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Abstract. We develop high-resolution shock-capturing numerical schemes for hyperbolic sys-
tems with relaxation. In such systems the relaxation time may vary from order-1 to much less than
unity. When the relaxation time is small, the relaxation term becomes very strong and highly stiff,
and underresolved numerical schemes may produce spurious results. Usually one cannot decouple
the problem into separate regimes and handle different regimes with different methods. Thus it is
important to have a scheme that works uniformly with respect to the relaxation time. Using the
Broadwell model of the nonlinear Boltzmann equation we develop a second-order scheme that works
effectively, with a fixed spatial and temporal discretization, for all ranges of the mean free path.
Formal uniform consistency proof for a first-order scheme and numerical convergence proof for the
second-order scheme are also presented. We also make numerical comparisons of the new scheme with
some other schemes. This study is motivated by the reentry problem in hypersonic computations.
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1. Introduction. Hyperbolic systems with relaxation are used to describe many
physical problems that involve both convection and nonlinear interaction. In the
Boltzmann equation from the kinetic theory of rarefied gas dynamics, the collision (re-
laxation) terms describe the interaction of particles. In viscoelasticity, memory effects
are modeled as relaxation. Relaxation occurs in water waves when the gravitational
force balances the frictional force of the riverbed. For gas in thermal nonequilibrium
the internal state variable satisfies a rate equation that measures a departure of the
system from the local equilibrium. Relaxations also occur in other problems ranging
from magnetohydrodynamics to traffic flow.

In such systems, when the nonlinear interactions are strong, the relaxation rate
is large. In kinetic theory, for example, this occurs when the mean free path between
collisions is small (i.e., the Knudsen number is small). Within this regime, which
is referred to as the fluid dynamic limit, the gas flow is well described by the Euler
or Navier–Stokes equations of fluid mechanics, except in shock layers and boundary
layers. The characteristic length scale of the kinetic description of the gas is the micro-
scopic, collision distance; in the fluid dynamic limit it is replaced by the macroscopic
length scale of fluid dynamics. By analogy with the kinetic theory, we shall refer to
the limit of large relaxation rate (or small relaxation time) for a general hyperbolic
system with relaxation as the fluid dynamic limit.

The fluid dynamic limit is challenging for numerical methods, because in this
regime the relaxation terms become stiff. In particular, a standard numerical scheme
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might fail to give physically correct solutions once the (microscopic) relaxation dis-
tance is much smaller than the spatial discretization. Although a full simulation of
the relaxation process would require a very fine (and expensive) discretization, it may
be possible to accurately compute the solution on a coarser fluid dynamic length scale.
The goal of this paper is to present a class of numerical methods that work with uni-
form accuracy from the rarefied regime to the fluid dynamic limit for the Broadwell
model of kinetic theory.

Numerical methods for hyperbolic systems with relaxation terms have attracted
a lot of attention in recent years [7], [23], [24], [16], [17]. Studying the numerical
behavior for these problems is important not only for the physical applications but
also for the development of new numerical methods for conservation laws, such as
kinetic schemes [15], [8], [25] and relaxation schemes [18]. Most kinetic or relaxation
schemes can be described as fractional step methods, in which the collision step is
just a projection of the system into a sort of discrete “local Maxwellian” or local
equilibrium. Although the goal of a kinetic scheme or relaxation scheme is different
from ours, nevertheless we use them as guidelines for the study of the properties of a
numerical scheme near the fluid dynamic regime.

In earlier works on the system of hyperbolic equations with relaxation, the goal
was to develop robust numerical schemes that handle the stiffness of the problem
effectively and avoid spurious numerical solutions when the grid spacing underresolves
the small relaxation time. In regions where the relaxation time is no longer small and
the problem becomes nonstiff, however, these schemes usually may not have high-order
accuracy uniformly with respect to the wide range of the relaxation time.

Our motivation differs from these earlier approaches in that we seek to develop
robust numerical schemes that work uniformly for a wide range of relaxation rates.
We consider a simpler model of the Boltzmann equation, and we derive a numerical
scheme which is of second order uniformly in the mean free path. This is motivated
by hypersonic computations of reentry problems. The new scheme we introduce here,
called NSPIF, is able to handle all different regimes from the rarefied gas to the fluid
limit (the stiff regime) with fixed spatial and temporal grids that are independent of
the mean free path. Although we develop our method based on the Broadwell model,
this scheme can be applied to a much wider class of hyperbolic systems with relaxation
terms and to other discrete velocity kinetic models. In particular, it applies to a class
of hyperbolic systems with relaxation characterized by Liu [22] and Chen, Levermore,
and Liu [5].

Probably the paper that is closest in spirit to our work is the one by Coron and
Perthame [7]. In that paper the authors derive a numerical scheme for solving the
BGK model of the Boltzmann equation under a wide range of mean free path. They
discretize velocity space and use a splitting scheme. The collision step is treated
by a semi-implicit method that guarantees positivity and entropy condition for the
time-discrete model. The scheme is first-order accurate in space and time.

Development of numerical methods for the problems considered here is consid-
erably aided by knowledge of the equations for the fluid dynamic limit. In other
stiff source problems, such as those arising in reacting flow computations, the corre-
sponding limit may be less well understood, and extra efforts are necessary to develop
underresolved numerical methods [6], [21], [9], [23].

The outline of the paper is as follows. In the next section we present the Broad-
well model and its fluid dynamic limit. Section 3 deals with the treatment of the
convective step. Upwind methods and flux limiters are briefly recalled. Sections 4–
7 are devoted to the development and analysis of a second-order scheme (in space
and time) called NSP. In section 4, the scheme is derived making use of truncation



248 R. E. CAFLISCH, S. JIN, AND G. RUSSO

analysis, and in the following section the linear stability of this scheme is studied.
In section 6 the Richardson extrapolation is used for the first time step in order to
guarantee second-order accuracy even in presence of an initial layer. The NSP com-
bined with this initial step is called the NSPIF. In section 7 the fluid dynamic limit
of the NSPIF is derived. In section 8 we study a first-order splitting scheme (called
the SP1). Important properties, such as positivity and entropy inequality, are proved
for the scheme. The main result in this section is a uniformly (in the relaxation time)
first-order consistency error estimate. Our analysis is based on the assumption of
smoothness of the solution. To the best of our knowledge this is the first estimate
on numerical methods for hyperbolic systems with stiff relaxation terms, even for
smooth solutions. Also, the uniformly first-order accuracy sharpens earlier work in
this direction [14]. Estimates on nonsmooth solutions or on higher order methods for
such inhomogeneous hyperbolic systems would require more advanced analytic tech-
niques and are beyond the scope of this paper. In the last section we present some
numerical results which show that NSPIF overperforms several other approaches and
always gives second-order physical solutions over a wide range of the mean free path.

2. The Broadwell model. A simple discrete velocity kinetic model for a gas
was introduced by Broadwell [2]. It describes a two-dimensional (2-D) (3-D) gas as
composed of particles of only four (six) velocities with a binary collision law and spatial
variation in only one direction. When looking for one-dimensional (1-D) solutions of
the 2-D gas, the evolution equations of the model are given by

∂tf + ∂xf =
1

ε
(h2 − fg),

∂th = −
1

ε
(h2 − fg),(2.1)

∂tg − ∂xg =
1

ε
(h2 − fg),

where ε is the mean free path, f , h, and g denote the mass densities of gas particles
with speed 1, 0, and −1, respectively, in space x and time t. Similar equations are
obtained for 1-D solutions of a 3-D gas [3].

The fluid dynamic moment variables are density ρ, momentum m, and velocity u
defined by

ρ = f + 2h + g, m = f − g, u =
m

ρ
.(2.2)

In addition, define

z = f + g.(2.3)

Then the Broadwell equations can be rewritten as

∂tρ + ∂xm = 0,(2.4)

∂tm + ∂xz = 0,(2.5)

∂tz + ∂xm =
1

2ε
(ρ2 + m2 − 2ρz).(2.6)

Note that if the fluid variables ρ,m, and z are known then f, g, and h can be recovered
from (2.2) and (2.3) as

f =
1

2
(z + m), g =

1

2
(z − m), h =

1

2
(ρ − z).
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A local Maxwellian is a density function that satisfies

Q(f, h, g) = h2 − fg = ρ2 + m2 − 2ρz = 0,(2.7)

i.e.,

z = zE(ρ,m) ≡
1

2ρ
(ρ2 + m2) =

1

2
(ρ + ρu2).(2.8)

As ε → 0 equation (2.1) or (2.6) gives the local Maxwellian distribution (2.8). Apply-
ing (2.8) in (2.5), one gets the fluid dynamic limit described by the following model
Euler equations:

∂tρ + ∂x(ρu) = 0,
(2.9)

∂t(ρu) + ∂x

(

1

2
(ρ + ρu2)

)

= 0.

To the next order, a model Navier–Stokes equation can be derived via the Chapman–
Enskog expansion [4]. For a description of the Broadwell model and its fluid dynamic
limit see, for example, [3] and [13].

Previously the numerical solution of the Broadwell equations has been considered
by several authors [10, 12, 1]. In these earlier works the attention was focused on
developing methods that work in the rarefied regime ǫ = O(1). Many of these methods
will have problems when ǫ → 0. Among the problems that arose in the fluid regimes
are numerical instability, poor shock, and rarefaction resolutions and even spurious
numerical solutions. See the numerical examples in section 9.

