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Abstract. This paper deals with numerical treatment of singularly perturbed
parabolic differential difference equations having small shifts on the spatial vari-
able. The considered problem contain small perturbation parameter (ε) multi-
plied on the diffusion term of the equation. For small values of ε the solution
of the problem exhibits a boundary layer on the left or right side of the spatial
domain depending on the sign of the convective term. The terms involving the
shifts are approximated using Taylor’s series approximation. The resulting sin-
gularly perturbed parabolic partial differential equation is solved using implicit
Euler method in the temporal discretization with exponentially fitted operator fi-
nite difference method in the spatial discretization. The uniform stability of the
scheme investigated using comparison principle and discrete solution bound by
constructing barrier function. Uniform convergence analysis has been carried
out. The scheme gives second order convergence for the case ε > N−1 and first
order convergence for the case ε ≪ N−1, where N is number of mesh interval.
Test examples and numerical results are considered for validating the theoretical
analysis of the scheme.
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1 Introduction

Differential equations with delay terms play an important role in modeling many process in
Computational Bio-science, Control Theory, Economics and Engineering [5]. Some of the
well known applications are the mathematical modeling of population dynamics and epidemi-
ology [8], physiological kinetics [1], blood cell production [10] and so on. In computational
neuroscience, the feasibility of recording single neuron movement induces the development
of accurate mathematical models of neuronal variability. In modeling of spiking movement
of neuron to any level of exactness, one has to consider special features of each kind of neu-
ron and its input processes [3]. In 1965, Stein [16] developed a mathematical model for the
stochastic movement of neuron. After two years, the author [17] generalized his model to
handle a distribution of past synaptic potential amplitudes. The Stein’s model is once again
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generalized by Musila and Lansky [11], in the form of singularly perturbed parabolic differ-
ential difference equations (SPPDDEs) as

∂u
∂t
=
σ2

2
∂2u
∂x2 + (µD −

x
τ

)
∂u
∂x
+ λsu(x + as, t) + ωsu(x + is, t) − (λs + ωs)u(x, t), (1)

to consider the time evolution trajectories of the membrane potential, where µD and σ are dif-
fusion moments which characterize the influence of dendrites synapses on the cell excitation.
as and λs are the amplitude and intensity of the excitatory inputs and is and ωs represent the
amplitude and intensity of the inhibitory inputs to the membrane potential. First derivative
term represent the exponential decay between two consecutive jumps generated by the input
processes. The membrane potential decays to the resting level with time constant τ.

Driving the exact solution of this model problem is very difficult [11]. To simulate the
solution, following the numerical techniques becomes mandatory. Since the model problem
is in the form of singularly perturbed parabolic differential difference equations, classical
numerical methods fail to give a relevant numerical solution. Up to date only a few numerical
schemes have been developed for solving this model problem.

In recent years, few scholar’s have developed numerical scheme that converges indepen-
dently of the perturbation parameter for solving SPPDDEs. Ramesh and Kadalbajoo are the
first authors, who treat this model problem in time dependent form. In [13], they developed
a scheme using backward Euler in time direction and upwind and midpoint upwind FDM on
Shishkin mesh in space. Kumar and Kadalbajoo in [9] developed a numerical scheme using
backward Euler in time direction with B-spline collocation on Shishkin mesh in space. In
series of papers [2–4], Bansal and Sharma developed different numerical schemes using non
standard FDM for this problem when the delays are large. Gupta et al. in [6] developed
scheme using implicit Euler on uniform mesh in time and hybrid finite difference scheme
on Shishkin mesh in space and, apply Richardson extrapolation technique for increasing the
order of convergence. In [19, 20], Woldaregay and Duressa developed uniformly convergent
scheme using non standard FDM in space and Runge-Kutta in time. However, the afore-
mentioned methods still lack accuracy which is one of the crucial criteria for the numerical
method to be good.

The purpose of this study is to construct more accurate uniformly convergent numerical
scheme using exponentially fitted operator finite difference method. Moreover, to discuss the
stability and uniform convergence of the scheme.
Notation: In this paper N, M denoted the number of mesh intervals in space and time
direction respectively. C is the notation for a positive constant independent of cε, N and
M. The norm ∥.∥ is used to denote the maximum norm defined as ∥g∥ = maxx,t |g(x, t)|.

2 Statement of the Problem

The singularly perturbed parabolic differential difference equation of convection diffusion
type having reaction term with a retard and advance argument is given as

∂u
∂t
− ε2 ∂

2u
∂x2 + a(x)

∂u
∂x
+ α(x)u(x − δ, t) + β(x)u(x, t) + ω(x)u(x + η, t) = f (x, t), (2)

on the domain D = Ω × Λ = (0, 1) × (0,T ] with smooth boundary ∂D = D̄ − D, where T is a
fixed positive number, with the initial and interval conditions

u(x, 0) = u0(x), x ∈ D0 = Ω̄,

u(x, t) = ϕ(x, t), (x, t) ∈ DL = [−δ, 0] × Λ,
u(x, t) = ψ(x, t), (x, t) ∈ DR = [1, 1 + η] × Λ, (3)
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where ε, 0 < ε ≪ 1 is the singular perturbation parameter and δ, η are the delay and advance
parameters satisfying δ, η = o(ε). The functions a(x), α(x), β(x), ω(x), f (x, t), u0(x), ϕ(x, t)
and ψ(x, t) are assumed to be smooth, bounded and not a function of ε. We assume the
coefficients of reaction term α(x), β(x) and ω(x) satisfy

α(x) + β(x) + ω(x) ≥ ζ > 0, ∀x ∈ Ω̄

for some constant ζ. This condition ensures that the solution of the problem in (2)-(3) exhibits
boundary layer in the neighbourhood of DL or DR depending on whether a(x)−δβ(x)+ηω(x) <
0 or > 0 for x ∈ Ω̄. When the shift parameters are zero (i.e. δ = η = 0) the above equa-
tion reduces to a singularly perturbed parabolic differential equation (which is one parameter
problem), which with small ε exhibits layers depending upon the value of the coefficient
function a(x). When a(x) < 0 a regular boundary layer appears in the neighborhood of DL

and a(x) > 0 corresponds to existence of a boundary layer near DR. If a(x) changes sign
then interior layer (shock layer) will appear on the solution of the problem [6]. The layer is
maintained for δ, η , 0 but sufficiently small. Note that the above problem in (2)-(3) reduces
to the classical case of singularly perturbed parabolic problem when δ, η = 0.

