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I: Curves of genus zero and one

David E. Speyer

In tropical geometry, given a curve in a toric variety, one defines a corresponding

graph embedded in Euclidean space. We study the problem of reversing this

process for curves of genus zero and one. Our methods focus on describing curves

by parameterizations, not by their defining equations; we give parameterizations

by rational functions in the genus-zero case and by nonarchimedean elliptic

functions in the genus-one case. For genus-zero curves, those graphs which

can be lifted can be characterized in a completely combinatorial manner. For

genus-one curves, we show that certain conditions identified by Mikhalkin are

sufficient and we also identify a new necessary condition.
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In the past ten years, a group of mathematicians, led by Grigory Mikhalkin,

have pioneered a new method for studying curves in toric varieties. According to

this perspective, one considers curves defined over a field with a nonarchimedean

valuation. Using this valuation and an embedding of a curve C into an (algebraic)

torus, one constructs a graph embedded in a real vector space. This graph is known

as the tropicalization of the curve. From the tropicalization of C , one tries to read off

information about the degree and genus of the original curve C , and its intersections
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with other subvarieties of the torus. In this introduction, we will write C for a curve

embedded in a torus T ∼= (K∗)n and we will write Ŵ ⊂ Rn for the tropicalization

of C .

In order to use these tropical methods, we need to know which graphs are

tropicalizations of curves. We will refer to a graph which actually is the tropi-

calization of a curve as a tropical curve. There are certain basic combinatorial

conditions which hold for any tropical curve. The first, the zero-tension condition,

is a description of the possible local structures of a tropical curve around a given

vertex (see the beginning of Section 3). We can assign to C a multiset of lattice

vectors, which we will call the degree of C , from which we can determine the

homology class represented by the closure of C when this closure is taken in a

suitable toric compactification of T . The second combinatorial condition is that

the directions of the unbounded rays of Ŵ are given by the degree of C (Section 1).

Thirdly, we can show that, modulo some technical conditions, the genus of C is

greater than or equal to the first Betti number of Ŵ (see Theorem 3.1). We will

define a zero-tension curve of genus g and degree δ to be a graph which has first

Betti number g and obeys the obvious conditions to be the tropicalization of a

degree-δ curve.

We attack the reverse problem: given a zero-tension curve of genus g and

degree δ, when does it come from an actual curve of genus g and degree δ? The

main contribution of this paper is to show that methods of nonarchimedean analysis

can be used to construct algebraic curves with a given tropicalization. In this

paper, we will consider this question for genus-zero and genus-one curves. In the

sequel, we will describe the corresponding results for higher-genus curves, where

we will need to use Mumford’s uniformization results. A second achievement of

this paper is to describe a condition — that of being well spaced — which permits us

to conclude that some “obstructed” curves of genus one can nonetheless be lifted.

I want to state clearly that there is a major difficulty in directly using these results

for enumerative purposes involving curves of positive genus. If C is a curve of

genus g, than the tropicalization of C is a zero-tension curve with first Betti number

less than or equal to g. Therefore, if we want to count genus-g curves obeying some

conditions, we should look at all zero-tension curves of genus less than or equal to g,

and determine which of them lift to actual genus-g curves obeying the condition

(and in how many ways the lifting can be done). However, we have almost no results

restricting the capability to lift a tropical curve whose first Betti number is strictly

less than g to an actual curve of genus g. When studying curves in toric surfaces,

one can use basic dimension-counting arguments to show that there are no such

contributions, but this cannot be done for curves in higher-dimensional toric varieties.

I expect, therefore, that the primary use of these results will not be to prove exact

combinatorial formulas, but rather to provide existence results or lower bounds.



Parameterizing tropical curves, I 965

The idea of studying curves via tropical varieties was proposed by Kontsevich and

pioneered by Mikhalkin [2005; 2006]. Mikhalkin has proven our main theorems, in

any genus, in the case of curves in toric surfaces. A purely algebraic proof was given

by Shustin and Tyomkin [2006]. Since Mikhalkin’s work, there has been a great

deal of research extending his results to more sophisticated enumerative problems

concerning curves in toric surfaces. There has been far less work on curves in

higher-dimensional toric varieties. The most important result in higher dimensions

is that of Nishinou and Siebert [2006], who use log geometry to analyze the case

of genus-zero curves and recover essentially all of our results in that case. Finally,

we should note that H. Markwig and her collaborators, especially Gathmann, have

done major work building the tropical analogue of the moduli spaces of curves and

of stable maps and studying it from a combinatorial perspective; see [Gathmann

et al. 2009] and the works cited therein. Among their results is reestablishing the

validity of the tropical enumeration of curves in P2 by showing it matches the

Caporaso–Harris formula. The moduli space of tropical genus-zero curves was

previously described by Mikhalkin [2007].

Newer work. Since this paper was first prepared, several additional relevant papers

have appeared. Of particular relevance are the papers of Baker, Payne and Rabinoff

[Baker et al. 2012], Helm and Katz [2012], Katz [2012], and Nishinou [2010]. The

first is an exhaustive discussion of parametrization of nonarchimedean curves using

the language of Berkovich’s analytic spaces. In terms of results, this paper goes

beyond [Baker et al. 2012] in that we prove that our combinatorially necessary

conditions are sufficient to realize tropical curves. In terms of exposition, I hope

that the use of the Bruhat–Tits tree rather than Berkovich spaces removes one level

of technical requirement.

Helm and Katz relate the lengths of the cycles in the tropical curve to the mon-

odromy action on the cohomology of the general fiber, generalizing the relationship

shown in this paper between the length of the cycle in genus one and the valuation of

the j -invariant. Katz defines several obstructions to tropical lifting which generalize

the well-spacedness condition from this paper.

Nishinou provides an alternate proof that ordinary tropical curves are realiz-

able (in all genuses), using log structures, and provides additional analysis of the

superabundant case.

1. Curves in toric varieties

In this section, we will describe how to assign a degree to a curve given with a map

to an (algebraic) torus. Throughout this paper, we will write N for the lattice of

one-parameter subgroups of the torus and M for the character lattice. We will call
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the dimension of the torus n. We write T for the torus, or T(K, N ) when we want

to specify the ground field K and the lattice N .

Let 6 be a complete rational fan in Q ⊗ N and let X(6) be the associated toric

variety over an algebraically closed field K. (See [Fulton 1993] for background

on toric varieties.) The open torus in X(6) is Hom(N , K∗). For each ray (one-

dimensional cone) of 6, there is a unique minimal element of N on this ray; if

we identify N with Zn , then the element in question is the unique point of the ray

whose coordinates are integers with no common factor. Let ρ1, . . . , ρp be the set

of minimal vectors of the rays of 6. The following is a special case of Theorem 3.1

of [Fulton and Sturmfels 1997].

Proposition 1.1. With the notation above, the Chow group An−1 is given by

An−1(X(6)) ∼=

{
(d1, d2, . . . , dp) ∈ Z

p :

p∑

i=1

diρi = 0

}
.

This is a subgroup of H 2n−2(X(6), Z), and equals H 2n−2(X(6), Z) if X(6) is

smooth.

Let C be a smooth, complete algebraic curve and let φ : C → X(6) be a map

from C into X(6). Let C denote φ−1(T) ⊂ C , the part of C which is mapped

to the big torus. Let us say that (φ, C) is torically transverse if C is nonempty

and φ(C) is disjoint from the toric strata of codimension two and higher. (This is

a specialization of the definition of torically transverse in [Nishinou and Siebert

2006].)

For each ray Q≥0ρi of 6, let Yi be the codimension-one stratum of X(6)

associated to ρi . Let di be the length of φ∗(OYi
), in other words, the number of

points in φ−1(Yi ) counted with multiplicity. Then (d1, . . . , dN ) satisfies1
∑

diρi =0

and hence corresponds to a class in An−1(X(6)). Capping with the fundamental

class gives the class in A1(X(6)), and hence in H2(X(6)), corresponding to C .

Thus, if we want to study torically transverse curves representing a particular class

in H2, we may begin by finding the possible preimages of this class in An−1 and

studying curves of that degree.

Continue to assume that (φ, C) is torically transverse. Let x ∈ C \ C . We

now describe how to determine which ray of 6 corresponds to x , and with what

multiplicity, solely by examining the map C → T. Namely, M is the lattice of

characters of the torus, so each element λ of M can be restricted to a function χλ

on C . Let σx be the map which sends λ to the order of vanishing of χλ at x ; the

function σx is in N . Write σx as dxρx , where dx is a positive integer and ρx is

minimal. Then ρx is the ray of 6 corresponding to x , and dx is the multiplicity.

1In two paragraphs, we will see an alternate description of the di that makes this clear.
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We now make a definition: let C be a smooth algebraic curve and let φ : C → T

be an algebraic map. Let C be the smooth complete curve compactifying C ; we

impose the condition that φ cannot be extended to any point of C \ C . Let x be

any point of C \ C . Define σx , ρx and dx as before. Let ρ1, . . . , ρN be the set of

distinct values of ρx as x ranges over C \ C . For 1 ≤ i ≤ N , let di =
∑

ρx=ρi
dx

and set σi =
∑

ρx=ρi
σx = diρi . We define the set {σ1, . . . , σN } to be the degree of

(φ, C). Note that this is defined without any choice of toric compactification of T.

Note also that we have
∑

σi = 0, because any rational function has equally many

zeroes and poles on C .

We then have:

Proposition 1.2. Let 6 be a complete fan with rays generated by ρ1, . . . , ρN and

let (d1, . . . , dN ) be any class in An−1(X(6)). There is a bijection between torically

transverse curves (φ, C) which represent the given class and maps C → T which

are incapable of being extended to any larger compactification of C and have degree

(d1ρ1, . . . , dN ρN ); this bijection is given by restriction to the preimage of T in C.

For this reason, we can reformulate questions about constructing torically trans-

verse curves in toric varieties into questions about constructing curves of given

degree in tori. Ordinarily, of course, one wishes to consider all curves in some

toric variety, not only the torically transverse ones. In many applications, it can be

shown by dimensional considerations that all of the curves of interest are torically

transverse. Even when this is not true, it is true that, if we specify the cohomology

class of a curve in X(6), then there are only finitely many possible degrees for

curves realizing that cohomology class and not lying in the toric boundary — and

those curves which do lie in the toric boundary are in the interiors of smaller

toric varieties. For this reason, in this paper we will study problems where we

specify the degree of a curve in the torus rather than specifying degrees in a toric

compactification.

2. Basic tropical background

In this paper, we will study a great number of polyhedra. All of these will be

rational polyhedra, meaning that they are defined by finitely many inequalities of

the form
{
(x1, . . . , xn) :

∑
ai xi ≤ λ

}
, where (a1, . . . , an) is an integer vector and λ

is a rational number. It will be most convenient to consider these as subsets of Qn

(for example, in Proposition 2.2). However, we want to be able to use topological

language to talk about polyhedral complexes. We therefore adopt the following

conventions: a polyhedron is a subset of Qn , defined by finitely many inequalities

as above. When we refer to a point of a polyhedron, we mean a point of Qn .

Nonetheless, when we describe a polyhedral complex using topological terms, such

as “connected”, “simply connected” and so forth, we will mean the properties of
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the closure of that complex in Rn . Similar issues will arise concerning metrized

graphs. We adopt the conventions that the edges of a metrized graph always have

rational lengths and that the points of this graph, considered as a metric space, are

the points which have rational distances from all of the vertices. Nevertheless, we

will freely speak of graphs as connected, as mapping continuously from one to

another, and so forth.

Let O be a complete discrete valuation ring with valuation v : O → Z≥0 ∪ {∞}.