The Broadwell equations are a prototypical example for more general hyperbolic
systems with relaxations in the sense of Whitham [29] and Liu [22]. These problems
can be described mathematically by the system of evolutional equations

∂tU + ∂xF (U) = −
1

ε
R(U), U ∈ RN .(2.10)

We will call this system the relaxation system. Here we use the term relaxation in the
sense of Whitham [29] and Liu [22]. The relaxation term is endowed with an n × N
constant matrix Q with rank n < N such that

QR(U) = 0 for all U.(2.11)

This yields n independent conserved quantities v = QU . In addition we assume
that each such v uniquely determines a local equilibrium value U = E(v) satisfying
R(E(v)) = 0 and such that

QE(v) = v for all v.(2.12)

The image of E then constitutes the manifold of local equilibria of R.
Associated with Q are n local conservation laws satisfied by every solution of

(2.10) that take the form

∂t(QU) + ∂x(QF (U)) = 0.(2.13)

These can be closed as a reduced system for v = QU if we take the local relaxation
approximation

U = E(v),(2.14)
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∂tv + ∂xe(v) = 0,(2.15)

where the reduced flux e is defined by

e(v) ≡ QF (E(v)).(2.16)

A system of conservation laws with relaxation is stiff when ε is small compared with
the time scale determined by the characteristic speeds of the system and some ap-
propriate length scales. While we mainly concentrate on the Broadwell equation, the
analysis as well as the numerical schemes can certainly be applied to this class of
relaxation problems. In fact from time to time we will use the general equation (2.10)
to simplify the notation.

3. The discretizations of the convection terms. We introduce the spatial
grid points xj+ 1

2
, j = · · · ,−1, 0, 1, · · · with uniform mesh spacing ∆x = xj+ 1

2
− xj− 1

2

for all j. The time level t0, t1, · · · are also spaced uniformly with space step ∆t =
tn+1 − tn for n = 0, 1, 2, · · ·. Here the assumption of a uniform grid is only for
simplicity. We use Un

j to denote the cell average of U in the cell [xj− 1
2
, xj+ 1

2
] at time

tn,

Un
j =

1

∆x

∫ x
j+ 1

2

x
j−

1
2

U(tn, x) dx.(3.1)

We use the method of lines, in which the time discretization and spatial discretiza-
tion are taken separately, for the Broadwell equations. In this section we shall discuss
the spatial discretization, which concerns the linear convection terms. Note that the
linear convection in the Broadwell equation is of hyperbolic type. Thus it is natural
to use upwind schemes.

A conservative spatial discretization to the Broadwell equations (2.4)–(2.6) is

∂tρj +
mj+ 1

2
− mj− 1

2

∆x
= 0,(3.2)

∂tmj +
zj+ 1

2
− zj− 1

2

∆x
= 0,(3.3)

∂tzj +
mj+ 1

2
− mj− 1

2

∆x
=

1

2ε
(ρ2

j + m2
j − 2ρjzj).(3.4)

Equations (3.2)–(3.4) can be diagonalized into

∂tfj +
fj+ 1

2
− fj− 1

2

∆x
=

1

ε
(h2

j − fjgj),

∂thj = −
1

ε
(h2

j − fjgj),(3.5)

∂tgj −
gj+ 1

2
− gj− 1

2

∆x
=

1

ε
(h2

j − fjgj),

where f , h, and g are exactly the original density functions for the Broadwell equa-
tion. The connection between (3.4) and (3.5) is established through the definition of
the fluid moment variables (2.2), (2.3). Since f and g travel along the constant char-
acteristics with speeds 1 and −1, respectively, upwind schemes can be easily applied
to them.
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3.1. The upwind scheme. The upwind scheme applied to f and g gives

fj+ 1
2

= fj , gj+ 1
2

= gj+1(3.6)

while hj is constant. This implies

(z + m)j+ 1
2

= (z + m)j , (z − m)j+ 1
2

= (z − m)j+1,(3.7)

or equivalently in fluid moment variables

mj+ 1
2

=
mj+1 + mj

2
−

zj+1 − zj

2
,

(3.8)

zj+ 1
2

=
zj+1 + zj

2
−

mj+1 − mj

2
.

Applying (3.8) in (3.3) gives the semidiscrete upwind scheme for the convection
step

∂tρj +
mj+1 − mj−1

2∆x
−

zj+1 − 2zj + zj−1

2∆x
= 0,

∂tmj +
zj+1 − zj−1

2∆x
−

mj+1 − 2mj + mj−1

2∆x
= 0,(3.9)

∂tzj +
mj+1 − mj−1

2∆x
−

zj+1 − 2zj + zj−1

2∆x
=

1

2ε
(ρ2

j + m2
j − 2ρjzj).

3.2. van Leer’s MUSCL scheme. A second-order extension of the upwind
scheme is van Leer’s MUSCL scheme [28]. While the upwind scheme uses piecewise
constant interpolation (3.6), the MUSCL uses piecewise linear interpolation along
with slope limiters to eliminate numerical oscillations at discontinuities. Applying
MUSCL to the Riemann invariants f and g, respectively, we obtain

fj+ 1
2

= fj +
1

2
∆xσ+

j , gj+ 1
2

= gj+1 −
1

2
∆xσ−

j+1.(3.10)

Here σ+
j and σ−

j are the slope of f and g on the jth cell, respectively. For w+ =

f, w− = g, σ± are defined by [20]

σ±
j =

1

∆x
(w±

j+1 − w±
j )φ(θ±

j ), θ±
j =

w±
j − w±

j−1

w±
j+1 − w±

j

,(3.11)

and the slope limit function φ(θ) by van Leer is

φ(θ) =
|θ| + θ

1 + |θ|
.(3.12)

With this limiter the MUSCL scheme is total variation diminishing (TVD). Rewriting
(3.10) in the fluid moment variables gives

mj+ 1
2

=
mj+1 + mj

2
−

zj+1 − zj

2
+

∆x

4
(σ+

j + σ−
j+1),(3.13)

zj+ 1
2

=
zj+1 + zj

2
−

mj+1 − mj

2
+

∆x

4
(σ+

j − σ−
j+1).(3.14)
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Applying (3.13), (3.14) in (3.3) finally gives

∂tρj +
mj+1 − mj−1

2∆x
−

zj+1 − 2zj + zj−1

2∆x

+
∆x

4
(σ+

j + σ−
j+1 − σ+

j−1 − σ−
j ) = 0,

∂tmj +
zj+1 − zj−1

2∆x
−

mj+1 − 2mj + mj−1

2∆x

+
∆x

4
(σ+

j − σ−
j+1 − σ+

j−1 + σ−
j ) = 0,(3.15)

∂tzj +
mj+1 − mj−1

2∆x
−

zj+1 − 2zj + zj−1

2∆x
(3.16)

+
∆x

4
(σ+

j + σ−
j+1 − σ+

j−1 − σ−
j ) =

1

2ε
(ρ2

j + m2
j − 2ρjzj).

4. A uniformly second-order time discretization. In this and in the next
three sections we develop a second-order scheme, uniformly accurate in the relaxation
parameter, and study its properties. Since our goal is to seek a robust scheme that
works uniformly for all range of ε, it is essential that the time discretization is stable
for every ε. This is especially important near the fluid regime where the mean free
path is small and the problem becomes stiff.

Uniformly numerical stability can be achieved with implicit temporal integrators.
Since stiffness appears only through the relaxation term, it is natural to keep the
convection terms explicit, while the collision step has to be treated implicitly.

Numerical experience for such relaxation problems shows that this problem is
not merely a numerical stability problem. Stable numerical discretization may still
produce spurious solutions [23], [24], [16]. For example, the Crank–Nicolson scheme

zn+1
j = zn

j +
∆t

2ε
[(ρn

j )2 + (mn
j )2 − ρn

j (zn
j + zn+1

j )],(4.1)

coupled with the free-streaming convection with ∆x = ∆t gives a scheme that is
stable independent of ε but does not have the correct fluid limit.

Previous results [16] demonstrate that an effective condition for the correct nu-
merical behavior near the fluid regime is that the numerical scheme should possess
the correct fluid limit, in the sense that a discrete analogue of the Chapman–Enskog
expansion for the continuous equations remains valid for the numerical discretization,
and the resulting numerical fluid limit should be a good discretization for the model
Euler limit. A sufficient condition to achieve this is that the collision step always
projects the nonequilibrium data into a local Maxwellian at every time step.

We now show how to construct a uniformly second-order scheme. The basic idea
is to combine a high-order convection step with an implicit collision step according to
the following guidelines:

(i) Truncation error analysis is used to obtain second-order accuracy in the rarefied
regime (ε = O(1)).

(ii) The collision step is well posed ∀ε > 0, and it relaxes the system to a local
Maxwellian as ε → 0.

(iii) The scheme should be unconditionally stable in the collision step.
(iv) Check that the limit scheme obtained as ε → 0 is a second-order scheme for

the model Euler equations when ε = 0.
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It is possible to show that if condition (ii) is not satisfied, then the scheme may
give the wrong behavior in the fluid dynamic limit (this is the case, for example, of
the scheme in [10]).

Such a splitting scheme, applied to system (2.10), can be written in the form

U1 = Un − α
∆t

ε
R(U1),(4.2)

U2 = U1 − α̃∆tDF (U1),(4.3)

U3 = U2 − β
∆t

ε
R(U3) − γ

∆t

ε
R(U1),(4.4)

U4 = U3 − β̃∆tDF (U3),(4.5)

U5 = ξUn + ηU4,(4.6)

Un+1 = U5 − µ
∆t

ε
R(Un+1),(4.7)

where D denotes a discrete approximation of the convection operator, such as the
simple upwind or a second-order (or higher) MUSCL scheme. We assume that D is at
least second-order accurate, so that the splitting scheme will be second-order accurate
both in space and time.

The scheme is a fractional step combination of convection and collision steps. The
parameters α, β, γ, µ, α̃, β̃, ξ, η will be determined by conditions (i)–(iii).

Roughly speaking, this splitting scheme mimics the asymptotic process that leads
from the Broadwell equations to the model Euler equations. At t = t(1), the stiff
source solver gives R(U1) ≈ 0, which is the local Maxwellian. Applying it to the
next convection step t = t(2) should give a numerical flux that approximates the flux
for the model Euler equation. Similar behavior occurs at t = t(3) and t(4). The last
step gives R(Un+1) ≈ 0, guaranteeing the correct local Maxwellian at t = tn+1. The
above steps are combined in a second-order way, aiming at a scheme with uniform
second-order accuracy.

