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UNIFORMLY FAT SETS

JOHN L. LEWIS

ABSTRACT. In this paper we study closed sets E which are "locally uni-
formly fat" with respect to a certain nonlinear Riesz capacity. We show that
E is actually "locally uniformly fat" with respect to a weaker Riesz capacity.
Two applications of this result are given. The first application is concerned
with proving Sobolev-type inequalities in domains whose complements are uni-
formly fat. The second application is concerned with the Fekete points of E.

Introduction. Let x = (xy,x2,... ,xn) be a point in Euclidean n space, R™,
with |x| the norm of x. For a > 0, let 7a(x) = |x|(Q~") denote the Riesz kernel of
order a and put

Ia*f(x)= f    [x-y\^^f(y)dy,        xERn,
Jr."

Ia * p(x) = f    \x- y^ dp(y),        x E Rn,
Jr."

when / is a Lebesgue integrable function and p a Borel measure on R". Here dy
denotes Lebesgue measure on R™. If E C Rn, 0 < ap < n and p > 1, define the
(a, p) outer Riesz capacity of E by

Ra,P(E)=ini{\\ffp:Ia*f>l<mE},
where ||/||p is the Lebesgue p norm of /. We note that a = 1, p = 2, is the classical
Newtonian capacity. If ap = n, we let

Ra,p(E) = ini{\[f\[p>: Ja*f>lonE},
where Ja is the truncated Riesz kernel defined by

Ja(x) = |x|(a~n) - (100)(a_n),        |x| < 100,

= 0,        |x| > 100.
We shall say that a property holds (a,p) quasi everywhere (abbreviated (a,p) q.e.)
on a set E if it holds on E except perhaps for a set of 7?QiP capacity zero. Next
we list some properties of Riesz capacities. To simplify the writing we state these
properties only for 0 < ap < n. However (A)-(C) also hold when ap = n provided
lex is replaced by Ja. If E is a compact set, then

(A) Ra:p(E) = snp{v(E)p: supp v EE and ||7Q * v\p< < 1}, for p' = p/(p — 1),
(B) Ra,p(E) = sup{i/(F): Ia * (Ia * Zy)1/(P-i) < i on suppi/ C E},
(C) there exists a measure u for which P = Ia * (Ia * p)1/^-1' > 1, (a,p) q.e.,

on E and P = 1, (a,p) q.e., on suppp C E. Moreover,

_ P(E) = \\Ia * p[[pp, = Ra,P(E).
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178 J. L. LEWIS

(D) If B(x,r) = {y:\y-x\< r}, then R^p[B(x,r)\ ~ An~ap\ where ~ means
the ratio of the two functions is bounded above and below by a positive constant,

(E) If 77m denotes m-dimensional Hausdorff measure on R", then
(i) 77(""QP)(F) < oo -» Ra,p(E) = 0,
(ii) 77("-aP+£'(F) > 0 - Ra,p(E) > 0, e > 0,
(F) If /? > 0, q > 1, and either /3q < ap or (3q = ap and 0 < a, then

7?0,,(F)("-aP)<A7?Q,p(F)("-^),

where A is a positive constant independent of E.
Note from (F) that 7?QjP is a stronger capacity than Rp,a in the sense that

Ra,p(E) = 0 -► R0,q(E) = 0. For the proof of (A), (C), (D) and (E) see [14]. (B)
is given in [2] and (F) can be found in [3]. Finally we mention that a general survey
of nonlinear potential theory as well as an outline of the results in this paper can
be found in [13].

In classical potential theory a set can be defined to be fat at a point in several
equivalent ways. The most natural definition for nonlinear potential theory turns
out to be: A set E is said to be (a,p) fat at x for 0 < ap < n if

f [r(«p-")7i;QiP(FnJB(x,r))]1/(P-1)— = +co.
Jo r

Otherwise E is said to be (a,p) thin at x.
A similar definition holds for ap = n. We shall say that a set E is (a, p) locally

uniformly fat for 0 < ap < n, p > 1, provided there exist positive constants ro and
A such that
(1.1) 7?a,p(r-1[5(x,r)nF])>A

for every x in E and 0 < r < r0. Here

r_1[B(x,r)nF] = {x + r~x(y-x): y E B(x,r)C\E}.

If 0 < ap < n wc note that (1.1) is equivalent to

(1.2) r(Qp-"»7?Q,p[B(x,r)nF] > A

for every x in E and 0 < r < ro, as follows from the dilation properties of Riesz
capacities.

If (1.1) holds for 0 < r < oo and every x in E we say that E is uniformly fat.
In the classical case a = 1, p = 2, domains whose complements satisfy (1.1) have
been considered in several recent papers (see [6, 10, 18]).

We note from (F) that a (/?, q) locally uniformly fat set is also (a, p) uniformly
fat when either Pq < ap < n or ap = f3q < n and a > /?. In this paper we show
that if a closed set E is locally uniformly fat with respect to a given capacity, then
E is also locally uniformly fat with respect to a weaker capacity and corresponding
Hausdorff measure. More specifically, we prove

THEOREM 1. Given 0 < ap < n, p > 1, suppose E is closed and (a,p) locally
uniformly fat. Then there exists £, Ai > 0 depending only on a,p,n,X, such that
whenever x E E, 0 < r < tq, and ap — e < (3q < ap, we have

(1.3) R0<q[EnB(x,r)}>Xyr(n-0«\
(1.4) H{n-ap+e][EnB(x,r)[ > Xyr{n-ap+£).
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UNIFORMLY FAT SETS 179

We give two applications of Theorem 1. In order to state the first application
we need some notation. Let D be an open set, Cq°(D) the space of infinitely
differentiable functions with compact support in D, and d(x) the distance from x
to Rn - D. In §5 we prove

THEOREM 2. Let D be an open set and 1 < p <n. IfRn-D is (l,p) uniformly
fat, then

(1.5) /  [^41    dx<A f \Vu\pdx,
Jd ld(x)l Jd

for each u E Cq'(D). Here A > 0 depends only on p,X, and n.

