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Uniformly Reweighted Belief Propagation for
Estimation and Detection in Wireless Networks

Henk Wymeersch,Member, IEEE, Federico Penna,Student Member, IEEE,
Vladimir Savic,Student Member, IEEE

Abstract—In this paper, we propose a new inference algorithm,
suitable for distributed processing over wireless networks. The
algorithm, called uniformly reweighted belief propagation (URW-
BP), combines the local nature of belief propagation with the
improved performance of tree-reweighted belief propagation
(TRW-BP) in graphs with cycles. It reduces the degree of
freedom in the latter algorithm to a single scalar variable, the
uniform edge appearance probabilityρ. We provide a variational
interpretation of URW-BP, give insights into good choices of ρ,
develop an extension to higher-order potentials, and complement
our work with numerical performance results on three inference
problems in wireless communication systems: spectrum sensing
in cognitive radio, cooperative positioning, and decodingof a
low-density parity-check (LDPC) code.

Index Terms—Distributed inference, approximate inference,
belief propagation, message passing, factor graphs, tree-
reweighted belief propagation, variational methods.

I. I NTRODUCTION

I N wireless communication, belief propagation (BP) [1]
has found applications in many aspects of receiver de-

sign, including equalization, demapping, multi-user detection,
multi-antenna detection, and decoding [2]–[6]. Most notably
in the latter application, the use of BP message passing
over a suitable graphical model has led to practical decoding
algorithms for powerful error-correcting codes, such as LDPC
codes and turbo codes [7]. Recently, there has been an interest
from the wireless communication community to extend BP to
distributed problems, involving cooperation among multiple
spatially separated wireless devices. BP inherently lendsitself
well to distributed implementation, and is thus a powerful,
yet practical algorithm to perform cooperative estimationand
detection. In fact, BP-based cooperative message passing al-
gorithms have been applied to a wide variety of problems, in-
cluding cooperative positioning [8]–[10], artificial intelligence
[11], computer vision [12], cognitive radio [13], [14], link loss
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monitoring [15], network control [16], cooperative beamform-
ing [17], and sensor networks [18]. Despite of its widespread
use, BP is faced by a lack of convergence guarantees, as
well as over-confidence of beliefs [19]. These problems have
been partly addressed in [20], where a novel message passing
algorithm was proposed, called tree-reweighted BP (TRW-
BP). This algorithm has stronger convergence guarantees [21],
and often gives better performance than BP. However, TRW-
BP involves the selection of, and optimization over, so-called
edge appearance probabilities. This makes TRW-BP difficult
to implement in a network setting, as the choice of valid edge
appearance probabilities involves a problem that is hard to
solve in a distributed manner.

In this paper, we present a novel algorithm combining
the distributed nature of BP and the improved performance
of TRW-BP in graphs with cycles. The new algorithm is
called uniformly reweighted BP (URW-BP), as it collapses the
edge appearance probabilities into a single scalar variable. As
special cases, URW-BP reverts to BP under suitable choice
of the variable, and corresponds to the optimal choice of
edge appearance probabilities in TRW-BP for certain types
of graphs. While URW-BP admittedly is a straightforward
modification of TRW-BP, this paper for the first time indicates
that URW-BP is a powerful inference algorithm in its own
right, and deserves deeper investigation. Our contributions are
as follows:

• We propose URW-BP as a practical (and in some case
equivalent) alternative to TRW-BP for distributed infer-
ence problems;

• We interpret URW-BP as a multi-objective optimization
problem, trading off single-variable entropy and correla-
tion among variables, thus enabling URW-BP to mitigate
overconfidence of beliefs in BP; and

• Through simulations, we show that URW-BP consistently
outperforms BP, for centralized and distributed inference,
for discrete and continuous variables, and for pairwise as
well as higher-order interactions.