In order to satisfy condition (i) we apply the scheme to the linear system

∂tU + AU + BU = 0,(4.8)

where A and B are constant matrices. The exact solution of (4.8) at time t = ∆t is
given by

U(∆t) = e−(A+B)∆tU(0).

Apply scheme (4.2)–(4.7) to (4.8) and write the difference equation in the compact
form

Un+1 = CUn.(4.9)

To achieve a second-order accuracy we impose that

(C(∆t) − e−(A+B)∆t)U(0) = O(∆t3),

then the following restrictions on the parameters should be satisfied:
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ξ + η = 1,

η(α̃ + β̃) = 1,

η(α + β + γ) + µ(ξ + η) = 1,

2ηα̃β̃ = 1,(4.10)

2η(αα̃ + αβ̃ + β̃γ + β̃β) = 1,

2η(α̃β + µα̃ + µβ̃) = 1,

2η(α2 + αγ + αβ + βγ + β2) + 2µη(α + β + γ) + 2(ξ + η)µ2 = 1.

This is a system of seven algebraic equations with eight unknowns. The system can
be explicitly solved by expressing all the parameters as a function of µ. The solution
is given by

α = 0, β =
2µ − 1

2(µ − 1)
, γ = −

2µ2 − 2µ + 1

2µ(µ − 1)
,

α̃ =
1

2µ
, β̃ = −

1

2(µ − 1)
, ξ = 2µ2 − 2µ + 1, η = −2µ(µ − 1).

We shall use this freedom to satisfy the second condition (ii). When applying the
scheme to the Broadwell model, the collision step (4.2) becomes

z1 =
zn + α(∆t/2ε)(ρ2

1 + m2
1)

1 + α(∆t/ε)ρ1
.

Therefore, for positive data both numerator and denominator are positive provided
α ≥ 0. The same property holds for step (4.7), provided µ ≥ 0.

Step (4.4) becomes

z3 =
z2 + β(∆t/2ε)(ρ2

2 + m2
2) + γ(∆t/2ε)(ρ2

1 + m2
1 − 2ρ1z1)

1 + β(∆t/ε)ρ2
.

The denominator is positive for positive data provided β ≥ 0. We therefore look for
a solution of equations (4.10) that also satisfies the restrictions

α ≥ 0, β > 0, µ > 0.(4.11)

A set of parameters satisfying equations (4.10) and the conditions (4.11) is given
by

ξ =
5

9
, η =

4

9
, α = 0, µ =

1

3
, β =

1

4
, γ =

5

4
, α̃ =

3

2
, β̃ =

3

4
.(4.12)

Linear stability analysis of the scheme is performed in the next section. The
fluid dynamical limit of the scheme, which is required to meet condition (iv), will be
studied in section 7.

The construction of the time discretization that combines the convection and the
relaxation term is similar in spirit to the time discretizations used in [9] and [16].
Both time discretizations of [9] and [16] have negative parameters in the implicit
terms which may cause numerical breakdown in the intermediate regime ∆t = O(ε).

Finally, our new second-order scheme (abbreviated as NSP) for the Broadwell
equation (2.4)–(2.6) is (3.3)–(3.7), where R stands for the source term, DF is the
MUSCL flux (3.13) and (3.14) and the coefficients given in (4.12).
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5. Stability analysis. In this section we study the stability of scheme (4.2)–
(4.7) applied to (4.8). The main result of this section is summarized in Proposition
5.2, which states that under a certain condition on the explicit step the scheme is
unconditionally stable in the implicit step.

We interpret U as a complex function and A, B as complex numbers with positive
real part. Equation (4.9) becomes

Un+1 = P (z1, z2)U
n,(5.1)

where z1 = A∆t, z2 = B∆t, and P is a rational function of z1 and z2:

P =
P0(z1) + a(1 − z1)z2

(1 + µz2)(1 + bz2)

with P0(z1) = 1 − z1 + z2
1/2, a = µ − 1/(2 − 2µ), b = (1 − 2µ)/(2 − 2µ). The stability

region associated to scheme (5.1) is the set S ⊂ C2 : S = {(z1, z2) : |P (z1, z2)| ≤ 1}.
For B = 0 the scheme is a second-order explicit scheme for the equation

Ut + AU = 0,(5.2)

and for A = 0 the scheme is a second-order implicit scheme for the equation

Ut + BU = 0.(5.3)

We now show that for A = 0 the scheme is an A-stable scheme for the equation (5.3),
provided 0 < µ < 1/2.

It is

PB(z2) ≡ P (0, z2) =
1 + az2

(1 + µz2)(1 + bz2)
.

The scheme is A-stable if the stability region

SB = {z2 ∈ C : |P (0, z2)| < 1}

contains the complex half plane C+ ≡ {z ∈ C : ℜ(z) > 0}. We express the stability
result relative to (5.3) in the following proposition.

PROPOSITION 5.1. If 0 < µ < 1/2 then scheme (4.2)–(4.7) is an L-stable scheme

for equation (5.3).
Proof. First observe that if 0 < µ < 1/2, then PB(z2) has two real negative poles;

therefore it is analytic in the whole half plane ℜ(z2) ≥ 0. By the maximum principle
of analytic functions, it follows that the maximum of |PB(z2)| on any region Ω ⊆ C
lies on the boundary of Ω. Because limz2→∞ PB(z2) = 0, it follows that the maximum
of |PB(z2)|, z2 ∈ C+, lies on the imaginary axis. It is therefore enough to prove that
|PB(iy)| ≤ 1 ∀y ∈ R. It is

|PB(iy)|2 − 1 = −
µ2b2y4

(1 + µ2y2)(1 + b2y2)
,

and therefore |PB(z2)| ≤ 1 ∀z2 ∈ C+. This proves that the scheme is A-stable.
Moreover, it is limz2→∞ PB(z2) = 0, and therefore the scheme is L-stable.
Now we set B = 0 and study the stability properties of the explicit scheme for

the equation

Ut + AU = 0.
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We have

P (z1, 0) = P0(z1) = 1 − z1 +
1

2
z2
1 ;

therefore there is no dependence on µ. The stability region for z1 is defined as

SA = {z1 ∈ C : |P (z1, 0)| ≤ 1}.

It is convenient to write z1 = 1 + ρeiθ. Then it is P (z1, 0) = (1 + ρ2e2iθ)/2. The
boundary of the stability region is obtained by the equation |P (z1, 0)|2 = 1, which
gives

ρ4 + 2ρ2 cos 2θ − 3 = 0,

and therefore the two branches of the boundary are given by

ρ± = ±

√

− cos 2θ +
√

cos2 2θ + 3, θ ∈ [0, π).

Now we consider the general problem with z1 6= 0, z2 6= 0. We prove the following
proposition.

PROPOSITION 5.2. If |z1 − 1| < 1 and ℜ(z2) > 0, then |P (z1, z2)| < 1.
Proof. We have

P (z1, z2) =
P0(z1) + a(1 − z1)z2

(1 + µz2)(1 + bz2)
.

If 0 < µ < 1/2, then a < 0, b > 0. For any fixed z1, P (z1, z2) is analytic in the half
plane ℜ(z2) ≥ 0, and it vanishes at infinity. Therefore the function has its maximum
on the imaginary axis. The square of the modulus of P (z1, z2) on the imaginary axis
can be expressed in the form

|P (z1, iy)|2 =
N

D

with

N = 1 + 4a2ρ2y2 + ρ4 + 4ρay(1 − ρ2) sin θ + 2ρ2 cos 2θ,(5.4)

D = 4(1 + µ2y2)(1 + b2y2),(5.5)

and z1 has been written as z1 = 1 + ρeiθ. We shall prove that if ρ < 1 then D − N >
0 ∀y ∈ R.

We have

Π ≡ D − N = χ + Λ sin θ − 2ρ2 cos 2θ,

where χ = 3 − ρ4 + 4a2(1 − ρ2)y2 + 4µ2b2y4, Λ = 4ρay(ρ2 − 1). (We used the identity
µ2 + b2 = a2.)

The extrema of Π as functions of θ are obtained by ∂Π/∂θ = 0 and are given by
(i) cos θ = 0,
(ii) 8ρ2 sin θ + Λ = 0.

We shall consider the two cases separately.
(i) With cos θ = 0 it is Π = Π± ≡ χ + 2ρ2 ± Λ. The minimum is obtained by

Π = Π− if y > 0 and by Π = Π+ if y < 0. Because χ is an even function of y and Λ
is an odd function of y, it is enough to consider the case Π = Π−, y > 0. It is

Π−(ρ, y) = 3 + 2ρ2 − ρ4 − 4ρ(ρ2 − 1)ay + 4a2(1 − ρ2)y2 + 4µ2b2y4

> G(ρ2, y) + 4µ2b2y4,
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where

G(r, y) = 3 + 2r − r2 − 4(r − 1)ay + 4a2(1 − r)y2.

If 0 ≤ r ≤ 1, then G(r, y) > 0 ∀y ∈ R. In fact G(r, y) = c0(r) + 4c1(r)y + 4c2(r)y
2 and

∆2

16
≡ c2

1 − c0c2 = a2(1 − r)(r2 − 2r − 2) < 0;

therefore Π− > 0 and D − N > 0 ∀ρ ≤ 1, y ∈ R, cos θ = 0.
(ii) For sin θ = −Λ/(8ρ2) we have

Π = χ −
Λ2

16ρ2
− 2ρ2

= 3 − 2ρ2 − ρ4 + a2(1 − ρ2)(3 + ρ2)y2 + 4µ2b2y4,

which is positive for ρ < 1. Therefore D − N > 0 ∀ρ < 1, y ∈ R, sin θ = −Λ/(8ρ2).
Because Π is positive at the extrema, it is always positive for any ρ ∈ [0, 1), θ ∈

[0, π), y ∈ R, and therefore if |z1 − 1| < 1 and ℜ(z2) > 0 it is |P (z1, z2)| < 1.