We write K for the fraction field of O and κ for the residue field. We always

assume that κ is algebraically closed. Let K be the algebraic closure of K , let

v : K → Q∪{∞} be the extension of v to K, let O be the ring v−1(Q≥0 ∪{∞}), and

let M and M be the maximal ideals of O and O, respectively. Since κ is algebraically

closed, the residue field O/M is also equal to κ . For g ∈ O, write in(g) for the class

of g in κ . We fix a group homomorphism w 7→ tw from Q → K∗ giving a section

of v : K∗ → Q; this is always possible because v is surjective and K∗ is divisible.2

We will primarily consider the objects K, O and M and only occasionally need to

deal with K , O and M.3

We will say that K is a power series field if we are given a section ι : κ →֒ O

such that in(ι(a)) = a. If K is a power series field, we will say that a polynomial

f ∈ K[M] has constant coefficients if its coefficients lie in the image of κ and that

a variety C ⊂ T(K, N ) has constant coefficients if it is defined by polynomials with

constant coefficients. The motivation for this terminology is that we can then think

of O as the ring of formal power series in t , writing each element of O canonically

as
∑

i ι(ai )t
i for some sequence of elements ai in κ .

Let M be a free abelian group of rank n and let N = Hom(M, Z). We write 〈 , 〉

for the pairing M × N → Z. For m ∈ M , we will write χm for the corresponding

element of the group ring K[M], so that M can be written additively.

Let f ∈ K[M] and let w ∈ Q ⊗ N . We can write f =
∑

λ∈L fλχ
λ, where L is

a finite subset of M and each fλ is a nonzero element of K. Let L0 be the subset

of L on which the function λ 7→ v( fλ)+〈λ, w〉 achieves its minimum. We define

inw( f ) =
∑

λ∈L0
in(t−v( fλ) fλ)χ

λ, and we set inw(0) = 0.

Suppose that K is a power series field and that f ∈K[M] has constant coefficients,

with f =
∑

λ∈L ι( fλ)χ
λ. Then we can describe inw( f ) more simply as

∑
λ∈L0

fλχ
λ;

note that we sum over L0, not over L . This is the definition that is used in Gröbner

2It is quite possible to do without this choice, and Sam Payne has advocated doing so. This is

doubtless the most morally correct way of proceeding, but it introduces a great deal of notational

baggage. In particular, we would be forced to replace tori with principal homogeneous spaces over

tori in several places, and would thus no longer have explicit coordinates.
3Several earlier tropical works, including some of my own work, attempted to ignore O, K and

M entirely. The reader should still view these objects as being only technical crutches. However, I

have become convinced that it is not worth trying to avoid them completely.
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theory, where the field K is left hidden in the background. Using this alternate

definition, we can define inw( f ) for f ∈ κ[M] and w ∈ Q ⊗ N , even without

choosing a field K to use.

If I is an ideal in K[M], let inw(I ) denote the ideal of κ[M] generated by

inw( f ) for f ∈ I . If C is the closed subscheme of T(K, N ) corresponding to I ,

then we write inw C for the closed subscheme of T(κ, N ) corresponding to inw I .

The geometric meaning of inw C is the following: let tw denote the element of

T(K, N ) = Hom(N , K∗) described by tw(λ) = t 〈λ,w〉 for λ ∈ N . Consider the

subvariety t−w · C of T(K, N ), where · denotes the standard action of T(K, N ) on

itself. Let t−w · C be the (Zariski) closure of t−w · C in Spec O[M]. Then inw C is

the fiber of t−wC over Spec κ . Moreover, suppose that tw ∈ K and that C is defined

over K , meaning that there is a subscheme C of T(K , N ) such that C = C ×K K.

(Note that we can always achieve these hypotheses by replacing K with a finite

extension.) Then we may instead describe inw C by taking the Zariski closure of

t−wC in Spec O[M].

If I is an ideal of κ[M], rather than of K[M], and w any point of Q ⊗ N , then

we can define inw I to be the ideal in κ[M] generated by inw f for all f ∈ I , where

inw f is defined by the alternate definition two paragraphs above. While this is

a slight abuse of notation, it should cause no confusion: one meaning of inw I is

defined for I ⊂ κ[M] and the other for I ⊂ K[M] and the meanings are extremely

closely related. Specifically, let I be an ideal of κ[λ], let w ∈ Q ⊗ N and let K′

be any power series field with associated notation (K′, v′, O
′, M

′, κ ′). Suppose that

w ∈ Q ⊗ N and that κ ′ = κ . Then inw I = inw(K′ ⊗κ ′ I ).

The following lemma will be of frequent use:

Lemma 2.1. Let I be an ideal of K[M]. Let w and v be elements of Q ⊗ N. Then,

for any sufficiently small rational number ǫ, we have inw+ǫv I = inv inw I .

Proof. This is proved in a less general context as Proposition 1.13 in [Sturmfels

1996]; the proof can be adapted to our setting. �

We now define tropicalization.

Proposition 2.2. Let C be a closed subscheme of T(K, N ) and let I ⊂ K[M] be

the corresponding ideal. Let w ∈ Q ⊗ N. Then the following are equivalent:

(1) There is a point x ∈ C(K) with v(x) = w.

(2) There is a valuation ṽ : K[M]/I → Q ∪{∞} extending v : K → Q ∪{∞} with

the property that v(χλ) = 〈λ, w〉 for every λ in N.

(3) For every f ∈ I , the polynomial inw f is not a monomial.

(4) The ideal inw I does not contain any monomial.

(5) The scheme inw C is nonempty.
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Note that in conditions (3) and (4), zero is not considered a monomial.

Proof. The equivalence of (1), (3) and (4) is Theorem 2.1 of [Speyer and Sturmfels

2004]. The proof there that (4) implies (1) is flawed; see [Draisma 2008; Payne

2009b] for corrections and improvements. The equivalence of (4) and (5) is simply

the Nullstellensatz — since monomials are units in κ[M], the ideal inw I contains

a monomial if and only if it is all of κ[M]. The equivalence of (1) and (2) is

Theorem 2.2.5 of [Einsiedler et al. 2006]. �

Define the subset of Q ⊗ N where any of the equivalent conditions above holds

to be Trop C . Note that condition (3) of the above proposition clearly singles out a

closed set. If K is a power series field and C has constant coefficients, then we can

define Trop C ⊂ Rn using the definition of inw f which is defined for f ∈ κ[M].

There is little risk of confusion in defining Trop C both for C ⊂ T(K, N ) and

C ⊂ T(κ, N ). The precise relation is as follows: Let K′ be any power series

field, with associated notation (K′, v′, O
′, M

′, κ ′) such that κ ′ = κ , and let C be a

closed subscheme of T(κ, N ). Then Trop C = Trop(C ×Spec κ ′ Spec K′). The next

proposition summarizes basic results on the structure of Trop C .

Proposition 2.3. Let C ⊂ T(K, N ). Then Trop C can be given the structure of a

polyhedral complex (with finitely many faces). Furthermore, we may do this in such

a way that, for σ any face of this polyhedral complex and w and w′ two points

in the relative interior of σ , we have inw C = inw′ C. If C is d-dimensional then

Trop C has dimension d. If C is pure of dimension d then so is Trop C. If C is

connected then Trop C is connected. If C is connected in codimension one and K

has characteristic zero then Trop C is connected in codimension one.

If K is a power series field and C has constant coefficients, then Trop C can be

given the structure of a polyhedral fan.

Proof. The existence of the polyhedral structure is proved by Bieri and Groves

[1984] using description (2) of Trop C . The claim about initial ideals is proved by

Sturmfels [2002] in a slightly more specialized context in the course of proving

his Theorem 9.6. The dimensionality claim is also proven in [Bieri and Groves

1984] and is proven by a different method (under more restrictive hypotheses than

we adopt here) in [Sturmfels 2002]. Sturmfels proves the pureness claim as well.

The connectivity result is proven in [Einsiedler et al. 2006]. The connectivity in

codimension one is proven in [Bogart et al. 2007]. That proof is given in a somewhat

more restrictive setting than we have adopted here, but there is no difficulty in

extending the arguments. �

We will call a polyhedral subdivision of Trop C a good subdivision if, whenever

w and w′ are two points in the relative interior of the same face σ , we have

inw C = inw′ C . So one of the parts of the above proposition is that Trop C always

has a good subdivision.
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Let C be a closed subscheme of T(K, N ), and suppose that we have equipped

Trop C with a good subdivision, for which σ is a k-dimensional face. Let w lie

in the relative interior of σ . Let H(σ ) ⊂ R ⊗ N be the vector space spanned by

w1 − w2, for w1, w2 ∈ σ , and let exp(H(σ )) be the corresponding subtorus of

T(κ, N ).

Proposition 2.4. With the above notation, inw(C) is invariant for the action of

exp(H(σ )).

Proof. Let v ∈ H(σ ) ∩ N and let ǫ be a small rational number. Then, from

Lemma 2.1, inw+ǫv C = inv inw C and, by the definition of a good subdivision and

H(σ ), we have inw+ǫv C = inw C . So inv inw C = inw C . The left-hand side is

invariant for the one-dimensional subgroup exp(Rv), so we have shown that inw C

is invariant under exp(Rv) for any v ∈ H(σ ) ∩ N . �

In particular, in the above setting, suppose that C is pure of dimension d and

k = d. Then inw C/ exp(H(σ )) is zero-dimensional. We define µ(w) = m(σ ) to

be the length of this scheme over κ .

3. Statement of results

We now have enough tropical background to state our main results. We need one

combinatorial definition:

Let Ŵ be a finite graph. We write ∂Ŵ for the set of degree-one vertices of Ŵ. Let

ι be a continuous map Ŵ \ ∂Ŵ → Q ⊗ N such that an edge e of Ŵ is taken to

(1) either a finite line segment or a point if neither endpoint of e is in ∂Ŵ,

(2) an unbounded ray if one endpoint of e is in ∂Ŵ, and

(3) a line if both ends of e are in ∂Ŵ.

We consider such pairs (ι, Ŵ) up to reparameterization of the edges of Ŵ. By our

conventions on rationality of polyhedral complexes, ι(e) has slope in N for every

edge e of Ŵ. If v is a vertex of Ŵ, and e is an edge of Ŵ with an endpoint at v, then

we write ρv(e) for the minimal lattice vector parallel to ι(e) which points in the

direction away from ι(v). (If v is in ∂Ŵ, so that ι(e) is an unbounded ray or line,

then ι(v) should be thought of as “at infinity”, so ρv(e) is negative the direction

in which ι(e) goes to infinity.) If e is mapped to a point, define ρv(e) to be 0.

Suppose that m is a function assigning a positive integer to each edge of Ŵ. We

say that (ι, Ŵ, m) is a zero-tension curve if, for every vertex v in Ŵ \ ∂Ŵ, we have∑
e∋v m(e)ρv(e) = 0. We introduce the notation σv(e) for m(e)ρv(e). If (ι, Ŵ, m)

is any zero-tension curve, we place a metric4 on Ŵ \ ∂Ŵ. For any finite edge e, set

4This might be only a pseudometric; if ι collapses an edge of Ŵ, then we have d(x, y) = 0 for

some x and y which are not equal. This will not be a difficulty.
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the length of e to be ℓ, where the endpoints of ι(e) differ by ℓρv(e). If one or both

of the endpoints of e are in ∂Ŵ, then we define e to have infinite length.

We define a partial zero-tension curve to be a triple (ι, Ŵ, m) which obeys the

above conditions except that if one endpoint of an edge e is in ∂Ŵ, we permit that

edge to be taken to a finite line segment rather than a ray. Partial zero-tension curves

are analogous to analytic maps from a Riemann surface with holes of positive area;

zero-tension curves, which will be our main concern, are analogous to algebraic

maps from punctured Riemann surfaces.

We define the genus of a zero-tension curve to be the first Betti number of Ŵ.