II. I NFERENCETHROUGH MESSAGEPASSING

A. Problem Formulation

We consider an a posteriori distribution of the form

p(x|y) =
p(y|x)p(x)

p(y)
, (1)

wherey is a (fixed) observation andx = [x1, x2, . . . , xN ] is
theN -dimensional unobserved variable of interest. For nota-
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tional convenience, we considerx to be a discrete random vari-
able with finite domain. Our goal is to determine the marginal
a posteriori distributions,p(xn|y), for every componentxn.
Brute-force computation ofp(xn|y) is often intractable, due to
the high-dimensional nature ofx. Practical algorithms can be
developed by harnessing the factorization of bothp(y|x) and
p(x). The factorization depends on conditional independence
of the variables and is problem-specific. For concreteness,we
will focus on factorizations of the form

p(x|y) ∝
N
∏

n=1

φn(xn)
∏

(l1,l2)∈E

ψl1,l2(xl1 , xl2), (2)

where∝ denotes proportionality up to a multiplicative constant
(including, but not limited to1/p(y)) and E is the set of
variable indices for which there is an interaction. Such factor-
izations can be conveniently expressed by a graphical model,
such as aMarkov random field, where vertices correspond
to variables and their single-variable factors (φn) and edges
correspond to factors (ψl1,l2). Note that the set of edges in the
Markov random field is exactlyE . Alternatively, the factor-
ization can be represented by afactor graph, where vertices
correspond to both variables and factors, and edges connect
a variable vertex with a factor vertex when the corresponding
variable appears in the corresponding factor. We will focus
on factor graphs, as they will enable an easier extension to
higher-order interactions later on. As an illustration of both
graphical models, see Fig. 1. In wireless networks,N may
represent the number of nodes in a network,xn a variable
of interest, andψl1,l2 an interaction between pairs of nodes.
Detailed examples will be discussed in Section IV.

B. Message Passing Algorithms

Given a factor graph ofp(x|y), we can run amessage pass-
ing algorithmand determine approximations of the marginals
p(xn|y), called beliefs, denoted bybn(xn). Various message
passing algorithms have been proposed, arguably the most
popular of which is belief propagation (BP). Alternatives
include naive mean field (MF) [22], TRW-BP [20], and
generalized BP (GBP) [23]. When the factor graph is cycle-
free, BP and TRW-BP are equivalent and provide the exact
marginals, i.e.,bn(xn) = p(xn|y), ∀n, xn. When the factor
graph contains cycles, BP and TRW-BP are not guaranteed to
yield the true marginal posteriors, or even to converge at all.

1) Belief Propagation:Assuming the variableXn appears
in the factorψm,n, the BP message1 from ψm,n toXn is given
by

µψm,n→Xn
(xn) = (3)

∑

xm

φm(xm)ψm,n(xm, xn)
∏

k∈Nm\{n}

µψm,k→Xm
(xm),

wherek ∈ Nm indicates that there exists a factorψm,k. The
beliefs are updated according to

bn(xn) ∝ φn(xn)
∏

m∈Nn

µψm,n→Xn
(xn). (4)

1For notational convenience, we will express beliefs and messages in terms
of messages from factor vertices to variable vertices. Messages from variable
vertices to factor vertices will not be considered, except in Section III-C.

X1

X1

X2

X2

X3

X3

φ1 φ2 φ3

ψ12 ψ23

Figure 1. Markov random field (top) and factor graph (bottom)of the
factorizationp(x|y) ∝ φ1(x1)φ2(x2)φ3(x3)ψ12(x1, x2)ψ23(x2, x3).

Equations (3)–(4) are iterated until the beliefs converge.
2) Tree-Reweighted Belief Propagation:In TRW-BP, the

message fromψm,n to Xn is given by

µψm,n→Xn
(xn) = (5)

∑

xm

φm(xm)ψ1/ρm,n

m,n (xm, xn)µ
ρm,n−1
ψm,n→Xm

(xm) (6)

∏

k∈Nm\{n}

µ
ρm,k

ψm,k→Xm
(xm),

while the belief is given by

bn(xn) ∝ φn(xn)
∏

m∈Nn

µ
ρm,n

ψm,n→Xn
(xn). (7)

As in BP, (5)–(7) are iterated until the beliefs converge.
The values{ρm,n}(m,n)∈E are the so-called edge appearance
probabilities2 (EAPs) of the factor vertices{ψm,n}(m,n)∈E .