6. An initial layer fix. A good feature of the time discretization in [16] is that
it has the correct initial layer behavior, since in the first step it projects into the local
Maxwellian and in the fluid limit it becomes the second-order TVD Runge–Kutta
method for the fluid equation. Our scheme here does not have such a mechanism,
because as a result of truncation analysis, α = 0 in (4.2), thus the de facto first step
(4.4) is not a projection into the local Maxwellian. This will introduce an initial
disturbance if the initial layer is not well resolved. Although at later time the scheme
has the mechanism to project the data into the local Maxwellian, this initial error will
remain at all later times, causing nonconservative numerical solutions, thus degrading
the quality of the numerical results. This has been demonstrated in [16]. Hence an
extra care must be taken to properly handle the initial layer.

One possibility to overcome this burden is simply to resolve the initial layer by
using a time step ∆t ≪ ε in the first few steps and then to switch to a larger time
step. This procedure is very expensive if the problem also contains nonstiff regions
where ε is not small and one does not need to resolve the initial layer.

The initial layer analysis performed in [3] indicates that the initial layer projects
the initial data into the local Maxwellian. In order to have the correct behavior, the
numerical scheme should have the same projection in the first time step. Note that in
the first-order splitting scheme (8.2), the first step, due to its fully implicit collision
term, always projects the initial data into the local Maxwellian and thus can be used
for the first time step along with our new splitting scheme. The first-order accuracy
of this initial step will be overcome by a Richardson-type extrapolation on (8.2).

Let us write the exact solution to (2.10) as

U(t) = S(t)U(0),(6.1)

where S(t) is the evolutional operator and U(0) is the initial datum. Suppose the
difference operator is denoted by T (t). Then the numerical solution u(t) is given by

u(t) = T (t)U(0).(6.2)

A first iteration of the splitting scheme (8.2) can be written as

u1(∆t) = T (∆t)U(0),(6.3)
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while two half-step iterations give

u2(∆t) = T

(

∆t

2

)2

U(0).(6.4)

We define our first time step as

u(∆t) = 2u2(∆t) − u1(∆t).(6.5)

This Richardson extrapolation will give a second-order approximation, as will be
demonstrated now.

Since the splitting scheme (8.2) is globally first order (locally second order), one
has

u1(∆t) − U(∆t) = (T (∆t) − S(∆t))U(0) = C∆t2 + O(∆t3),(6.6)

where C depends on T ,S, and U(0). Of course this implies

u1

(

∆t

2

)

− U

(

∆t

2

)

=

(

T

(

∆t

2

)

− S

(

∆t

2

))

U(0) =
1

4
C∆t2 + O(∆t3).(6.7)

Also,

T (∆t) = I + O(∆t),(6.8)

where I is the identity operator. Now,

u(∆t) = 2u2(∆t) − u1(∆t)

= 2T

(

∆t

2

)2

U(0) − T (∆t)U(0)

= 2T

(

∆t

2

)[

S

(

∆t

2

)

+ T

(

∆t

2

)

− S

(

∆t

2

)]

U(0)

−[S(∆t) + T (∆t) − S(∆t)]U(0).

Making use of (6.6) one has

u(∆t) = 2T

(

∆t

2

)

U

(

∆t

2

)

+ 2T

(

∆t

2

)[

1

4
C∆t2 + O(∆t3)

]

−U(∆t) − C∆t2 + O(∆t3)

= 2

[

S

(

∆t

2

)

+ T

(

∆t

2

)

− S

(

∆t

2

)]

U

(

∆t

2

)

− U(∆t) −
1

2
C∆t2 + O(∆t3)

= 2U(∆t) + 2

[

1

4
C∆t2 + O(∆t)3

]

− U(∆t) −
1

2
C∆t2 + O(∆t3)

= U(∆t) + O(∆t3).

Thus we have a locally third-order, or globally second-order, approximation in this
first step. In fact this second-order scheme alone can be applied to system (2.10).
However, such a scheme would be slightly less efficient that the one we use, (4.2)–
(4.7), since one has to integrate the convection part three times in each time step,
while (4.2)–(4.7) only needs two. This Richardson extrapolation (6.5) may also lose
positivity of the numerical solution.

The NSP with the first step given by the initial layer fix step described in this
section will be called NSPIF.
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7. The numerical fluid dynamic limits. To show that the scheme has the
correct fluid dynamic limit as ǫ → 0 (condition iv in section 4), we assume that the
solution is smooth in the sense that all of the spatial derivatives are of O(1). Such
an assumption is necessary since the continuous Chapman–Enskog expansion, which
leads from the Broadwell equation to the Euler equation, is only justified for smooth
solutions [3] or weak shocks [30]. This formal analysis, although not rigorous, does
provide a effective tool to understand underresolved (grid spacing does not resolve ǫ)
numerical methods for hyperbolic systems with stiff relaxations [19], [17], [16], [18].

Following [19], we separate the grid spacing into three regimes. In the thin regime
max(∆x,∆t) = o(ǫ). In the intermediate regime max(∆x,∆t) = O(ǫ). In the coarse
regime ǫ/ max(∆x,∆t) → 0. In the thin regime the grid space resolves ǫ, thus the
truncation error analysis in section 4 is already sufficient to show the second-order
accuracy of the scheme (if the MUSCL is applied for the convection term). It is in the
intermediate and coarse regimes that the fluid dynamic limit analysis will be applied.

7.1. The coarse regime. Assume that ε/∆t ≪ 1, ε/∆x ≪ 1. The asymptotic
analysis will be performed with fixed ∆t and ∆x while letting ε → 0.

We first analyze the limiting behavior of the two spatial discretizations discussed
in section 3 and defer the time discretization to later paragraphs. Here we are con-
cerned with space discretization, and therefore we do not perform any discretization
in time.

First, for the upwind discretization (3.9) of the Broadwell equation, as ε → 0 the
third equation of (3.9) gives the leading term approximation

z =
1

2ρ
(ρ2 + m2) + O(ε).(7.1)

Applying this to the first two equations in (3.9) implies (after ignoring the O(ε) term)

∂tρj +
mj+1 − mj−1

2∆x
−

1
2 (ρ + ρu2)j+1 − (ρ + ρu2)j + 1

2 (ρ + ρu2)j−1

2∆x
= 0,

∂tmj +
1
2 (ρ + ρu2)j+1 − 1

2 (ρ + ρu2)j−1

2∆x
−

mj+1 − 2mj + mj−1

2∆x
= 0.(7.2)

This gives the limiting scheme of the upwind scheme. It can be easily seen that this
is a first-order centered conservative discretization of the model Euler equation (2.9).
Thus the upwind scheme has the correct asymptotic limit, which is only first order.

For the MUSCL discretization (3.15), as ε → 0 the last equation again gives (7.1)
which can be applied to the first two equations in (3.15) to yield the limiting scheme
of the MUSCL:

∂tρj +
mj+1 − mj−1

2∆x
−

1
2 (ρ + ρu2)j+1 − (ρ + ρu2)j + 1

2 (ρ + ρu2)j−1

2∆x

+
∆x

4
(σE+

j + σE−
j+1 − σE+

j−1 − σE−
j ) = 0,(7.3)

∂tmj +
1
2 (ρ + ρu2)j+1 − 1

2 (ρ + ρu2)j−1

2∆x
−

mj+1 − 2mj + mj−1

2∆x

+
∆x

4
(σE+

j − σE−
j+1 − σE+

j−1 + σE−
j ) = 0,(7.4)
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where

σE±
j = σ±

j |z= 1
2ρ

(ρ2+m2).(7.5)

Note that σ±
j is defined by ρ,m, and z, and the right-hand side of (7.5) simply means

applying the local Maxwellian z = (ρ2 + m2)/(2ρ) into σ±
j . Define

wE+ = f |z= 1
2ρ

(ρ2+m2) =
1

2
(z + m)

∣

∣

∣

z= 1
2ρ

(ρ2+m2)
=

1

2

(

1

2ρ
(ρ2 + m2) + m

)

,(7.6)

wE− = g|z= 1
2ρ

(ρ2+m2) =
1

2
(z − m)

∣

∣

∣

z= 1
2ρ

(ρ2+m2)
=

1

2

(

1

2ρ
(ρ2 + m2) − m

)

.(7.7)

Then from (3.11),

σE±
j =

1

∆x
(wE±

j+1 − wE±
j−1)φ(θE±), θE± =

wE±
j − wE±

j−1

wE±
j+1 − wE±

j

.(7.8)

One can see that this is a second-order centered conservative discretization of the
model equations (2.9). Thus the MUSCL also has the correct fluid limit, which is
second order to (2.9).

We now demonstrate that the new temporal splitting scheme (4.2)–(4.7) has the
correct fluid limit in the sense to be specified below. We always assume that R(U) is
Lipschitz continuous in U and I +β ∆t

ε R′ is invertible for all ε and ∆t, where R′ is the
Jacobian matrix of R. This invertibility is true for general hyperbolic systems with
relaxations classified by Liu [22]. In particular, it is easy to check that the collision
term of the Broadwell equations satisfies this condition.