We define the degree of a zero-tension curve as follows: Let D ⊂ N be the (finite)

set of values assumed by −ρv(e) as v ranges through ∂Ŵ. For each λ ∈ D, let

mλ =
∑

m(e), where the sum is over e with an endpoint v in ∂Ŵ and −ρv(e) = λ.

Then the degree of (ι, Ŵ, m) is the set {mλ · λ : λ ∈ D}. We now state that, given a

curve C , the polyhedral complex Trop C reflects the degree and genus of the curve.

Theorem 3.1. Let C be a connected (punctured) curve of genus g over K equipped

with a map φ : C → T(K, N ). Let δ ⊂ N be the degree of (C, φ). Then there is a

connected zero-tension curve (ι, Ŵ, m) of degree δ and genus at most g with ι(Ŵ) =

Trop φ(C). Moreover, choose a good subdivision of Trop φ(C) and subdivide Ŵ by

the preimage of this subdivision. Then the weights µ on Trop C and m on Ŵ are

related by µ(w) =
∑

ι(e)∋w m(w).

Extend C to a flat family over Spec O whose fiber over Spec κ consists of smooth

reduced curves glued along nodes.5 If any of the components of the κ-fiber are not

rational, then we can take the genus of Ŵ to be strictly less than g.

Theorem 3.1 is implicit in the work of many authors, beginning with Grigory

Mikhalkin. A complete proof is given in [Nishinou and Siebert 2006]; we explain

how to find this theorem in that work: Proposition 6.3 of [Nishinou and Siebert

2006] states that, given C and φ, there is degeneration of T(K, N ) (over Spec O)

to a union of toric varieties and a degeneration of C (over Spec O) to a nodal curve

so that φ extends on the Spec κ fiber to a torically transverse stable map. Write

C0 for the nodal curve and φ0 for the map from C0. In the course of proving

Theorem 8.3, Nishinou and Siebert verify that (C0, φ0) is an object they call a

pre-log curve. In Construction 4.4, they explain how to build a zero-tension curve

(ι, Ŵ, m) from a pre-log curve. The components of C0 are organized in equivalence

classes, where members of the same class are called “indistinguishable”. The

union of the components in each equivalence class is connected. The vertices of Ŵ

correspond to these classes of C0, and the edges of Ŵ to nodes of C0 connecting

components in different classes. Since C0 is a stable degeneration of a genus-g

5For example, extend C to a family of stable curves.
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curve, the graph Ŵ may have first Betti number at most g. This establishes the first

paragraph of the theorem.

For the second paragraph, let C ′
0 be the κ-fiber of the family described in the

second paragraph of the theorem. Let Y be the unique stable limit of C/ Spec K.

Then Y is obtained from C ′
0 by collapsing some curve of genus zero. So if C ′

0

has any nonrational components, so does Y . But Y is also obtained from C0 by

collapsing some genus-zero components, so if C ′
0 has nonrational components then

so does C0, and thus Ŵ must have first Betti number strictly less than g.

We now state the main results of the paper.

Theorem 3.2. Let (ι, Ŵ, m) be a zero-tension curve of genus zero and degree δ.

Then there is a (punctured) genus-zero curve C over K and a map φ : C → T(K, N )

such that (C, φ) has degree δ and ι(Ŵ) = Trop φ(C). The edge weighting m is

related to the multiplicities µ as described in Theorem 3.1.

Theorem 3.2 was previously proven, by methods of log geometry, in [Nishinou

and Siebert 2006].

Theorem 3.3. Let (ι, Ŵ, m) be a zero-tension curve of genus one and degree δ.

Let e1, . . . , er be the edges of the unique circuit of Ŵ. Assume that the slopes of

ι(e1), . . . , ι(er ) span Q⊗ N. Then there is a (punctured) genus-one curve C over K

and a map φ : C → T(K, N ) such that (C, φ) has degree δ and ι(Ŵ) = Trop φ(C).

The edge weighting m is related to the multiplicities µ as described in Theorem 3.1.

Mikhalkin [2006, Theorem 1] states without proof a result which includes both

Theorems 3.2 and 3.3.

The importance of the criterion that the slopes of the edges ι(e1), . . . , ι(er )

span Q ⊗ N was first pointed out by Mikhalkin. Following Mikhalkin, we say

that (ι, Ŵ, m) is ordinary when this condition holds, and superabundant when it

does not.6 When dealing with superabundant curves, we need to impose a further

criterion, which is original to this paper. Let (ι, Ŵ, m) be a zero-tension curve of

genus one and degree δ. Let e1, . . . , ur be the edges of the unique circuit of Ŵ.

Let H be an affine hyperplane in Q ⊗ N containing all of the line segments ι(ei ),

but not containing the entire curve ι(Ŵ). Let 1 be the connected component of

Ŵ ∩ ι−1(H) which contains the circuit of Ŵ and let x1, . . . , xs be the vertices of 1

which are also in the (topological) closure of Ŵ \ 1; we call these the boundary

vertices of 1. Let d1, . . . , ds be the distances from x1, . . . , xs to the nearest point

on the circuit of Ŵ. Then we say that (ι, Ŵ, m) is well spaced with respect to H

if the minimum of the numbers (d1, . . . , ds) occurs more than once. We say that

6The motivation for this terminology is that one can define a space of deformations of (ι, Ŵ, m).

A deformation consists of changing the lengths of the edges of Ŵ, while keeping the slopes of the

images of those edges constant. One can show that ordinary curves have deformation spaces of the

“expected dimension”, while the deformation space of superabundant curves is larger than expected.
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(ι, Ŵ, m) is well spaced if it is well spaced with respect to every H containing the

circuit of Ŵ.

Theorem 3.4. Assume that κ has characteristic zero. Let (ι, Ŵ, m) be a zero-tension

curve of genus one and degree δ and assume that (ι, Ŵ, m) is well spaced. Then

there is a (punctured) genus-one curve C over K and a map φ : C → T(K, N ) such

that ι(Ŵ) = Trop C.

There is a partial converse to this theorem; see Proposition 9.2.

It is possible to prove enumerative versions of all of these results, where we

count curves (C, φ) with Trop φ(C) = ι(Ŵ) that meet subvarieties of T(K, N ). We

do not do so here. Partially, this is because it would add greatly to the length of the

exposition. A more important reason is that, as described in the introduction, we

have no results regarding the lifting of zero-tension curves of genus zero to actual

curves of genus one and therefore we do not know how to productively apply such

enumerative results.

In a sequel to this paper I will establish analogous results for curves of genus

greater than one.

4. The Bruhat–Tits tree

We will spend the rest of this paper proving Theorems 3.2, 3.3 and 3.4. One of our

main technical tools is the Bruhat–Tits tree. A good reference for our discussion

is Chapter 2 of [Morgan and Shalen 1984]. A more sophisticated approach here

would be to replace the Bruhat–Tits tree by the analytification of P1(K) in the

sense of Berkovich. Recently, several authors have begun fully using the Berkovich

technology for tropical purposes; the interested reader should begin with [Payne

2009a; Baker et al. 2012]. In this paper, we will restrict ourselves to the more

concrete Bruhat–Tits tree.

We denote by BT(K) the set of O-submodules of K2 which are isomorphic to O
2,

modulo K∗-scaling. We write M for the equivalence class of a module M . We

equip BT(K) with the metric where d(M1, M2) is the minimum of the set of ǫ

such that there exists an α with M1 ⊇ tα M2 ⊇ tα+ǫ M1; this minimum exists and is

independent of the choice of representatives M1 and M2. Clearly, d(M1, M2) is

always in Q. The metric space BT(K) is called the Bruhat–Tits tree of K.

If we made the analogous construction working over K , we could equip BT

with the structure of the vertices of a tree so that distance was the graph-theoretic

distance. Instead, BT(K) is what is called a Q-tree (see [Morgan and Shalen 1984]).

We remind our reader of the convention that all metric trees have edges whose

lengths are in Q, and the points of such a tree are the points whose distances from

the vertices are rational. Being a Q-tree is a more general concept than this; the

following proposition lists the “tree-like” properties of Q.
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Proposition 4.1. If M1 and M2 ∈ BT(K) with d(M1, M2) = d, then there is a

unique distance-preserving map φ : [0, d] ∩ Q → BT(K) with φ(0) = M1 and

φ(d) = M2. Explicitly, if tα M1 ⊇ M2 ⊇ tα+d M1, then φ(e) = tα+e M1 + M2. We

will call the image of φ the path from M1 to M2 and denote it by [M1, M2]. If

M1, . . . , Mn ⊂ BT(K), then
⋃
i 6= j

[Mi , M j ] is a metric tree.

Suppose now that (x1 : y1) and (x2 : y2) are distinct members of P1(K). Then

we can similarly define a map φ : Q → BT(K) by φ(e) = O(x1, y1) + teO(x2, y2).

We will call the image of this φ the path from (x1 : y1) to (x2 : y2) and denote it by

[(x1 : y1), (x2 : y2)]. (The specific map φ : Q → BT(K) depends on the choice of

representatives (x1, y1) and (x2, y2), but the image φ(Q) does not.) Similarly, if

M ∈ BT(K) and (x : y) ∈ P1(K), we can define a semi-infinite path from (x : y) to

M denoted by [(x : y), M]. We introduce the notation BT(K) for BT(K) ∪ P1(K).

If Z is a subset of BT(K), we denote by [Z ] the subspace
⋃

z,z′∈Z [z, z′] of

BT(K). For simplicity, assume that |Z | ≥ 3. If Z is finite, then [Z ] is a metric

tree with a semi-infinite ray for each member of Z ∩ P1(K). We will say that this

ray has its end at the corresponding member of Z ∩ P1(K). We will abbreviate

[{z1, . . . , zn}] as [z1, . . . , zn].

The case where Z is a four-element subset of P1(K) is of particular importance

for us. Let {w, x, y, z} ⊂ P1(K) = K∪{∞}. We define the cross ratio c(w, x : y, z)

by

c(w, x : y, z) =
(w − y)(x − z)

(w − z)(x − y)
.

Note that c(w, x : y, z) = c(x, w : z, y) = c(y, z : w, x) = c(z, y : x, w) and

c(w, x : y, z) = c(w, x : z, y)−1.

Proposition 4.2. The metric space [w, x, y, z] is a metric tree with 4 semi-infinite

rays and either 1 or 2 internal vertices.

If [w, x, y, z] has 2 internal vertices, let d be the length of the internal edge and

suppose that the rays ending at w and x lie on one side of that edge and the rays

through y and z on the other. Then

v(c(w, x : y, z)) = 0,

v(c(w, y : x, z)) = −v(c(w, y : z, x)) = d,

v(c(w, z : x, y)) = −v(c(w, z : y, x)) = d.

The first statement can be strengthened to say that v(c(w, x : y, z) − 1) = d. (The

valuations of all other permutations of {w, x, y, z} can be deduced from these by

the symmetries of the cross ratio.)

If [{w, x, y, z}] has only 1 internal vertex, then

v(c(w, x : y, z) − 1) = v(c(w, x : y, z)) = 0,
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and the same holds for all permutations of {w, x, y, z}.

This proposition can be remembered as saying “v(c(w, x : y, z)) is the signed

length of [w, x] ∩ [y, z]”, where the sign tells us whether the two paths run in the

same direction or the opposite direction along their intersection.

Proof. The group GL2(K) acts on BT(K) through the action on K2. It is well

known that c is GL2(K) invariant, and the definitions of [x, y] and the metric on

BT(K) are clearly GL2(K) equivariant. So the whole theorem is invariant under

GL2(K) and we may use this action to take w, x and y to 0, 1 and ∞.

Our hypothesis in the second paragraph of the proposition is that [0, 1, ∞, z] is

a tree with 0 and 1 on one side of a finite edge of length d and z and ∞ on the other.

