(n)\g(n − 1) for all n ≥ 1.

(b) Defineg0, g1 ∈ ωω by g0(n) = g(2n) andg1(n) = g(2n + 1). Then Qg =
〈Pg0, Pg1〉.

Lemma 2.4 (Z FC) Suppose that g ∈ωω is strictly increasing and that π ∈Sym(ω)

satisfies:

for all n < ω, if � ∈ g(n) then π(�), π−1(�) ∈ g(n + 1).

Then π ∈ Qg.

Proof: Let I0 = g0(0) = g(0)

In = g0(n)\g0(n − 1) = g(2n)\g(2n − 2) n ≥ 1.
J0 = g1(0) = g(1)

Jn = g1(n)\g1(n − 1) = g(2n + 1)\g(2n − 1) n ≥ 1.

Weshall construct by induction onn < ω asequence of finite permutationsϕ0 ⊆ ϕ1 ⊆
· · · ⊆ ϕn ⊆ · · · satisfying the following conditions:

(a) ϕ0 = ∅;

(b) ϕn+1 ∈
∏
i≤n

Sym(Ji) for n ≥ 0;

(c) π ◦ ϕn+1 � g0(n) ∈
∏
i≤n

Sym(Ii) for n ≥ 0.

Suppose inductively that we have constructedϕn for somen ≥ 0. If n = 0, let
Jn−1 = ∅.

Claim 2.5 For all � ∈ In ∩ Jn−1, π ◦ ϕn(�) ∈ In.

Proof: Wecan suppose thatn > 0. Let� ∈ In ∩ Jn−1. Thenϕn(�) ∈ Jn−1 = g(2n −
1)\g(2n − 3). By (2.4), π ◦ ϕn(�) ∈ g(2n) = g0(n). Sinceπ ◦ ϕn � g0(n − 1) ∈∏
i≤n−1

Sym(Ii) and� /∈ g0(n − 1), wemust have thatπ ◦ ϕn(�) ∈ g0(n)\g0(n − 1) =
In.

Thus we need only ensure thatϕn+1 � Jn ∈ Sym(Jn) satisfies:

for all � ∈ In ∩ Jn, π ◦ ϕn+1(�) ∈ In.

Define�n ∈ Sym(ω) by

�n(�) = ϕn(�), � ∈ domϕn

= �, � /∈ domϕn.

Let ψ = π ◦ �n. Thenψ[ ∪
i<nIi] = ∪

i<nIi. Define A = {� ∈ In | ψ(�) /∈ In} and
B = {� ∈ ω\In | ψ(�) ∈ In}. Clearly |A| = |B|, say A = {ai | 1 ≤ i ≤ t} and B =
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{bi | 1 ≤ i ≤ t}. Also, by Claim 2.5,ψ(�) = π(�) for all � ∈ A ∪ B. Let b ∈ B. Then
π(b) ∈ In and (2.4) implies thatb ∈ Jn. ThusB ⊆ Jn\In. Define

ϕn+1 � Jn =
∏

1≤i≤t

(ai bi) ∈ Sym(Jn).

Then it is easily checked thatϕn+1 satisfies our requirements.
Finally letϕ = ∪

n<ω ϕn. Thenϕ ∈
∏

n<ω
Sym(Jn) andπ ◦ ϕ ∈

∏
n<ω

Sym(In).

The proof of the following result is essentially just the well-known argument that
M Aκ implies that the dominating numberd∼ is greater thanκ.

Lemma 2.6 ((M Aκ)) Suppose that F ⊆ ωω and that |F | ≤ κ. Then there exists a
strictly increasing g ∈ ωω satisfying:

for all f ∈ F there exists m < ω such that for all m ≤ n < ω,

if � ∈ g(n) then f (�) ∈ g(n + 1).

Proof: Let PF be the set of all pairs〈p, F〉 such that:

(a) there existsn < ω such thatp : n → ω is strictly increasing;
(b) F ∈ [F ]<ω.

WeorderPF by setting〈p1, F1〉 ≤ 〈p0 F0〉 if and only if:

(c) p1 ⊇ p0 andF1 ⊇ F0;
(d) for all n ∈ dom p1\ dom p0 and f ∈ F0, if � ∈ p1(n − 1) then f (�) ∈ p1(n).

ClearlyPF is c.c.c. For eachf ∈ F , thesetD f = {〈p, F〉 | f ∈ F} is dense inPF . It
is also easy to see that for eachm < ω, the setEm = {〈p, F〉 | m ⊆ dom p} is dense
in PF . So the result follows by a simple application ofM Aκ.

From now on, we suppose thatc(Sym(ω)) = λ < κ+ and thatSym(ω) = ∪
i<λGi.

Definition 2.7 Let H ≤ Sym(ω) and� ∈ [ω]ω.

(a) H(�) is the subgroup ofSym(�) induced on� by H{�}.
(b) H� = {h� | h ∈ H}. (See Definition 1.12.)

Lemma 2.8 ((M Aκ)) There exists a strictly increasing g ∈ ωω such that
P�

g � Gi(�) for every co-infinite � ∈ [ω]ω and every i < λ.