The performance of TRW-BP depends on the choice of
EAPs. Optimization over the EAPs (referred to here asop-
timized TRW-BP) is possible, but corresponds to an outer
iterative loop, involving a high-dimensional optimization prob-
lem over {ρm,n}(m,n)∈E . Moreover, the set of valid EAPs
is non-trivial: given a graphG and the setT(G) of all
possible spanning trees, we can introduce a distribution over
the spanning trees:0 ≤ p(T ) ≤ 1, for T ∈ T(G). For a given
distribution, the EAP of factorψm,n is then given by

ρm,n =
∑

T∈T(G)

p(T )× I {vertexψm,n ∈ T } , (8)

whereI {·} is the indicator function. Note that whenG is a
tree, every factor vertexψm,n appears in every spanning tree,
so thatρm,n = 1, ∀(m,n) ∈ E . When the graphG contains
cycles, there must be at least oneρm,n < 1.

BP can now be interpreted as a modification of TRW-BP,
whereρm,n = 1, ∀(m,n) ∈ E , irrespective of the structure of
G. Note that this choice of EAPs is not valid for a graph with
cycles.

III. U NIFORMLY REWEIGHTED BELIEF PROPAGATION

A. Description

In order to combine the simplicity and distributed nature of
BP with the improved performance of TRW-BP in graphs with
cycles, we propose a novel approximate inference algorithm,
called uniformly reweighted belief propagation (URW-BP).In

2The terminology ofedgeappearance comes from the Markov random field
representation ofp(x|y), where the factorsψm,n are represented by edges.
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URW-BP, the EAPs in (5)–(7) are all equal (and denoted byρ),
so their optimization is a scalar optimization problem. In the
following sections, we will connect BP, TRW-BP, and URW-
BP in a variational interpretation, comment on the conditions
under which URW-BP and optimized TRW-BP coincide, and
cast URW-BP as a solution to a multi-objection optimization
problem.

B. Variational Interpretation

1) General Formulation:Given any distributionb(x), the
Kullback Leibler divergence [24] betweenb(x) andp(x|y) is
given by

KL(b||p) =
∑

x

b(x) log
b(x)

p(x|y)
≥ 0. (9)

If we insert (2), and perform some straightforward manipula-
tions, we can express this inequality as

log p(y) ≥ H(b) + χ(b) (10)

whereH(b) denotes the entropy of the distributionb(x), i.e.,
H(b) = −

∑

x
b(x) log b(x) and

χ(b) =

N
∑

n=1

∑

xn

bn(xn) log φn(xn) (11)

+
∑

(m,n)∈E

∑

xm,xn

bm,n(xm, xn) logψm,n(xm, xn).

(12)

Note that (10) is valid with equality if and only ifb(x) =
p(x|y), ∀x. Hence, we can write

log p(y) = max
b∈M(G)

{H(b) + χ(b)} , (13)

whereM(G) is the so-calledmarginal polytopecorresponding
to the factor graphG, which is the set of marginal distributions
{bn(xn)}Nn=1 and{bm,n(xm, xn)}(m,n)∈E that can be related
to a global distributionb(x) that factorizes according to the
same factor graphG. The formulation (13) implies that if we
can solve the optimization problem, then the solution isb(x) =
p(x|y), with corresponding maximum equal tolog p(y). The
optimization problem turns out to be concave,3 but intractable:
unlessG is a tree, no explicit expression forH(b) is available
and the number of constraints to describeM(G) is exponential
in the size ofG [22]. BP, TRW-BP, and URW-BP can be
interpreted as approximate methods to solve (13).

2) Belief Propagation: In BP, the setM(G) is outer-
bounded by the convex setL(G), which is the set of marginal
beliefs {bn(xn)}Nn=1 and {bm,n(xm, xn)}(m,n)∈E , that are
mutually consistent, but need not be consistent with any global
belief b(x). It can be shown thatL(G) is a convex set,4 and
that whenG is a tree,M(G) = L(G) [22]. Secondly, the
entropy in (13) is replaced by the so-called Bethe entropy

HBethe(b) =

N
∑

n=1

H(bn)−
∑

(m,n)∈E

I(bm,n), (14)

3Sinceχ(b) is linear in b, the entropyH(b) is concave inb, and the set
M(G) is a convex set.

