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Abstract—Tree-reweighted belief propagation is a message
passing method that has certain advantages compared to tra-
ditional belief propagation (BP). However, it fails to outperform
BP in a consistent manner, does not lend itself well to distributed
implementation, and has not been applied to distributions with
higher-order interactions. We propose a method called uniformly-
reweighted belief propagation that mitigates these drawbacks.
After having shown in previous works that this method can sub-
stantially outperform BP in distributed inference with pairwise
interaction models, in this paper we extend it to higher-order
interactions and apply it to LDPC decoding, leading performance
gains over BP.

I. INTRODUCTION
Belief propagation (BP) [1] is a powerful method to perform

approximate inference, and has found applications in a wide
variety of fields [2]. Furthermore, it provides new interpre-
tations of existing algorithms, such as the Viterbi algorithm
[3]. BP can be seen as a message passing algorithm on a
graphical model. When this graphical model, which represents
the factorization of an un-normalized distribution, is cycle-free
(i.e., a tree), BP is guaranteed to converge and can provide
marginal distributions as well as the normalization constant
of the distribution (also known as the partition function).
Moreover, BP can be interpreted as an iterative scheme to find
stationary points of a convex variational optimization problem
[4]. Unfortunately, when the graphical model contains cycles,
the variational problem is no longer guaranteed to be convex,
so that BP may end up in a local optimum, or fail to converge
altogether.
To address the problem of non-convexity, variations of BP

have been proposed that are provably convex, or allow to
compute a lower or upper bound of the original optimization
problem. One such variation is tree-reweighted BP (TRW-BP),
which corresponds to a convex upper approximation of the
original objective function (to be introduced later) with relaxed
constraints [5]. In its original formulation, the authors only
provided explicit message passing rules for TRW-BP in the
case of a particular graphical model (a Markov random field)
with a particular factorization (pairwise interactions). The
extension to higher-order interaction was described through
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hypergraphs, though no explicit message passing rules were
derived. Explicit rules for higher-order interactions were de-
rived in [6] for fractional BP, of which TRW-BP was shown to
be a special case. TRW-BP has been observed to outperform
BP in some, though not all cases [5]. Moreover, TRW-BP
requires an optimization of a distribution over spanning trees,
making it unsuitable for distributed inference problems (e.g.,
over wireless networks). In our prior work on distributed
positioning [7] and distributed detection [8], we have proposed
a novel message passing scheme, uniformly-reweighted belief
propagation (URW-BP), which encompasses both BP as well
TRW-BP over uniform graphs, and does not involve an op-
timization of a distribution over spanning trees. This method
was limited to distributions with pairwise interactions.
In this paper, we extend URW-BP to higher-order inter-

action. Rather than relying on hypergraphs as in [5], we
employ factor graphs. We formulate a variational problem and
determine the stationary points of the Lagragian, leading to
explicit message passing rules for higher-order interactions.
We also apply these new message passing rules to the example
of decoding an LDPC code, and make connections with
another recently proposed decoder [9].

II. THE INFERENCE PROBLEM
We consider an a posteriori distribution of the following

form

p(x|y) =
p(y|x)p(x)

p(y)
, (1)

where y is a (fixed) observation and x = [x1, x2, . . . , xN ] is
the unobserved variable of interest. We will assume that xn

is a discrete random variable defined over a finite set. Both
the likelihood function p(y|x) as well as the prior p(x) are
assumed to be known. The value p(y) is unknown, and in
sometimes referred to as the partition function. Moreover, we
assume a factorization exists of the form

p(y|x)p(x) =
N
∏

n=1

φn(xn)
L

∏

l=1

ψl(xCl
), (2)

where xCl
⊂ x contains at least two variables, indexed by the

set Cl ⊂ {1, . . . , N}. Typical goals in inference include (i)
determining the marginal a posteriori distributions, p(xn|y),
for every component xn; (ii) computing p(y).



For a given y and a given x, evaluating p(y|x)p(x) is
straightforward. However, brute-force computation of p(xn|y)
or p(y) is intractable, due to the high-dimensional nature of x.
A factorization of the form (2) can be conveniently expressed
by a graphical model, such as a factor graph or a Markov
random field. By executing a message passing algorithm (e.g.,
BP or TRW-BP) on this graphical model, one can approximate
p(xn|y) as well as p(y) [4], [5].