Proof: Suppose not. Then for every strictly increasingg ∈ ωω and every co-infinite
� ∈ [ω]ω, there would exist ani < λ such thatP�

g ≤ Gi(�).
To see this letg ∈ ωω be strictly increasing and let� ∈ [ω]ω be co-infinite. By

assumption, there would exist a co-infinite�′ ∈ [ω]ω and ani < λ such thatP�′
g ≤

Gi(�
′). Then there would exist aσ ∈ Sym(ω) such thatσ� � was an order-preserving

bijection between� and�′. Wecould suppose thatσ ∈ Gi and this would imply that
P�

g ≤ Gi(�).
Now fix a co-infinite� ∈ [ω]ω. For eachi < λ, chooseπi ∈ Sym(ω) such that

π�
i /∈ Gi(�). Let 	 = 〈πi | i < λ〉. Applying Lemma 2.6 to	, we obtain a strictly

increasingg ∈ ωω such that:

for all π ∈ 	 there existsm < ω such that for allm ≤ n < ω,
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if � ∈ g(n) thenπ(�), π−1(�) ∈ g(n + 1).

For eacht < ω, definegt ∈ ωω by gt(n) = g(n + t). By Lemma 2.4, for eachπ ∈ 	

there existst < ω such thatπ ∈ Qgt . The first paragraph implies that for eacht < ω

there existsi < λ such thatQ�
gt

≤ Gi(�). By Theorem 1.1,c f (λ) > ω. Hence there
existsi < λ such thatQ�

gt
≤ Gi(�) for all t < ω. But thenπ�

i ∈ Gi(�), which is a
contradiction.

The above argument actually yields the following slightly stronger result.

Lemma 2.9 ((M Aκ)) There exists a strictly increasing g ∈ ωω and a subgroup 	 ≤
Pg such that

(a) |	| = λ;

(b) 	� � Gi(�) for every co-infinite � ∈ [ω]ω and every i < λ.

Fix such a functiong ∈ ωω and such a subgroup	 = 〈σi | i < λ〉 ≤ Pg. Let
T ⊆ [ω]<ω be a complete binary tree, with ordering≺, which satisfies the following
conditions:

(i) The elements ofT are pairwise disjoint and∪T = ω.

(ii) If a, b ∈ T anda ≺ b, then max(a) < min(b).

(iii) If a ∈ Levn(T ), thenth level ofT , thena is a set ofg(n)− g(n −1) consecutive
natural numbers.

(If n=0, then we set g(n-1) = 0.)

If η is a branch ofT , thenη(n) = η ∩ Levn(T ).

Definition 2.10 A permutation� ∈ Sym(ω) is level preserving iff for eachn < ω

anda ∈ Levn(T ), �[a] ∈ Levn(T ) and� � a is order-preserving.

Definition 2.11 Let B = {ηi | i < λ} be a set of branches ofT . Then LP(B ) is
the group of all level-preserving permutations� such that there exists a permutation
ϕ ∈ Sym(λ) such that:

for all i < λ, there existsm < ω such that

�[ηi(n)] = ηϕ(i)(n) for all m ≤ n < ω.

ψB : LP(B ) → Sym(λ) denotes the associated homorphism such thatψB (�) = ϕ.

Lemma 2.12 ((M Aκ)) There exists a set B = {ηi | i < λ} of branches of T and a
permutation � ∈ Sym(ω) such that the following conditions hold:

(i) The homomorphism ψB : LP(B ) → Sym(λ) is surjective.

(ii) For each i < λ, let ∪ ηi = Bi = {bi
� | � < ω}. Then for each i < λ, there exists

t < ω such that �(bi
�) = σ

Bi
i (bi

�) for all t ≤ � < ω.

Before proving Lemma 2.12, we shall first show how to complete the proof of
Theorem 2.1.

Proof Proof of Theorem 2.1: By Theorem 1.1, there existsi < λ such that

ψB � Gi ∩ LP(B ) → Sym(λ)
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is surjective. We may also suppose that� ∈ Gi and thatGi contains the countable
subgroup Fin(ω) of all finite permutations. Letj < λ be arbitrary. Then there exists
� j ∈ Gi ∩ LP(B ) andm < ω such that� j[η0(n)] = η j(n) for all m ≤ n < ω. Let
� j = �−1

j ◦ � ◦ � j ∈ Gi. Then there existst < ω such that� j(b0
�) = σ

B0
j (b0

�) for
all t ≤ � < ω. Adjusting� j by an element of Fin(ω) if necessary, it follows that
σ

B0
j ∈ Gi(B0). But then	B0 ≤ Gi(B0), which is a contradiction.

Wereturn to the proof of Lemma 2.12. The following result was proved in Sec-
tion 3 of Shelah and Thomas [7]. (For the rest of this section, [B]n will be identified
with the set ofn-tuples〈ηi1, . . . , ηin〉 such thati1 < · · · < in.)