4Since any convex combination of marginal beliefs is again a valid marginal
belief.

whereI(bm,n) is the mutual information betweenxm andxn:

I(bm,n) =
∑

xm,xn

bm,n(xm, xn) log
bm,n(xm, xn)

bm(xm)bn(xn)
. (15)

It is shown in [23] that BP (3)–(4) is an iterative method to
find of a stationary point of the Lagrangian corresponding to
the problem (13), withM(G) replaced byL(G) and H(b)
replaced byHBethe(b).

3) Tree-Reweighted Belief Propagation:In TRW-BP, the
setM(G) is also outer-bounded by the convex setL(G). For
a fixed set of valid EAPs, the entropyH(b) is replaced by a
convexupperbound

H(b|ρ) =
N
∑

n=1

H(bn)−
∑

(m,n)∈E

ρm,nI(bm,n), (16)

where we have introduced the vectorρ
.
= [ρm,n](m,n)∈E . We

note again that BP corresponds to settingρ = 1 in TRW-BP.
For a fixedρ, the stationary points of the Lagrangian lead to
(5)–(7), following a similar line of reasoning as in [23].

4) Uniformly Reweighted Belief Propagation:In URW-BP,
similar to BP and TRW-BP, the setM(G) is outer-bounded by
the setL(G). For a fixed value ofρ ∈ R, the entropyH(b) is
approximated by

H(b|ρ) =
N
∑

n=1

H(bn)−
∑

(m,n)∈E

ρI(bm,n). (17)

Again, BP is found by settingρ = 1. Stationary points of the
Lagrangian lead to the TRW-BP equations given in (5)–(7),
with ρm,n = ρ, ∀(m,n) ∈ E .

C. Extension of TRW-BP and URW-BP Beyond Pairwise In-
teractions

In the original formulation of TRW-BP, only pairwise inter-
actions were considered, with a corresponding Markov random
field where variables are vertices and edges are pairwise
potentials. It was suggested in [20] that the extension to
higher-order interactions requires a graphical model thatis a
hypergraph. A joint a posteriori distribution with higher-order
interaction is of the form

p(x|y) ∝
N
∏

n=1

φn(xn)

L
∏

l=1

ψl(xCl
), (18)

where xCl
⊆ x. We now present two distinct TRW-BP

message passing algorithms.
1) Using Factor Appearance Probabilities:Based on factor

graphs, we have derived TRW-BP equations for arbitrary in-
teractions [25]. The message from factor vertexψl to variable
vertexXn is given by

µψl→Xn
(xn) =

∑

∼xn

ψ
1/ρl
l (xCl

)× (19)

∏

m∈Cl\{n}

φm(xm)µρl−1
ψl→Xm

(xm)
∏

k∈Nm\{l}

µρkψk→Xm
(xm),
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where
∑

∼xn
denotes summation over all variables exceptxn.

The beliefs are given by

bn(xn) ∝ φn(xn)
∏

l∈Nn

µρlψl→Xn
(xn). (20)

Here, the variablesρl refer to the appearance probabilities of
the factor verticesψl in the collection of trees. We have made
a slight abuse of notation, as herel ∈ Nn means that there
exists a factorψl that has as variableXn. For URW-BP, we
simply set allρl = ρ.

For the sake of completeness, we also provide message
passing rules when messages from variable vertices to factor
vertices are computed. In that case, the message from variable
vertexXn to factor vertexψl, n ∈ Cl is given by

mXn→ψl
(xn) = (21)

φn(xn)m
ρl−1
ψl→Xn

(xn)
∏

k∈Nn\{l}

m
ρk
ψk→Xn

(xn),

while the message from factor vertexψl to variable vertexXn,
n ∈ Cl is now

mψl→Xn
(xn) = (22)

∑

∼xn

ψ
1/ρl
l (xCl

)
∏

m∈Cl\{n}

mXm→ψl
(xm).