III. PAIRWISE INTERACTIONS: TRW-BP AND BP
When there are only pairwise interactions, everyCl contains

exactly 2 elements. For notational convenience, we denote
ψl(xm, xn) by ψmn(xm, xn). As an example, consider a
factorization

p(x|y) ∝ φ1(x1)φ2(x2)φ3(x3)ψ12(x1, x2)ψ23(x2, x3).

The corresponding Markov random field is depicted in Fig. 1.
We define “neighbor set” Nm of variable Xm as follows:
Xn ∈ Nm if and only if there exists a factor ψmn(xm, xn).
Then, the message from Xm to a neighboring variable Xn is
given by [5, eq. (39)]

Mmn(xn) ∝ (3)
∑

xm

φm(xm)ψ1/ρmn

mn (xn, xm)

∏

k∈Nm\{n} Mρkm

km (xm)

M1−ρmn

nm (xm)
,

where ρnm ≡ ρmn is the so-called edge appearance probabil-
ity (EAP) of factor ψnm. The terminology of EAP is due to
the representation of ψnm as an edge in the Markov random
field representation of ψnm in (2). The so-called beliefs, which
are an approximation of the a posteriori marginals p(xn|y),
are given by

bn(xn) ∝ φn(xn)
∏

m∈Nn

Mρnm

mn (xn). (4)

Equations (3)–(4) are iterated until the beliefs converge. The
set of valid EAPs is non-trivial: given a Markov random
field graph G and the set T(G) of all possible trees, we can
introduce a distribution over the trees: 0 ≤ ρ(T ) ≤ 1, for
T ∈ T(G), with

∑

T∈T(G) ρ(T ) = 1. For a given distribution
ρ(T ), the EAP of edge (n, m) is then given by

ρnm =
∑

T∈T(G)

ρ(T ) × I {(n, m) ∈ T } ,

where I {·} is the indicator function. Note that when G is
a tree, ρnm = 1, for all edges (n, m). When the graph G
contains cycles, ρnm < 1 for at least one edge. BP can now
be interpreted as a variation of TRW-BP, where ρnm = 1, for
all edges (n, m), irrespective of the structure of G. Note that
this is not a valid choice of EAPs for a graph with cycles.

IV. EXTENSION TO HIGHER-ORDER INTERACTIONS
A. Factor Graphs
When some of the cliques Cl contain 3 or more elements,

a factor graph can more elegantly capture those higher-order
interactions than a Markov random field. A factor graph is a
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M32(x2)

Figure 1. Markov random field (top) and factor graph (bottom) of the
factorization φ1(x1)φ2(x2)φ3(x3)ψ12(x1, x2)ψ23(x2, x3).

bi-partite graph where we distinguish between variable vertices
and factor vertices. A factor vertex and a variable vertex are
connected by an edge when the the corresponding variable
appears in the corresponding factor (see Fig. 1). When ψl has
xn as a variable, we will write l ∈ Nn.
We now provide a derivation of TRW-BP message passing

rules by following a variational approach, resulting in explicit
message expressions. Then, we specialize this to our proposed
method, URW-BP.

B. Variational Interpretation
Given any distribution b(x), the Kullback-Leibler diver-

gence between b(x) and p(x|y) is given by

KL (b||p) =
∑

x

b(x) log
b(x)

p(x|y)
≥ 0. (5)

If we insert (2) into (5), and perform some straightforward
manipulations, we can rewrite this inequality as a variational
problem:

log p(y) = max
b∈M(G)

{

H(b) +
N

∑

n=1

∑

xn

bn(xn) log φn(xn)

+
L

∑

l=1

∑

xCl

bCl
(xCl

) log ψl(xCl
)

}

, (6)

where H(b) denotes the entropy of the distribution b(x),
H(b) = −

∑

x
b(x) log b(x), and M(G) is the so-called

marginal polytope, which is the set of marginal distributions
bk(xk) and bCl

(xCl
) that can be related to a valid distribution,

which factorizes according to the same factor graphG, induced
by (2). Note that the solution to (6) is b(x) = p(x|y) with
corresponding maximum equal to log p(y). The optimization
problem (6) turns out to be convex, but, unless G is a tree,
intractable: (i) the number of constraints to describe M(G)
is intractable (ii) computing the entropy for any b(x) is
intractable.