Lemma 2.13 ((M Aκ)) Let B = {ηi | i < λ} be a set of branches of T. Suppose
that there exists a set of functions {dn | dn : [B]n → ω} which satisfies the following
condition: If 〈τ1, . . . , τn〉, 〈θ1, . . . , θn〉 ∈ [B]n and dn(τ1, . . . , τn) = dn(θ1, . . . , θn),
then there exists k < ω such that:

(a) τi(k − 1) = θi(k − 1)for 1 ≤ i ≤ n;
(b) τi(k − 1) �= τ j(k − 1) for 1 ≤ i < j ≤ n;
(c) if τi �= θi, then τi(k) �= θi(k) for 1 ≤ i ≤ n.

Then ψB : LP(B ) → Sym(λ) is surjective.

Now we letPg = ∏
n<ω Sym(Fn).

Lemma 2.14 ((M Aκ)) There exists a set B = {ηi | i < λ} of branches of T,
equipped with a set of functions {dn | dn : [B]n → ω} satisfying the conditions of
Lemma 2.13 and a function H : B → ω satisfying

if i, j < λ and n ≥ max{H(ηi), H(η j)}, then ηi(n) = η j(n) implies
that σi � Fn = σ j � Fn.

Proof: Let P be the partial ordering consisting of elements of the formp =
〈 f, h, 〈dn | n < ω〉〉 satisfying the following conditions:

(1) There existsX ∈ [λ]<ω andm ∈ ω such that

(a) dom( f ) = X × m;

(b) h : X → ω;

(c) dn : [ X]n → ω.

(In particular,dn = ∅ if |X| < n.)
(2) For (α, n) ∈ dom f, fα(n) = f (α, n) ∈ Levn(T ) and fα is a branch of

∪
n<m Levn(T ).

(3) If α, β ∈ X are distinct, thenfα �= fβ.
(4) If α, β ∈ X and max{h(α), h(β)} ≤ n < m, then fα(n) = fβ(n) implies that

σα � Fn = σβ � Fn.
(5) If 〈α1, . . . , αn〉, 〈β1, . . . , βn〉 ∈ [ X]n and dn(α1, . . . , αn) = dn(β1, . . . , βn),

then there existsk ∈ m such that:

(a) fαi (k − 1) = fβi (k − 1) for 1 ≤ i ≤ n;

(b) fαi (k − 1) �= fα j (k − 1) for 1 ≤ i < j ≤ n;

(c) If αi �= βi, then fαi (k) �= fβi (k) for 1 ≤ i ≤ n.
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The ordering onP is the obvious one. A straightforward�-system argument shows
thatP is c.c.c., and the result follows by an easy application ofM Aκ.

Proof Proof of Lemma 2.12: If B = {ηi | i < λ} is the set of branches given by
Lemma 2.14, then the homorphismψB : LP(B ) → Sym(λ) is surjective. Hence it
is enough to find an element� ∈ Sym(ω) which satisfies the second condition of
Lemma 2.12.

Let i < λ andn < ω; and letFn = {ar | 1 ≤ r ≤ |Fn|} andηi(n) = {br|1 ≤ r ≤
|Fn|} be the increasing enumerations. Defineσ̃i,n ∈ Sym(ηi(n)) by σ̃i,n(br) = bs iff
σi(ar) = as. Now define� ∈ Sym(ω) as follows. Let� ∈ ω. If there existsi < λ and
n < ω such thatH(ηi) ≤ n and� ∈ ηi(n), then�(�) = σ̃i,n(�). Otherwise,�(�) = �.
It is easily seen that� satisfies our requirements.

Theorem 2.15 ((M Aκ)) For all λ ≤ κ, wUλ holds.

Proof: As the proof is very similar to that of Theorem 2.1, we shall just sketch the
main points of the argument. Clearly we can restrict our attention to the case whenλ is
regular and uncountable. Suppose thatπ : [ω]ω × λ → P (ω) satisfies the hypotheses
of wUλ with respect to{ fi | i < λ} ⊆ ω2. Let T = 〈ω, ≺〉 be a complete binary tree
with the property thata ≺ b impliesa < b. Then� ∈ Sym(ω) is level-preserving iff

� ∈
∏

n<ω Sym(Levn(T )). If B is a branch ofT , thenB(n) denotes the unique element
of B ∩ Levn(T ).

Arguing as above, there exists a setB = {Bi | i < λ} of branches ofT satisfying
the following conditions:

(a) the homomorphismψB : LP(B ) → Sym(λ) is surjective;
(b) there exists a subsetS ∈ [ω]ω such that wheneveri < λ there existsm < ω such

thatχS(Bi(n)) = f Bi
i (Bi(n)) for all m ≤ n < ω.

There existsϕ ∈ Sym(λ) andX ∈ [λ]λ such thatχπ(Bi,ϕ(i)) � Bi = f Bi
ϕ(i) for all i ∈ X.

Let � ∈ LP(B ) satisfyψB (�) = ϕ, and letT = �−1[S]. Then for eachi ∈ X, there
existsmi < ω such thatχT (Bi(n)) = f Bi

ϕ(i)(Bi(n)) for all mi ≤ n < ω. There exists

Y ∈ [ X]λ, m < ω and{B(�) | � ≤ m} such that:

(1) mi = m for all i ∈ Y ;
(2) Bi(�) = B(�) for all i ∈ Y and� ≤ m;
(3) f Bi

ϕ(i)(B(�)) = f
B j

ϕ( j)(B(�)) for all i, j ∈ Y and� ≤ m.