In Theorem 2, Vu denotes the gradient of u. We note that Ancona [6] proved
Theorem 2 when p = 2 and showed that it is best possible for n = 2, p = 2. In §5
we also point out that (1.5) holds for p > n whenever D ^ R". In §6 we examine
the extent to which (1.5) implies R" - D is uniformly fat when 1 < p < n. In case
D = B(0,1) - {0} and 1 < p < n, it can be shown using Hardy's inequality on rays
that (1.5) holds for some fixed A > 0. Clearly R" - D is not uniformly fat. Thus
(1.5) is not sufficient for R™ — D to be uniformly fat when 1 < p < n. However we
can prove

THEOREM 3. If p = n and (1.5) holds for some fixed A > 0, then Rn - D is
uniformly fat. Moreover, there exists a compact set F C B(0,1) with H£(F) = 0
for each e > 0 with the following property: If D = B(0,1) — F and A,p, 1 < p < n,
are given positive numbers, then (1.5) fails to hold for some u in C0X'(D).

Next let E E 5(0,1) be a compact set, m a given positive integer, and 0 < a <
n/2. Recall that a sequence (xj)j" of m points in E which minimizes

ifij

over all sequences (yi)™ of m points in E, is called a sequence of m Fekete points
of E corresponding to the Riesz kernel I2a. In §7 we point out that Theorem 1
implies

THEOREM 4. Let E and (xi)m be as above for fixed a, 0 < a < n/2, and
suppose that E is (a, 2) locally uniformly fat.  Then there exists e, a > 0 such that

mm\xi-Xj\ > a(l/m)("-2a+£>

where a and e depend only on a, n, X, and ro.

We note that related theorems have been proved in [8, 16, and 17]. In §7 we
also indicate that Theorem 4 has an analogue for a = n/2.

Finally in this section we would like to thank Professor D. R. Adams for many
useful conversations regarding Riesz capacities.

2. Proof of Theorem 1 for a > 2. In the sequel c denotes a positive constant
which may only depend on a,p, and n, not necessarily the same at each occurrence.
Also A and dA denote the closure and boundary of the set A. We now begin the
proof of Theorem 1. Fix 7?, 0 < 72 < r0, and suppose E is (a,p) locally uniformly
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180 J. L. LEWIS

fat. Given xo E E, we claim there exists a compact set F contained in B(xq, R)C\E
with

(2.1) 7ZQiP(r-1[FnB(x,r)])>cA,

for 0 < r < R and every x E F. The set in parentheses is defined as in §1. Thus
F is (a,p) locally uniformly fat. To construct F let Ey = E D B(x0,R/2) and
inductively let

Em=       (J    B(x,2~mR)   nF,        m = 2,3,....

Then if suffices to let F be the closure of Um=i ^m' as *s easnY shown using (1.1).
The proof of Theorem 1 will be divided into three parts. In §3 we prove Theorem

1 for 0 < a < 2, ap < n. In §4 the proof of Theorem 1 for ap = n is given.
In this section we prove Theorem 1 for a > 2 and ap < n. To this end let
P = Ia * (Ia * p)1/^-1) be the equilibrium potential for F (see (C) of §1). We
first establish certain Wiener-type estimates on P which will in fact imply that P
is Holder continuous on R". Using the relationship between P and p it is then
relatively easy to prove (1.3) and (1.4). To establish these estimates we shall need
some notation. Let u = 1 — P and for fixed xy E suppp with P(xy) = 1 let

M(t) = M(t,u,xy) =     sup     u(x),        t > 0.
x€B(xi,t)

li a > 2, note that since ap < n, and p > 1, we must have n > 3. Also in
this case 7Q and consequently P are superharmonic in Rn. Thus u = 1 — P is
subharmonic and we can write u in B(xy,s), s > 0, in the form u = h — q, where
h is the least harmonic majorant of u in B(xy,s) and q is a Green's potential in
B(xy, s). h can be written explicitly in terms of a Poisson integral as

(2.2) h(x) = cs-x [ {s2~\Xl~X\2)u(y)dHn-xy, xEB(xy,s).
JdB(Xl,s)      \y-x\n

For fixed s < R and 0< sy < |swe first show that if

(2.3) \h(x)-h(xy)\<±M(s,h), XEB(xy,Sy),

then there exists /?, | < 0 < 1, depending only on a,p,n, and A such that

(2.4) M(±sy,u) </3M(s,h).

Here, M(s,h) = sapx€B{xi<s) h(x).
To prove (2.4) under assumption (2.3) note that either h(xy) > \M(s, h) or (2.4)

holds with /? = | since u < h in B(xy,s). If h(xy) > M(s, h)/2, then from (2.3),
(C) of §1, and the definition of u,q, h, we deduce

(2.5) q(x)>h(x)>M(s,h)/4,        (a,p) q.e. on F n B(xx, sy).

Next we note for a > 2 that

Au = -AP = c7(a_2) * (Ia * p)1/^-1)

for 77n almost every x in Rn, while Au = c(72 * p)1/^-1' if a = 2. If a > 2 and

g(x,y) = \x- yp-"> - |(x - Xl)\y - xy\2 - (y - xy)s2\{2-n) (s\y - Xy\Yn~2\
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UNIFORMLY FAT SETS 181

x, y E B(xy,s), denotes the Green's function for B(xy,s) with pole at y E B(xy,s),
it follows that

q(x) = c [ g(x, y)[Iia-2) * (Ia * p)1/{p-x)}(y) dy
J B(xi,s)

=cf ■+cf
JB(x,,si/2) JB(x1,s)-B(xi,si/2)

= Ky(x) + K2(x).

If a = 2 replace the first term in brackets by the expression for Au. Observe that
K2 is a positive harmonic function in B(xy,sy/2). Hence by Harnack's inequality
either K2 < ^M(s, h) at each point of B(xy, si/4) or K2 > cM(s, h) at each point
of B(xy, -\sy). If the second possibility occurs it follows easily from u < h and
q> K2 that (2.4) is valid. If the first possibility occurs, then from (2.5) we deduce
that Ky > ±M(s,h), (a,p) q.e. on F n B(xy,\sy).