C. Standard Belief Propagation
In standard BP, a tractable solution is achieved by (i)

relaxing M(G) to the local polytope L(G), the set of marginal
distributions bk(xk) and bCl

(xCl
) that are normalized, non-

negative, and mutually consistent, but not necessarily corre-
spond to a valid global distribution; (ii) approximating the



entropy H(b) by the so-called Bethe entropy

HBethe(b) =
N

∑

n=1

H(bn) −
L

∑

l=1

ICl
(bCl

),

whereH(bn) is the entropy of bn(xn) and ICl
(bCl

) is a mutual
information term defined as

ICl
(bCl

) =
∑

xCl

bCl
(xCl

) log
bCl

(xCl
)

∏

m∈Cl
bm(xm)

.

Substitution into (6), expressing the stationary conditions by
setting the derivative of the Lagrangian to zero leads to the
well-known BP message passing rules [4]:

• Message from variable vertex Xn to factor vertex ψl,
n ∈ Cl:

µXn→ψl
(xn) = φn(xn)

∏

k∈Nn\{l}

µψk→Xn
(xn). (7)

• Message from factor vertex1 ψl to variable vertex Xn,
n ∈ Cl:

µψl→Xn
(xn) =

∑

∼xn

ψl(xCl
)

∏

m∈Cl\{n}

µXm→ψl
(xm),

(8)
where

∑

∼xn
refers to the summation over all variables

in xCl
, except xn.

• Belief of variable xn:

bn(xn) ∝ φn(xn)
∏

l∈Nn

µψl→Xn
(xn). (9)

Equations (7)–(9) are iterated until the beliefs converge. When
there are only pairwise interactions, it is easy to show that (7)–
(9) is equivalent with (3)–(4), when ρnm = 1, for all (n, m).

D. Tree-reweighted Belief Propagation
1) Formulation: Starting from a factor graph of a factoriza-

tion of (2), we can now generate a tree by removing a suitable
subset of factor vertices ψl, along with all connected edges.
For any such tree T , we can express the corresponding entropy
as

H(b; T ) =
N

∑

n=1

H(bn) −
∑

Cl∈T

ICl
(bCl

),

where
∑

Cl∈T denotes a summation over all factor vertices
that remain in the tree. For any tree and a fixed b(·), we
know that H(b; T ) ≥ H(b) [10]. We can now introduce a
distribution p(T ) over such trees, as well as factor appearance
probabilities:

ρl =
∑

T∈T(G)

p(T )I {Cl ∈ T } .

Given a distribution over trees, a convex upper bound onH(b)
is given by

H(b; ρ) =
N

∑

n=1

H(bn) −
L

∑

l=1

ρlICl
(bCl

).

1For mathematical convenience, we only compute messages from factor
vertices corresponding to factors with at least 2 variables.

We finally arrive to the following variational problem, by
relaxing M(G) to L(G), and replacing H(b) by H(b; ρ):

log p(y) ≥ arg max
b∈L(G)

{

H(b; ρ) +
N

∑

n=1

∑

xn

bn(xn) log φn(xn)

+
L

∑

l=1

∑

xCl

bCl
(xCl

) log ψl(xCl
)

}

. (10)

2) Message Passing Rules: Message update rules are then
obtained by expressing the Lagrangian and setting the deriva-
tive to zero. We state here the final results; the complete
derivation is presented in the Appendix.

• Message from variable vertex Xn to factor vertex ψl,
n ∈ Cl:

µXn→ψl
(xn) = (11)

φn(xn)µρl−1
ψl→Xn

(xn)
∏

k∈Nn\{l}

µρk

ψk→Xn
(xn).

• Message from factor vertex ψl to variable vertex Xn,
n ∈ Cl:

µψl→Xn
(xn) = (12)
∑

∼xn

ψ1/ρl

l (xCl
)

∏

m∈Cl\{n}

µXm→ψl
(xm).

• Belief of variable xn:

bn(xn) ∝ φn(xn)
∏

l∈Nn

µρl

ψl→Xn
(xn). (13)

As we would expect, when ρl = 1, ∀l, we find equations (7)–
(9) again. Moreover, when there are only pairwise interactions,
we find (3)–(4). It should be noted that equivalent message
passing rules were presented in [6] in the context of fractional
belief propagation.