Adjusting the finite setT ∩ {B(�) | � ≤ m} if necessary, we can suppose thatT ∩ Bi =
π(Bi, ϕ(i)) for all i ∈ Y . This completes the proof ofwUλ.

3 Difficult Uniformization Problems

Definition 3.1 {〈Aα, Bα〉 | α < θ} is auniformization problem if Aα ⊆ Bα ⊆ ω for
eachα < θ. If S ∈ P (ω), then I(S) = {α < θ | S ∩ Bα = Aα} is called thesolution
set of S.

The following result will be useful in Section 4.

Theorem 3.2 ((M A + SOC A)) If θ < 2ω and {〈Aα, Bα〉 | α < θ} is a uniformiza-
tion problem, then the following are equivalent.
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(1) For every S ∈ P (ω), I(S) is countable.
(2) There exists a function d : θ → ω such that if α < β < θ satisfy d(α) = d(β),

then Aα ∩ Bβ �= Aβ ∩ Bα.

HereSOC A is the following set-theoretic hypothesis, which was introduced in
Abraham, Rubin and Shelah [1].

The Semiopen Coloring Axiom If X is an uncountable set of reals and [X]2=
K0 � K1 is a partition withK0 open in the product topology, thenX contains an
uncountable subsetY such that [Y ]2 ⊆ Ki for somei ∈ {0,1}. (Y is said to be
i-homogeneous.)

In [1], it was shown thatM A + SOC A + 2ω = κ is consistent withZ FC for any
regularκ > ω1. And in [8], Todorcevic proved thatSOC A is a consequence ofPFA.

We now begin the proof of Theorem 3.2. Letθ < 2ω and letU = {〈Aα, Bα〉 |
α < θ} be a uniformization problem.

Lemma 3.3 ((Z FC)) Clause (2) of Theorem 3.2 implies Clause (1).

Proof: Let S ∈ P (ω). If α, β ∈ I(S) are distinct, then

Aα ∩ Bβ = S ∩ Bα ∩ Bβ = Aβ ∩ Bα and sod(α) �= d(β).

Thus|I(S)| ≤ ω.

Lemma 3.4 ((M A + SOC A)) Clause (1) of Theorem 3.2 implies Clause (2).

Proof: Weshall require the following claim:

Claim 3.5 Suppose that X ⊆ U is an uncountable subset. Define a partition [ X]2 =
K0 � K1 by {〈Aα, Bα〉, 〈Aβ, Bβ〉} ∈ K0 iff Aα ∩ Bβ �= Aβ ∩ Bα. Then there exists an
uncountable 0-homogeneous subset Y ⊆ X.

Proof: Clearly K0 is open in [X]2. Thus if the claim fails, then there exists an un-
countable 1-homogeneous subsetZ ⊆ X. Let I = {α < θ | 〈Aα, Bα〉 ∈ Z} and let

S = ∪
α∈I Aα. Weclaim thatS ∩ Bα = Aα for all α ∈ I, which is a contradiction. Clearly

Aα ⊆ S ∩ Bα. For the converse, suppose thatn ∈ S ∩ Bα. Then there existsβ ∈ I such
thatn ∈ Aβ ∩ Bα = Aα ∩ Bβ, and son ∈ Aα.

Let D consist of all finite functiond : θ → ω such that ifα, β are distinct ele-
ments ofdom d with d(α) = d(β), then Aα ∩ Bβ �= Aβ ∩ Bα. By M A, it is enough
to show thatD is c.c.c. Suppose that{di | i < ω1} is an antichain. By a�-system
argument and a counting argument, we can assume that the following hold:

(a) There exists an integer� such thatdom di = {αi
1, . . . , α

i
�} and a functionf :

{1, . . . , �} → ω such thatdi(α
i
k) = f (k) for all i < ω1 and 1≤ k ≤ �.

(b) The setsdom di form a �-system with rootR, and the elements ofR lie in
corresponding positions in each increasing enumerationαi

1 < · · · < αi
�.

(c) There exists an integern such that if 1≤ j < k ≤ � and f ( j) = f (k), then

Aαi
j
∩ Bαi

k
∩ n �= Aαi

k
∩ Bαi

j
∩ n

for all i < ω1. Furthermore, for each such pair, there are fixed subsetss, t ⊆ n
such thatAαi

j
∩ Bαi

k
∩ n = s and Aαi

k
∩ Bαi

j
∩ n = t for all i < ω1.
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Applying Claim 3.5 toX0 = {〈Aαi
k
, Bαi

k
〉 | i < ω1} wherek is the least integer

such thatαi
k ∈ dom di\R, there exists an uncountableI1 ⊆ ω1 such that ifi, j are

distinct elements ofI1, then Aαi
k
∩ B

α
j
k
�= A

α
j
k
∩ Bαi

k
. Continuing in this manner, we

obtain an uncountableI ⊆ ω1 such that ifi, j are distinct elements ofI andαi
k �= α

j
k,

then Aαi
k
∩ B

α
j
k
�= A

α
j
k
∩ Bαi

k
. But thendi ∪ d j ∈ D, which is a contradiction.