It is easy to check that this is equivalent to requiring that v(z) = −d < 0. Then

c(0, 1 : ∞, z) = 1 −
1

z
,

which does indeed have valuation 0, and c(0, 1 : ∞, z) − 1 = −1/z, which does

indeed have valuation d. Similarly, c(0, ∞ : 1, z) = 1/z, which has valuation d,

and c(0, z : 1, ∞) = 1/(1 − z), which has valuation d .

In the third paragraph of the proposition, the assumption that the tree has no finite

edge implies that v(z) = v(z − 1) = 0. The argument then continues as before. �

5. Lemmas on zero-tension curves

We pause to prove two combinatorial lemmas about zero-tension curves.

Lemma 5.1. Let (ι, Ŵ, m) be a connected partial7 zero-tension curve in Qn . Sup-

pose that ι(Ŵ) is not contained in any hyperplane. Then the set of vectors σv(e),

where v runs over ∂Ŵ, spans Qn .

Proof. Suppose, for the sake of contradiction, that there is some nonzero λ ∈ Qn

with 〈λ, σv(e)〉 = 0 for every degree-one vertex v of Ŵ. Let h(u) be the function

〈λ, ι(u)〉 on Ŵ\∂Ŵ. As h is constant on every ray of Ŵ ending at a degree-one vertex,

and in particular on all of the unbounded rays of Ŵ, the function h is bounded on Ŵ.

Let U be the (nonempty) subset of Ŵ on which h achieves its maximum. Clearly,

U is closed.

We now show that U is also open. Clearly, if U contains a point p in the interior

of an edge of Ŵ, then it contains that entire edge and, in particular, U contains

an open neighborhood of p. So we just need to show that, if u is a vertex of Ŵ

contained in U , then U contains an open neighborhood of u. If u is a degree-one

vertex of Ŵ, then h is constant in a neighborhood of u by our hypothesis. If u is not

a degree-one vertex, then by the zero-tension condition, we have
∑
e∋u

〈λ, σu(e)〉 = 0.

7Recall that the adjective partial means we permit edges which end at a vertex of ∂Ŵ to be taken to

a finite line segment rather than to an infinite ray.
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Since we have assumed that h is maximized at u, we have 〈λ, σu(e)〉 ≤ 0 for every

edge e containing u and we conclude that h is constant in a neighborhood of u, as

desired.

So U is open, closed and nonempty. As Ŵ is connected, U = Ŵ and we have that

h is constant on Ŵ. This contradicts our assumption that ι(Ŵ) is not contained in

any hyperplane. �

Morally, this proof is an instance of the “tropical maximum modulus principle”.

The linear functional defining H is a harmonic function on Ŵ in the sense of [Baker

and Norine 2007; Gathmann and Kerber 2008] and other papers, and we are showing

that if it is bounded, then it is constant.

One difficulty with Theorem 3.1 is that it states that a zero-tension curve with

ι(Ŵ) = Trop C exists, but it doesn’t help us choose from among several possible

candidates for (ι, Ŵ, m). We now introduce a concept that will let us guarantee that

essentially only one such (ι, Ŵ, m) exists. We define (φ, C) to be trivalent if, for

some (equivalently any) good subdivision of Trop φ(C), we have me = 1 for every

edge e and the degree of v is at most 3 for every vertex v.

Lemma 5.2. Let (φ, C) be a trivalent curve and (ι, Ŵ, m) a zero-tension curve with

ι(Ŵ) = Trop φ(C), such that if e is any edge of (a good subdivision of ) Trop φ(C),

then we have me =
∑

ι( f )=e m f . (The sum is over edges f of Ŵ mapping to e.)

Than there is a subgraph Ŵ′ of Ŵ which maps isomorphically onto Trop φ(C).

Specifically, we take Ŵ′ to be the union of all edges of Ŵ which are not contracted to

points under ι. In particular, if ι contracts no edge, then Ŵ ∼= Trop C.

Proof. First, we note that if e is an edge of Trop φ(C), then each point in the interior

of e can have only one preimage in Ŵ, by the equation 1 = me =
∑

ι( f )=e m f .

Next, let x be a vertex of Trop φ(C) with edges e1, e2 and possibly e3 coming out

of x . Let y ∈ Ŵ′ be a preimage vertex of x . Then there must be edges leaving y

which map down to each of the ei , as otherwise the zero-tension condition would

be violated. (If all of the edges leaving y map down to a point, then y is not in Ŵ′.)

Then there can be no other vertex z of Ŵ′ which maps to x , as there are no edges of

Trop φ(C) left for the edges coming from z to map to.

So every vertex of Trop φ(C) and the interior of every edge of Trop φ(C) has

only one preimage in Ŵ′; that is, the restriction of ι to Ŵ′ is bijective onto its

image. Moreover, Ŵ′ is closed in Ŵ, so the map Ŵ′ → Trop φ(C), like the map

Ŵ → Trop φ(C), is a closed map. But we know Ŵ′ → Trop φ(C) is bijective, so

this is also an open map. A continuous open bijective map is a homeomorphism. �

6. Tropical curves of genus zero

The aim of this section is to prove Theorem 3.2. This result appears in [Nishinou

and Siebert 2006] and will also appear in a future publication of Mikhalkin. Our
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method of proof is not only more explicitly constructive than these, but will also

preview many of the methods which we will use to deal with higher-genus curves.

Let (ι, Ŵ, m) be a zero-tension curve with Ŵ a tree. From now until the end of the

paper, fix an identification of N with Zn .

Proposition 6.1. Let T be a metric tree with finitely many vertices. Then there is a

subset Z of BT(K) such that [Z ] is isometric to T . If every leaf of T is at the end of

an unbounded edge, then we can take Z ⊂ P1(K).

Proof. Our proof is by induction on the number of finite-length edges of T . If

T has l ≥ 3 leaves and no finite edges, then T is isometric to [z1, . . . , zl] for

{z1, . . . , zl} any l elements of K∗ with valuation 0 and distinct images in κ∗. If T

is an unbounded edge which is infinite in both directions then T ∼= [0, ∞]; if T

is an unbounded ray which is infinite in one direction then T = [O2, ∞]; if T is a

point then T ∼= [O2]. These are all of the cases with no finite edges, so our base

case is complete.

Now let e be a finite edge of T of length d joining vertices v1 and v2. Remove e

from T , separating T into two trees T1 and T2. Define trees T ′
s , where s = 1, 2, by

adding an unbounded edge to Ts at vs . By induction, we can find subsets Z1 and

Z2 ⊂ BT(K) with [Zs] isometric to T ′
s . Let zs ∈ Zs be the element of Zs at the end

of the new ray added to Ts .

Without loss of generality, we may assume that z1 = 0 and z2 = ∞. Furthermore,

we may translate T ′
1, preserving 0, so that v1 lies on [0, ∞], and similarly, we may

translate T ′
2, preserving ∞, so that v2 lies on [0, ∞]. By multiplying Z1 and Z2

by elements of K∗, we may assume that these points lie distance d apart with v2

closer to z1 than v1 is. Then T is isometric to
[
(Z1 \ {z1}) ∪ (Z2 \ {z2})

]
.

If all of the leaves of T were at the end of unbounded edges, then this would

also be true of T ′
1 and T ′

2, and tracing through the proof, we see that Z ⊂ P1(K). �

Recall that we have been given a zero-tension curve (ι, Ŵ, m) of genus zero

and we want to construct an actual genus-zero curve with ι(Ŵ) as its tropicaliza-

tion. Let Z ⊂ P1(K) be such that [Z ] is isometric to Ŵ. We define multisets

Z+
1 , . . . , Z+

n , Z−
1 , . . . , Z−

n as follows: All of the elements of Z±
i lie in Z . Let z ∈ Z

correspond to the end of an infinite ray e of Ŵ. Suppose that σz(e) = (s1, . . . , sn).

Then z ∈ Z±
i if and only if ±si < 0. In this case, the number of times that z

occurs in Z±
i is |si |. Let φi be a rational function on P1 with zeroes at the points

of Z+
i and poles at the points of Z−

i . (If ∞ is not in Z+
i or Z−

i , we may take

φi (u) =
∏

z∈Z+
i
(u − z)/

∏
z∈Z−

i
(u − z).) Define a rational map φ : P1(K) → Kn by

the formula φ(u) = (φ1(u), . . . , φn(u)). Here u is a coordinate on P1(K), thought

of as K ∪ {∞}.

The following theorem states that C and φ satisfy the conditions on the curve

and the map in Theorem 3.2; the conclusion of Theorem 3.2 follows.
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Theorem 6.2. The curve φ(P1(K)) is a genus-zero curve of degree the degree of

(ι, Ŵ, m). Trop φ(P1(K)) is a translation of ι(Ŵ). Thus, by rescaling the φi (u) by

elements of K∗, we can arrange that Trop φ(P1(K)) is ι(Ŵ).

From now until the end of the proof, we identify [Z ] with Ŵ so that we can write

ι : [Z ] → Qn .

Proof. The curve φ(P1(K)) clearly has genus zero. It has the same degree as

(ι, Ŵ, m) because, by Proposition 1.2, the degree can be computed simply by

looking at the orders of vanishing of the coordinate functions on (K∗)n at the points

of P1 where φ is not defined. We built φ to have exactly the required zeroes and

poles. We now move to the interesting point, the claim that Trop φ(P1(K)) is a

translation of ι(Ŵ).

Let u ∈ P1(K) \ Z . Then [Z ] is a tree and [Z ∪{u}] is a tree with one additional

end. Let b(u) be the point of [Z ] at which that end is attached. (In Figure 1, [Z ] is

shown in solid lines, the points of Z are represented by z’s, the path from u to b(u)

is dashed, and b(u) is the solid dot.) We claim that, up to a translation, v(φ(u)) is

ι(b(u)). In other words, if u1 and u2 are distinct members of u ∈ P1(K) \ Z , we

must show that for each i between 1 and n we have

v(φi (u1)) − v(φi (u2)) = ι(b(u1))i − ι(b(u2))i .

It is enough to show this in the case where b(u1) and b(u2) lie in the same edge

e of [Z ]. Let σu2
(e) = (s1, . . . , sn). We will fix one coordinate i to pay attention to,

so i will not appear in our notation. Let Z+
i = {z+

1 , . . . , z+
r } and Z−

i = {z−
1 , . . . , z−

r }.

We may find constants 1 ≤ s+, s− ≤ n and order the z±
j such that z±

j is on the b(u1)

side of e for 1 ≤ j ≤ s± and on the b(u2) side of e for s± + 1 ≤ j ≤ r . Let d be

the distance from b(u1) to b(u2).

u b(u)

[Z ]

z
z

z

z

z

z

z

Figure 1. The definition of b(u).
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We have

v(φi (u1)) − v(φi (u2)) = v

(
φi (u1)

φi (u2)

)
= v

(∏r
j=1(u1 − z+

j ) /
∏r

j=1(u1 − z−
j )

∏r
j=1(u2 − z+

j ) /
∏r

j=1(u2 − z−
j )

)

= v

( r∏

j=1

c(u1, u2 : z+
j , z−

j )

)

=

r∑

j=1

v
(
c(u1, u2 : z+

j , z−
j )

)
= d(s+ − s−).

The last equality is by applying Proposition 4.2 to each term.

By the zero-tension condition, si = s+ − s−. So ι(b(u1))i − ι(b(u2))i is also

d(s+ − s−). �

We pause for two examples.

Example 6.3. Consider the tree in Q3 with a finite edge running from (0, 0, 0) to

(1, 1, 1), infinite edges leaving (1, 1, 1) in directions (1, 0, 0) and (0, 1, 1), and

edges departing (0, 0, 0) in directions (0, −1, 0) and (−1, 0, −1). Then [0, t, 1, t−1]

is isometric to Ŵ, with 0, t , 1 and t−1 respectively corresponding to the endpoints

of the above infinite rays. We have

Z+
1 = {0}, Z+

2 = {t}, Z+
3 = {t},

Z−
1 = {t−1}, Z−

2 = {1}, Z−
3 = {t−1}.