By the initial layer fix, we can assume that

R(Un) = O(ε).(7.9)

Now, we want to show that this condition will imply that

R(U1) ≈ 0, R(U3) ≈ 0, R(Un+1) ≈ 0,(7.10)

up to some error terms depending on ε and ∆t. First, since α = 0, then U1 = Un and

R(U1) = R(Un) = O(ε).(7.11)

Using (4.3),

U2 − U1 = O(∆t).(7.12)

By (4.4),

U3 − U2 = −β
∆t

ε
(R(U3) − R(U2)) − β

∆t

ε
R(U2) + O(∆t)

= −β
∆t

ε
R′(U∗)(U3 − U2) − β

∆t

ε
(R(U1) + O(∆t)) + O(∆t)

= −β
∆t

ε
R′(U∗)(U3 − U2) + O

(

∆t +
∆t2

ε

)

,(7.13)
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where U∗ lies between U2 and U3. This implies

U3 − U2 =

(

I + β
∆t

ε
R′(U∗)

)−1

O

(

∆t +
∆t2

ε

)

(7.14)

= O
( ε

∆t

)

O

(

∆t +
∆t2

ε

)

= O(ε + ∆t) = O(∆t).(7.15)

Applying this back to (4.4) then implies

R(U3) = O(ε).(7.16)

Similar arguments also imply

R(Un+1) = O(ε).(7.17)

By this argument, for any initial data with the initial layer fixing one always has

R(U3) = O(ε), R(Un) = O(ε) for all n ≥ 1.(7.18)

Thus this scheme projects the numerical data into the local Maxwellian at every time
step. This completes the study of the fluid dynamic limit of the new splitting scheme.

Finally, we combine the spatial and temporal discussions above to get the limiting
scheme for the fully discrete method that combines the MUSCL and the new splitting
scheme. Applying (7.18) into (4.3), (4.5), respectively, after reordering the indices,
we get

U1 = Un − α̃∆tDF (Un)|R(Un)=0,(7.19)

U2 = U1 − β̃∆tDF (U1)|R(U1)=0,(7.20)

Un+1 = ξUn + ηU2(7.21)

by ignoring the O(ε) terms. In (7.19) and (7.20), DF (U)|R(U)=0 are the limiting
spatial discretization given in (7.3) and (7.4) for the model Euler equation (2.9).
Clearly (7.21) is a second-order (both spatially and temporally) discretization of the
model Euler equation (2.9). This shows that the new splitting scheme combined with
MUSCL flux indeed has the correct fluid limit in the coarse regime.

If the upwind scheme is used in the convection term, then the limiting flux
DF (U)|R(U)=0 is given in (7.2), which is a first-order spatial discretization of the
model Euler equation.

7.2. The intermediate regime. The intermediate regime is defined as ε ≪
1,∆t ≪ 1 but ε/∆t = O(1). We now show that the splitting scheme (4.2)–(4.7) also
has the correct fluid limit in this intermediate regime. The key is to demonstrate that
(7.10) are valid also in this regime.

First, since α = 0, after the initial layer fix (the assumption on (7.9)), (7.11) is
valid. Thus (4.4) implies

U3 − U2 = −β
∆t

ε
R(U3) + O(ε)

= −β
∆t

ε
(R(U3) − R(U2)) − β

∆t

ε
R(U2) + O(ε)

= −β
∆t

ε
R′(U∗)(U3 − U2) − β

∆t

ε
(R(U1) + O(∆t)) + O(ε)

= −β
∆t

ε
R′(U∗)(U3 − U2) + O(∆t).
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Therefore

U3 − U2 =

(

1 + β
∆t

ε
R′(U∗)

)−1

O(∆t) = O(∆t).

Applying this to (4.4) gives

R(U3) = O(∆t)O
( ε

∆t

)

= O(ε).

Similarly, one can also show

R(Un+1) = O(ε).

Thus, one always has

R(U3) = O(ε), R(Un) = O(ε) for all n ≥ 1

independent of the initial data. So the solution is always a local Maxwellian. More-
over, as ε → 0 (∆t → 0 as well) one gets (2.9). The limiting fully discrete discretiza-
tion is in fact the same as in (7.19) and (7.20). Thus in the intermediate regime this
scheme also has the correct fluid limit.

Remark. In [24] Pember found that in the limit ǫ → 0 a second-order space
discretization may be reduced to first order in a fractional step method. A high-order
method needs to incorporate the effect of the source term into the convective flux. Jin
[16] also showed such a phenomenon in a Strang’s splitting. However, as indicated in
[16], a properly designed fractional step method may maintain a second-order accuracy
even if the convective flux is based solely on the Riemann problem of the homogeneous
system. The result in this section confirms this for the new splitting scheme NSPIF,
and our numerical results in section 9 seem to verify this point.

8. Theoretical results. In this section we shall provide some analytic analyses
on a simple splitting scheme (SP1):

ρ̃j = ρn
j , m̃j = mn

j , z̃j = zn
j +

∆t

2ε
((ρn

j )2 + (mn
j )2 − 2ρn

j z̃j) ;(8.1)

fn+1
j = f̃n

j−1, hn+1
j = h̃n

j , gn+1
j = g̃j+1.(8.2)

This simple first-order method, although significantly simpler compared with NSPIF,
does possess some key properties of the NSPIF, such as A-stability, L-stability, and
the correct fluid limit as ǫ → 0, and thus it serves as an analytic model here. Analytic
study of the second-order method NSPIF would require more advanced techniques
that are out of reach for this work.

In SP1, the collision step is the backward Euler method that has a numerical
stability independent of ε. In this step it is very convenient to use the fluid variables.
In the convection step, the characteristic method can be applied for the free stream.
The overall Courant–Friedrichs–Lewy (CFL) number then will be solely determined
by the convection step, which is 1. In (8.2) we denote the intermediate result after the
collision step by a tilde. Between the collision and the convection steps the relation
(2.2) and (2.3) will be used. This method is going to have the correct fluid limit when
ε → 0 since the first step always yields the correct local Maxwellian z = (ρ2+m2)/(2ρ).
Applying it to the next step, one gets a first-order approximation to the model Euler
equations. However, the overall accuracy is first order, uniformly in ε, as will be
shown later.
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In this section we derive several properties of the SP1, including positivity, the
entropy inequality, and a bound in the consistency error which is independent on the
mean free path. To the best of our knowledge this is the first uniform (in ǫ) result for
the numerical discretization of the Broadwell equation.

8.1. Positivity. The continuous Broadwell equations maintain positivity of the
densities f , h, and g. This property is important because of the physical meaning of
f , h, and g as particle density. Such property is maintained by the discrete scheme.

The velocity densities (f, g, h) are positive if and only if

ρ > z > |m|

by (2.2) and (2.3). In the collision step ρ̃ = ρn and m̃ = mn are unchanged, while

z̃ = (1 + 2κρn)−1(zn + κ((mn)2 + (ρn)2)),

in which κ = ∆t/(2ε). Since ρ̃ = ρn > zn > |mn| = |m̃|, it follows easily that

ρ̃ > z̃ > |m̃|.

In fact,

z̃ − |m̃| = z̃ − |m| =
z − |m| + κ(ρ − |m|)2

1 + 2κρ
> 0

and

ρ̃ − z̃ = ρ − z̃ =
ρ − z + κ(ρ2 − m2)

1 + 2κρ
> 0.

So (f̃ , g̃, h̃) is positive. Positivity of (f̃ , g̃, h̃) clearly implies positivity of fn+1, gn+1,
and hn+1, the result of the convective step in (8.2).

8.2. Entropy inequality. For the system of Broadwell equations (with peri-
odic boundary conditions or in unbounded domain) there exists a function that is
monotonically increasing and is constant only at equilibrium:

H(t) =

∫

Ĥ(x, t) dx,

with

Ĥ(x, t) = f(x, t) log f(x, t) + 2h(x, t) log h(x, t) + g(x, t) log g(x, t).

The proof of this property (the so-called H-theorem) is very simple in this case, and
we show it here (in the case of periodic boundary conditions) for completeness.

Making use of the Broadwell equations and of the periodic boundary conditions
one has

dH

dt
=

∫

h2

(

1 −
fg

h2

)

log
fg

h2
dx.

The right-hand side is negative, since (1 − x) log x ≤ 0 ∀x > 0, and it is zero if and
only if fg − h2 ≡ 0.

The entropy inequality has the meaning of irreversibility in time and shows that
the system relaxes to an equilibrium given by a Maxwellian distribution.
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We shall prove that such property is maintained by the simple splitting scheme
(8.2). This property is relevant, first because it shows that the discrete model relaxes
to equilibrium and second because of the connection between the H-function and the
entropy of the fluid dynamic limit.

Before proving the H-theorem for the discrete scheme, we shall exploit this con-
nection in detail.

The kinetic model is described by the Broadwell equations, which constitute a
3 × 3 semilinear system of partial differential equations, while the fluid dynamic limit
is described by a 2 × 2 quasi-linear hyperbolic system of conservation laws. In both
cases the entropy inequality has the physical meaning of irreversibility in time. For the
quasi-linear system, the entropy principle is used to select the unique weak solution
in the presence of shocks.

Now let us consider an n × n system of conservation laws of the form

∂U

∂t
+

∂F (U)

∂x
= 0.(8.3)

An entropy for this system is a convex function s = s(U) which, in case of regular
solutions, satisfies an additional conservation law of the form [11]

∂s(U)

∂t
+

∂q(U)

∂x
= 0,(8.4)

where q(U) is the entropy flux. By comparing (8.3) and (8.4), the following compati-
bility condition holds:

∂q

∂uβ
=

n
∑

α=1

∂s

∂uα

∂Fα

∂uβ
, β = 1, . . . , n.

We now show that the function Ĥ, when computed at a local Maxwellian (denoted
by the suffix M), i.e., if fg = h2, and expressed in terms of the fluid variables ρ and
u, is indeed an entropy function for the 2 × 2 system of fluid dynamic limit.

At equilibrium one has

fM =
ρ

4
(1 + u)2, gM =

ρ

4
(1 − u)2, hM =

ρ

4
(1 − u2).

Substituting in the expression of Ĥ, after some simplifications one has

HM = ρ(log ρ + S(u)),(8.5)

with

S(u) ≡ (1 + u) log(1 + u) + (1 − u) log(1 − u) − log 4.(8.6)

Let us compute ∂HM/∂t:

∂HM

∂t
=

∂HM

∂ρ

∂ρ

∂t
+

∂HM

∂u

∂u

∂t
.