We end this section by showing that Theorem 3.2 cannot be proved fromM A
alone. We shall make use of the following result, which was pointed out to us by the
referee.

Theorem 3.6 ((M A + ¬CH)) Suppose that there exists an uncountable set X of
reals and a partition [ X]2 = K0 � K1 such that:

(i) K0 and K1 are both open; and
(ii) X contains no uncountable homogeneous subsets.

Then there exists a uniformization problem {〈Aα, Bα〉 | α < ω1} such that:

(a) for every S ∈ P (ω), I(S) is countable; and
(b) for every function d : ω1 → ω, there exist α < β < ω1 such that d(α) = d(β)

and Aα ∩ Bβ = Aβ ∩ Bα.

Proof: Wecan suppose thatX is a subset ofω2 of cardinalityω1; sayX = {rα | α <

ω1}. For eacht ∈ <ω2, let Ut = {r ∈ ω2 | t ⊂ r} be the corresponding basic open
subset ofω2. By passing to a suitable subset if necessary, we can suppose that the
following condition holds.

(7) If α < ω1, t ∈ <ω2 andrα ∈ Ut,

then there exist uncountably manyβ such thatrβ ∈ Ut.

For eachα < ω1, let Bα = {t ∈ <ω2 | t ⊂ rα}. Then{Bα | α < ω1} is an almost

disjoint family of subsets of<ω2. LetP =
∏

α<ω1
Fn(Bα,2) be the finite support prod-

uct. For eachp ∈ P, supt(p) will denote the support ofp. If p ∈ P, then we shall
write p = 〈pα〉α<ω1, where pα ∈ Fn(Bα,2). Let Q consist of all conditionsp ∈ P
which satisfy the following property.

If α, β ∈ supt(p) are distinct, thenBα ∩ Bβ ⊆ dom pα∩ dom pβ;
and pα � Bα ∩ Bβ = pβ � Bα ∩ Bβ iff {rα, rβ} ∈ K0.

Then it is easily checked thatQ is c.c.c. Using (7), we see that for eachγ < ω1, the
set Dγ = {p ∈ Q | There existsγ < δ < ω1 such thatδ ∈ supt(p)} is dense inQ.
Also notice that ifp ∈ Q, α ∈ supt(p) andt ∈ Bα, then there existsq ≤ p such that
t ∈ domqα. Applying M A, let G be a suitably generic filter onQ. Let

I = {α < ω1 | There existsp ∈ G such thatα ∈ supt(p)}
and for eachα ∈ I, let

Aα = {t ∈ bα | There existsp ∈ G such thatpα(t) = 1}.
Then|I| = ω1; and if α, β ∈ I are distinct, thenAα ∩ Bβ = Aβ ∩ Bα iff {rα, rβ} ∈
K0. It follows easily that the uniformization problem{〈Aα, Bα〉 | α ∈ I} satisfies our
requirements.
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Thus to prove that Theorem 3.2 cannot be proved fromM A, it isenough to show
that M A + ¬CH + ¬wSOC A is consistent, wherewSOC A is the following weak
version ofSOC A.

wSOCA If X is an uncountable set of reals and [X]2 = K0 � K1 is a partition with
both K0 andK1 open in the product topology, thenX contains an uncountable homo-
geneous subset.

It is easily seen thatwSOC A implies that if f ⊆ R × R is an uncountable func-
tion, then there exists an uncountable monotonic functiong ⊆ f (for example, see
Theorem 1.2 of [1]). Abraham and Shelah have proved that it is consistent with
M A + ¬CH that there exists an uncountablef ⊆ R × R which does not include any
uncountable monotonic function (see Section 8 of [1]). Hence Theorem 3.2 is not a
consequence ofM A.

4 The Symmetric Uniformization Principle In this section, we shall prove Theo-
rem 1.15. Following the example of Velickovic in [9] and[11], we shall accomplish
this by forcing with anω2-Baire posetQ over a model ofPFA. Recall thatQ is said
to beω2-Baire if the intersection of each family ofω1 dense open subsets ofQ is
dense. In this case,Q does not adjoin any newω1-sequences. Hence ifV � PFA,
thenVQ � M A + 2ω = ω2.

Theorem 4.1 Suppose that V � PFA. Then there exists an ω2-Baire poset Q such
that VQ � ¬sUω1.

For the rest of this section, we shall assumePFA. Let H(ω1) be the set of all
sets which are hereditarily of cardinality less thanω1. Let H(ω1) = ∪

α<ω2
Mα be a

smooth strictly increasing chain of transitive elementary submodels such that|Mα| =
ω1 for all α < ω2. (This chain is only introduced for the very crudest bookkeeping
purposes.) LetE ∈ P (ω) be the set of all even numbers, and let{Eα | α < ω1} be an
independent family of subsets ofE.

Definition 4.2 The posetR consists of all functionsp satisfying the following con-
ditions.

(a) There existsα < ω2 such thatdom p = ([ω]ω ∩ Mα) × ω1, and p(X, γ) ∈
P (X) for all (X, γ) ∈ dom p.