The existence of the parameter ε on the diffusion term leads to bad approximation in the
computed solution while using standard numerical methods [13]. To avoid these bad approx-
imations, an unacceptably large number of mesh points are required when ε is very small.
So, to overcome the drawback associated with standard numerical methods, we developed a
numerical scheme using backward Euler in time and exponentially fitted operator FDM in
space, which treat the problem very well. The developed scheme is based on the procedure
of Rothe’s (i.e. first discretizing in time followed by discretization in space).

2.1 Estimate for terms with the shift

For the case of δ, η < ε, using Taylor’s series approximation for the terms with the shifts is
valid [18]. Since we assumed δ, η < ε, so the terms u(x − δ, t) and u(x + η, t) approximated as

u(x − δ, t) ≈ u(x, t) − δ∂u
∂x
+
δ2

2
∂2u
∂x2 + O(δ3),

u(x + η, t) ≈ u(x, t) + η
∂u
∂x
+
η2

2
∂2u
∂x2 + O(η3). (4)

Substituting the approximations in (4) into (2)-(3) gives

∂u
∂t
− cε(x)

∂2u
∂x2 + p(x)

∂u
∂x
+ q(x)u(x, t) = f (x, t), (5)

with initial and the boundary conditions

u(x, 0) = u0(x), x ∈ Ω̄,
u(0, t) = ϕ(0, t), 0 ≤ t ≤ T,

u(1, t) = ψ(1, t), 0 ≤ t ≤ T, (6)

where cε(x) = ε2 − δ2

2 α(x) − η2

2 ω(x), p(x) = a(x) − δα(x) + ηω(x) and q(x) = α(x) + β(x) +
ω(x). From the assumption δ, η = o(ε) implies O(δ3, η3) → 0, for small ε. Hence (2)-(3) is
asymptotically equivalent to (5)-(6).

Now, we assume 0 < cε(x) ≤ ε2 − δ2M1 − η2M2 = cε where α(x) ≥ 2M1 and ω(x) ≥ 2M2
for M1 and M2 are constants. We consider the case p(x) = a(x) − δα(x) + ηω(x) ≥ p∗ > 0
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which implies that existence of boundary layer of thickness O(cε) near the right side of the
domain D. The other case p(x) = a(x) − δα(x) + ηω(x) ≤ p∗ < 0 implies the occurrence of
the boundary layer of thickness O(cε) near the left side of the domain D and can be treated
similarly.

The required compatibility condition at the corner points are: u0(0) = ϕ(0, 0), u0(1) =
ψ(1, 0) and

∂ϕ(0, 0)
∂t

− cε
∂2u0(0)
∂x2 + p(0)

∂u0(0)
∂x

+ q(0)u0(0) = f (0, 0),

∂ψ(1, 0)
∂t

− cε
∂2u0(1)
∂x2 + p(1)

∂u0(1)
∂x

+ q(1)u0(1) = f (1, 0)

so that the data matches at the two corners (0, 0) and (1, 0). Let p, q and f be continuous on
domain D. Then (5)-(6) has a unique solution u ∈ C2(D).

In the considered case the boundary layer occurs near x = 1. Using compatibility con-
ditions, we deduce that there exist a constant C independent of cε such that ∀(x, t) ∈ D̄, we
have the following conditions that guarantee the existence of a constant C independent of cε
such that ∀(x, t) ∈ D̄

|u(x, t) − u0(x)| ≤ Ct, |u(x, t) − ϕ(0, t)| ≤ C(1 − x)

for the detail one can refer [14].

Remark 2.1 Note that there does not exist a constant C independent of cε such that |u(x, t)−
ψ(1, t)| ≤ Cx because a boundary layer occurs near x = 1.

The problem obtained by setting cε = 0 in (5)-(6) is called reduced problem and given as

∂u0

∂t
+ p(x)

∂u0

∂x
+ q(x)u0(x, t) = f (x, t), ∀(x, t) ∈ D, (7)

with given initial data

u0(x, 0) = u0(x), x ∈ Ω̄, u0(0, t) = ϕ(0, t), 0 ≤ t ≤ T. (8)

It is a first order hyperbolic PDEs, for small values of cε the solution u(x, t) of (5)-(6) is very
close to the solution u0(x, t) of (7)-(8).

2.2 Properties of analytical solution

Since u0(x) is sufficiently smooth and using the property of norm, we prove the following
lemma.

Lemma 2.1 The solution u(x, t) of the continuous problem (5)-(6) is bounded as

|u(x, t)| ≤ C, ∀(x, t) ∈ D̄. (9)

Proof. From the inequality |u(x, t)−u0(x)| ≤ Ct, we have |u(x, t)|−|u0(x)| ≤ |u(x, t)−u0(x)| ≤ Ct
which implies |u(x, t)| ≤ Ct + |u0(x)|, ∀(x, t) ∈ D̄ since t ∈ [0,T ] and u0(x) is bounded it
implies |u(x, t)| ≤ C. �

Let L denoted for the differential operator L = ∂
∂t − cε ∂2

∂x2 + p(x) ∂
∂x + q(x) in (5)-(6).

Lemma 2.2 [The maximum principle.] Let z be a sufficiently smooth function defined on
D which satisfies z(x, t) ≥ 0, ∀(x, t) ∈ ∂D. Then Lz(x, t) > 0, ∀(x, t) ∈ D implies that
z(x, t) ≥ 0, ∀(x, t) ∈ D̄.
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Proof. Assume that (x∗, t∗) ∈ D̄ be such that z(x∗, t∗) = min(x,t)∈D̄ z(x, t) < 0. It is clear that
(x∗, t∗) < ∂D. Since z(x∗, t∗) = min(x,t)∈D̄ z(x, t) which implies ∂

∂x z(x∗, t∗) = 0, ∂
∂t z(x∗, t∗) = 0

and ∂2

∂x2 z(x∗, t∗) ≥ 0 giving that Lz(x∗, t∗) < 0 which is contradiction to the assumption made
above Lz(x∗, t∗) > 0, ∀(x, t) ∈ D. Therefore z(x, t) ≥ 0, ∀(x, t) ∈ D. �

Lemma 2.3 Let u(x, t) be the solution of the continuous problem in (5)-(6). Then we obtain
the bound

|u(x, t)| ≤ ∥ f ∥
ζ
+max |u(x, t)|∂D, (10)

where ζ > 0 is lower bound of q(x) and |u(x, t)|∂D is the restriction of |u(x, t)| on ∂D.