Thus, the map φ is given by

u 7→

(
u

u − t−1
,

u − t

u − 1
,

u − t

u − t−1

)
.

The image of this map is a genus-zero curve C with Trop C equal to the given tree.

Example 6.4. This time we choose a tree with no internal edges but complicated

slopes. Consider the tree T in Q3 with no internal edges and four unbounded

rays of slope (1, 2, 3), (5, −3, 4), (−7, 1, −2), (1, 0, −5). Assuming that κ has

characteristic 0, the tree [1, 2, 3, 4] ⊂ BT(K ) is isometric to T . Our multisets Z±
i

are

Z+
1 = {1, 2, 2, 2, 2, 2, 4}, Z+

2 = {1, 1, 3}, Z+
3 = {1, 1, 1, 2, 2, 2, 2},

Z−
1 = {3, 3, 3, 3, 3, 3, 3}, Z−

2 = {2, 2, 2}, Z−
3 = {3, 3, 4, 4, 4, 4, 4}.

For example, there are 5 occurrences of the number 4 in Z−
3 because ray number 4

of our tree has slope −5 in the x3 direction.
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Our map φ is given by

u 7→

(
(u − 1)(u − 2)5(u − 4)

(u − 3)7
,
(u − 1)2(u − 3)

(u − 2)3
,
(u − 1)3(u − 2)4

(u − 3)2(u − 4)5

)
.

Once again, the image of φ is a genus-zero curve whose tropicalization is the

given tree.

7. Tropical curves of genus one

Let (Ŵ, ι, m) be a zero-tension curve where Ŵ is connected with first Betti number

one. This means that Ŵ has a unique cycle; let e1, . . . , er be the edges of this

cycle and let σi be the slope σ(ei ). Recall that σ(ei ) = m(ei )ρ(ei ), where ρ is the

minimal lattice vector along ei and m is the multiplicity of edge ei .

Our aim in this section is to prove:

Theorem 3.3. Let (ι, Ŵ, m) be a zero-tension curve of genus one and degree δ.

Assume that the slopes σ1, σ2, . . . , σr span Q ⊗ N. Then there is a (punctured)

genus-one curve C over K of degree δ and a map φ : C → T(K, N ) such that

ι(Ŵ) = Trop φ(C).

We use Tate’s nonarchimedean uniformizations of elliptic curves. A good ref-

erence for this subject is Sections 2 and 3 of [Roquette 1970]. Let q ∈ K∗ with

v(q) > 0. Tate constructs an elliptic curve E over K with a bijection P from K∗/qZ

to E(K). For u and z ∈ K∗, define

2(u) =

0∏

j=−∞

(1 − q− j u)

∞∏

j=1

(1 − q j/u).

For any u and q in K∗, there is a finite extension K of K containing u and q and

this product is convergent in the nonarchimedean topology on K as long as none

of the individual terms are zero. Thus, the product above is well defined for all

u ∈ K∗ \qZ and it satisfies 2(qu) = (−1/u)2(u). (Remember that limn→∞ qn = 0

because v(q) > 0.) Thus, if Z+ = {z+
1 , . . . , z+

k } and Z− = {z−
1 , . . . , z−

k } are finite

multisubsets of K ∗ with the same cardinality and
∏k

i=1z+
i =

∏k
i=1z−

i , then

φ(u; Z+
i , Z−

i ) :=

k∏

i=1

2(u/z+
i )

2(u/z−
i )

is a well-defined function on (K∗/qZ) \
(⋃∞

j=∞ q j · {z+
1 , . . . , z+

k , z−
1 , . . . , z−

k }
)
.

Consider this product as a function on E(K) with the appropriate points removed.

Tate proves that this is a meromorphic function of u with zeroes at the points P(z+
i )

and poles at P(z−
i ). Every nonzero meromorphic function on E(K), up to scalar

multiples, occurs in this way. (See [Roquette 1970, Section 2, Proposition 1] for
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the statement that all the nonzero functions in the field which Roquette calls MK

are of this form. See [Roquette 1970, Section 2, Statement IV] for the fact that this

field is the meromorphic functions on an elliptic curve over K.)

Remark. By the Jacobi triple product formula, 2(u) can be given by the alternate

formula
∏∞

i=0(1 − q i )−1 ×
∑∞

n=−∞ q(n
2)(−u)n . But this formula will not be useful

to us.

Our goal, given the input data (ι, Ŵ, m), is to construct a genus-one curve C

over K and a rational map φ : C → (K∗)n such that Trop φ(C) = ι(Ŵ). The way

our construction will proceed is to use (ι, Ŵ, m) to construct an element q ∈ K∗,

with v(q) > 0, and finite multisubsets Z+
1 , . . . , Z+

n , Z−
1 , . . . , Z−

n , of P1(K). We

will have
∏

z∈Z+
i

z =
∏

z∈Z−
i

z, which will be the hardest part of the construction

to achieve. Thus, we will have a rational map φ from the Tate curve C := K∗/qZ

to (K∗)n by P(u) 7→ (φ(u; Z+
1 , Z−

1 ), . . . , φ(u; Z+
n , Z−

n )). We will have arranged

our choices so that Trop φ(C) = ι(Ŵ). We often abbreviate φ(u; Z+
i , Z−

i ) to φi (u),

when the choice of Z±
i is clear.

We begin by discussing the situation for an arbitrary choice of q and Z±
1 , . . . , Z±

n .

Later, we will specialize our discussion to the particular choices that will derive

from the graph Ŵ. We will use ,q)ג Z±
• ) to denote the graph we will construct

from q and Z±
1 , . . . , Z±

n ; eventually ג will be isomorphic to Ŵ.8 We will drop the

arguments of ג when they should be free from context.

So, let q ∈ K∗ with v(q) > 0 and let Z+
1 , Z−

1 , . . . , Z+
n , Z−

n be 2n finite nonempty

multisubsets of K∗ with |Z+
i | = |Z−

i | for i = 1, 2, . . . , n. We introduce the notation

Z for
∞⋃

i=−∞

n⋃

j=1

q i (Z+
j ∪ Z−

j ).

Let9 ,q)ג̃ Z±
• ) =

⋃
z,z′∈Z [z, z′] ⊂ BT(K). The metric space ,q)ג̃ Z±

• ) is invariant

under multiplication by qZ; we define ,q)ג Z±
• ) = ,q)ג̃ Z±

• )/qZ.

Lemma 7.1. The metric space ±q,Z)ג̃
• ) is an infinite tree. The quotient ±q,Z)ג̃

• )/qZ

is a finite graph with first Betti number one, and ,q)ג Z±
• ) is isometric to a dense

subset of U.

Note that we call a graph “finite” when it has a finite number of vertices and of

edges. When the graph is equipped with a metric, as ג̃ is, we do not take “finite” to

imply that all of the edges have finite length.

Proof. First note that for any a and b ∈ K∗ and any d ∈ [0, ∞], we either have

d ∈ [a, q j b] for j sufficiently large or we have d ∈ [a, q− j b] for j sufficiently large.

8The symbol ג is the Hebrew letter “gimmel”, which makes the same sound as the Greek letter Ŵ.
9We will systematically use the tilde, ,̃ for objects associated to the universal cover.
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Figure 2. The graphs ג̃ and .ג

The same holds if we take d ∈ [a, ∞] or d ∈ [a, 0]. So ,ג̃ which by definition is⋃
z,z′∈Z [z, z′], is also

⋃
z,z′∈Z [0, ∞, z, z′]. Also, note that for any a and b ∈ K∗, we

have [a, b, 0, ∞] = [a, 0, ∞]∪[b, 0, ∞]. (Just check the three possible topologies

for the tree [a, b, 0, ∞].) So ג̃ =
⋃

z∈Z [0, z, ∞].

For u ∈ Q, set Tu =
⋃

z∈Z , v(z)=u[0, z, ∞], so ג̃ =
⋃

u∈Q
Tu . If u 6= u′ then

Tu ∩ Tu′ = [0, ∞]. So ג̃ is just a central path [0, ∞] with the side stalk Tu \ [0, ∞]

stuck on for each u ∈ v(Z). But, for every u, there are only finitely many u ∈ Z

with valuation u, so Tu is just a finite tree. And v(Z) is a union of finitely many

copies of v(q) · Z, so in particular v(Z) is a discrete subset of A. So we see that ג̃

really is just an infinite tree, consisting of an infinite path with a periodic pattern of

finite trees branching off from it.

When we take the quotient of this infinite tree by the periodic shift by v(q) along

this path, we get a finite graph. �

In Figure 2, we show ג̃ on the left and ג on the right for a sample choice of q

and Z . The action of q is shown by the boldfaced arrow.

We now define a function s assigning a vector in Zn to each edge of ;ג this

function will eventually describe the slopes of edges of our tropical curve. Fix an

index i between 1 and n and an oriented edge ẽ of .ג̃ Removing ẽ from ג̃ divides ג̃

into two components. This gives rise to partitions Z±
i = H±

i ⊔ T ±
i of Z±

i , where

H±
i consists of those elements of Z±

i which are on the “head” side of ẽ and T ±
i

consists of elements of Z±
i which are on the “tail” side of ẽ. Define

s̃i (ẽ) = |H+
i | − |T +

i | − |H−
i | + |T −

i |.

Note that each of these multisets is finite, so s̃i (ẽ) is well defined. Also, note that

s̃i (ẽ) is zero for all but finitely many e. We now define

si (e) =
∑

ẽ lifts e

s̃i (ẽ).
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Here we are summing over all the edges ẽ of ג̃ above the edge e of .ג Note that

all but finitely many terms of this sum are zero. We then define s(e) to be the

vector (s1(e), . . . , sn(e)). Note that s(e) = s(qe), so we may think of s a function

on directed edges of ,ג and note that reversing an edge negates s.

Lemma 7.2. The vectors s(e) obey the zero-tension condition.

Proof. We will show that the function s̃ on the edges of ג̃ obeys the zero-tension

condition, so the translates of s̃ will as well, and hence their sum s will. Let v

be an internal vertex of ג̃ and let e1, e2, . . . , ep be the edges incident to v, which

we will direct away from v. Fix an index i between 1 and n; we need to show

that
∑

k s̃(ek)i = 0. Let Tk be the component of ג̃ \ {v} which contains the interior

of ek . Let Dk be the difference between the cardinalities of Z+
i ∩ Tk and Z−

i ∩ Tk .

Since |Z+
i | = |Z−

i |, we know that
∑

Dk = 0. We have s̃(ek)i = Dk −
∑

m 6=k Dm ,

so
∑p

k=1s̃(ek)i = (p − 1)
∑p

k=1 Dk = 0. �

We will now consider the effect of adding the following additional condition:

for i = 1, . . . , n, v

( ∏

z∈Z+
i

z

)
= v

( ∏

z∈Z−
i

z

)
. (1)

Note that condition (1) is an immediate consequence of the stronger condition

for i = 1, . . . , n,
∏

z∈Z+
i

z =
∏

z∈Z−
i

z. (2)

Proposition 7.3. Suppose that condition (1) holds. Let e1, e2, . . . , er be the edges

of the unique cycle of ,ג ordered and oriented cyclically. Let ℓ(e) be the length of

the edge e of .ג̃ Then
r∑

k=1

ℓ(ek)s(ek) = 0.

Proof. Pick an index i between 1 and n; we will show that
∑r

k=1 ℓ(ek)si (ek) = 0.

Recall that we have |Z+
i | = |Z−

i |. Set N = |Z+
i | = |Z−

i | and fix orderings

(z±
1 , z±

2 , . . . , z±
N ) of Z+

i and Z−
i . For an oriented edge e of ג̃ and an index m

between 1 and N , define δm(e) to be 1 if z+
m is on the head side of e and z−

m is on

the tail side of e; define δm(e) to be −1 if z+
m is on the tail side of e and z−

m is on the

head side of e; define δm(e) to be 0 if z+
m and z−

m are on the same side of e. Then

s̃i (e) =
∑N

m=1 δm(e).