Finally, the belief of variablexn is given by (20), whereµ(·)(·)
should be replaced bym(·)(·). These message passing rules can
be seen as extension of the sum-product algorithm from [26].

2) Using Edge Appearance Probabilities:An alternative
approach is to convert the factor graph to contain only
pairwise interactions [27]. Consider a factorψl(x1, x2, x3).
We can convert this part of the factor graph as follows
(see also [22, page 289]): (i) introduce a new variablezl
that takes values in the product domain (e.g., ifxi ∈
Xi, then zl ∈ X1 × X2 × X3); (ii) introduce 3 factors
fl,i(zl, xi) = I{zl,i = xi}ψ

αi

l (zl); (iii) replace in the factor
graph the factor vertexψl(x1, x2, x3) with 4 factor vertices
ψl(zl)

1−
∑

i αifl,1(zl, x1)fl,2(zl, x2)fl,3(zl, x3), where the pa-
rametersαi ∈ R are chosen such that0 ≤

∑

i αi ≤ 1.
This latter factor graph only contains pairwise interactions,
on which we can apply the message passing rules (5). For
example, settingαi = 0, these messages can in turn be
transformed to messages on the original factor graph, leading
to the message from variable vertexXn to factor vertexψl,
n ∈ Cl being given by

mXn→ψl
(xn) = (23)

φn(xn)m
ρl,n−1
ψl→Xn

(xn)
∏

k∈Nn\{l}

m
ρk,n

ψk→Xn
(xn),

where ρl,n is the edge appearance probability of the edge
connecting factor verticesXn andZl in the transformed factor
graph. The message from factor vertexψl to variable vertex
is give by

mψl→Xn
(xn) = (24)

∑

∼xn

ψl(xCl
)m

ρl,n−1
Xn→ψl

(xn)
∏

m∈Cl\{n}

m
ρl,m
Xm→ψl

(xm),

and the belief of variablexn is again given by (20), where
µ(·)(·) should be replaced bym(·)(·).

D. Discussion of URW-BP

1) URW-BP as a Multi-Objective Optimization Solution:
We can write the URW-BP objective function for general
interactions as

χ(b) +

N
∑

n=1

H(bn)− ρ

L
∑

l=1

I(bCl
), (25)

which we can interpret as a multi-objective problem with
trade-off parameterρ ≥ 0. The functionχ(b) is linear inb(x),
while

∑N
n=1 H(bn) is concave inb(x).5 Suppose we have two

candidate solutions:b(x) and b̃(x), for which χ(b) = χ(b̃).
When ρ = 1, the solution with the maximal Bethe entropy
will be chosen. Maximizing Bethe entropy corresponds to
maximizing the entropies ofbn(xn) and at the same time
minimizing the dependence among variables. Whenρ = 0, the
solution with the maximal entropy of the individual beliefswill
be chosen, irrespective of the dependence (mutual information)
among the variables. Hence,by decreasingρ, we can force the
beliefs to be less concentrated(i.e., less over-confident).

2) URW-BP as Optimized TRW-BP:In general, URW-
BP is not guaranteed to outperform TRW-BP. In fact, for
some graphs, URW-BP does not even correspond to a valid
distribution over spanning trees. However, we can describe
sufficient, though not necessary conditions, under which URW-
BP and optimized TRW-BP coincide. We will denote set
cardinality by| · |.

Definition 1 (Symmetric factorization). Given a factor graph
G, corresponding to a factorization

p(x|y) ∝
N
∏

n=1

φn(xn|θn)
L
∏

l=1

ψl(xCl
|θCl

) (26)

with L non-trivial6 factors, whereθn and θCl
represents

parameters that fully determine the corresponding functions.
We call the factorization symmetric when (i)|Cl| = |Ck|,
∀k, l ∈ {1, . . . , L} and |Nn| = |Nm|, ∀m,n ∈ {1, . . . , N};
(ii) θn = θm, ∀m,n ∈ {1, . . . , N} and θCl

= θCk
,

∀k, l ∈ {1, . . . , L}.