E. Uniformly Reweighted Belief Propagation
It is now straightforward to introduce URW-BP. In principle,

TRW-BP allows us optimize over all possible distributions
ρ. Nevertheless, we are not guaranteed that this will lead to
better performance than BP. Here we restrict our attention to
fixed ρl = ρ, ∀l. This scheme is motivated by the fact that
in graphs that are roughly uniform in structure with roughly
equal properties of the factor vertices, we expect that a uniform
distribution over trees would be optimal, leading to ρ = ρ1,
for some 0 < ρ ≤ 1 [10], with ρ = 1 when the factor graph is
a tree. Hence, for such uniform graphs, we expect URW-BP
to achieve the best performance among BP and TRW-BP.

V. NUMERICAL EXAMPLE

A. Model
We consider a practical example for which, to the best of our

knowledge, TRW-BP has not been applied before: decoding of
an LDPC code. Consider an LDPC code with an L×N sparse
parity check matrixH. Let x denote the transmitted codeword
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Figure 2. Performance of URW-BP after 20 decoding iterations as a function
of the scalar parameter ρ for LDPC code, at a fixed SNR (Eb/N0 = 3 dB).
BP corresponds to ρ = 1.

and y the observation over a memoryless channel, with known
p(yn|xn). The a posteriori distribution of interest is now

p(x|y) ∝ p(y|x)p(x)

=
N
∏

n=1

p(yn|xn)I{Hx = 0}

=
N
∏

n=1

p(yn|xn)
L

∏

l=1

I

{

∑

m∈Cl

xm = 0

}

,

where the summation is in the binary field, and Cl is the index
set corresponding to the non-zero elements of the lth row in
H. Clearly, we can make the association φn(xn) ↔ p(yn|xn)
and ψl(xCl

) ↔ I
{
∑

m∈Cl
xm = 0

}

.

B. Message Passing Rules
The message from variable node Xn to check node ψl,

expressed as a log-likelihood ratio (LLR), is given by

λXn→ψl
= λch,n +

∑

k∈Nn

ρkλψk→Xn
− λψl→Xn

,

where
λch,n = log

p(yn|xn = 1)

p(yn|xn = 0)
.

The messages from check nodes to variable nodes are un-
changed with respect to standard BP, since here ψ1/ρl

l (xCl
) =

ψl(xCl
), irrespective of ρl. We will consider two types of

messages from check nodes to variable nodes: sum-product
messages (in the log-domain, see [2, eq. (22)]) and simplified
min-sum messages (see [9, eq. (14)]). Finally, the beliefs in
LLR format are given by

λb,n = λch,n +
∑

k∈Nn

ρkλψk→Xn
.

Interestingly, in its min-sum version, URW-BP is equivalent
to a recently proposed LDPC decoder from [9], based on the
divide and concur algorithm, provided that ρ is set to 2Z ,
where Z was introduced in [9, eq. (15)].
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Figure 3. Performance of BP and URW-BP as a function of the SNR for
LDPC code after 20 decoding iterations.

C. Performance Example
In Fig. 2, we plot the bit error rate (BER) performance2

of a rate 1/2 LDPC code with N = 256 and L = 128 at a
fixed SNR as a function of ρ. We observe that ρ = 1 does
not yield the best performance and that the global minimum
in the BER is achieved by ρ ≈ 0.85 and ρ ≈ 0.55, for sum-
product and min-sum, respectively. The optimal value of ρ for
min-sum is lower because the min-sum rule tends to over-
shoot the LLRs more than sum-product. In Fig. 3 we compare
the performance of BP and URW-BP (with ρ = 0.85 and
ρ = 0.55 for sum-product and min-sum, respectively) in terms
of BER vs. SNR for the same LDPC codes. We see that URW-
BP outperforms BP especially at high SNR. The difference in
BER between standard BP and URW-BP is not large, but still
significant considering that we have used a real LDPC code,
designed such that loops are long and have limited impact on
BP decoding. The performance gap can be much greater in
case of non-optimized graph configurations, i.e., with many
short loops.

VI. CONCLUSIONS

Motivated by promising results in distributed processing,
we have derived uniformly reweighted belief propagation
(URW-BP) for distributions with higher-order interactions.
We have adopted a factor graph model, as this allows an
elegant representation of higher-order interactions, as well
as the message passing interpretation. The message passing
rules (11), (12), and (13) easily lead to URW-BP. URW-BP
combines the potential improved performance of TRW-BP
with the distributed nature of BP. We have applied these new
message passing rules to LDPC decoding and have shown that
URW-BP can outperform BP, even for an LDPC code without
short cycles.