We continue under the above assumption.   Observe for x E B(xy,sy/4), y E
B(xy, Sy/2), that there exists a positive constant c with

(2.6) |x - y|(2-"' < c[\x - up-"> - (S/2)<2-")] < cg(x, y),

where the last inequality follows easily from the maximum principle for harmonic
functions. Also

(2-7) <7(x,u)<|x-2/|(2-"\        x,yEB(xy,s).

Let px = u/B(xy,sy/4) and p2 = p - py. Using (2.7) we get for x E B(xy,sy/4)
and a > 2

Ky(x) = c [ g(x,y)[I(a-2) * (la * p)1/{p-x)[(y) dy
J B(x,,s,/2)

< c f |x - u|(2-">[7Q_2 * (Ia * py)x«p-V}(y) dy
JB(x,,Sl/2)

+ c f \x- u|(2-")[7Q_2 * (Ia * p2)x'^-x\y) dy
JB(xus,/2)

= Ly(x) + L2(x).

If a = 2 replace the last two terms in brackets by the expression for Au.
We claim there exists c > 0 such that

(2.8) L2(z) <cL2(w), Z,WEB(xy,Sy/8).

To prove this claim use the fact that

la * P2(z) < cla * p2(w),        z,wE £(xi,3si/16),

(since suppp2 CR"- B(xi,si/4)) to deduce that

ha-2) * (la * PlY'^Hz) < c[I{a_2) * (Ia * p^-^w)

for z, w E 7?(xi,5si/32) and a > 2. Next write L2 as a sum of integrals over
7?(xi,5si/32) and B(xy,sy/2)-B(xy,5sy/32), and use the above inequality. There
are obvious modifications if a = 2. We omit the details. Using (2.8) we find that
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182 J. L. LEWIS

either L2 < -^M(s, h) at every point of B(xy, sy/8) or L2 > cM(s, h) at each point
of B(xy,Sy/8). If the second alternative occurs, then from (2.6) we deduce that

q> Ky >cL2 >cM(s,h)

on B(xy, sy/8), from which (2.4) follows as previously. If the first alternative occurs,
then

(2.9) Ly(x) > (Ky-L2)(x) >M(s,h)/16,        (a,p) q.e., on F D B(xy,sy/8).

In this case since Ia * h is a constant multiple of Ia+D when a, b > 0 and 0 <
a + b < n, we have

Ly<cIa*(Ia*py)X'{-p-1\

It follows from this inequality, (2.9) and the definition of 7?a>p capacity that

M(s,h)pRa,p[B(xy,S-±-jr\F~\ <c f   (Ia*py)p/(p-xHx)dx

(2.10) =c[     (Ia*Uy)X/(p-X\x)(Ia*Py)(x)dx
Jr"

= c[     Ia*(Ia*Uy)X^p-XUuy.
JR"

To proceed further we need the inequality

(2.11) [^-"'pidt")]17^1) < C[la * (Ia*py)l,{p-1)\ < cKy,

for each x E B(xy,sy/4). The left inequality follows easily from the fact that
supppj C B(xi,si/4). To prove the right inequality let x be the characteristic
function of B(xy,sy/2) and note from (2.6) that for a > 2

Ky(x)>c f   x(y)\x-y[{2-n)[l{a-2)*(la*Pi)}1/{p-1)(y)dy
Jr."

(2.12) =cf   \f   x(y)\x-y[{2-n)[y-z[^-2-nUy\(ia*py)x/ip-1)(z)dz
JR" L7r"

=   /     T(X,z)(Ia*Uy)1^p-XHz)dz,
Jr"

when x E B(xy,sy/4), where we have used the Tonelli Theorem to interchange the
order of integration in the second integral. If z E B(xy,sy), x E B(xy,sy/4), and
|x - z\ > |si, then clearly

T(x,z)>cs[a-n) >c[x-z\(a-nl

Otherwise if A = {y E B(xy,sy/2): 2\x — z\ <\y - x[}, then from the geometry of
the situation we see for x E B(xy,sy/4)

T(x,z) >c f [x - y[{a-n) dy > c[x - z[(a-n).
J A

From (2.12) it follows in either case that

(2.13) Ky(x)>c[ \x-z\^-n\lQ*py)1/{p-x)(z)dz = S(x),
Jb(xusi/2)
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for each x in B(xy,sy/4). Also Ia*Pi(z) < cpi(R")|x! - z[^~n\ for z in R" -
B(xy,sy/2). Using this inequality and (2.13) it follows for x E B(xy,sy/4) and
a > 2 that

la * (Ia*PlY/(p-1)(x) < cS(x) + c[s[ap-n)py(Rn)}1/ip-1)

<CS(x)<cKy(x).

If a = 2, the above inequality follows directly from (2.6). Thus (2.11) is true. Using
the right-hand inequality of (2.11) in (2.10) and the fact (see (C) of §1) that

Ti^x) < q(x) = h(x) < M(s,h),

(a,p) q.e. on supppi, we obtain

M(s, h)pRa>p[B(xy,sy/8) n F] < cM(s, /i)p!(R").

Using the left inequality in (2.11) it follows that

M(s,h){s[ap-n)Ra,p[B(xy,sy/8)nF)}xKp-V <cKy <cq

for each x in B(xy, sy/4). The left-hand side of this inequality is bounded below by
C/\i/(p-i)jV/(s, h) since F is locally uniformly fat. Hence, if x E B(xy,sy/8), then

u(x) < h(x) - q(x) < (1 - cXxl(p-x))M(s, h),

so (2.4) is valid when a > 2 and 0 < ap < n.
Next observe from (2.2) that for x E B(xy,s/2), and u+ = max(u,0),

\Vh\(x) < cs~n [ \u(y)\dHn-xy < cs'" f u+(y) dHn~xy
JdB(xus) JdB{x,,s)

< cs~xM(s, u) = cs~xM(s, h),

where we have used u(xi) = 0 and the sub mean value property of subharmonic
functions. Hence there exist 8 > 0 such that if sy = 88s, then (2.3) and consequently
(2.4) hold.