Proof. By defining barrier functions ϑ±(x, t) = ∥ f ∥
ζ
+max |u(x, t)|∂D ± u(x, t) and applying the

maximum principle we obtain the required bound. �

Lemma 2.4 The bound on the derivative of the solution u(x, t) of the problem in (5)-(6) with
respect to x and t is given by

∂iu(x, t)
∂xi

 ≤C
(
1 + c−i

ε exp
( − p∗(1 − x)

cε

))
, (x, t) ∈ D̄, 0 ≤ i ≤ 4.

 ∂i

∂ti u(x, t)
 ≤C, (x, t) ∈ D̄, 0 ≤ i ≤ 2. (11)

where p∗ is lower bound of p(x).

Proof. See on [7]. �

3 Formulation of Numerical Scheme

3.1 Temporal Semi-discretization

Let us sub-divide the temporal direction domain [0,T ] into M−1 sub-intervals as t0 = 0, t j =

j∆t, j = 0, 1, 2, ..., M, tM = T , where ∆t = T/M. Let U j+1(x) is denoted for the approximation
of u(x, t j+1) at the ( j + 1)th time level discretization. We semi-discretize the problem (5)-(6)
using the implicit Euler method as

L∆tU j+1(x) = g(x, t j+1), x ∈ Ω̄, j = 0, 1, 2, ..., M − 1, (12)

with discretized boundary conditions

U j+1(0) = ϕ(0, t j+1), U j+1(1) = ψ(1, t j+1), (13)

where

L∆tU j+1(x) = −cε
d2

dx2 U j+1(x) + p(x)
d
dx

U j+1(x) + d(x)U j+1(x)

and
g(x, t j+1) =

1
∆t

U j(x) + f (x, t j+1)

for d(x) = 1
∆t + q(x). Here d(x) ≥ ζ∗ > 0, since q(x) ≥ 0.

In the next lemma, we state the semi-discrete maximum principle

Lemma 3.1 Let z j+1 be a sufficiently smooth function on the domain Ω̄. If z j+1(0) ≥
0, z j+1(1) ≥ 0 and L∆tz j+1(x) ≥ 0, ∀x ∈ Ω, then z j+1(x) ≥ 0, ∀x ∈ Ω̄.
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Proof. Assume x∗ ∈ [0, 1] be such that z j+1(x∗) = minx∈Ω̄ z j+1(x) < 0. From the above
assumption, it is clear that x∗ < {0, 1} implies that x∗ ∈ (0, 1). Applying the property in
calculus, we have d

dx z j+1(x∗) = 0 and d2

dx2 z j+1(x∗) ≥ 0 which implies that L∆tz j+1(x∗) < 0
which is contradiction to L∆tz j+1(x∗) ≥ 0, ∀x ∈ Ω̄. Therefore, we conclude that z j+1(x) ≥
0, ∀x ∈ Ω̄. �

Next, we analyze the discretization error, let denote the local truncation error by e j+1 :=
u(x, t j+1) − U j+1(x) for j = 0, 1, 2, ..., M.

Lemma 3.2 The local truncation error estimate in the temporal direction is given by

∥e j+1∥ ≤ C1(∆t)2. (14)

Proof. Using the Taylor series expansion to u(x, t j+1), we obtain

u(x, t j+1) = u(x, t j) + ∆t
∂u(x, t j)
∂t

+ O((∆t)2). (15)

Substituting (15) into (5) gives

u(x, t j+1) − u(x, t j)
∆t

=
∂u(x, t j)
∂t

+ O((∆t)2)

= − ( − cε
∂2u(x, t j)
∂x2 + p(x)

∂u(x, t j)
∂x

+ q(x)u(x, t j) − f (x + t j)
)
+ O((∆t)2).

Since error satisfies the DEs, the local truncation error satisfies

L∆te j+1 = O((∆t)2), e j+1(0) = 0 = e j+1(1). (16)

Using the semi-discrete maximum principle gives

∥e j+1∥ ≤ C1(∆t)2. (17)

�
Next, we need to give the bound for the global truncation error of the semi-discretization.

Let denote T E j+1 be the global error estimate up to the ( j + 1)th time step.

Lemma 3.3 The global error estimate at t j+1 is given by

∥T E j+1∥ ≤ C(∆t), ∀ j = 1, 2, ..., M − 1, (18)

Proof. Using the results in local error estimate up to the ( j+ 1)th time step in Lemma 3.2, the
global error is given as

∥T E j+1∥ =
wwww j+1∑

l=1

elwwww
≤∥e1∥ + ∥e2∥ + ... + ∥e j+1∥
≤C1( j∆t)(∆t)
≤C1T (∆t) since ( j + 1)∆t ≤ T

=C(∆t), denoting C1T = C,

where C is constant independent of cε and ∆t. �
Next we set a bound for the derivatives of solution of the problem in (12).

Lemma 3.4 For each j=1,2,...,M-1. The solution of the boundary value problem in (12)-(13)
satisfies the bounddkU j+1(x)

dxk

 ≤ C
(
1 + c−k

ε exp
( − p∗(1 − x)

cε

))
, x ∈ Ω̄, 0 ≤ k ≤ 4. (19)

Proof. Direct from Lemma 2.4. �
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3.2 Spatial Discretization

Generally, there are two major techniques for designing numerical methods which gives small
truncation errors in the boundary layer. The first approach is the class of layer adapted mesh
methods which uses fine mesh in the layer region and coarse mesh in outer layer region.
The second approach is the exponentially fitted operator methods, in which it uses uniform
mesh and an exponentially fitting factor is determined and induced on the diffusion term of
the equation for stabilizing the term containing the singular perturbation parameter. In this
approach the difference schemes reflect the qualitative behaviour of the solution inside the
boundary layer region.