(b) For eachS ∈ P (ω), there exist only countably many(X, γ) ∈ dom p such that
S ∩ X = p(X, γ).

(c) For eachX ∈ [ω]ω ∩ Mα, there exists a bijectiong : E → X such thatg[ Eγ ] =
p(X, γ) for all γ < ω1.

R almost serves our requirements. However, in the course of our argument, we
shall need to show that a certain functionq is an element ofR. Conditions (a) and
(c) will be clear. By Theorem 3.2, Condition (b) is equivalent to the existence of a
functiond : dom q → ω such that if(X, γ), (Y, δ) ∈ dom q are distinct andd(X, γ) =
d(Y, δ), thenX ∩ q(Y, δ) �= Y ∩ q(X, γ). Weshall show thatd exists by proving that
the partial orderD of finite approximations to such a function is c.c.c. The next two
definitions are designed to prevent the growth of uncountable antichains inD.

Definition 4.3 Let p ∈ R. A dangerous sequence for p of width � ∈ ω consists of
a set{〈At

n, Bt
n〉1≤t≤� | n < ω} satisfying the following conditions:
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(a) If 〈At
n, Bt

n〉 = 〈As
m, Bs

m〉, then(t, n) = (s, m).
(b) For each 1≤ t ≤ � andn < ω, there exists(X, γ) ∈ dom p such thatBt

n = X
and At

n = p(X, γ).
(c) For eachn < m < ω, there exists 1≤ t ≤ � such thatAt

n ∩ Bt
m = At

m ∩ Bt
n.

Definition 4.4 The posetQ consists of all functionsp ∈ R such that the following
further condition is satisfied:

Suppose thatdom p = ([ω]ω ∩ Mα) × ω1, δ < α and that� = {〈At
n, Bt

n〉1≤t≤� |
n < ω} ∈ Mδ is a dangerous sequence forp. Suppose further that�∪{〈Ct, Dt〉1≤t≤�}
is a dangerous sequence forp such that〈Dt〉1≤t≤� /∈ Mδ. Then there exists a nonempty
P ⊆ {1, . . . , �} and a sequence of finite sets〈Ft〉t∈P such that for alln < ω, either:

(1) there existst ∈ {1, . . . , �}\P such thatAt
n ∩ Dt = Bt

n ∩ Ct; or
(2) there existst ∈ P such thatBt

n ∩ Dt ⊆ Ft.

ClearlyQ is σ-closed and hence proper. Our intention is that we will eventually
begin to deal with each dangerous sequence. But suppose thatp ∈ Q with dom p =
([ω]ω ∩ Mα) × ω1 and that� is a dangerous sequence forp. Then for eachβ < ω2,
there exists a subsequence�β ⊆ � such that�β /∈ Mβ.

In particular, this is true when|β\α| = ω1, and so there still appears to be plenty
of scope for the slow growth of an uncountable dangerous sequence. An amusing
argument, which perhaps deserves to be calledThe Empty Box, will eliminate this
unpleasant possibility.

Theorem 4.1 is an immediate consequence of the following two results.

Lemma 4.5 For each α < ω2, the set

Dα = {p ∈ Q | dom p = ([ω]ω ∩ Mβ) × ω1 for some α ≤ β < ω2}
is dense in Q.

Lemma 4.6 Q is ω2-Baire.

Proof Proof of Lemma 4.5: Suppose thatp ∈ Q and thatdom p = ([ω]ω ∩ Mγ ) ×
ω1 for someγ < α. Let F = ([ω]ω ∩ Mα)\([ω]ω ∩ Mγ ). For eachB ∈ F , let
PB be the set of all finite injective functionsp : E → B, ordered by reverse inclu-

sion. LetP =
∏

B∈F PB be the finite support product. For eachq = 〈qB〉B∈F ∈ P, let
S(q) = {B | qB �= ∅}. LetC consist of all conditions〈q, d〉 which satisfy the follow-
ing conditions:

(1) q = 〈qB〉B∈F ∈ P.
(2) There exists a finite subsetX ⊂ ω1 such thatd : S(q) × X → ω.
(3) Whenever(A, i), (B, j) ∈ dom d are distinct elements withd(A, i) = d(B, j),

then there existsn ∈ ranqA∩ ranqB such that

(qA)−1(n) ∈ Ei iff (qB)−1(n) /∈ E j.

It is routine to check thatC is c.c.c. For eachC ∈ P (ω) ∩ Mα and each(B, i) ∈
F × ω1, let DC

(B,i) consist of those〈q, d〉 ∈ C such that there existsn ∈ ranqB with

(qB)−1(n) ∈ Ei iff n /∈ C. Clearly eachDC
(B,i) is dense inC.
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Now let � = {〈At
n, Bt

n〉1≤t≤� | n < ω} ∈ Mα be a dangerous sequence forp.
Suppose that:

(i) P ⊆ {1, . . . , �} is a nonempty subset;
(ii) for eacht ∈ {1, . . . , �}\P, 〈Ct, Dt〉 = 〈p(X, γ), X〉 for some(X, γ) ∈ dom p;
(iii) 〈Dt, it〉 ∈ F × ω1 for t ∈ P are distinct;
(iv) theredoes not exist a sequence〈Ft〉t∈P of finite sets such that for alln < ω,

either:

(a) there existst ∈ {1, . . . , �}\P such thatAt
n ∩ Dt = Bt

n ∩ Ct; or

(b) there existst ∈ P such thatBt
n ∩ Dt ⊆ Ft.