To continue the proof of Theorem 1, we now iterate (2.4) starting with tq = R
and continuing with r^ = 8kR, k = 1,2_Applying (2.4) with s = ri, 1 < i < k,
we get since u < 1 and M(s,h) = M(s,u) that M(rk,u) < f3k. Since M is
nondecreasing it follows for rk+y < r < rk that

M(r,u) < M(rk,u) < c(r/R)°

where /? = 8". From (2.11) with s = 8r, si = \s, and the fact that

Ky(xy) < q(xy) = h(xy) < M(8r,u)

we deduce

[r<op-nV(fl(zi,r))]1/(p-1> < cM(8r,u),        0 < r < oo.

Hence,

(2.14) [Aap~^u(B(xy,r))]1^""1) < c(r/RY,        0 < r < R.

We note that Xy E F is arbitrary in (2.14) subject to the requirement that P(xy) =
1, which from (C) of §1 is true (a,p) q.e. on suppp. We claim that (2.14) holds
whenever xy E Rn for some positive constant c.  To see this we note first from a
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boundedness principle (see [2, 9]) that P is bounded above by a positive constant
in R™ depending only on a, p, and n. From the definition of suppp and (B) of §1
it follows that for r > 0

Ra,p[B(x,r) n suppp] ^ 0,        xE suppp.

From this inequality we easily deduce that (2.14) holds for all xi E suppp. An
easy argument using the compactness of suppp now shows that (2.14) holds for all
Xi E R". We also note from uniform fatness of F and (C) of §1 that

(2.15) p[F] >cXR{n-ap).

Let 0 < e < o~(p-l) and let /3 > 0, q > 1, be fixed numbers with ap-e < (3q < ap.
Put

v(G) = R{ap-0q)p(G),

when G is a Borel set. Then (2.14) implies (see [1, Theorem 2]) that Ip *
(7/j * i/)l/(i-1) < c~t, where 7 depends only on a, p, n, and A. This inequality,
(B) of §1, (2.15), and the fact that F C E n B(x0,R) imply (1.3) of Theorem 1.
To prove (1.4) let B(xj,rj), j = 1,..., be a covering of F by balls with rj < R,
j = 1,2.... Then from (2.14) and (2.15) we get

£r(„-aP+<r(p-l)) > cR^{P-DJ2p(B(x],rJ))

> cRa{p-X)p(F) > cR(n-ap)+cr(p-l)_

Taking the infimum of the left-hand sum over all such coverings we get (1.4) of
Theorem 1 with e = a(p — 1). This completes the proof of Theorem 1 for a > 2.

3. Proof of Theorem 1 for 0 < a < 2. We now suppose that 0 < ap < n,
0 < a < 2, and shall use the same notation as in §2. The proof of Theorem 1
in this case is harder since now the equilibrium potential P for F need not be
superharmonic in the classical sense. However P is still a superharmonic in the
sense of Landkof [12], and u = 1 — P may be written in the form u = h — q
in 7?(xi,s) where q is an a Green's potential and h > u is the least a harmonic
majorant of u in B(xy,s). Moreover

(3.1) h(x)= f Qs(x,y)u(y)dy
JR"-B(x,,s)

(see [12, Chapter 1, §6, p. 123]) where

c(s2 _ u, _ z|2W2
Qs(x,y) = i,-4-y^l*-?/!""'        *EB(xy,s), yERn-B(xy,s),

(\y~Xy\2 - S2)"'1

and c is chosen so that the integral in (3.1) is one when u = 1. For fixed s < R and
0 < Sy < |s, we first show, as in §2, that if

(3.2) \h(x)-h(xy)\<\M(S,h), XEB(xy,Sy),

then there exists /3, | < j3 < 1, depending only on a, p, n, and A such that

(3.3) M(\sy,u)<fiM(s,h).
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Recall that M(s, h) = supxeB,Xj s) h(x). To prove (3.3) we follow closely the proof
of (2.4). Observe from (3.2) that if h(xy) < \M(s, h), then (3.3) holds with /? = §
since u < h in B(xy, s). Otherwise, from (C) of §1 and (3.2) we deduce

(3.4) q(x)>h(x)>\M(s,h),    (a,p) q.e.,

on FnB(xy,sy). Now

q(x) = c[ g(x,t)(Ia*p)x^p-xHt)dt
J B(x,,s)

=cf ■+c[
Jb(x,,s,/2) JB{x1,s)-B{xi,s1/2)

= Ky+K2.

Here g(x,-) is the a Green's function for 7?(xi,s). g can be written explicitly as
(see [12, Chapter 4, §5])

g(x, t) = \x- i|<Q-") - [ Qs(x, y)\t - y^^ dy
JR"-B(xi,s)

when* G B(xy,s) and x E R". We note that g(-,t) =0inRn-B(xy,s), g>0, and
g is a harmonic as a function of x in B(xy, Sy/2) when t E B(xy,s) — B(xy,sy/2).
Equivalently, (3.1) holds in B(xy,Sy/2) with u, h replaced by g(-,t) and s by |si.
Hence K2 is a positive a harmonic function in B(xy, ^sy) and so satisfies a Harnack-
type inequality in B(xy, -\sy), as we see from (3.1). Thus either K2 < ^M(s, h) or
K2 > cM(s,h) in B(xy, \sy). In the second case we see that (3.3) holds. In the
first case we find from (3.4) that

(3.5) Ky > ±M(s,h),    (a,p) q.e.

on B(xy, \sy) nF.
We claim for x E B(xy,sy/4) and t E B(xy,sy/2) that

(3.6) c\x - t[{a~n) <\x- t\{a~n) - (s/2){Q-n) < g(x, t).

The left inequality is easily verified while the right inequality is true because the
difference of the above functions is a harmonic in B(xy,s/2) and < 0 on R" —
B(xy,s/2). Moreover, clearly

(3.7) g(x,t) < [x-t[{a-n),        x,tEB(xy,s).