In this paper, we use exponentially fitted operator finite difference method (FOFDM)
which helps us to hinder the influence of the singular perturbation parameter(ε) as ε → 0
in the boundary layer region. For each j = 0, 1, 2, ..., M − 1 we have the boundary value
problems of the form

L∆tU j+1(x) ≡ −cε
d2

dx2 U j+1(x) + p(x)
d
dx

U j+1(x) + d(x)U j+1(x) = g(x, t j+1) (20)

with boundary conditions

U j+1(0) = ϕ(0, t j+1), U j+1(1) = ψ(1, t j+1), j = 0, 1, 2, ..., M − 1, (21)

Using the theory applied in asymptotic method we develop exponentially fitted numeri-
cal scheme to solve the singularly perturbed BVPs in (20)-(21). In the considered case the
boundary layer is in the right side of the domain, so the zeroth order asymptotic solution of
(20)-(21) is given as

U j+1(x) = U j+1
0 (x) + (ψ(1, t j+1) − U j+1

0 (1)) exp
( − p(1)(1 − x)

cε

)
+ O(cε), (22)

where U j+1
0 is the solution of the reduced problem [12].

The spatial domain Ω̄ = [0, 1] is discretized into N equal number of subintervals each
of length h = N−1. Let 0 = x0, xN = 1 and xi = ih, i = 0, 1, 2, ...,N be the mesh points.
Considering h is small enough, the discretized form of (22) becomes

U j+1(ih) = U j+1
0 (ih) + (ψ(1, t j+1) − U j+1

0 (1)) exp
( − p(1)(1/cε − iρ)

)
, (23)

Similarly, we write

U j+1
i±1 = U j+1

0 (ih) + (ψ(1, t j+1) − U j+1
0 (1)) exp

( − p(1)(1/cε − (i ± 1)ρ)
)
. (24)

where ρ = h/cε, h = 1/N.
To handle the effect of the perturbation parameter artificial viscosity (exponentially fitting

factor σ(ρ)) is multiplied on the term containing the perturbation parameter as

−cεσ(ρ)
d2

dx2 U j+1(x) + p(x)
d
dx

U j+1(x) + d(x)U j+1(x) = g(x, t j+1). (25)

Next, on a uniform points {xi}Ni=0 with h = xi+1 − xi. For any mesh function Zi, we denote the
difference operators as

D+Zi =
Zi+1 − Zi

h
, D−Zi =

Zi − Zi−1

h
, D0Zi =

Zi+1 − Zi−1

2h
and

D+D−Zi =
Zi+1 − 2Zi + Zi−1

h2 (26)

7
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Applying the central finite difference on (25) gives

−cεσ(ρ)
U j+1

i−1 − 2U j+1
i + U j+1

i+1

h2 + p(xi)
U j+1

i+1 − U j+1
i−1

2h
+ d(xi)U

j+1
i = g(xi, t j+1), (27)

Multiplying (27) by h and considering h→ 0 and truncating the term h(g(xi, t j+1)−d(xi)U
j+1
i )

gives

−σ(ρ)
ρ

(
U j+1

i−1 − 2U j+1
i + U j+1

i+1
)
+

p(xi)
2
(
U j+1

i+1 − U j+1
i−1
)
= 0. (28)

Substituting the results in (23) and (24) into (28) and simplifying, the required exponential
fitting factor is obtained as

σ(ρ) =
ρp(xi)

2
coth
(ρp(1)

2
)
. (29)

Hence, the proposed finite difference scheme becomes

Lh,∆tU j+1
i = g(xi, t j+1), i = 1, 2, ...,N − 1, j = 0, 1, 2, ..., M − 1, (30)

where

Lh,∆tU j+1
i = − cεσ(ρ)

U j+1
i−1 − 2U j+1

i + U j+1
i+1

h2 + p(xi)
U j+1

i+1 − U j+1
i−1

2h
+ d(xi)U

j+1
i .

3.3 Stability and Uniform Convergence Analysis

The proposed discrete scheme satisfies the discrete comparison principle.

Lemma 3.5 [Discrete comparison principle.] There exist a comparison function Z j+1
i such

that Lh,∆tU j+1
i ≤ Lh,∆tZ j+1

i , i = 1, 2, ...,N − 1 and if U j+1
0 ≤ Z j+1

0 and U j+1
N ≤ Z j+1

N then
U j+1

i ≤ Z j+1
i , ∀i = 0, 1, 2, ...,N.

Proof. The matrix associated with operator Lh,∆t is of size (N + 1) × (N + 1) and satisfies the
property of M matrix. See the detail proof on Kellogg and Tsan [7]. �

The result of this lemma guarantee the existence and uniqueness of the discrete solution.

Lemma 3.6 Let Z j+1
i = 1 + xi, 0 ≤ i ≤ N, then there exist a positive constant C such that

Lh,∆tZ j+1
i ≥ C, 1 ≤ i ≤ N − 1.

Proof. The proof is a simple computation, enables one to give a bound, that is uniform in cε
for the norm of the inverse of Lh,∆t.

Lh,∆tZ j+1
i =σ(ρ)cεD+D−Z j+1

i + p(xi)D0Z j+1
i + d(xi)Z

j+1
i

=σ(ρ)cεD+D−(1 + xi) + p(xi)D0(1 + xi) + d(xi)(1 + xi)
≥C.

�

Lemma 3.7 [Uniform stability estimate.] The solution U j+1
i of the discrete scheme in (30)

satisfy the following bound.

|U j+1
i | ≤

∥g∥
ζ∗
+C max

{|ϕ(0, t j+1)|, |ψ(1, t j+1)|}.
where d(xi) ≥ ζ∗ > 0.
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Proof. By constructing a barrier functions π±i, j+1 =
∥g∥
ζ∗ +C max

{|ϕ(0, t j+1)|, |ψ(1, t j+1)|}±U j+1
i

we can easily show that π±0, j+1 ≥ 0 and π±N, j+1 ≥ 0. Then for i = 1, 2, ...,N − 1 we have

Lh,∆tπ±i, j+1 = − cεσ(ρ)D+D−π±i, j+1 + p(xi)D0π±i, j+1 + d(xi)π±i, j+1

=d(xi)
[∥g∥
ζ∗
+C max

{|ϕ(0, t j+1)|, |ψ(1, t j+1)|} ± U j+1
i

]
≥ 0.