Proposition 1. The optimal AEPs in TRW-BP for factoriza-
tions which are either symmetric, or for which the correspond-
ing factor graph is a tree, are uniform, i.e.,ρ = ρ1, for some
ρ ∈ [0, 1].

The proof follows immediately from symmetry considera-
tions. As a special case, [20, page 2327] points out that for
symmetric factorizations with only pairwise interactions, the
optimal EAP in TRW-BP should be uniform, and is given by
ρ = (N−1)/L, whereL = |E|. IntroducingnD as the number
of pairwise interactions in which each variable is involved,7 a
simple counting argument yieldsnD ≈ 2L/N , so that

ρ ≈ min

(

1,
2

nD

(

1−
1

N

))

(27)

≈ min (1, 2/nD) . (28)

5Since entropy is concave, and summation preserves concavity.
6In the sense that|Cl| ≥ 2.
7Note thatnD is also the node degree in the corresponding Markov random

field, and thatnD+1 is the variable vertex degree in the corresponding factor
graph.
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Figure 2. Value ofρ as a function of the average node degree according to
(28).

Note that for trees,L = N − 1, so thatnD ≈ 2, with
correspondingρ = 1.

While symmetric factorizations are not very interesting
from a practical perspective, we can expect that URW-BP
should perform close to optimized TRW-BP as long as the
factorization exhibits sufficient symmetry or when the factor
graph is sufficiently tree-like. The conditions for sufficient
symmetry are not explored here, and are a topic for future
research. However, as we will see in the following section,
the class of factorizations for which URW-BP outperforms BP
turns out to be quite large.

In the context of distributed inference, where there areN
devices, with a total ofL bi-directional communication links
among devices,nD corresponds to the average connectivity,
and can be estimated by running a simple consensus algorithm
over a network [28]. The relationship (28) is shown in Fig. 2.
It is clear that for high network connectivity, we can expect
URW-BP to outperform BP.

Finally, we note that choosingρ according to (27) is not
guaranteed to outperform BP. In practice, the best value of
ρ will depend on the strength of the interactions between
variables. For example, with very strong interactions between
variables along a spanning tree, and very weak interactions
between variables outside of the spanning tree, the bestρ will
be close to 1, irrespective ofnD. Contrary to TRW-BP, an
explicit optimization overρ is not possible. In TRW-BP, the
optimization problem for a fixedρ is

maximize H(b|ρ) + χ(b) (29)

s.t. b ∈ L(G).

We know that for anyb ∈ L(G) we have the upper bound

log p(y) ≤ H(b|ρ) + χ(b). (30)

Hence, the tightest upper bound is found by solving the
following problem:

log p(y) ≤ min
ρ

max
b∈L(G)

{H(b|ρ) + χ(b)} . (31)

This outer minimization can be solved numerically to find
the bestρ [20]. In contrast, URW-BP and BP generally do
not satisfy the two inequalities above, so direct optimization
over ρ is not possible. Moreover, similar to BP, URW-BP is
not guaranteed to converge. However, following an analysis
similar to [29], one can show that the sufficient conditions for
convergence of URW-BP are less stringent than for BP.

IV. CASE STUDIES

In this section, we will apply URW-BP to a three practi-
cal applications, involving discrete and continuous variables,
centralized and distributed processing, and pairwise as well
as higher-order interactions. The first application involves a
cognitive radio network, where devices determine whether or
not the spectrum is being utilized. The second application
involves determining positions of wireless devices through
cooperation. The goal of every device is to determine its own
position based on distance estimates with respect to neighbors
and reference nodes. The final application involves decoding
of LDPC codes. In all three cases we show that URW-BP
outperforms BP. For case studies 1 and 2, we assume perfect
medium access control, which is a common assumption for
distributed inference problems [30], [31].