Using (3.6), (3.7) in place of (2.6), (2.7), we repeat the argument leading to the
proof of (2.4). For completeness we give some details. Let pi = p,/B(xy, \sy) and
p2 = p — pi. Put

Li(x) = 21/(p"1> / \x-t[^a-n\la*pAx/{p-x)(t)dt,        i = l,2.
Jb{x,,Si/2)

Then from (3.6)-(3.7) we see that Ky < Ly + L2 in B(xy,sy/2) and T^i > cL2 in
B(xy,sy/4). As in §2, L2 satisfies a Harnack inequality in B(xy,sy/8) so as above
either (3.3) holds or L2 < -r\M(sy,h) in 7?(xi,si/8). If the last inequality holds,
then from (3.5) we deduce

±M(s,h) <Ly< cla * (Ia * py)x/{p-x\
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(a,p) q.e., on Fn 7?(xi, |si). It follows that (compare with (2.10))

(3.8) Ra,p[FnB(xy,±Sy)]M(s,h)p <C  f     Ia*(Ia*py)X/{p-X)duy.
Jr"

Now

(3.9) MRn)»iaf,-B)l1/(,'"1) < c/a * (la *P1)1/(P-1) < cKy

in B(xy, sy/4) as follows easily from (3.6). Also

(3.10) Ky<q = h,

(a,p) q.e. in supppi.
Using (3.9), (3.10) in (3.8) it follows that

{s[ap-n)Ra,p[F n B(xy,sy/8)}}x/{p-x)M(s,h) <cKy <cq

in B(xy, sy/4). Using uniform fatness of F we get (3.3), as in §2.
(3.3) implies as in §2 that there exists 8, 0 < 8 < ^, such that if r, = 83R,

j = 0,1,..., then

(3.11) M(r3,u)<l33.

The proof is more difficult in this case though since h cannot be estimated above
in 7?(xi,r) by M(r,u). Observe that (3.11) is trivially true when j = 0. To prove
(3.11) we first allow 8 to vary and shall later fix it at a number satisfying several
conditions. To see the requirements on 8 suppose for fixed k > — 1 that we have
choeen ro,... ,rk+y, such that (3.11) holds. Let s = rk+y, 0 < 8a < ^, and put
u+ = max(u,0) as previously. Define h relative to u as in (3.1). Then from (3.1),
the fact that 0 = u(xi) < h(xy), and (3.11), we obtain for fc > 1 and x E B(xy,s/2)

\Vh(x)\<- [ Qs(xy,y)\u(y)\dy
s JR"-B{x,,s)

2c  f
< — / Qs(xy,y)u+(y)dy

s   Jr"-B(xus)

fc —1 .
<-   /?fc + Y> / Qs(xi,y)dy

S   [ ~^0        JR"-B(x,,rj + 1)

(3-12) r k_y
<-   0k + saTP [ \y-xy\-^+aUy

S j=0        JR"-B{x,,rj + l)

<£ pk + f-pf—Y <- f3k + j2P3(n{k-j)
S   [ J=o V^ + i/ S   [ j=0

<£[/jfc + /?fc-i(5«]<£i^,
S S

where we have used the fact that 8a < \ < | < /?. If fc = -1,0, the above
inequality also holds for cy large enough as is easily seen. We now fix 8 to be the
smaller of the numbers: ^, (\)x^a, and l/250ci, where cy is the constant in (3.12).
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Using (3.12), the fact that | < /? < 1, and the mean value theorem we find for
si = 86s that

(3.13) \h(x)-h(xy)\<\/3k+2, XEB(Xy,Sy).

If M(s, h) < 0k+2, then (3.11) holds for j = k + 2 since s = rk+1 > rk+2 and u < h
in 7?(xi,s). Otherwise from (3.13) we see that (3.2) holds. Using (3.3) and the
induction hypothesis we again see that (3.11) holds for j = k + 2. We conclude by
induction that (3.11) is valid.

From (3.11) we find as in §2 that there exists ay > 0 with

M(r,u) <c(r/RY\        0 < r < R.

If a = min(ay,a), it follows from the above inequality and (3.1) as in the proof
of (3.12) that h(xy) < c(s/R)a. From this last inequality, (3.9), and (3.10) we see
that (2.14) holds also when 0 < a < 2. Theorem 1 follows from (2.14) just as in
§2. We omit the details.

4. Proof of Theorem 1 for ap = n. Let Ja be the truncated Riesz kernel
defined in §1 and for ap = n let P = Ja*(Ja*p)1^p~1^ be the equilibrium potential
for

Fi = {x0 + 7?-1(u-x0):u€F}.

Let
Pi(x)= f Ja(x-y)(Ja*p)1,(p-1)(y)dy,        xERn.

JB{xo,50)

From the definition of P and Pi we see that

|V(P-Pi)|(x)<c,        x€B(x0,2).

Let u = 1 — P and for fixed Xi G suppp C 7?(xo,l) with F(xi) = 1 put ui =
A(zi) — Pi- From the above inequality we see that

(4.1) |U1 - U|(X) < \(Py - P)(X) - (Py - P)(Xy)\ < C2\x - Xy\,

when x e B(x0,2).
We note that ui is subharmonic in B(xq, 2) when a > 2 and ui is a subharmonic

in B(xq, 2) when 0 < a < 2. For fixed s, 0 < s < 1, we write uy = hy — qy, where
hy is the least harmonic majorant of ui in B(xy, s) when a > 2 and hy is the least
a harmonic majorant of ui in B(xy, s), defined as in (3.1), when 0 < a < 2. Also,
qy is a Green's potential or a Green's potential in B(xi,s) depending on whether
a > 2 or 0 < a < 2. If 0 < sy < s/2,

(4.2) M(s,hy) > 8c2s,

where c2 > 1 is the constant in (4.1), and

(4.3) [hy(x)-hy(Xy)[<-\M(s,h)

in B(xy,Sy).
We show as in §§2-3 that there exists /?, | < /? < 1, such that

(4.4) M(Sy/8,Uy)<0M(s,hy).
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As before we note from (4.3) that either fti(xi) < \M(s, hy) in which case (4.4)
holds with /3 = | or hy > ^M(s,hy) in B(xy,sy). In this case from (4.2), (4.1) and
(C) of §1 we find for x G Fy n B(xy,sy)

0 > u(x) > Uy(x) — C2S >  ^M(s,hy) — qy(x).

Hence

(4.5) qy > ^M(s, n),     (o,p) q.e., on Fi n5(xi,si).