Using the discrete comparison principle, we obtain π±i, j+1 ≥ 0, i = 0, 1, 2, ...,N. �

Lemma 3.8 If Z j+1
i be any mesh function such that Z j+1

0 = Z j+1
N = 0. Then

|Z j+1
i | ≤

1
ζ∗

max
1≤k≤N−1

|Lh,∆tZ j+1
k |. (31)

Proof. Consider two barrier functions of the form π±i, j+1 =
1
ζ∗ max1≤k≤N−1 |Lh,∆tZ j+1

k | ± Z j+1
i . It

is easily shown that π±0, j+1 ≥ 0, π±N, j+1 ≥ 0. Next, we show Lh,∆tπ±i, j+1 ≥ 0 for i = 1, 2, ...,N−1.

Lh,∆tπ±i, j+1 = − cεσ(ρ)D+D−π±i, j+1 + p(xi)D0π±i, j+1 + d(xi)π±i, j+1

=d(xi)
( 1
ζ∗

max
1≤k≤N−1

|Lh,∆tZ j+1
k | + ±Zi, j+1

) ≥ 0.

Hence, using the discrete comparison principle gives

|Z j+1
i | ≤

1
ζ∗

max
1≤k≤N−1

|Lh,∆tZ j+1
k |.

This result guarantee the uniform stability of the discrete scheme. �
Next, we consider the semi-discrete problem in (12)-(13) and the fully discrete scheme in

(30) to estimate the truncation error of the spatial direction discretization.

Theorem 3.1 Let the functions p(x), q(x) and g(x, t j+1) in (12) be sufficiently smooth so that
U j+1(x) ∈ C4[0, 1]. Then the discrete solution U j+1

i of (30) satisfies the following error bound.

wwwwLh,∆t(U j+1(xi) − U j+1
i )
wwww ≤ CN−2

N−1 + cε

(
1 + c−3

ε exp(− p∗(1 − xi)
cε

)
)
. (32)

Proof. The local truncation error in space discretization is given as

∥Lh,∆t(U j+1(xi) − U j+1
i )∥ =

wwwwwwww − cεσ(ρ)
( d2

dx2 − D+D−
)
U j+1(xi) + p(xi)

( d
dx
− D0)U j+1(xi)

wwwwwwww,
≤
wwwwwwww − cε

[
p(xi)

ρ

2
coth
(
p(1)

ρ

2
) − 1
]
D+D−U j+1(xi)

wwwwwwww
+

wwwwwwwwcε
( d2

dx2 − D+D−
)
U j+1(xi)

wwwwwwww + wwwwwwwwp(xi)
( d
dx
− D0)U j+1(xi)

wwwwwwww
where σ(ρ) = p(xi)

ρ
2 coth

(
p(1) ρ2

)
, and ρ = N−1

cε
.

Now for ρ > 0, C1 and C2 are constants we have |ρ coth(ρ) − 1| ≤ C1ρ
2, for ρ ≤ 1. For

ρ → ∞, since limρ→∞ coth(ρ) = 1 gives |ρ coth(ρ) − 1| ≤ C1ρ. In general for all ρ > 0 we
write

C1
ρ2

ρ + 1
≤ ρ coth(ρ) − 1 ≤ C2

ρ2

ρ + 1
(33)
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Using the bound in (33) we have

cε
[
p(xi)

ρ

2
coth
(
p(1)

ρ

2
) − 1
] ≤ Ccε

(N−1/cε)2

N−1/cε + 1
=

CN−2

N−1 + cε
. (34)

Using Taylor series expansion, we obtain the boundswwwwwwww( d2

dx2 − D+D−
)
U j+1(xi)

wwwwwwww ≤CN−2
wwwwwwwwd4U j+1(γ)

dx4

wwwwwwww,wwwwwwww( d
dx
− D0)U j+1(xi)

wwwwwwww ≤CN−2
wwwwwwwwd3U j+1(γ)

dx3

wwwwwwww,wwwwD+D−U j+1(xi)
wwww ≤C

wwwwwwwwd2U j+1(γ)
dx2

wwwwwwww, (35)

where
wwww dkU j+1(γ)

dxk

wwww = maxγ∈(x0,xN)

 dkU j+1(xi)
dxk

. Using the bounds in (34) and (35) we obtain

wwwwLh,∆t(U j+1(xi) − U j+1
i )
wwww ≤ CN−2

N−1 + cε

wwwwd2U j+1(γ)
dx2

wwww + cεCN−2wwwwd4U j+1(γ)
dx4

wwww
+CN−2wwwwd3U j+1(γ)

dx3

wwww
≤ CN−2

N−1 + cε

wwwwd2U j+1(γ)
dx2

wwww +CN−2[cεwwwwd4U j+1(γ)
dx4

wwww
+
wwwwd3U j+1(γ)

dx3

wwww].
Using the bounds for the derivatives of the solution in Lemma 3.4 giveswwwwLh,∆t(U j+1(xi) − U j+1

i )
wwww ≤ CN−2

N−1 + cε

(
1 + c−2

ε exp(− p∗(1 − xi)
cε

)
)

+CN−2[cε(1 + c−4
ε exp(− p∗(1 − xi)

cε
)
)

+
(
1 + c−3

ε exp(− p∗(1 − xi)
cε

)
)]

≤ CN−2

N−1 + cε

(
1 + c−2

ε exp(− p∗(1 − xi)
cε

)
)

+CN−2
[(

cε + c−3
ε exp(− p∗(1 − xi)

cε
)
)

+
(
1 + c−3

ε exp(− p∗(1 − xi)
cε

)
)]
.

Since c−3
ε ≥ c−2

ε , we obtain

wwwwLh,∆t(U j+1(xi) − U j+1
i )
wwww ≤ CN−2

N−1 + cε

(
1 + c−3

ε exp
( − p∗(1 − xi)

cε

))
, (36)

which gives the required bound. �

Lemma 3.9 For a fixed number of mesh numbers N and for cε → 0, it holds

lim
cε→0

max
1≤i≤N−1

exp
(−p∗xi

cε

)
cm
ε

= 0, lim
cε→0

max
1≤i≤N−1

exp
(−p∗(1−xi)

cε

)
cm
ε

= 0, m = 1, 2, 3, ... (37)

where xi = ih, h = 1/N,∀i = 1, 2, ...,N − 1.
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Proof. Refer on [15]. �
Using Lemma 3.9 into (36) gives

wwwwLh,∆t(U j+1(xi) − U j+1
i )
wwww ≤ CN−2

N−1 + cε
. (38)

Hence, using the bound in Lemma 3.8 gives

wwwwU j+1(xi) − U j+1
i

wwww ≤ CN−2

N−1 + cε
. (39)

Remark 3.1 From the bound in (39) we deduce the following cases.

i. For the case cε > N−1 the denominator of the bound in (39) is dominated by cε. So, the
scheme gives second order convergence.

ii.For small values of cε ≪ N−1 the denominator of the bound in (39) is dominated by N−1.
So, the scheme gives first order uniform convergence i.e.

sup
0<cε≤1

wwwwU j+1(xi) − U j+1
i

wwww ≤ CN−1.