Let D(�, P, . . .) consist of those〈q, d〉 ∈ C such that there existsn < ω satis-
fying:

(α) At
n ∩ Dt �= Bt

n ∩ Ct for all t ∈ {1, . . . , �}\P;
(β) for all t ∈ P, there existsmt ∈ ranqDt ∩ Bt

n

such that(qDt
)−1(mt) ∈ Eit iff mt /∈ At

n.
It is easily checked that eachD(�, P, . . . ) is dense inC.
By PFA, there exists a filterG ⊆ C which intersects each of theω1 dense sets

mentioned above. Define a function

p ⊆ p+ : ([ω]ω ∩ Mα) × ω1 → P (ω)

by specifying for each(B, i) ∈ F × ω1 that n ∈ p+(B, i) iff there exists〈q, d〉 ∈
G andm ∈ Ei such thatqB(m) = n. Also define a functionD : F × ω1 → ω by
D(B, i) = s iff there exists〈q, d〉 ∈ G such thatd(B, i) = s. Using Lemma 3.3, we
see thatp+ ∈ R. Suppose thatδ < α and that� = {〈At

n, Bt
n〉1≤t≤� | n < ω} ∈ Mδ is a

dangerous sequence forp+. If (B, i) ∈ F × ω1, then the dense sets of the formDC
(B,i)

ensure thatp+(B, i) /∈ Mα. Hence� is already a dangerous sequence forp. Suppose
that�∪ {〈Ct, Dt〉1≤t≤�} is a dangerous sequence forp+ such that〈Dt〉1≤t≤� /∈ Mδ. If
〈Dt〉1≤t≤� ∈ Mγ , then (4.4) must hold sincep ∈ Q. On the other hand, if〈Dt〉1≤t≤� /∈
Mγ then the dense sets of the formD(�, P, . . .) ensure that (4.4) holds. Thusp+ ∈ Q.

Proof Proof of Lemma 4.6: Suppose thatDξ, ξ < ω1, are dense open subsets ofQ

and thatp ∈ Q. Wemust findq ≤ p such thatq ∈ ∩
ξ<ω1

Dξ. Until further notice, we

shall work withinVQ. Let G be a generic filter ofQ such thatVQ = V [G], and let
g = ∪G. Theng : [ω]ω × ω1 → P (ω); and for everyα < ωV

2 , gα = g � ([ω]ω ∩
Mα) × ω1 ∈ Q. Let D consist of all finite functionsd : [ω]ω × ω1 → ω such that if
(S, i), (T, j) ∈ dom d are distinct andd(S, i) = d(T, j), theng(S, i)∩ T �= g(T, j)∩
S.

Claim 4.7 D is c.c.c. in VQ.

Proof: Suppose not. Then, arguing as in the proof of Lemma 3.4, we see that there
exists a sequence{〈At

α, Bt
α〉1≤t≤� | α < ω1} for some� < ω satisfying the following

conditions.

(a) If 〈At
α, Bt

α〉 = 〈As
β, Bs

β〉, then(t, α) = (s, β).
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(b) For each 1≤ t ≤ � andα < ω1, there exists(X, γ) ∈ [ω]ω × ω1 such thatBt
α =

X and At
α = g(X, γ).

(c) For eachα < β < ω1, there exists 1≤ t ≤ � such thatAt
α ∩ Bt

β = At
β ∩ Bt

α.

Wesuppose that the sequence has been chosen so that� is minimal.
Suppose that there existsδ < ωV

2 and an uncountableI ⊆ ω1 such thatBt
α ∈ Mδ

for all 1 ≤ t ≤ � andα ∈ I. By Theorem 3.2 applied togδ ∈ Q, there exists a function
� ∈ V such that:

(1) � : ([ω]ω ∩ Mδ) × ω1 → ω;
(2) if (X, i), (Y, j) ∈ dom � are distinct and�(X, i) = �(Y, j), then

gδ(X, i) ∩ Y �= gδ(Y, j) ∩ X.

Define�∗ : I → �ω by �∗(α) = 〈�(Bt
α, γ t

α)〉1≤t≤� whereAt
α = gδ(Bt

α, γ t
α). Then

there exists an uncountableJ ⊆ I such that�∗(α) = �∗(β) for all α, β ∈ J. But
then if α, β ∈ J are distinct, we have thatAt

α ∩ Bt
β �= At

β ∩ Bt
α for all 1 ≤ t ≤ �,

which is a contradiction.
Thus ifδ < ωV

2 , then there exist only countably manyα < ω1 such thatBt
α ∈ Mδ

for all 1 ≤ t ≤ �. SinceQ is proper,c f (ωV
2 ) > ω. Hence we can suppose that for all

γ < ω1, there existsδ < ωV
2 such that{〈At

α, Bt
α〉1≤t≤� | α < γ} ∈ Mδ and〈Bt

γ〉1≤t≤� /∈
Mδ. Applying Definition 4.4, for eachω ≤ γ < ω1 there exists a nonempty subset
Pγ ⊆ {1, . . . , �} and a sequence of finite sets〈Ft

γ〉t∈Pγ
such that for allβ < γ either

(1) there existst ∈ {1, . . . , �}\Pγ such thatAt
β ∩ Bt

γ = Bt
β ∩ At

γ ; or

(2) there existst ∈ Pγ such thatBt
β ∩ Bt

γ ⊆ Ft
γ .