2For all decoding algorithms, we applied the following stopping rule: when
a valid codeword is found at a certain iteration, no further iterations are
performed.



APPENDIX
Here we provide the derivation leading to the message

passing rules for TRW-BP with higher-order interactions,
following the reasoning from [10, Section 4.1.3].
The Local Polytope: We first describe the local polytope

L(G). Any element b ∈ L(G) is described by single-variable
beliefs bn(xn), n = 1, . . . , N and higher-order beliefs bl(xCl

),
l = 1, . . . , L and must satisfy the following conditions:
non-negativity, normalization, and consistency: bn(xn) ≥ 0,
bCl

(xCl
) ≥ 0,

∑

xn
bn(xn) = 1,

∑

xCl

bCl
(xCl

) = 1,
∑

∼xn
bCl

(xCl
) = bn(xn), n ∈ Cl. We will enforce the

consistency constraints explicitly with Lagrange multipliers
λCl

(xn), and the non-negativity and normalization constraints
implicitly.
The Lagrangian: The Lagrangian is given by

L(b, λ) = H(b; ρ) +
N

∑

n=1

∑

xn

bn(xn) log φn(xn)

+
L

∑

l=1

∑

xCl

bCl
(xCl

) log ψl(xCl
)

+
L

∑

l=1

{

∑

m∈Cl

∑

xm

λCl
(xm)

[

bm(xm) −
∑

∼xm

bCl
(xCl

)

]}

,

subject to non-negativity and normalization constraints.
Stationary Points: We now determine the stationary points

of the Lagrangian. The derivatives with respect to the beliefs
are given by

∂L(b, λ)

∂bn(xn)
= κn − log

bn(xn)

φn(xn)
+

∑

l∈Nn

λCl
(xn) (14)

and
∂L(b, λ)

∂bCl
(xCl

)
= (15)

κCl
− ρl log

bCl
(xCl

)
∏

m∈Cl
bm(xm)

+ log ψl(xCl
) −

∑

m∈Cl

λCl
(xm),

where κn and κCl
are constants. Setting the derivatives to zero

and taking exponentials leads to

bn(xn) ∝ φn(xn)
∏

l∈Ni

exp (λCl
(xn)) (16)

bCl
(xCl

) ∝ ψ1/ρl

l (xCl
)

∏

m∈Cl

bm(xm)

exp
(

λCl
(xm)
ρl

) . (17)

We introduce

µψl→m(xm) = exp

(

λCl
(xm)

ρl

)

, (18)

so that (16) and (17) can be written as

bn(xn) ∝ φn(xn)
∏

l∈Nn

µρl

ψl→Xn
(xn) (19)

bCl
(xCl

) ∝ ψ1/ρl

l (xCl
)

∏

m∈Cl

bm(xm)

µψl→Xm
(xm)

. (20)

Observe that (19) is exactly (13). Note that normalization and
non-negativity are inherently satisfied.
Message Passing Rules: Finally, we express the consistency

constraints to reveal the message passing rules. Essentially, our
objective is to write a valid expression that does not contain
beliefs. Summing out all variables except xn in (20) yields

bn(xn) =
bn(xn)

µψl→Xn
(xn)

(21)

×
∑

∼xn

ψ1/ρl

l (xCl
)

∏

m∈Cl\{n}

bm(xm)

µψl→Xm
(xm)

,

so that, after canceling out bn(xn) and moving µψl→Xn
(xn)

to the left hand side, we find that

µψl→Xn
(xn) =

∑

∼xn

ψ1/ρl

l (xCl
) (22)

×
∏

m∈Cl\{n}

φm(xm)
∏

k∈Nm
µρk

ψk→Xm
(xm)

µψl→Xm
(xm)

.

Introducing the message from variable vertex Xm to factor
vertex ψl,

µXm→ψl
(xm) =

φm(xm)
∏

k∈Nm
µρk

ψk→Xm
(xm)

µψl→Xm
(xm)

(23)

we immediately find that

µψl→Xn
(xn) =

∑

∼xn

ψ1/ρl

l (xCl
)

∏

m∈Cl\{n}

µXm→ψl
(xm).

(24)
Here, (24) is exactly (12) and (23) is by construction the same
as (11).
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