Theorem 3.2 Let u(xi, t j+1) and U j+1
i be solution of (5)-(6) and (30) respectively on dis-

cretized domain. Then for sufficiently large N, the following uniform error estimate holds:

sup
0<cε≤1

∥u(xi, t j+1) − U j+1
i ∥ ≤ C(N−1 + ∆t). (40)

Proof. The combination of temporal and spatial error bound gives the required result. �

4 Numerical Examples and Results

In this section, we illustrate the proposed scheme using two numerical examples of the form
given in (2)-(3). The exact solution of these two examples are not known. We investigate the
theoretical results in this paper by performing experiments using the proposed scheme.

Example 4.1 Consider the problem

∂u
∂t
− ε2 ∂

2u
∂x2 + (2 − x2)

∂u
∂x
+ 2u(x − δ, t) + (x − 3)u(x, t) + u(x + η, t) = 10t2 exp(−t)x(1 − x).

with the initial condition u0(x) = 0, x ∈ [0, 1] and the interval conditions ϕ(x, t) = 0, (x, t) ∈
[−δ, 0] × [0, 3] and ψ(x, t) = 0, (x, t) ∈ [1, 1 + η] × [0, 3].

Example 4.2 Consider the problem

∂u
∂t
− ε2 ∂

2u
∂x2 + (2 − x2)

∂u
∂x
+ (1 + x)u(x − δ, t) + (1 + x2 + cos(πx))u(x, t) + 3u(x + η, t)

= sin(πx).

with the initial condition u0(x) = 0, x ∈ [0, 1] and the interval conditions ϕ(x, t) = 0, (x, t) ∈
[−δ, 0] × [0, 3] and ψ(x, t) = 0, (x, t) ∈ [1, 1 + η] × [0, 3].
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Since the exact solution of the problem in these examples are not known, using the double
mesh techniques we compute the maximum absolute error (EN,M

ε,δ ), ε-uniform error (EN,M),
rate of convergence (rN,M

ε,δ ) and ε-uniform rate of convergence (EN,M) of the scheme. Let UN,M
i, j

be the computed solution using N,M number mesh points and let U2N,2M
i, j be the computed

solution on double number of mesh points 2N, 2M by including the mid points xi+h/2 =
xi+1+xi

2
and t j+∆t/2 =

t j+1+t j

2 into the mesh points. We calculate the maximum absolute error as

EN,M
ε,δ,η = max

i, j

UN,M
i, j − U2N,2M

i, j


and the ε-uniform (parameter uniform) error estimate as

EN,M = max
ε,δ,η

(
EN,M
ε,δ,η

)
.

We calculate the rate of convergence of the proposed scheme using

rN,M
ε,δ,η = log2

(
EN,M
ε,δ,η

) − log2
(
E2N,2M
ε,δ,η

)
and the ε- uniform rate of convergence using

rN,M = log2
(
EN,M) − log2

(
E2N,2M).

Table 1. Example 4.1, maximum absolute errors of the scheme without exponential fitting factor (σ)
for δ = 0.6ε and η = 0.5ε.

ε N= 32 64 128 256 512 1024
↓ M= 60 120 240 480 960 1920
20 6.8379e-05 4.3188e-06 6.8059e-06 5.3651e-06 3.1728e-06 1.7148e-06
2−2 4.3057e-03 9.5869e-04 1.9487e-04 2.9291e-05 1.7792e-05 1.0801e-05
2−4 3.8034e-01 2.1026e-01 8.4326e-02 2.3944e-02 5.0278e-03 1.2225e-03
2−6 9.7369e-01 7.7209e-01 6.3772e-01 5.3100e-01 3.8009e-01 2.1481e-01
2−8 1.1208e+00 1.1071e+00 1.0170e+00 8.2794e-01 7.3438e-01 6.9902e-01
2−10 1.1316e+00 1.1463e+00 1.1470e+00 1.1219e+00 1.0283e+00 8.4274e-01
2−12 1.1323e+00 1.1489e+00 1.1568e+00 1.1589e+00 1.1533e+00 1.1254e+00
2−14 1.1324e+00 1.1490e+00 1.1574e+00 1.1614e+00 1.1629e+00 1.1619e+00
2−16 1.1324e+00 1.1490e+00 1.1575e+00 1.1615e+00 1.1635e+00 1.1643e+00
2−18 1.1324e+00 1.1490e+00 1.1575e+00 1.1615e+00 1.1635e+00 1.1644e+00
2−20 1.1324e+00 1.1490e+00 1.1575e+00 1.1615e+00 1.1635e+00 1.1644e+00

Model examples are considered and solved for different values of the perturbation param-
eter and mesh size. The solution of the considered examples exhibits right boundary layer
of thickness O(ε2). The occurrence of the right boundary layer of the examples are shown
on Figure 1 and 2, as ε goes very small. In Figure 3, effect of the delay parameter on the
behaviour of the solution is shown. When the magnitude of delay parameter grows, the thick-
ness of the boundary layer decreases as seen on Figure 3 (a) and (b). The maximum absolute
error, rate of convergence, ε-uniform error and ε-uniform rate of convergence of Example
4.1 is given in Table 1-3 and Example 4.2’s in Table 5-7. The result in Table 1 shows, as the
perturbation parameter ε2 > N−1 the scheme gives good approximation to the exact solution,
whereas as ε goes small the numerical scheme without the exponential fitting factor diverges.
But, as we observe the results in Table 2, the exponentially fitted scheme converges indepen-
dent of the perturbation parameter as ε → 0. Similarly, we observe the same scenario in the
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ε = 2−0 ε = 2−2

ε = 2−10 ε = 2−20

Figure 1. 3D view of numerical solution of Example 4.1 with boundary layer formation as ε→ 0.