Now we have

r∑

k=1

ℓ(ek)si (ek) =

r∑

k=1

ℓ(ek)

∞∑

j=−∞

s̃i (q
j ek) =

∑

e⊂[0,∞]

ℓ(e)s̃i (e).
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Using the expression in the previous paragraph for s̃i (e), we see that this equals

∑

e⊂[0,∞]

ℓ(e)

N∑

m=1

δm(e) =

N∑

m=1

∑

e⊂[0,∞]

ℓ(e)δm(e),

where we may interchange summation because all but finitely many terms are

zero. Now the inner sum
∑

e⊂[0,∞] ℓ(e)δm(e) is the (signed) sum of the lengths

of all edges in [0, ∞] which separate z+
m from z−

m . In other words, the inner

sum is the signed length of [0, ∞] ∩ [z+
m, z−

m]. But, by Proposition 4.2, this is

simply v(z+
m) − v(z−

m). Plugging this into our sum, we see that the quantity we

wish to show is zero is
∑N

m=1(v(z+
m) − v(z−

m)). But, by condition (1), we have

v
(∏

z∈Z+
i

z
)
− v

(∏
z∈Z−

i
z
)
= 0, so

∑N
m=1

(
v(z+

m) − v(z−
m)

)
= 0. �

We now build a continuous map f̃ : →ג̃ Qn . If e is any finite edge of ,ג̃ directed

from vertex x to vertex y, then f̃ (y) = f̃ (x)+ℓ(e)s(e) and f̃ (e) is the line segment

connecting f̃ (x) and f̃ (y). If e is an infinite ray of ג then f̃ (e) is an unbounded ray

of slope s(e). This map is determined by the s(e) up to translation by an element

of Qn . Using Proposition 7.3, we see that f̃ factors through the quotient graph ;ג

we will write the map →ג Qn as f . We now come to the fundamental computation

that unites our combinatorial constructions with actual geometry:

Proposition 7.4. Given q and Z±
1 , . . . , Z±

n subject to condition (2), define the curve

C and the map φ as described at the beginning of this section. Define also the graph

ג and the map f . (Since we have assumed (2), we have (1), so we can define f .)

Then Trop φ(C) is a translation of f (ג) and they have the same degree.

This proof is very similar to the proof of Theorem 6.2. We will make the

inconsequential abuse of notation of considering φ both as a map from (an open

subset of) C and from K∗ \ Z . Here Z , as above, is
⋃∞

i=∞

⋃n
j=1 q i (Z+

j ∪ Z−
j ).

Proof. Let u ∈ K∗ \ Z . Then [Z ∪ {u}] is a tree, which is the union of ג̃ and a path

ending at u. Let b(u) ∈ ג̃ be the other end of this path. We claim that, up to a

translation, v(φ(u)) is f (b(u)). In other words, if u1 and u2 are distinct members

of u ∈ K∗ \ Z , we must show that for each i between 1 and n, we have

v(φi (u1)) − v(φi (u2)) = f (b(u1))i − f (b(u2))i .

It is enough to show this in the case where b(u1) and b(u2) lie in the same edge e

of [Z ]. Let s(e) = (s1, . . . , sn). We will fix one coordinate i to pay attention to, so

i will not appear in our notation. Let Z+
i = {z+

1 , . . . , z+
N } and Z−

i = {z−
1 , . . . , z−

N }.

Let d be the distance from b(u1) to b(u2).
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We have

v(φi (u1)) − v(φi (u2)) = v

(
φi (u1)

φi (u2)

)
= v

(∏N
m=1 2(u1/z+

m)/2(u1/z−
m)

∏N
m=1 2(u2/z+

m)/2(u2/z−
m)

)

=

N∑

m=1

v

(
2(u1/z+

m)/2(u1/z−
m)

2(u2/z+
m)/2(u2/z−

m)

)
. (3)

Now, by definition,

2(u1/z+
m)/2(u1/z−

m)

2(u2/z+
m)/2(u2/z−

m)
=

0∏

j=−∞

(
(1 − q− j u1/z+

m)(1 − q− j u2/z−
m)

(1 − q− j u1/z−
m)(1 − q− j u2/z+

m)

)

×

∞∏

j=1

(
(1 − q j z+

m/u1)(1 − q j z−
m/u2)

(1 − q j z−
m/u1)(1 − q j z+

m/u2)

)

=

∞∏

j=−∞

c(q− j u1, q− j u2 : z−
m, z−

m). (4)

Here we may rearrange our product freely because in nonarchimedean analysis all

convergent sums and products converge absolutely. So, by Proposition 4.2, we can

compute the valuation of (4):

v

(
2(u1/z+

m)/2(u1/z−
m)

2(u2/z+
m)/2(u2/z−

m)

)
=

∞∑

j=−∞

(
signed length of [u1/q j , u2/q j ] ∩ [z+

m, z−
m]

)
.

(5)

Now, the sum on m of the signed length of [u1/q j , u2/q j ]∩[z+
m, z−

m] is ds̃i (q
j e).

So, plugging (5) into (3) and interchanging summation, we obtain

v(φi (u1)) − v(φi (u2)) =

∞∑

j=−∞

ds̃i (q
j e) = dsi (e) = f (b(u1))i − f (b(u2))i .

This is the desired formula. �

We now know how to build a genus-one curve over K with a rational map

φ :C → (K∗)n such that Trop φ(C) has a given form. In order to prove Theorem 3.3,

we need to use (ι, Ŵ, m) to find q and to find multisubsets Z±
1 , . . . , Z±

n of K∗ such

that

(i) for i = 1, . . . , n, we have |Z+
i | = |Z−

i |;

(ii) for i = 1, . . . , n, we have
∏

z∈Z+
i

z =
∏

z∈Z−
i

z;

(iii) the graph ,q)ג Z±
• ) is isometric to Ŵ; and

(iv) the map f corresponds to ι under the isometry ,q)ג Z±
• ) ∼= Ŵ.
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We spend the rest of this section describing the necessary construction. We will

first build sets Y ±
1 , . . . , Y ±

n which obey all of these conditions except that, instead

of condition (ii), they satisfy the weaker (1) (stated before Proposition 7.3). We

will then perturb the Y ±
i to give sets Z±

i satisfying this last condition.

Let ℓ be the length of the circuit of Ŵ. First, we choose10 q so that v(q) = ℓ. Let

Ŵ̃ be the universal cover of Ŵ. The graph Ŵ̃ is an infinite tree which has one doubly

infinite path with finite trees periodically branching off this path. Choose a point in

the interior of an edge e0 of the circuit of Ŵ and cut Ŵ at this point to produce a

tree T , so Ŵ̃ is a union of a doubly infinite sequence of copies of T . The tree T

has two finite rays and a number of infinite rays. By Proposition 6.1, we can find

a subset U of BT(K) such that T ∼= [U ]. There are two elements of BT(K) in U ,

which we will call u0 and u1; the rest of U is contained in P1(K). The distance

from u0 to u1 is ℓ = v(q), so we may (and do) use a transformation in GL2(K)

to assume that u0 = SpanO((1, 0), (0, 1)) and u1 = SpanO((q, 0), (0, 1)). Since u0

and u1 are leaves of [U ], all the other elements of U \{u0, u1} must be contained in

v−1((0, ℓ)) ⊂ K∗ ⊂ P1(K). We set Y =
⋃∞

j=−∞ q j (U \ {u0, u1}). Then [Y ] ∼= Ŵ̃.

We now describe how to choose the multisets Y ±
1 , . . . , Y ±

n as subsets of the set Y .

Fix an index i between 1 and n. We first define multisubsets W +
i and W −

i of U .

Let v be a leaf of Ŵ, at the end of the edge e, and let u be the element of U at

the end of the corresponding ray of T . Then u will occur |σv(e)i | times in W ±
i ,

where ± is the opposite of the sign of σv(e)i , and will not occur at all in W ∓
i . Note

that the assumption that (ι, Ŵ, m) is zero-tension forces W +
i and W −

i to have the

same cardinality. We now modify W ±
i slightly to produce Y ±

i . Let (s1, . . . , sn)

be the slope of the edge e0 which we cut to make T . For each i between 1 and n,

we take one element of W +
i and multiply it by qsi , leaving the other elements

of W +
i unchanged. We call the resulting multiset Y +

i . We take Y −
i = W −

i . Then⋃∞
j=−∞ q j

⋃n
i=1(Y

+
i ∪Y −

i )= Y , so we have ,q)ג̃ Y ±
• )∼=[Y ]∼= Ŵ̃ and ,q)ג Y ±

• )∼=Ŵ.

We need to check that if e is an oriented edge of Ŵ, then σ(e) is equal to s(e).

(Note that when writing s(e), we have thought of e as an edge of (.ג The s(e) obey

the zero-tension condition, by Lemma 7.2, so it is enough to check that s(e) = σ(e)

for (1) e an unbounded ray and (2) e = e0; the zero-tension condition will then

determine both s(e) and σ(e) for the remaining edges. If e is an unbounded ray,

with the leaf v at its end, then we forced there to be ∓σv(e)i elements of Y ±
i lying

at the end of the preimages of e in .ג̃ For each unbounded ray e′ of ג̃ (directed

towards its leaf), s̃(e′)i is ± times the number of elements of Y ±
i at the end of e′. So

σ(e)i is the sum of s̃(e′)i over all preimages e′ of e. This is precisely the definition

of s(e)i .

10This construction works for any q of the correct valuation. This is probably unfortunate; it

suggests that these methods will need further improvement before they can be used for enumerative

problems which are only solvable for certain particular j-invariants.
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Now let us consider the case e = e0. If we computed s(e0)i using Y +
i and Y −

i ,

we would get zero, as for every preimage e′ of e in ,ג̃ all of U \ {u0, u1} lies to

one side of e′. When we use Y +
i and Y −

i instead, only one element moves and that

element moves past σ(e0)i preimages of e0, and we have σ(e0)i = s(e0)i .

Lemma 7.5. For each i between 1 and n, we have v
(∏

z∈Y +
i

z
)
= v

(∏
z∈Y −

i
z
)
.

This proof is essentially reversing the proof of Proposition 7.3.

Proof. Fix an index i between 1 and n. We choose an ordering (y+
1 , y+

2 , . . . , y+
m )

of Y +
i and an ordering (y−

1 , y−
2 , . . . , y−

m ) of Y −
i . We want to establish that

m∑

k=1

v(y+
k /y−

k ) = 0.

Now, y+
k /y−

k is the cross ratio c(y+
k , y−

k : 0, ∞), so by Proposition 4.2, v(y+
k /y−

k ) is

the signed length of the intersection of [0, ∞] with [y+
k , y−

k ]. We can break up this

intersection as a sum over the various edges in the doubly infinite path [0, ∞], so

v(y+
k /y−

k ) = ±
∑

e′∈[0,∞]∩[y+
k ,y−

k ] ℓ(e
′), where ℓ(e′) is the length of e′ and the sign

describes whether or not the orientation of the path [y+
k , y−

k ] matches the orientation

of e′ from 0 to ∞.

We know that for any edge e j in the circuit of Ŵ, the signed number of inter-

sections of the paths [y+
1 , y−

1 ], . . . , [y+
m , y−

m ] with the preimages of e j is s(e j )i . So∑m
k=1 v(y+

k /y−
k ) =

∑r
j=1 ℓ(e j )s(e j )i . But the j-th summand on the right is the

displacement in the i-th coordinate between the two endpoints of ι(e j ). Since the

edges ι(e1), ι(e2), . . . , ι(er ) form a closed loop, the sum telescopes to zero. �

Now that we have proven Lemma 7.5, we can speak of the map f .