We define Ki, Li, i = 1,2, as in §§2 and 3 with 7Q replaced by Ja and u by uy.
Proceeding as in §§2 and 3 we find that either (4.4) holds or

(4.6) Ly > ^M(s, hy),    (a,p) q.e on Fy nB(xy,\sy).

Let 77(x) = Li[xi + «i(x — xy)[, x E B(xy, 1), and put

u(T) = py(syT),    T a Borel set,

where siT = {xi + sy(y — xy): y ET} and pi = p|S(xi,si/4).
Changing variables in the integrals defining Li in §§2 and 3 we see that

(4.7) H(x)<c[Ja*(Ja*v)x/{p-x)](x),        xEB(xy,l).

Using (4.6), (4.7), and (1.1) we deduce as in §§2 and 3 (see (3.8) and (2.10)) that

XM(s,hy)p <c [    Ja*(Ja*v)x/(p~x)dv.
Jr"

Again as in §§2 and 3 we find

Ja * (Ja * y)X/{p-l)(x) < cLy[Xy + Sy (x - Xy)}, X E B(Xy, \).

Also from (4.1) and (C) of §1, we have

Ly  < cKy  < Cqy  < chy + CC2S,

(a,p) q.e. on supppi. Using these inequalities and (4.2) we deduce as previously
first that

X1/{p-1)M(s,h1)<cq1,     inB(xi,i)

and thereupon that (4.4) holds.
(4.4) implies there exists 8, 0 < 8 < ^, such that if r}■ = 83, j = 0,1,..., and

c2 > 1 is the constant in (4.1), then

(4.8) M(r],uy)<2c203,        j = 0,l,....

In fact if (4.8) holds for r0, ry,..., r^+i (fc > -1) and s = rk+2, then either

M(s,hy) <2c2(3k+2

(in which case (4.8) holds with j = k + 2 since ui < fti) or (4.2) is satisfied since
48 < p. If (4.2) is true, we argue as in §§2 and 3 with u replaced by ui to get (4.8)
for j = k + 2. Then by induction we obtain (4.8). The rest of the proof of Theorem
1 for ap = n is the same as in the previous sections. The proof of Theorem 1 is
now complete.
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5.   Proof of Theorem 2. Let D be (l,p) uniformly fat, 1 < p < n, and let
{Qi}y° De a sequence of Whitney cubes for D with Qi E D, i = 1,2,..., and

(5.1) (4n)-xd(Ql,dD) <n< d(Ql,dD),

where r,, t = 1,2,..., denotes the sidelength of Qi and d(E, F) denotes the distance
from the set E to the set F. Let Qi denote the cube with the same center as Qi
and with sidelength, lOOnr^. Given u G Cq°(D) put v = [u[. Let /iq denote the
average of the function ft over the cube Q. We note that (see [15, p. 195])

(5.2) \v(x)-vQ[<c f [Vv[(y)\x-y\(x-n)dy,        xEQ.
Jq

From (5.2) it can be shown that

(5.3) /   |w(x) - vQ[p dx < crp f |Vu|p dx,Jq Jq
where r is the sidelength of Q.

Observe from (5.1) that d(x,dD) > cri, when x G Qi.  Using this observation
and (5.3) with Q = Qi, i = 1,2,..., and d(x) = d({x}, dD), we obtain

/ \-/ dx<cY (VP /   vpdx)(5.4) JdU ~~    ̂      V      '* J
<c  J2(r\n-p)vpQt)+ f \Vv\pdx   .

Jd

To estimate vq{ choose Xi E dD such that d({x,},C/j) = d(Qi,dD). Note from
(5.1) and the definition of Qi that

B(xi,ri)EQt,        i' = l,2,....

Let q = p — e/2, where e is as in Theorem 1 for a = 1, and put q' = q/(q — 1).
Let p be a Ry>q capacitary measure for B(xi,ri) n (Rn - D). Then from (5.2) with
Q = Qi, the fact that v = 0 on R™ — D, and (C) of §1, we obtain

VQtp[B(xt,ri)n(Rn-D)}

(5.5) <c        \Vv\(Iy*Li)dy<c\\\Vv\xi\\q\\Iy*p\\q'Jq,
< c\[\Vv\Xl[\a{p[B(xl, n) n (Rn - D)\}x'"',

where \% denotes the characteristic function oi Qi, i = 1,2,_   Observe from
Theorem 1 that

p[B(Xl,n) n(R"- D)} > cr?-g.
Using this inequality in (5.5) and doing some arithmetic we find that

(5.6) vl/rP) < 4\Vv\Xir-n/Xr? < c(fQ,)p/qr?,
where / = |Vu|'. Using (5.6) and VQi < cvq  in (5.4) we conclude that

(5.7) Jj^\Pdx<c  Y,(fQt)p/Qr? + JD[Vv[pdx   .
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We observe that {Qi} is a sequence of "Carleson" cubes. That is, if Q is a cube

£ H»(Qi) <cY,r?< cHn(Q).
QiQQ Qi=Q

Also if t = p/q > 1, then / G 7/(R"). Applying a well-known lemma originally
proved by Carleson when p = 2, n = 1 (see [7, 11, and 19, Chapter 7, ex. 4.4]), we
obtain

Using this inequality in (5.7) and the fact that |Vu| = |Vu| almost everywhere, we
obtain Theorem 2.

As mentioned in §1, (1.5) holds for any open set D ^ Rn when p > n. In fact
if u E Cq°(D) and q = n + \(p — n), then from (5.2) with u = v and Holder's
inequality we obtain

|u(x) - u(y)[ < cHIVulxll^1-"/^,        x,yEQ,
where again Q is a cube with sidelength r and x denotes the characteristic function
ofQ.

Defining (Qi) as before and applying the above inequality with Q = Qt and
u(y) = 0 we see that (5.6) is still true. Repeating the argument in Theorem 3 from
(5.6) on we conclude that (1.5) holds whenever D ^ Rn.