Wecan suppose that there is a fixed setP and a fixed sequence〈Ft〉t∈P such thatPγ =
P and〈Ft

γ〉t∈Pγ
= 〈Ft〉t∈P for all ω ≤ γ < ω1. We can also suppose that there exist

integersnt ∈ ω\Ft for t ∈ P such thatnt ∈ Bt
γ for all ω ≤ γ < ω1. But this means that

wheneverω ≤ β < γ < ω1, then there existst ∈ {1, . . . , �}\P such thatAt
β ∩ Bt

γ =
Bt

β ∩ At
γ . This contradicts the minimality of�.

In particular,Q ∗ D is proper. For the remainder of the proof, we shall work
insideV . For eachα < ω2, let hα : ω1 → ([ω]ω ∩ Mα) × ω1 be a bijection. For each
ξ, v < ω1 let Dξv consist of those conditions〈q, d〉 ∈ Q ∗ D which satisfy:

(1) q ∈ Dξ;

(2) if αξ is the least ordinal such thatq � ([ω]ω ∩ Mαξ
) × ω1 ∈ Dξ, thenhαξ

(v) ∈
dom d.

ClearlyDξv is dense inQ ∗ D. By PFA, there exists a filter〈p,∅〉 ∈ H ⊆ Q ∗ D such
that H ∩ Dξv �= ∅ for all ξ, v < ω1. For eachξ < ω1, there exists〈qξ,∅〉 ∈ H such
thatqξ ∈ Dξ andq′ /∈ Dξ for all qξ < q′ ∈ Q. Let q = ∪ξ<ω1qξ. We can suppose
that p ⊆ q. Thenq satisfies all of our requirements, except possibly Condition 4.2
(b). Define� : dom q → ω by

�(X, γ) = n iff there exists〈qξ, d〉 ∈ H such thatd(X, γ) = n.

Using Lemma 3.3,� witnesses the fact thatq satisfies Condition 4.2(b). Thusq ∈ Q.
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5 Concluding Remarks In the previous sections, we have shown that cov(B2) =
2ω is independent ofM A + ¬CH. It is straightforward to eliminate the use ofPFA
from both directions of this result.

Theorem 5.1 Let M � GCH, and suppose that κ > ω1 is a regular cardinal in M.

(a) There exists a c.c.c. poset Q such that MQ � M A + 2ω = κ + cov (B2) = 2ω.
(b) There exists a c.c.c. poset R such that MR � M A + 2ω = κ + cov (B2) = ω1.

Proof Sketch Proof:

(a) Let S,P denote Sacks forcing and Prikry-Silver forcing respectively. In [9],
Velickovic constructed a c.c.c. posetQ∗ such thatMQ∗ � M A + 2ω = κ + FA(S).
Velickovic pointed out in the Introduction of [9] that it is routine to modify his con-
struction so as to obtain a c.c.c. posetQ such thatMQ � M A + 2ω = κ + FA(P).
Arguing as in the proof of Theorem 1.9, we see thatQ satisfies our requirements.

(b) We perform an iterated finite support c.c.c. constructionMα, α ≤ κ, with M0 = M.
The odd stages of the construction are devoted to ensuring thatMκ � M A + 2ω = κ.
At even stages 2α = 2β + 2, we use the c.c.c. posetC from the proof of Lemma 4.5
to adjoin�2β+2 : ([ω]ω ∩ (M2β+2\M2β)) × ω1 → P (ω).

At limit stagesα of uncountable cofinality, we use the posetD from the proof of

Lemma 4.6 to adjoind : ∪
β<αdom �2β+2 → ω. An easy modification of the proof of

Claim 4.7 shows thatD is c.c.c. Finally� = ∪
β<κ�2β+2 is a counterexample tosUω1

and henceMκ � cov (B2) = ω1.

Putting together Theorem 1.10 and Theorem 1.11, we see that

cov (B2) < c(Sym(ω)) is consistent withZ FC.

Theorem 5.2 c(Sym(ω)) < cov (B2) is consistent with Z FC.

Proof: Let M � CH. Then there exists anω1-scaleS = { fα | α < ω1} ∈ M. Let P
be the countable support iteration of lengthω2 which adjoins a sequence ofω2 Prikry-
Silver reals iteratively. Then it is easily seen thatMP � cov (B2) = ω2. By Shelah [6]
V 4.3,S remains anω1-scale inMP. Thus Theorem 1.5 implies thatc(Sym(ω)) = ω1.
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