We have now shown that ג ∼= Ŵ, and that, under this identification, σ = s. It

follows that f (ג) is a translation of ι(Ŵ), and we will no longer distinguish ג from Ŵ.

If we had
∏

z∈Y +
i

z =
∏

z∈Y −
i

z, so that the map φ : C → (K∗)n would exist, then

Trop φ(C) would be a translation of f (Ŵ). So we will have established Theorem 3.3

if we can simply show that
∏

z∈Y +
i

z =
∏

z∈Y −
i

z. More precisely, what we show

is that we can perturb each Y ±
i to Z±

i , so that this product relation holds, without

altering ג̃ as an abstract tree.

We now describe our perturbative method. We remember that the edges of the

circuit of Ŵ are called e1, . . . , er and we introduce the notation (v j−1, v j ) for the

endpoints of e j , where the indices are cyclic modulo r . Delete the interiors of

the edges e1, . . . , er from Ŵ. Let T j be the component of the remaining forest

containing the vertex v j of Ŵ. We will choose constants u1, . . . , ur in K∗ with

v(u1) = · · · = v(ur ) = 0, which we think of as associated to the T j . We modify

Y ±
i as follows: Let y be an element of Y ±

i . Consider the component T j to which
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y is attached. Multiply y by u j to obtain a new element z. The multiset of thus

modified elements will form the set Z±
i .

Now, multiplication by an element u of K∗ with v(u) = 0 is an automorphism

of BT(K) which fixes (pointwise) the path [0, ∞]. This transformation modifies

each component of ג̃ \ [0, ∞] by such an automorphism, so ג̃ is left unchanged

as an abstract tree. So we must understand how multiplication by u j affects the

ratio
∏

z∈Z+
i

z/
∏

z∈Z−
i

z. All of the elements of Y ±
i which are in T j are multiplied

by u j . Let ai j = |Y +
i ∩ T j | − |Y −

i ∩ T j |. So our modification of the Y ± multiplies∏
z∈Y +

i
z/

∏
z∈Y −

i
z by

∏r
j=1 u

ai j

j .

We want to know that we can choose u1, . . . , ur in v−1(0) such that
∏r

j=1 u
ai j

j =∏
z∈Y +

i
z/

∏
z∈Y −

i
z for i = 1, . . . , n. We have shown (Lemma 7.5) that the right-hand

side of this equation is in v−1(0). So we want to know that the map of abelian

groups v−1(0)r 7→ v−1(0)n given by the matrix A := (ai j ) is surjective. Since K

is algebraically closed, v−1(0) is a divisible group and hence it is enough to know

that A has rank n over Q. We now turn to verifying this.

Let Ŵ′ be the graph obtained by taking the circuit of Ŵ and adding an unbounded

ray r j at each vertex v j . Let ι′ be the map from Ŵ′ into Qn , where ι′ restricted to the

circuit of Ŵ′ is ι and the slope of ι′(r j ) is (a1 j , a2 j , . . . , anj ). Then Ŵ′ and ι′ give a

zero-tension curve. By our assumption that Ŵ is ordinary, we know that ι′(Ŵ) is not

contained in any hyperplane. So, by Lemma 5.1, the slopes of the ι′(r j ) span Qn .

Since the slopes of the ι′(r j ) are the columns of A, this is the same as saying that

A has rank n.

So we deduce that A has full rank over Q and therefore we can choose u1, . . . , ur

such that
∏

z∈Y +
i

z/
∏

z∈Y −
i

z =
∏r

j=1 u
ai j

j for i = 1, . . . , n. This in turn allows us

to construct the desired curve C and desired map φ.

We conclude with an example of this construction.

Example 7.6. Consider the zero-tension curve of genus one shown in Figure 3,

where the map ι is simply an injection. We take all of the edges of the square to

have length 1. Then the universal cover, Ŵ̃, is as shown in Figure 4. We need to pick

q with v(q) = 4; we make the simple choice q = t4. We now cut the circuit of Ŵ at

the edge labeled e to produce the tree T . Set u0 = SpanO((1, 0), (0, 1)) and u1 =

Figure 3. An example of a curve of genus one.



990 David E. Speyer

...

...

Figure 4. The universal cover of our example.

SpanO((1, 0), (0, t4)). We take U = {u0, t0, t1, t2, t3, u1}. The reader is invited to

check that, indeed, [U ] is isometric to T and
[⋃∞

j=−∞q j (U \{u0, u1})
]
= [{tk}k∈Z]

is isometric to Ŵ̃. The points t0, t1, t2 and t3 of P1(K) correspond to the rays of Ŵ

with slopes (1, 1), (1, −1), (−1, −1) and (−1, 1), respectively.

We now need to choose the multisets Z+
1 , Z−

1 , Z+
2 and Z−

2 . First we pick subsets

Y ±
i of U :

Y +
1 = {t0, t1}, Y −

1 = {t2, t3},

Y +
2 = {t0, t3}, Y −

2 = {t1, t2}.

We then modify the Y ’s to produce the Y ’s. Specifically, we must multiply one of

the members of Y +
1 by q. We obtain

Y +
1 = {t4, t1}, Y −

1 = {t2, t3}, Y +
2 = {t0, t3}, Y −

2 = {t1, t2}.

This is the stage in the process where we would perturb the Y ’s to produce the Z ’s.

However, we got lucky this time — we already have
∏

z∈Y +
i

z =
∏

z∈Y −
i

z for i = 1, 2,

so no perturbation is necessary and we just take Z±
i = Y ±

i . So we take the curve C to

be K∗/t4 and we take the map φ to be given by u 7→
(
φ(u; Z+

1 , Z−
1 ), φ(u; Z+

2 , Z−
2 )

)
.

To be completely explicit,

u 7→

( 0∏

j=−∞

(1 − u/t4 j+4)(1 − u/t4 j+1)

(1 − u/t4 j+2)(1 − u/t4 j+3)

∞∏

j=1

(1 − t4 j+4/u)(1 − t4 j+1/u)

(1 − t4 j+2/u)(1 − t4 j+3/u)
,

0∏

j=−∞

(1 − u/t4 j )(1 − u/t4 j+3)

(1 − u/t4 j+1)(1 − u/t4 j+2)

∞∏

j=1

(1 − t4 j/u)(1 − t4 j+3/u)

(1 − t4 j+1/u)(1 − t4 j+2/u)

)
.

At this point, the reader may reasonably wonder how to extract an actual equation

for the curve C . This is basically a problem of implicitization, the recovery of the

equation of an algebraic variety from a parametric representation, but it is worse

than the usual implicitization problem because the parameterization is analytic,

not algebraic. This problem deserves study, which has been begun in [Sturmfels

and Yu 2008; Sturmfels et al. 2007]. We will describe here a straightforward but

unwieldy method. Let 6 denote the complete fan whose rays point in directions

(1, 1), (1, −1), (−1, −1) and (−1, 1). Then, by Proposition 1.2, the closure of
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φ(C) in11 X(6) is torically transverse and has cohomology class corresponding to

the linear relation (1, 1)+ (1, −1)+ (−1, −1)+ (−1, 1) = 0 between the rays of 6.

Thus, φ(C) obeys an equation of the form Px + Qy + R + Sx−1 + T y−1 = 0, for

some P , Q, R, S and T in K. Here we have written the coordinates on (K∗)2 as x

and y. In order to find P , Q, R, S and T , expand the infinite products for x and y

as Laurent series around u −1, and compare the coefficients of (u −1)k for k = −1,

0, 1, 2, 3. Note that this will express P , Q, R, S and T in terms of infinite sums.

There is no reason to expect a better result; our algorithm will usually produce

curves defined by equations whose coefficients are not algebraic functions of t .

8. Superabundant curves

In this section, we prove Theorem 3.4, which we restate for the reader’s convenience.

Theorem 3.4. Suppose that κ has characteristic zero.

Let (ι, Ŵ, m) be a zero-tension curve of genus one and degree δ. Suppose also

that (ι, Ŵ, m) is well spaced. Then there is a (punctured) genus-one curve C over K

and a map φ : C → T(K, N ) of degree δ such that ι(Ŵ) = Trop φ(C).

See the end of Section 3 for the definition of “well spaced”. We may as well

assume that ι(Ŵ) is not contained in any hyperplane, as otherwise the problem

reduces to constructing a map to a lower-dimensional torus.

For each nonnegative rational number R, let 1(R) be the subgraph of Ŵ consisting

of those points with distance less than or equal to R from the circuit of Ŵ. Let

H(R) be the affine linear space spanned by 1(R). Then H(R) is an increasing

chain of affine spaces which increases at a finite number of discrete indices. Let

n0, n1, . . . , ns = n be the dimensions of the various HR’s. (The last term is n,

because we are assuming that ι(Ŵ) is not contained in a hyperplane.) The reader may

find this section easier to follow under the simplifying assumption that ni = n0 + i .

Let m = n j for some j . Let Rm = max{R : dim H(R) ≤ m}; let 1m = 1(Rm)

and Hm = H(Rm). We will also occasionally need to refer to the open subset of

1m consisting of those points at distance strictly less than Rm from the circuit

of Ŵ; we denote this by 1−
m . We can make a change of basis in N such that Hm is

SpanQ(e1, e2, . . . , em).

By the arguments in the previous section, we can find Z±
1 , . . . , Z±

n , multisubsets

of P1(K), and q ∈ K∗, such that f ,q)ג) Z±
• )) = ι(Ŵ). We can use the perturbation

arguments of the preceding section to arrange that
∏

z∈Z+
i

z =
∏

z∈Z−
i

z for i =

1, . . . , n0. However, for i > n0, all we can conclude is that

v

( ∏

z∈Z+
i

z

)
= v

( ∏

z∈Z−
i

z

)
.

11Recall that X(6) is the toric variety associated to the fan 6.



992 David E. Speyer

The strategy of our proof will be to show, by induction on j , that we can arrange

for the equality
∏

z∈Z+
i

z =
∏

z∈Z−
i

z to hold for i ≤ n j .

The case where j = 0 and R0 = 0 needs to be handled slightly separately; so

we will provide the necessary modifications of the argument in that case in square

brackets, and address the rest of the proof to the case that R j > 0.

So, suppose that we have Z±
1 , . . . , Z±

n and q such that f ,q)ג) Z±
• )) = ι(Ŵ) and

such that
∏

z∈Z+
i

z =
∏

z∈Z−
i

z holds for i ≤ n j . From now on, we fix j ; we set

m = n j and m′ = n j+1. We introduce the notation U for the group of units u of O

such that v(u − 1) ≥ Rm . [When j = 0 and R0 = 0, take U to be the group of all

units of O; that is, v−1(0).]

Lemma 8.1. The abelian group U is divisible.

Proof. This is where we will use that κ has characteristic zero, and hence that

v(k) = 0 for every nonzero integer j . Let u ∈ U and let j be a nonzero integer.

Then, since K is algebraically closed, u has a j-th root in K, and even has a root

which lies in O and reduces to 1 in κ . (Proof — let u1, . . . , u j be the roots of z j −u

in K. Since jv(ui ) = v(u
j

i ) = v(u) = 0, we know that all of the ui are in O. Let

ui be the reduction of ui in κ . Then we have z j − 1 =
∏

(z − ui ) in κ , so by

unique factorization in κ[z], one of the ui reduces to 1 in κ .) So let (1 + π) j = u

with v(π) > 0. Then u = 1 + jπ + π2c where c ∈ O. As v( j) = 0, we have

v( jπ) < v(π2c), so v(u − 1) = v( jπ) = v(π) and we deduce that v(π) ≥ Rm , so

1 + π is in U as desired.

[When j = 0 and R0 = 0, we know that any unit of O has a j-th root in K since

K is algebraically closed. This j-th root must also have valuation zero.] �

Lemma 8.2. For each i between 1 and n, the ratio
∏

z∈Z+
i

z/
∏

z∈Z−
i

z is in U.