ε = 2−0 ε = 2−2

ε = 2−10 ε = 2−20

Figure 2. 3D view of numerical solution of Example 4.2 with boundary layer formation as ε→ 0.
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Table 2. Example 4.1, maximum absolute errors of the proposed scheme for δ = 0.6ε and η = 0.5ε.

ε N= 32 64 128 256 512 1024
↓ M= 60 120 240 480 960 1920
20 6.2047e-05 3.3795e-06 7.1843e-06 5.4601e-06 3.1966e-06 1.7148e-06
2−2 1.6783e-03 4.1640e-04 9.8225e-05 4.1857e-05 2.3996e-05 1.2774e-05
2−4 4.8462e-03 2.4409e-03 1.1091e-03 3.8522e-04 1.0717e-04 2.7096e-05
2−6 4.7005e-03 2.3806e-03 1.1976e-03 6.0058e-04 3.0073e-04 1.4974e-04
2−8 4.6654e-03 2.3627e-03 1.1885e-03 5.9604e-04 2.9846e-04 1.4934e-04
2−10 4.6567e-03 2.3582e-03 1.1863e-03 5.9492e-04 2.9790e-04 1.4906e-04
2−12 4.6546e-03 2.3571e-03 1.1857e-03 5.9464e-04 2.9776e-04 1.4899e-04
2−14 4.6540e-03 2.3569e-03 1.1856e-03 5.9457e-04 2.9772e-04 1.4897e-04
2−16 4.6539e-03 2.3568e-03 1.1855e-03 5.9455e-04 2.9771e-04 1.4896e-04
2−18 4.6539e-03 2.3568e-03 1.1855e-03 5.9454e-04 2.9771e-04 1.4896e-04
2−20 4.6539e-03 2.3568e-03 1.1855e-03 5.9454e-04 2.9771e-04 1.4896e-04

EN,M 4.8462e-03 2.4409e-03 1.1976e-03 6.0058e-04 3.0073e-04 1.4974e-04
rN,M 0.9894 1.0273 0.9957 0.9979 1.0060 -

Table 3. Example 4.1, maximum absolute error and rate of convergence for ε = 2−2.

M= 1200 N= 32 64 128 256
δ ↓, η = 0.5ε
δ = 0.1ε 1.1389e-03 2.8792e-04 7.0102e-05 1.5795e-05

1.9839 2.0381 2.1500 -
δ = 0.3ε 1.2400e-03 3.1370e-04 7.6331e-05 1.7160e-05

1.9829 2.0390 2.1532 -
δ = 0.5ε 1.4998e-03 3.8180e-04 9.3325e-05 2.1198e-05

1.9739 2.0325 2.1383 -
δ = 0.7ε 2.1633e-03 5.6275e-04 1.3939e-04 3.2504e-05

1.9427 2.0134 2.1004 -
η ↓, δ = 0.5ε
η = 0.1ε 1.4998e-03 3.8180e-04 9.3325e-05 2.1198e-05

1.9739 2.0325 2.1383 -
η = 0.3ε 1.4998e-03 3.8180e-04 9.3325e-05 2.1198e-05

1.9739 2.0325 2.1383 -
δ = 0.5ε 1.4998e-03 3.8180e-04 9.3325e-05 2.1198e-05

1.9739 2.0325 2.1383 -
η = 0.7ε 1.4998e-03 3.8180e-04 9.3325e-05 2.1198e-05

1.9739 2.0325 2.1383 -

Table 4. Example 4.1, comparison of ε-uniform error and ε-uniform rate of convergence.

Schemes N= 32 64 128 256 512 1024
↓ M= 60 120 240 480 960 1920
Prop. 4.8462e-03 2.4409e-03 1.1976e-03 6.0058e-04 3.0073e-04 1.4974e-04
Scheme 0.9894 1.0273 0.9957 0.9979 1.0060 -
Upwind 1.6716e-02 9.2021e-03 4.9863e-03 2.6885e-03 1.4245e-03 7.5403e-04
in [13] 0.8612 0.8840 0.8912 0.9163 0.9178 -
Mid-pt 1.0729e-02 6.5942e-03 3.8199e-03 2.1180e-03 1.1399e-03 6.0635e-04
up in [13] 0.7022 0.7877 0.8508 0.8938 0.9107 -
Result 7.5020e-03 4.4966e-03 2.4450e-03 1.2728e-03 6.4909e-04 3.2774e-04
in [9] 0.7384 0.8791 0.9418 0.9715 0.9859 -
Result 9.7515e-03 4.8801e-03 2.4414e-03 1.2211e-03 6.1064e-04 3.0534e-04
in [20] 0.9987 0.9992 0.9995 0.9998 0.9999 -

numerical results of Example 4.2 in Table 5 and 6. In Table 3 and 7 we observe, the maxi-
mum absolute error and rate of convergence of the scheme for different values of delay and
advance parameter by keeping ε = 2−2 > N−1. As one observes in these tables the scheme
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Table 5. Example 4.2, maximum absolute errors of the scheme without the exponential fitting factor
(σ) for δ = 0.6ε and η = 0.5ε.

ε N=32 64 128 256 512 1024
↓ M= 60 120 240 480 960 1920
2−0 3.8807e-05 9.7068e-06 2.4268e-06 6.0674e-07 1.5168e-07 3.7918e-08
2−2 2.8398e-04 6.9029e-05 1.7139e-05 4.2837e-06 1.0705e-06 2.6759e-07
2−4 4.8328e-02 2.6119e-02 9.6665e-03 2.5007e-03 5.4081e-04 1.3124e-04
2−6 1.1605e-01 1.1893e-01 1.1020e-01 8.9701e-02 6.0281e-02 3.0841e-02
2−8 1.2408e-01 1.3481e-01 1.3992e-01 1.4088e-01 1.3809e-01 1.3052e-01
2−10 1.2478e-01 1.3605e-01 1.4228e-01 1.4544e-01 1.4682e-01 1.4704e-01
2−12 1.2487e-01 1.3617e-01 1.4247e-01 1.4578e-01 1.4746e-01 1.4828e-01
2−14 1.2488e-01 1.3619e-01 1.4249e-01 1.4581e-01 1.4751e-01 1.4837e-01
2−16 1.2489e-01 1.3619e-01 1.4249e-01 1.4581e-01 1.4752e-01 1.4838e-01
2−18 1.2489e-01 1.3619e-01 1.4249e-01 1.4582e-01 1.4752e-01 1.4838e-01
2−20 1.2489e-01 1.3619e-01 1.4249e-01 1.4582e-01 1.4752e-01 1.4838e-01

Table 6. Example 4.2, maximum absolute errors of the proposed scheme for δ = 0.6ε and η = 0.5ε.