Making use of expression (8.5) and of the equations (2.9) for ρ and u one has

∂HM

∂t
= −ρ[log ρ + S(u) + 1]

∂u

∂x
−

[

(log ρ + S(u) + 1)u +
1

2
S′(u)(1 − u2)

]

∂ρ

∂x
.
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Compatibility with (8.4) requires that

∂q

∂u
= f1(ρ, u) ≡ ρ[log ρ + S(u) + 1],

∂q

∂ρ
= f2(ρ, u) ≡ (log ρ + S(u) + 1)u +

1

2
S′(u)(1 − u2).

These conditions can be satisfied by a function q(ρ, u) provided

∂f1

∂ρ
=

∂f2

∂u
.

This last condition becomes

1 −
1

2
S′′(u)(1 − u2) = 0,

which is satisfied by S(u), defined in (8.6). This proves that HM (ρ, u) is indeed an
entropy function for the system of equations describing the fluid dynamic limit.

It is evident that a scheme that has the property of preserving the entropy in-
equality for the Broadwell model for any value of the relaxation parameter ε will also
preserve the entropy inequality in the fluid dynamic limit. This property is essential
in approximating the correct weak solution of the fluid dynamic equations.

We prove next that the H function given by

H = f log f + 2h log h + g log g

decreases in the collision step at each grid point j. This result is valid both for periodic
boundary conditions and for unbounded domains.

Let (ρ̃, m̃, z̃) be the state after the collision step and (ρ,m, z) = (ρ̃, m̃, z̃ + 2∆) be
the state before the collision step, in which

∆ = 2κ(h̃2 − f̃ g̃).

Since f = (z + m)/2, g = (z − m)/2, and h = (ρ − z)/2, then

f = f̃ − ∆, g = g̃ − ∆, h = h̃ + ∆.(8.7)

Moreover since (f, g, h) and (f̃ , g̃, h̃) are all positive, then

1 > max

(

∆

f̃
,
∆

g̃
,−

∆

h̃

)

.

Before the collision the H function is

H = f log f + 2h log h + g log g.

First rewrite the f term in H as

f log f = (f̃ − ∆) log(f̃ − ∆)

= f̃

(

1 −
∆

f̃

)

log

(

1 −
∆

f̃

)

+ (f̃ − ∆) log f̃

≥ −∆ + (f̃ − ∆) log f̃ .
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The last bound uses the elementary inequality

(1 − a) log(1 − a) ≥ −a

for 1 > a in which a = ∆/f̃ . Similarly,

g log g ≥ −∆ + (g̃ − ∆) log g̃, h log h ≥ ∆ + (h̃ + ∆) log h̃.(8.8)

Add these together to obtain

H ≥ (f̃ − ∆) log f̃ + 2(h̃ + ∆) log h̃ + (g̃ − ∆) log g̃

= H̃ + ∆ log(h̃2/f̃ g̃)

= H̃ + 2κ(h̃2 − f̃ g̃) log(h̃2/f̃ g̃)

≥ H̃.

Finally, note that the total “entropy”

Hn = ∆x
∑

j

Hn
j

is preserved by the convection step of the fractional step method (8.2), since the values
of f, g, and h do not change but only move between j points.

The results of these two subsections are summarized by the following proposition.
PROPOSITION 8.1. Let (fn

j , gn
j , hn

j ) be the solution of the fractional step method

(8.2). Assume that f0
j > 0, g0

j > 0, and h0
j > 0 for all j. It follows that

(i) fn
j > 0, gn

j > 0, hn
j > 0 for all n > 0 and all j;

(ii) we define

Hn =
∑

j

(fn
j log fn

j + 2hn
j log hn

j + gn
j log gn

j )

and suppose that H0 < ∞. Then for all n ≥ 0

Hn+1 ≤ Hn.

8.3. Formal analysis of convergence: Uniform bounds on consistency

error. Finally, we present a formal analysis of the splitting method which shows
that it is first-order accurate uniformly in ε if the underlying Broadwell solution is
smooth. This analysis does not apply for the solution in a boundary layer, initial
layer, or shock in which numerical results indicate that a half order of accuracy may
be lost. The analysis here is only of the consistency error, which is shown to be of
size O(∆t) uniformly in ε. Analysis of the stability error has not yet been successful.

Because of the difficulty of the problem, no result is available for higher order
schemes. To our knowledge, this is the first analytic result showing a bound on the
consistency error, uniformly in the relaxation parameter, for such a problem.

The estimate will be performed by writing the Broadwell equations and the dis-
cretized Broadwell equations for the fluid dynamic variables ρ and m and for the
difference from equilibrium w, defined by

w = z −
ρ2 + m2

2ρ
.(8.9)



HYPERBOLIC SYSTEMS WITH RELAXATION 267

Define also

zE(ρ,m) =
ρ2 + m2

2ρ
.(8.10)

Whereas the equation for z involves a forcing term of size ε−1, in the w equation the
factor ε−1 appears only in a decay term.

The Broadwell equations (2.1) can be written in terms of ρ,m, and w as

ρt = −mx,(8.11)

mt = −(w + zE(ρ,m))x,(8.12)

wt = −ε−1ρw − mx − zE(ρ,m)t.(8.13)

The equation for w can be written in integral form for each x as

w(t) = A(t)w0 +

∫ t

0

A(t)

A(s)
g(s)ds,(8.14)

in which

A(t) = exp

(

−ε−1

∫ t

0

ρ(t′, x)dt′
)

g(t) = −(mx + zE(ρ,m)t).

Define the discretized variables ρ̃, m̃, and w̃ as in (3.2), (3.3) to be the state after a
collision step. The discrete Broadwell equations (with ∆t = ∆x) can then be written
with the convection and collision steps combined for each spatial value j as

ρ̃n+1 − ρ̃n = −
1

2
D0m̃

n +
1

2
D2(w̃n + z̃n

E),(8.15)

m̃n+1 − m̃n = −
1

2
D0(w̃

n + z̃n
E) +

1

2
D2m̃n,(8.16)

w̃n+1 =

(

1 +
∆t

ε
ρ̃n+1

)−1

(w̃n + ∆tg̃n+1),(8.17)

in which

g̃n+1 = −∆t−1

(

z̃n+1
E − z̃n

E +
1

2
D0m̃

n+1 −
1

2
D2(w̃n+1 + z̃n+1

E )

)

.

The difference operators D0 and D2 are defined as

(D0f)j = fj+1 − fj−1, (D2f)j = fj+1 − 2fj + fj−1.(8.18)

The equation for w̃n+1 can be considered a linear difference equation in w̃n. The
solution can be written as

w̃n = B̃nw0 + ∆t
n
∑

k=1

B̃n

B̃k−1
g̃k,(8.19)

in which

B̃n =

n
∏

j=1

(

1 +
∆t

ε
ρ̃j

)−1

, B̃0 = 1.(8.20)
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Assume that ρ,m, and w are smooth and bounded uniformly in ε (this excludes
shocks, boundary layers, and initial layers). Define the continuous solution at discrete
times as (ρn,mn, wn) = (ρ(n∆t),m(n∆t), w(n∆t)). This is an abuse of notation,
since (ρn,mn, wn) was used in section 3 to denote the discretized solution after the
convection step. Nevertheless, it will be used for simplicity.

The consistency error is defined as the error formed by substituting the continuous
solution (ρn,mn, wn) = (ρ(n∆t),m(n∆t), w(n∆t)) into the discrete equations. Define

E1 = (ρn+1 − ρn)/∆t −

{

−
1

2
D0m

n +
1

2
D2(wn + zn

E)

}/

∆t,(8.21)

E2 = (mn+1 − mn)/∆t −

{

−
1

2
D0(w

n + zn
E) +

1

2
D2mn

}/

∆t,(8.22)

E3 = wn −

{

Bnw0 + ∆t
n
∑

k=1

Bn

Bk−1
gk

}

,(8.23)

in which Bn and gn are defined as above in terms of the solution (ρn,mn, wn). Note
that the consistency error for the w equations is defined here in terms of the “inte-
grated solution” rather than the finite difference equation. In fact the error due to the
implicit collision operator is better behaved over many time steps than over a single
step. This is also the reason that the factor 1/∆t does not appear in the definition of
E3.

The consistency error serves as a forcing term in a finite difference equation for
the total error. Define the difference between the numerical solution (ρ̃n, m̃n, w̃n) and
the continuous solution (ρn,mn, wn) = (ρ,m,w)(n∆t) as

an = ρ̃n − ρn, bn = m̃n − mn, cn = w̃n − wn.(8.24)

Denote A(ρn,mn, wn) and B(ρn,mn, wn) to be the bracketed convection terms in the
ρ and m equations (8.21) and (8.22). Also denote C[ρ,m,w] to be the bracketed term
in the w equation (8.23). Then the error quantities (an, bn, cn) satisfy

an+1 − an = (A(ρn + an,mn + bn, wn + cn) − A(ρn,mn, wn)) + ∆tE1,

bn+1 − bn = (B(ρn + an,mn + bn, wn + cn) − B(ρn,mn, wn)) + ∆tE2,

cn+1 − cn = (C[ρ + a,m + b, w + c] − C[ρ,m,w]) + E3.(8.25)

The first term on the right-hand side of these equations is the stability error and
is approximately a linear operator in (a, b, c). If the difference scheme is uniformly
stable, which we have not proved, then the error will be of the size of the consistency
error E1, E2, E3.

Under the assumption that the continuous solution ρ,m,w is smooth and that
the density ρ is uniformly bounded above and below, i.e.,

ρ̄ < ρ < c̄ρ̄,(8.26)

we prove the following uniform bound on the consistency error.
PROPOSITION 8.2. Suppose that ρ,m,w is smooth and that the density ρ satisfies

(8.26) for some constants ρ̄ and c̄. Then the consistency error E1, E2, E3, defined by

(8.21), (8.22), and (8.23), for the discretized Broadwell equations (8.15), (8.16), and

(8.19) with ∆t = ∆x satisfies

|E1| + |E2| + |E3| ≤ c∆t(8.27)
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for some constant c that is independent of ε. In other words, the consistency error is

uniformly first order.