Proof. For i ≤ m, we have
∏

z∈Z+
i

z/
∏

z∈Z−
i

= 1, which is in U . So fix i > m.

Let T1, . . . , Tr be the components of Ŵ \ 1−
m . We note that, for each k, we

have |Z+
i ∩ Tk | = |Z−

i ∩ Tk |. This is because, by the zero-tension condition,

|Z+
i ∩ Tk | − |Z−

i ∩ Tk | is the i-th component of the edge of 1m pointing inward

from Tk . Since this is an edge of 1m , that component is zero. So we can pair off

the elements of Z+
i ∩ TK with those of Z−

i ∩ Tk . In each pair (z+, z−), we have

v(z+/z− − 1) = v(c(z+, ∞; z−, 0) − 1), which is at least Rm by Proposition 4.2.

Then
∏

z∈Z+
i

z/
∏

z∈Z−
i

z is a product of ratios which are in U , and hence is itself

in U as we claimed.

[When j = 0 and R j = 0, we can’t talk about 1−
m . Rather, let 1− be the interiors

of the edges of the loop, so Ŵ \ 1− is a forest with one connected component for

each vertex of the loop. Define T1, T2, . . . , Tr to be the connected components of

this forest. This time, |Z+
i ∩ Tk | − |Z−

i ∩ Tk | is the sum of the i-th components of

the two edges of the loop incident to Ti . As before, these edges are in the loop, so
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the i-th components are zero. |Z+
i ∩ Tk | = |Z−

i ∩ Tk | follows as before, and the rest

of the proof does as well.] �

We introduce the notation wi for
∏

z∈Z+
i

z/
∏

z∈Z−
i

z, which we have just shown

to be in U . When 1 ≤ i ≤ m, then wi is simply 1.

Let e1, . . . , ep be the edges of Ŵ which are not in 1m , but which have endpoints

that are in 1m . Let s1, . . . , sp be the slopes of these edges, directed away from 1m .

We write the components of sk as (s1
k , . . . , sn

k ).

Lemma 8.3. There exist scalars a1, . . . , ap ∈ Q such that
∑

ai si = 0 and such that

if eg and eh are distinct edges with the same endpoint, then ag 6= ah .

Proof. Let ti be the image of si in Qn/Hm . We first show that we can find b1, . . . , bp

obeying the required inequalities with
∑

bi ti = 0. Let L ⊂ Qp be the space of

p-tuples of rational numbers (b1, . . . , bp) such that
∑

bi ti = 0. We want to show

that L has a point which is not in the union of the hyperplanes bg = bh , where

(g, h) ranges over pairs of indices such that eg and eh share an endpoint. Since

L is a linear space, we just need to show that L is not contained in any of these

hyperplanes.

Let eg and eh share the endpoint x , which is necessarily a boundary vertex

of Ŵm . Suppose for the sake of contradiction that L is contained in the hyperplane

ag = ah . Then in particular, L does not contain any point with bg = 0 and bh = 1.

This means that th is not in the span of {ti }i 6=g,h . Equivalently, sh is not in V :=

Hm + Span({si }i 6=g,h). Let K be a hyperplane in Qn which contains V and does

not contain sh . Then x is at distance Rm from the loop of Ŵ, while every other

boundary vertex of Ŵ ∩ ι−1(K ) is farther away, contradicting our hypothesis that Ŵ

is well spaced. This contradiction shows that we can find the required bi .

So, now we have (b1, . . . , bp) obeying the required inequalities with
∑

bi si

in Hm . Let x1, . . . , xr be the boundary vertices of 1m and let uk be the slope of

the edge of 1m pointing inward from xk . Then, by Lemma 5.1, the uk span Hm .

Let
∑

bi si =
∑

ckuk . Now, by the zero-tension condition, uk = −
∑

ei ∋xk
si . So

we have
∑p

i=1bi si +
∑r

k=1ck

∑
xk∋ei

si = 0. We regroup this expression and take the

coefficient of si to be our ai . If eg and eh share the endpoint xk , then the coefficients

of sg and sh in this expression are bg + ck and bh + ck . Since bg 6= bh , we also have

bg + ck 6= bh + ck and we have achieved the goal. �

Our strategy will be to choose u1, . . . , u p ∈ U and, for each Z±
i , multiply those

elements of Z±
i which lie in the component of Ŵ \ 1m containing ek by uk . This

will have the effect of multiplying wi by

vi :=

p∏

k=1

u
si

k

k .



994 David E. Speyer

We need to achieve two things: make the new values of wi be 1 for i ≤ m′, and

preserve the condition f (ג) = ι(Ŵ).

Now, by Lemma 5.1 applied to 1(Rm + ǫ) for some small ǫ, we know that the

s j span H(Rm′). Since U is a divisible group, this means that we can arrange to

make vi (above) assume any value that we want for 1 ≤ i ≤ m′. In particular, we

can make w1 = w2 = · · · = wm′ = 1. The trouble is that we might no longer have

ג ∼= Ŵ. Now, multiplication by an element of U will fix all of the points of 1m and

will move each component of Ŵ \1m by an isomorphism. Our only fear is that two

of these components which are connected to 1m at the same vertex, say x , will

swing so that the edges at which they attach to x , say ec and ed , overlap for some

length.

Let (a1, . . . , aq) ∈ Qq be the vector found in Lemma 8.3. Assume that we have

arranged for wi to be 1 for i = 1, 2, . . . , n j+1. Now choose some u ∈ U . For

each Z±
i , take those elements of Z which lie in the component of Ŵ\1m containing

ek and multiply them by uak . This will multiply wi by uE where E =
∑

aksi
k = 0;

in other words, it will not change wi . So this will not break our achievement of

making the wi = 1 (for i = 1, . . . , m′.) Also, if ec and ed share an end point x , then

the components of Ŵ \1m containing ec and ed will be multiplied by uac and uad

respectively, two different scalars, and so, for generic u ∈ U , they will not overlap.

We have now completed the inductive step, showing how to make wi equal to 1

for i ≤ n j+1. Continuing in this manner, we will eventually have all the wi equal

to 1, and thus the map φ will be well defined. At that point, we will have a curve C

and a map φ with Trop φ(C) = ι(Ŵ) as desired.

9. The necessity of well-spacedness and the j -invariant

We have been studying genus-one curves over C by identifying them with Tate

curves. It is therefore natural to ask to what extent we may assume that a genus-one

curve over K is a Tate curve.

Theorem 9.1. Let C be a genus-one curve over K and C its projective completion.

Let j be the j-invariant of C. Let C be the extension of (C, C \ C) to a flat family

of stable curves with marked points over O. Then the following are equivalent:

(1) C can be expressed as a Tate curve for some q ∈ K∗ with v(q) > 0.

(2) v( j) < 0.

(3) The fiber of C over Spec κ is a union of genus-zero curves.

Moreover, if these equivalent conditions hold, we have v(q) = −v( j).

Proof. The equivalence of (1) and (2) is [Roquette 1970, Section 3, Statement

VIIIa]. (Observe that Roquette’s conditions (i) and (iii) are automatic when K

is algebraically closed, the latter because the Hasse invariant lives in the group
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K∗/(K∗)2, which is trivial for K algebraically closed.) If N is the number of points

in C \C , then C gives a map from Spec(O) to the moduli space of stable genus-one

curves with N marked points. Forgetting all but one of the points, we get a map to

the moduli space of stable genus-one curves with one marked point. This moduli

space is a copy of the projective line, commonly known as the j-line. Condition

(3) is equivalent to saying that this map sends Spec κ to the point at infinity on the

j-line, which is exactly what condition (2) says. We have v( j) = −v(q) because

j = q−1 +
∑∞

i=0 ci q
i , where each ci is an integer and hence has nonnegative

valuation. �

Combining the above with the second paragraph of Theorem 3.1, we see that if

(φ, C) is trivalent and Trop φ(C) has first Betti number one, then C is a Tate

curve. In this case, we can show that the condition that Trop φ(C) be well

spaced is necessary, and that the length of the loop of Trop φ(C) is necessar-

ily −v( j). Recall that every nonzero meromorphic function φ on a Tate curve

is of the form a
∏m

i=1

(
2(u/z+

i )/2(u/z−
i )

)
for some Z+ = {z+

1 , . . . , z+
m} and

Z− = {z−
1 , . . . , z−

m} ⊂ K∗ with
∏

z+
i =

∏
z−

i .

Proposition 9.2. Let (φ, C) be a trivalent tropical curve of genus one and (ι, Ŵ, m)

a zero-tension curve parameterizing Trop φ(C), with b1(Ŵ) = 1 and ι injective on Ŵ.

Then the length of the loop of Ŵ is −v( j (C)), where j (C) is the j-invariant of C.

Now suppose that κ has characteristic zero. Then (ι, Ŵ, m) is well spaced.

The idea that the length of the circuit of Ŵ is the tropical analogue of the j-

invariant was suggested in [Mikhalkin 2006] and pursued in [Kerber and Markwig

2009]. E. Katz and H. and T. Markwig have proven that the length of the circuit of

Ŵ is the j-invariant of a trivalent curve for tropicalizations of cubic curves in P2.

Proof. Our hypotheses are enough to ensure that C is a Tate curve K∗/qZ for some q

and that the map φ :C →(K∗)n is given by u 7→
(
φ(u; Z+

1 , Z−
1 ), . . . , φ(u; Z+

n , Z−
n )

)

for some Z±
1 , . . . , Z±

n .

By our combinatorial construction of ,q)ג Z±
• ), the length of the loop of ג is

v(q) = −v( j (C)). Lemma 5.2 ensures that f is injective, and thus the loop of ג

and the loop of Ŵ have the same length.

Now, assume that κ has characteristic zero and (for the sake of contradiction)

that (ι, Ŵ, m) is not well spaced. After a change of coordinates, we may assume that

H is the n-th coordinate hyperplane. Assume for the sake of contradiction that x is

the boundary vertex of Ŵ ∩ H which is closest to the loop of Ŵ, and let R denote

the distance from x to the loop of Ŵ. Then x is trivalent by hypothesis. One of the

edges of x is between x and the loop of Ŵ; this edge is contained in H , so its n-th

component is 0. Let the n-th components of the other two edges be a and −a for

some positive integer a. Let {z+
1 , . . . , z+

a } and {z−
1 , . . . , z−

a } be the elements of Z+
n

and Z−
n respectively which are beyond these edges. Then we have v(z+

i /z+
j −1)> R
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for any indices i and j from 1 to a and similarly v(z−
i /z−

j − 1) > R. On the other

hand, v(z+
i /z−

j − 1) = R. So

a∏

i=1

(z+
i /z−

i ) = (z+
1 /z−

1 )a(1 + t Rc)

for some c with v(c) > 0 and thus v
(∏a

i=1(z
+
i /z−

i )− 1
)
= R. We have used that κ

has characteristic zero to deduce that if v(u − 1) > 0, then v(ua − 1) = v(u − 1).

Pair off the elements of Z+
n \ {z+

1 , . . . , z+
a } with elements of Z−

n \ {z−
1 , . . . , z−

a }

that lie in the same component of Ŵ\(H ∩Ŵ); this is possible by the same argument

as in the proof of Lemma 8.2. We write the pairs as (z+
i , z−

i ) for i > a. Then

in each pair (z+, z−), we have v(z+/z− − 1) > R. But we are supposed to have∏
z∈Z+

n
z/

∏
z∈Z−

n
z = 1, so

∏a
i=1(z

+
i /z−

i ) =
(∏

i>a(z
+
i /z−

i )
)−1

. Then the left-hand

side differs from 1 by an element of valuation R while the right-hand side differs

from 1 by an element of valuation greater than R, a contradiction. �
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