ε N= 32 64 128 256 512 1024
↓ M= 60 120 240 480 960 1920
2−0 3.6482e-05 9.1317e-06 2.2830e-06 5.7075e-07 1.4269e-07 3.5673e-08
2−2 3.1590e-04 8.1679e-05 2.0583e-05 5.1561e-06 1.2897e-06 3.2247e-07
2−4 2.1064e-03 9.7659e-04 3.4735e-04 9.8825e-05 2.5626e-05 6.4673e-06
2−6 2.1269e-03 1.0920e-03 5.5389e-04 2.7886e-04 1.3913e-04 6.3546e-05
2−8 2.1274e-03 1.0926e-03 5.5401e-04 2.7893e-04 1.3995e-04 7.0097e-05
2−10 2.1274e-03 1.0928e-03 5.5403e-04 2.7895e-04 1.3996e-04 7.0100e-05
2−12 2.1274e-03 1.0928e-03 5.5403e-04 2.7895e-04 1.3996e-04 7.0100e-05
2−14 2.1274e-03 1.0928e-03 5.5403e-04 2.7895e-04 1.3996e-04 7.0101e-05
2−16 2.1274e-03 1.0928e-03 5.5403e-04 2.7895e-04 1.3996e-04 7.0101e-05
2−18 2.1274e-03 1.0928e-03 5.5403e-04 2.7895e-04 1.3996e-04 7.0101e-05
2−20 2.1274e-03 1.0928e-03 5.5403e-04 2.7895e-04 1.3996e-04 7.0101e-05

EN,M 2.1274e-03 1.0928e-03 5.5403e-04 2.7895e-04 1.3996e-04 7.0101e-05
rN,M 0.9611 0.9800 0.9999 0.9950 0.9975 -

Table 7. Example 4.2, maximum absolute error and rate of convergence for ε = 2−2.

M= 1200 N= 32 64 128 256
δ ↓, η = 0.5ε
δ = 0.1ε 2.7517e-04 7.0567e-05 1.7756e-05 4.4468e-06

1.9633 1.9907 1.9975 -
δ = 0.3ε 2.8063e-04 7.2015e-05 1.8134e-05 4.5411e-06

1.9623 1.9896 1.9976 -
δ = 0.5ε 2.9955e-04 7.7182e-05 1.9439e-05 4.8695e-06

1.9565 1.9893 1.9971 -
δ = 0.7ε 3.3900e-04 8.8013e-05 2.2200e-05 5.5625e-06

1.9455 1.9872 1.9968 -
η ↓, δ = 0.5ε
η = 0.1ε 2.9955e-04 7.7182e-05 1.9439e-05 4.8695e-06

1.9565 1.9893 1.9971 -
η = 0.3ε 2.9955e-04 7.7182e-05 1.9439e-05 4.8695e-06

1.9565 1.9893 1.9971 -
η = 0.5ε 2.9955e-04 7.7182e-05 1.9439e-05 4.8695e-06

1.9565 1.9893 1.9971 -
η = 0.7ε 2.9955e-04 7.7182e-05 1.9439e-05 4.8695e-06

1.9565 1.9893 1.9971 -

gives second order convergence with good agreement the statement in Remark 3.1. In Figure
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Table 8. Example 4.2, comparison of ε-uniform error and ε-uniform rate of convergence.

Schem. N=16 32 64 128 256 512
↓ M= 30 60 120 240 480 960
Prop. 3.9928e-03 2.1274e-03 1.0928e-03 5.5403e-04 2.7895e-04 1.3996e-04
Scheme 0.9083 0.9611 0.9800 0.9999 0.9950 0.9975
Result 1.5241e-02 7.6388e-03 3.8384e-03 1.9277e-03 9.6627e-04 4.8379e-04
in [9] 0.9924 0.9925 0.9925 0.9964 0.9981 -
Result 9.3302e-03 5.8132e-03 3.1997e-03 1.6737e-03 8.5536e-04 4.3232e-04
in [20] 0.6826 0.8614 0.9349 0.9685 0.9844 -

Example 4.1 Example 4.2

Figure 3. Effect of delay parameter on solution δ = 0, 0.3ε, 0.6ε in increasing order on figures, for
ε = 2−2 and η = 0.5ε.

Example 4.1 Example 4.2

Figure 4. The Log-Log plot of the maximum absolute error for different values of ε.

4, the Log-Log plot of the maximum absolute error verses N are given for singular pertur-
bation parameter ranging from ε = 2−4 to 2−20 . In this figure the graphs are parallel and
overlapped as ε goes small, this indicate that the proposed scheme converges independent of
the values of perturbation parameter. This is one of the main result claimed to be shown in
this paper. As one observe in Table 2 and 6, for each N and M as the perturbation parameter
(ε) → 0, the maximum absolute error is stable and uniform. We compared the ε-uniform er-
ror and ε-uniform rate of convergence of the proposed scheme with some published papers in
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Table 4 and 8, as one observes the proposed scheme gives more accurate result than schemes
in [9], [13] and [20].

5 Conclusion

Singularly perturbed parabolic differential difference equations exhibiting boundary layer is
considered. The considered problem contains small perturbation parameter multiplied to the
highest order derivative term of the equation; and small delay and advance parameters on the
non derivative terms of the spatial variable. Exponentially fitted operator numerical scheme
is proposed for solving the problem. First, the equation is approximated by equivalent sin-
gularly perturbed parabolic PDEs using Taylor’s series approximation for the terms with the
delay and advance parameters. Inducing exponential fitting factor for term with perturbation
parameter and determine its value. Numerical scheme is developed using implicit Euler in
temporal discretization with central FDM for spatial discretization. The uniform stability and
uniform convergence of the scheme is established. It is shown that the scheme is accurate
and converges uniformly with order of convergence O(N−1 + ∆t).
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