The estimates on E1 and E2 are straightforward; i.e., for some constant c,

|E1| + |E2| ≤ c∆t.(8.28)

In order to compare the integral (8.14) with the sum (8.23), we first replace the
integrand by a piecewise-constant function. Define

Ā(s) = A((m − 1)∆t), ḡ(s) = g((m − 1)∆t)(8.29)

for (m − 1)∆t ≤ s < m∆t. For t = n∆t define

w̄(t) = A(t)w0 +

∫ t

0

A(t)

Ā(s)
ḡ(s)ds

= A(t)w0 + ∆t
n
∑

k=1

A(n∆t)

A((k − 1)∆t)
g(k∆t).(8.30)

Now estimate for (m − 1)∆t ≤ s < m∆t, m ≤ n,

|g(s) − ḡ(s)| < c∆t,(8.31)
∣

∣

∣

∣

A(t)

A(s)
−

A(t)

Ā(s)

∣

∣

∣

∣

=

∣

∣

∣

∣

A(t)

A(s)

∣

∣

∣

∣

·

∣

∣

∣

∣

1 −
A(s)

Ā(s)

∣

∣

∣

∣

≤ exp

(

−

∫ t

s

ρ(s′)ds′/ε

)

∣

∣

∣

∣

∣

1 − exp

(

−

∫ s

(m−1)∆t

ρ(s′)ds′/ε

)∣

∣

∣

∣

∣

≤ min(1, c̄∆tρ̄/ε) exp(−(n − m)∆tρ̄/ε)(8.32)

since |e−α − 1| ≤ min(1, α) for any α.
Next estimate the difference between A(t) and Bn. First make a simple general

estimate (for t = n∆t)

A(t) ≤ e−tρ̄/ε ≤

(

1 +
∆t

ε
ρ̄

)−n

,(8.33)

Bn ≤

(

1 +
∆t

ε
ρ̄

)−n

,(8.34)

so that

|A(t) − Bn| ≤ 2

(

1 +
∆t

ε
ρ̄

)−n

.(8.35)

If ∆tρ̄/ε is small, a more refined estimate is needed. In this case

log

(

1 +
∆t

ε
ρk

)

=
∆t

ε
ρk + O

(

∆t

ε
ρ̄

)2

.(8.36)
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Then

A(t) − Bn = A(t)

{

1 − exp

(

∫ t

0

ρ(s)ds/ε −
n
∑

k=1

log

(

1 +
∆t

ε
ρk

)

)}

= A(t)

{

1 − exp

(

nO

(

∆t

ε
ρ̄

)2
)}

,(8.37)

in which we ignore a term of size n O(∆t2ρ̄/ε) in the exponential.
Now n(∆tρ̄/ε)2 = (tρ̄/ε)(∆tρ̄/ε). If this is larger than two, we use the estimate

(8.35); if it is less than two, then

|A(t) − Bn| ≤ A(t)O

(

tρ̄

ε

(

∆t

ε
ρ̄

))

.(8.38)

Combining these estimates, we obtain the bound

|A(t) − Bn| ≤ min

(

2,
t∆t

ε2
ρ̄2

)(

1 +
∆t

ε
ρ̄

)−n

.(8.39)

Finally, the estimate on A(t)/A((k − 1)∆t) − Bn/Bk−1 is found in a similar way
to be

∣

∣

∣

∣

A(t)

A((k − 1)∆t)
−

Bn

Bk−1

∣

∣

∣

∣

≤ min
(

2, ε−2(n − k + 1)∆t2ρ̄2
)

·

(

1 +
∆t

ε
ρ̄

)−(n−k)

.(8.40)

Now these basic estimates are combined to estimate E3. First

w(t) − w̄(t) =

∫ t

0

(

A(t)

A(s)
g(s) −

A(t)

Ā(s)
ḡ(s)

)

ds

≤

∫ t

0

(
∣

∣

∣

∣

A(t)

A(s)
−

A(t)

Ā(s)

∣

∣

∣

∣

|ḡ(s)| +

∣

∣

∣

∣

A(t)

A(s)

∣

∣

∣

∣

|g(s) − ḡ(s)|

)

ds

≤ c∆t
n
∑

m=1

min(1, c̄∆tρ̄ε−1) exp(−(n − m)∆tρ̄/ε)

+c∆t

∫ t

0

e−ρ̄(t−s)/εds

≤ c∆t min(1,∆tρ̄ε−1)(1 − e−∆tρ̄/ε)−1 + cε∆t/ρ̄

≤ c̃∆t(8.41)

since

max
y>0

(

min(1, y)

1 − exp(−y)

)

=
e

e − 1
.
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Next, making use of (8.39),

|E3 + w̄(t) − wn| =

∣

∣

∣

∣

(A(t) − Bn)w0

+ ∆t
n
∑

k=1

(

A(t)

A((k − 1)∆t)
ḡ(k∆t) −

Bn

Bk−1
gk

) ∣

∣

∣

∣

≤ |w0|min

(

2,
t∆t

ε2
ρ̄2

)(

1 +
∆t

ε
ρ̄

)−n

+ c∆t
n
∑

k=1

(

1 +
∆t

ε
ρ̄

)−(n−k+1)

∆t

+ c∆t

n
∑

k=1

min

(

1,
∆t2ρ̄2

ε2
(n − k + 1)

)(

1 +
ρ̄∆t

ε

)−n+k−1

.(8.42)

Denote the three terms on the right side of (8.42) as D1, D2, D3, respectively.
The first term D1 is bounded by

cmin

(

2,
n∆t

ε
ρ̄
∆tρ̄

ε

)(

1 +
∆t

ε
ρ̄

)−n

≤ 2c∆t.(8.43)

In fact, if ∆tρ̄/ε > 1/2, then

D1 < 2c(3/2)−n < 2c∆t(8.44)

while if ∆tρ̄/ε < 1/2 then

D1 < c(1/n)(n∆tρ̄/ε)2(1 + ∆tρ̄/ε)−n < c/n < c∆t,(8.45)

since x2(1 + x/n)−n is bounded by 1 uniformly in n > 2 and x ≥ 0.
Now we consider the second term D2. Let q = (1 + ρ̄∆t/ε)−1. Then

D2 = c∆t2
∞
∑

k=1

qn−k+1 = c∆t2q
1 − qn

1 − q

≤ c∆t2
q

1 − q
=

c∆tε

ρ̄
.(8.46)

Finally, consider the third term D3. If ∆tρ̄/ε > 2, then

D3 ≤ c∆t
n
∑

k=1

qn−k+1

= c∆tq
1 − qn

1 − q
≤ c∆t

q

1 − q

= c∆t
ε

ρ̄∆t
≤

c∆t

2
.

If ∆tρ̄/ε < 2, then

D3 ≤ c∆t

(

∆tρ̄

ε

)2 ∞
∑

0

mqm

= c∆t

(

∆tρ̄

ε

)2
q

(1 − q)2

= c∆t(1 + ∆tρ̄/ε) ≤ 3c∆t(8.47)
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since
∞
∑

0

mxm−1 = (1 − x)−2.

This shows that

|E3 + w̄(t) − wn| ≤ c∆t.(8.48)

Combine this with (8.41) to obtain

|E3| ≤ c∆t.(8.49)

Together with (8.28), this implies that

|E1| + |E2| + |E3| ≤ c∆t.(8.50)

This concludes the formal demonstration that consistency error in the discrete method
is first-order accurate, uniformly in ε.

9. Numerical results. In this section we present some numerical examples
in order to compare some existing schemes with the new splitting scheme NSPIF
developed in this article. Rewrite the Broadwell equations (2.4)–(2.6) as

∂tU + A∂xU = Q(U).(9.1)

Schemes that will be compared are as follows:
1. NSP (introduced in section 4).
2. NSPIF (introduced in section 6).
3. SP1 (introduced in section 8).
4. SCN, which is free streaming (8.2) for the convection ∂tU +A∂xU = 0 followed

by a half step Crank–Nicolson method for the collision ∂tU = Q(U) and then followed
by another step of free streaming (8.2) on ∂tU + A∂xU = 0. Strang’s splitting [27] is
used here.

5. SCNvL, which is the same as SCN except that the two free streaming steps
on the convection ∂tU + A∂xU = 0 must be replaced by van Leer’s MUSCL spatially
and the second-order TVD Runge–Kutta method [26] temporally. Strang’s splitting
[27] is used here.

6. SCNvLIF, which is the same as SCNvL except that in the first time step we
use the initial layer fix introduced in section 6.

7. SP1vL, which is the same as SP1 except that the free streaming step (8.2)
on ∂tU + A∂xU = 0 is replaced by MUSCL spatially and the second-order TVD
Runge–Kutta method temporally.

Note that the free streaming (8.2) is the characteristic method for the convection
and corresponds to the upwind scheme, with the CFL number equaling one. Thus we
will always use CFL= 1 for SP1 and SCN. For other methods we will use CFL=0.5,
unless otherwise stated.

First we solve the Broadwell equation with the following initial data:

ρ = 2, m = 1, z = 1, for x < 0.2,(9.2)

ρ = 1, m = 0.13962, z = 1, for x > 0.2.(9.3)

We integrate over domain [−1, 1] with reflecting boundary conditions and take ∆x =
0.01 and ∆t = O(∆x). We test six different schemes. The exact solution is obtained
using fine grids with ∆x = 0.0005.
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First we take ε = 1. This is in the rarefied regime. The numerical solutions of
ρ,m, and z are depicted with the “exact” solution in Figure 9.1. In this regime, SP1
yields the best resolution, SCN is very diffusive, SCNvL is slightly better than SCN,
and SP1vL, NSP, and NSPIF give comparable results which are more diffusive than
SP1 but better than SCN and SCNvL. While SP1vL, NSP, and NSPIF show standard
second-order behavior, in the rarefied regime it seems that the free stream is a nice
thing to use, for SP1 gives the best result and SCN is better then SCNvL.