6. Proof of Theorem 3. We first show that Theorem 2 has a converse when
p = n. The proof is by contradiction. Suppose that D is an open set and R" — D
is not (l,n) uniformly fat. Then for each e > 0 there exists xo = xo(e) in Rn — D
and r = r(e) > 0 such that if

A = {x0 + r-x(y-xo):yE B(x0, r) n(Rn-D)},

then

(6.1) 7?i,n(A)<en.

Let

r(A)=inf ( f\V<p\ndx\

where the infimum is taken over all tp E C0x'(B(xo, 4)) with <f> = 1 in a neighborhood
of A. It is well known (see [4]) that

(6.2) c~xT(A) < 7?i,„(A) < cT(A).

Using (6.1), (6.2), we see there exists xp E Co°(B(xo,4)) with xp = 1 in an open set
containing A and

(6.3) /    |VV>|ndx<c£n.
Jr"

Let 6 E Cox[B(x0,1)] with 9 = 1 on B(x0, \) and |V0| < 1000. Put

h(x) = (1 - xp(x))0(x),        xER",
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and observe that u(x) = h(x0 + (x - x0)/r), x E Rn, is in C0X(D). Also,

f    |Vu|ndx= f    \Vh[ndx
Jn" Jr"

(6-4) r , l
<c    / (l-xp)ndx + [Vxp[ndx   <c,

Jb(x0,1) Jb(x0,1)

where we have used Poincare's inequality, and (6.3). Again from these inequalities
we deduce

77"   lx:xp(x)> ij]  <2" f ipn dx
(6.5) .

<c |Vi/>|ndx<cen.
Jb(xo,4)

Let G C R be the set of all t E (0, |) for which
Hn~x[{x: xP(x) < ±}ndB(x0,t)[ > ±Hn-x[dB(x0,t)}.

From Fubini's Theorem and (6.5) we find first that there exists C3 > 0 with

/ tn~xdt < (c3e)n,
J(0,l/2)-G

and thereupon since t —► t~n is decreasing that
-I/O

(6.6) f r1 dt = [ t~ntn-x dt> I     t~x dt = -ln(2c3e).
Jg Jg Jc3e

Now if d(x) = d({x}, Rn-D), then from (6.6) and the fact that /i>|onGwe
obtain

f^Ydx>f      ^rdx=(      J^dx
(67) JD^dJ JB(x0,r)[x-Xo\n JB(x0,l)\x-Xo\n

>c      t~xdt> -cln(2c3e).
Jg

Given A > 0 we see from (6.4) and (6.7) that for e > 0, sufficiently small, there
exists u G Co°(D) for which (1.5) is false. This proves Theorem 3 for p = n.

To prove Theorem 3 for 1 < p < n requires an explicit construction. To this end
let (mj)™ be an increasing sequence of positive integers with m,j > j + 1, j' = 1,...,
to be chosen later. Put sq = l/2n and for j > 1, let

Sj = S3-y(mj)-3,      tj = (Sj-y - Sj)/(mj - 1).

Since mj > j + 1 it is easily seen that

(6.8) tj-10aj>(2mj)~1sj-1,        j = 10,11,....
If J = [a,b] is an interval with b — a = Sj^y, let $(J,mj) be the m3 equally spaced
closed intervals of length Sj contained in J defined by

$(J, m0) = {[a + (i - l)tj,a + (i — i)tj + Sj]: 1 < i < mj}.

Define families Kj of closed intervals inductively as follows:

Kq = [-l/4n, l/4n],     Kj = {^(J,m3): J E Kj-y),        j > 1.
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Let Lj, j = 0,1,..., be the family of cubes defined by

Lj = {Q = Jy x ■ ■ ■ x Jn: Ji E Kj, 1 <i < n}.

Note that Lj, j = 1,..., consists of (mi ■ ■ ■ m.,)" closed cubes of sidelength Sj. Also
if Q E Lj-i, then

(6.9) J2lHnW1/3 = HnWW>        3 = 1,2,....
T€L3
TCQ

Let
oo

f3= u q, y=o,i,...,  F=n*>-
QeLj o

Let Dj = B(0,1) - Fj, j = 0,1,..., and D = B(0,1) - F. If x G Dj let

' 0   when d({x},dDj) < Sj,
Uj(x) = <  s~x[d({x},dDj) - Sj),    when sj < d({x},dDj) < 2sj,

, 1   whend({x},a7?j) > 2sj.

Put Uj = [Hj * 0j}8, j = 0,1,..., where

f?J(x) = (2/S,)^[2x/S,](||c?||i)-1,        XGR",

and as previously, 6 E Cox(B(0,1)) with 9 = 1 on 5(0, |). From the definition of
itj we see that Uj E Cq°(Dj),

Vuj(x) = 0   if ^({x},^) > 3sj and |x| < \,

while Vuj = Vxij * Oj, j = 0,1, — Using these facts we find that

(6.10) /   |Vui|pdx<c(mi...mJ)"(s:,)(n-p).
Jd,

Let / = l(p,n) be the first positive integer such that l/l < 1—p/n. Then from (6.9)
observe that

(my-mj)n(sj)(n-rt = (my---m^y)n(s,-y)n/3(sj)n^-p/n-x/3)

<(my--m^y)n(s]-y)n-p

<-<(mi,..,m,)>r,        j>l.
Using (6.10) it follows that

(6.11) [   \Vuj[pdx<c(my---mi)n(si){n-p),       j>l.
Jd,

Now (6.8) implies that the distance between successive cubes in Kj is at least
(2mj)_1Sj_i, when j > 10. Using this fact we deduce for Q E Lj-y, d = d(-, dD),
and r = (2m3)~xSj-y

f m\p dx > c(m])n r Pn-p-x dp > c(mj)nTn-p
(6.12) JQ^d)        ~       3'   Jy0Si y~

> c(m])P(S]-y)n-p.
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We now choose
mj = [(j + l)(8j-1)1-n*}

where [x] denotes the greatest integer < x. Since Sj = (sj-y)(mj)~3, the sequence
(m^)00 is well defined by induction. Also from (6.11), (6.12), we conclude

/  (uj/d)p dx —* +00    as j —► oo
Jd

while f |Vuj|pdx remains bounded independently of j. Finally it is easily shown
that F has Hausdorff dimension zero. Simply take the cubes in Lj, j = 1,2,...,
as coverings and use (6.9). We omit the details. The proof of Theorem 3 is now
complete.