Next we take ε = 10−8 and compare the behavior of NSP and NSPIF and show
how the initial layer fix works. This is the regime where the mean free path is very
small and the limiting Euler equation has a shock wave moving right with a speed
s = 0.86038 determined by the Rankine–Hugoniot jump condition. Note that the
initial datum for z is not a local Maxwellian, which yields an initial layer. The results
are displayed in Figure 9.2. The NSP and NSPIF are comparable with respect to the
shock; however, without the initial layer fix, the NSP creates a hump near the initial
discontinuity x = 0, solely caused by the kinetic effect. In the next run we see that
for a larger ǫ this hump exists in the exact solution. This shows that NSP is dragged
by the kinetic behavior even when ǫ is much smaller and the solution is in the fluid
regime.

We then choose ε = 0.02. We still use ∆x = 0.02. This is in the intermediate
regime where ε, ∆x, and ∆t are of the same order. The results are depicted in Figure
9.3. The small hump located at x = 0 is part of the exact solution. It is due to
the fact that the initial condition represents an exact traveling shock for the relaxed
system, i.e., for the system with ε = 0, while in this case it is ε = 0.02. It seems
that SCNvL, NSP, and NSPIF give comparable and the best results, while SP1vL is
slightly more diffusive and SP1 and SCN are much more smeared out and exhibited
typical first-order behavior.

We then choose other initial data:

ρ = 1, m = 0, z = 1 for x < 0.5,(9.4)

ρ = 0.2, m = 0, z = 1 for x > 0.5.(9.5)

We integrate over domain [0, 1] with reflecting boundary conditions. We take ∆x =
0.01 and ε = 10−8 so the solution is close to that of the model Euler equation. By
solving the model Euler equation one obtains a left-moving rarefaction wave and
a right-moving shock wave. The initial data are not in the local Maxwellian. The
numerical solutions are plotted in Figure 9.4. In this fluid limit we observe that NSPIF
gives the best resolution for both the shock and the rarefaction waves, and NSP is
comparable although it smears a tiny bit more than NSPIF. All other schemes smear
a lot more. Both SCN and SCNvL give z far from the local Maxwellian, which is not
surprising since the Crank–Nicolson does not project to the local Maxwellian if the
initial data are not local Maxwellian. This can be fixed rather easily if these schemes
are combined with the initial layer fix introduced in section 6. Such a phenomenon
also disappears if the initial data are in the local Maxwellian. Very interesting is the
result of SCNvL, which gives completely spurious wave structures.

To examine the spurious waves produced by the SCNvL for this problem we depict
the results of SCNvL and SCNvLIF for the same problem in Figure 9.5 with CFL
= 0.5 and CFL = 0.005, respectively. When CFL = 0.5 both SCNvL and SCNvLIF
give spurious but different waves! By taking ∆t 100 times smaller such spurious waves
disappear and the schemes give qualitatively correct waves, although the waves are
smeared more due to the smallness of ∆t. This example shows that large temporal
spacing in SCNvL may produce numerical results which look completely reasonable
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FIG. 9.1. The numerical solutions of ρ (“+”), m (“o”), and z (“*”) at t = 0.5 in x ∈ (−1, 1)
for initial data (9.2) and (9.3) by (from left to right, then top to bottom) SP1, SCN, SP1vL, SCNvL,
NSP, and NSPIF. ε = 1, ∆x = 0.01. CFL= 1 for SP1 and SCN, CFL= 0.5 for others.

but are totally unphysical! The reason is simple: the SCNvL does not have the correct
fluid limit in the coarse regime.

In summary, NSPIF seems to produce satisfactory results and to exhibit a typical
second-order behavior in all these regimes. Other methods may give unsatisfactory
(even wrong) results in one or another regime.

Next we perform the numerical convergence study. We consider an initial value
problem with periodic boundary conditions such that the solution is smooth in a time
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FIG. 9.2. The numerical solutions of ρ (“+”), m (“o”), and z (“*”) at t = 0.5 in x ∈ [−1, 1]
for initial data (9.2) and (9.3) by NSP and NSPIF. ε = 10−8, ∆x = 0.01, and CFL = 0.5.

interval [0, T ] for any value of the parameter ε. We compute the error at time T by
differencing, i.e., by comparing the result obtained with a given grid (∆x,∆t) with
the one obtained with the grid (∆x/2,∆t/2).

In this section we have proved that the consistency error for SP1 is uniformly first
order. By truncation analysis we know that the scheme NSP and NSPIF are second
order in both space and time, if ∆t ≪ ε, and they are second order also in the fluid
regime (for smooth solutions).

The goal of the test is to perform a numerical study of the convergence rate
for a wide range of ε and to check whether the convergence is uniform in ε also in
the intermediate regime. The test problem is given by equations (2.1) with periodic
boundary conditions: s(x+L, t) = s(x, t) with s = f, g, h. The initial data are given by

ρ(x, 0) = 1 + aρ sin
2πx

L
, u(x, 0) =

1

2
+ au sin

2πx

L
,

m(x, 0) = ρ(x, 0)u(x, 0), z(x, 0) = zE(ρ(x, 0)u(x, 0))θM ,

where θM is a real parameter. If θM = 1 then the initial condition is a local
Maxwellian; otherwise it is not. If θM 6= 1, ε ≪ 1, there is an initial layer. The
system is integrated for t ∈ [0, T ]. The values of the parameters used in the compu-
tations are

L = 20, T = 30, aρ = 0.3, au = 0.1.
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FIG. 9.3. The numerical solutions of ρ (“+”), m (“o”), and z (“*”) at t = 0.5 in x ∈ [−1, 1]
for initial data (9.2) and (9.3) by (from left to right, then top to bottom) SP1, SCN, SP1vL, SCNvL,
NSP, and NSPIF. ε = 0.02, ∆x = 0.02. CFL = 1 for SP1 and SCN, CFL = 0.5 for others.

The values of ∆x used in the computations are

∆x = 0.4, 0.2, 0.1, 0.05, 0.025

for the first-order scheme SP1 and

∆x = 1, 0.5, 0.25, 0.125, 0.0625

for the second-order schemes. The time step is chosen in such a way that the CFL
condition is satisfied: ∆t = ∆x for scheme SP1 and ∆t = ∆x/2 for the second-order
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FIG. 9.4. The numerical solutions of ρ (“+”), m (“o”), and z (“*”) at t = 0.25 in x ∈ [0, 1] for
initial data (9.4) and (9.5) by (from left to right, then top to bottom) SP1, SCN, SP1vL, SCNvL,
NSP, NSPIF, and SCNvLIF. ε = 10−8, ∆x = 0.01. CFL = 1 for SP1 and SCN, CFL = 0.5 for
others.

schemes. The convergence rate is computed from the error according to the formula

convergence ratei =
log(errori/errori+1)

log(∆xi/∆xi+1)
,

where errori is obtained by comparing the solution obtained using ∆xi with that
obtained using ∆xi+1. The errors and convergence rate are computed and plot-
ted as function of ε. For each value of ε, five runs have been done for five dif-
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FIG. 9.5. The numerical solutions of ρ (“+”), m (“o”), and z (“*”) at t = 0.25 in x ∈ [0, 1]
for initial data (9.4) and (9.5) by (from left to right, then top to bottom) SCNvL and SCNvLIF for
CFL = 0.5 and SCNvL and SCNvLIF for CFL = 0.005. ε = 10−8, ∆x = 0.01.

ferent values of ∆x, resulting in four error curves and three curves of convergence
rate.

Several measures of the error have been used, namely, L1, L2, and L∞ relative
norm of the error. The different norms give essentially the same results; therefore we
shall show only the L1 norm.

First we consider the simple splitting scheme SP1. In Figure 9.6 we show the
relative discrete norm of the error in ρ and in m as a function of ε (left column) and
the corresponding convergence rate (right column).

The initial state is a local Maxwellian in the first two cases and it is not in the last.
The convergence rate increases when the mesh becomes finer and seems to confirm
that the scheme is first order, uniformly in ε, for a fine enough mesh.

Next we consider second-order schemes. In Figure 9.7a–b the result of scheme
NSP is shown. The initial condition is a local Maxwellian.

As it is evident from the figures, the scheme is second-order accurate for small and
large values of ε, and there is a slight deterioration of the accuracy in the intermediate
regime.

Figure 9.7c shows the effect of the initial layer if scheme NSP is used without
using Richardson extrapolation for the first step. The accuracy of the scheme of
course degrades due to the initial layer. In Figure 9.7d the convergence rate is shown.

The problem of the initial layer can be overcome by using Richardson extrapola-
tion for the first step (scheme NSPIF, Figure 9.7e–f). A similar result is obtained by
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FIG. 9.6. Uniform convergence of the simple splitting scheme SP1. Relative error (left) and
convergence rate (right) vs ε for various values of the grid step size ∆x. Continuous line: coarsest
mesh; dashed line: finest mesh. (a–b): L1 error in ρ. Initial condition: local Maxwellian. (c–d):
L1 error in m. Initial condition: local Maxwellian. (e–f): L1 error in ρ. Initial condition: not local
Maxwellian.

using a scheme based entirely on Richardson extrapolation, in which every step is of
the form (6.5).
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FIG. 9.7. Relative L1 norm of the error in density and convergence rate vs ε for various values
of the grid step size ∆x. (a) and (b): Scheme NSP. Initial state: local Maxwellian. (c) and (d):
Scheme NSP. The initial state is not a local Maxwellian. (e) and (f): Scheme NSPIF. Same initial
state of (c–d).
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