7. Proof of Theorem 4. Let E be a compact subset of B(0,1) and a fixed,
0 < a < n/2. Suppose that E is (a, 2) locally uniformly fat for some A, r0 > 0.
Then clearly,

(7.1) r^2a-n^Ra,p[E n B(x, r)] > cAr0n_2a) = A,

for 0 < r < 2 and every x E E. Let (x^)™ be a sequence of m Fekete points for E.
We assume, as we may, that

min|xj — x,| = |xi — x2|.

Let
1 m

(m-i)^

From the minimizing property of Fekete points mentioned in §1, it is easily shown
that

(7.2) P(xy)<P(x),        xGF.

Put u = P(xy) - P. We claim that

(7.3) M(r) = M(r,u,Xy) < cP(xy)r"', 0 < r < 1,

where c, a, are positive constants (0 < a < 1), depending only on ro,A,n, and a.
To prove this claim let p be the measure with mass l/(m - 1) at Xj, 2 < i < m — 1,
and observe that P = I2a * p. We now repeat the argument in §§2 and 3 using the
fact that Ia * Ia = il2a for some 7 > 0. The argument is unchanged up to the
point in §§2 and 3 where we obtained

(7.4) M(s, h) < cla * (Ia *pi) =c72a *pi

(a, 2) q.e. on E n B(xy, sy/8). Let v be capacitary measure for E n B(xy, sy/8)
and 77 = 772a * v the corresponding equilibrium potential. Then from (7.4), the
Tonelli Theorem, and the fact that 77 is bounded (see [2, 9]), we obtain

M(s, h)Ra<2[E n B(xy, sy/8)} = M(s, h)u[E n B(xy, Sy/8)\

<C      (I2a * py) dv = C      (I2a * V)dp,y  < Cpi(R").
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The above argument was used in place of the argument in §§2 and 3 because 72q *pi
need not be bounded by M(s, h) on supp pi. The rest of the argument is unchanged
from the argument in §§2 and 3. Hence (7.3) is true. Let r = 4|xi - x2| and put

h(x) = P(x) -—!-— |x-x2|(2q-"\        xGRn.
(m- 1)

To prove Theorem 4 we consider two cases.   If a > 1 let r = 4|x2 - xy[ and
observe from (7.3) and superharmonicity of h that

F(xi) <      min     P + cP(xy)r"
~ xedB(x,,r) '

(7 5) < ,    *      2("-2a¥2Q-n> +      min      h + cP(xy)ra
{    °! (™-l) xedB(xur)

< 1 2("-2QV^2a-n) + h(xy) + cP(Xy)ra.
(m — 1)

Since
ft(Xi) = P(Xy) - T-^—rAx2 ~ Xi|(2°-")(m- 1)

and r = 4|xi — x2|, (7.5) implies

7—^1*2 - Xi|(2Q-">  < C|X2 - Xl\"P(x1),(m — 1)
or equivalently that

. -I l/(n-2a+o-)

(7-6) |a:2-a:i|>    7-.,p/    ^L(m-l)F(xi)_
IfO<a<lletO<s<i and replace a by 2a in the definition of Q3 following

(3.1). Then h is 2a superharmonic in R". Hence

(7.7) / Q3(x,y)h(y)dy<h(x),
JR"-B(x,,s)

whenever x G J3(xi,s). Now

1=/ Qs(x,y)dy= [ ■■■+(
JR"-B(xlts) Jr."-B{xus1'2) JB(i,,3'/2)-fl(n,8)

(7.8) <cs2a f    r(x+2a)dt+ [

<csa+ / Qs(x,y)dy.
JB(xi,si'2)-B{x,,s)

Choose so so that csq = 5, where c is the constant in the last inequality. Given s,
0 < s < s0, it follows from (7.7), (7.8), that there exists r, s < r < s1/2, such that

min      h(x) < -,-zh(xy) < (1 + 2csa)h(xy).
xedB(Xl,r) '-(l-CSa)    V   W_V

If s = 4|xi — x2| we can use the above inequality and repeat the argument used in
(7.5) to obtain

(7.9) —i—|i, - x2|<2a-") < c(sa + r°)P(xy) < cs0P(xy),
(m- 1)
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where /? = min(a,cr/2). From the above discussion we see that either 4|xi - x2| >
s0, in which case there is nothing to prove or (7.9) holds with s = 4|xi — x2|. For
this choice of s, (7.9) yields

(7.10) [xy - x2[ > c[l/mP(xy)\1^n-2a+l3\

m = 1,2,_To complete the proof of Theorem 4 it remains to show that

(7.11) P(xi) < c.

To do this let r be capacitary measure for E. Then from (7.2), the fact that
72q * t < c, and the Tonelli Theorem, we obtain

P(xy)Ra,2(E) <  f Pdr = j(I2a*r)dpt

< cp(R") = c.

This inequality and (7.1) clearly imply (7.11). From (7.11), (7.10), and (7.6) we
conclude that Theorem 4 is true.

As mentioned in §1, Theorem 4 has an analogue when a = n/2.  In this case
(xj)T1 is said to be a sequence of m Fekete points of E provided it minimizes

-^logl^-Wjl

over all sequences (yi)™ consisting of m points in E. Suppose E is (n/2,2) locally
uniformly fat and

min |xj - x,| = |xi - x2|.

As previously let
.. m

P(x) = -1-T\J2l°s\* ~ x<\,        xERn.
(m — 1) ^—'v ; i = 2

Again it can be shown for u = P(xy) - P that

(7.12) M(r)<cP(xy)ra,

for some a > 0. The argument is similar to the argument following (7.3), except
that now the results in §4 are used instead of those in §§2 and 3. Also, one needs
to use the fact that if c > 0 is large enough, then

log   ——    < Jn/2 * Jn/2(x) < log   r^r    , XEB(0,2).
_(C|X|JJ i\x\ _

We leave the details to the reader. Using (7.12) the argument for a > 1 can be
repeated to get

min |xj — x,-| > cm~a.
irfij
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