A. Case Study 1: Signal Detection for Cognitive Radio

1) Problem Formulation:In cognitive radio networks, sec-
ondary users (SU) are granted access to the spectrum of
primary users (PU), when said spectrum is not used by the
PU. This allows spatial reuse of scarce spectrum. Prior to
using the channel, the SU must sense the spectrum and decide
whether or not any PUs are present. As PUs correspond to
signal sources with a precise physical location, it is reasonable
to assume that two SU that are close to each other are likely
to observe the same PU signal state, whereas observations
of SU that are far apart are most likely independent. Based
on [32], these properties can be captured through (i) binary
variables (xn ∈ {0, 1}, where xn = 1 means that the
channel is occupied near the location of then-th SU), (ii)
observationsyn (reflecting the signals collected by then-th
SU) with corresponding likelihoodsφn(xn) = p(yn|xn), and
(iii) spatial correlations8 betweenxn andxm, ψm,n(xn, xm) =
exp(λm,nI{xn = xm}), whereλm,n ≥ 0 generally decreases
with the distance between the two SUs. The set of neighbors
Nn in this case is defined implicitly as the set of SU that are
within communication range with then-th SU [13]. The joint
a posteriori distributionp(x|y) is of the form (2):

p(x|y) ∝
N
∏

n=1

p(yn|xn)
∏

(m,n)∈E

exp(λn,mI{xn = xm}),

(32)
where the product over couples(m,n) is only overm < n,
for which m ∈ Nn. The goal of then-th SU is to determine
bn(xn) ≈ p(xn|y), wherey = [y1, . . . ,yN ].

8In general, higher-order interactions (e.g., betweenxn, xm, andxp) are
possible as well, though, similar to [32], these interactions are neglected for
simplicity.



6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
K

LD

 

 
R = 0.25
R = 0.5
R = 0.75
R = 1

ρ
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Figure 4. Best EAP (ρ∗) based on average KLD vs. average degreenD.

The likelihood functionsφn(xn) = p(yn|xn) account for
the detection performance of each noden. Assume that each
node uses as test statistic for detection a vector ofS i.i.d.
signal received samples, and that noise and PU signal are both
complex Gaussian random variables with varianceσ2

v andσ2
s

respectively. Then, it can be readily shown that forxn = 0
(i.e., when no PU is accessing the channel around then-th
SU), yn ∼ CN (0, σ2

vIS), while for xn = 1 (i.e., when a PU
is active),yn ∼ CN (0, (σ2

v + σ2
s)IS), whereIS is theS × S

identity matrix.
We note that distributed signal detection can be seen as

a special case of the more general problem of distributed
parameter estimation, or multiple hypothesis testing, studied
in the context of wireless sensor networks (see, for example,
[33]–[35]). The proposed method can be extended accordingly
to these applications.

2) Implementation Aspects:As every SU in the network
corresponds to a variablexn, URW-BP can be implemented
distributedly by mapping the factor graph to the communi-

cation graph. Thus, the messageµψm,n→Xm
(xm) from (5)

in the factor graph is transmitted from then-th SU to the
m-th SU. For binary variables, it is convenient to repre-
sent messages with log-likelihood ratios (LLRs). Introducing
γn = log(φn(0)/φn(1)), and accounting for the fact that
ψ
1/ρ
m,n(0, 1) = ψ

1/ρ
m,n(1, 0) = 1 andψ1/ρ

m,n(0, 0) = ψ
1/ρ
m,n(1, 1) =

exp(λm,n/ρ), we can expressµψm,n→Xm
(xm) as a scalar

quantity:

Mn→m
.
= log

µψm,n→Xm
(0)

µψm,n→Xm
(1)

(33)

= U





λm,n
ρ

, γn + (ρ− 1)Mm→n + ρ
∑

k∈Nn\{m}

Mk→n



 ,

(34)

whereU(a, b) = log(1+ ea+b)/(ea+ eb), which is a function
that can be computed efficiently for anya, b ∈ R. Similarly,
the beliefs in LLR representation are given by

Bn
.
= log

bn(0)

bn(1)
(35)

= log
φn(0)

∏

m∈Nn
µρψm,n→Xn

(0)

φn(1)
∏

m∈Nn
µρψm,n→Xn

(1)
(36)

= γn + ρ
∑

m∈Nn

Mm→n. (37)

3) Performance Results:To evaluate the performance of
URW-BP, we compute for each node in the network the
Kullback-Leibler divergence (KLD) between belief and true
posterior, defined asKLDn

.
= KL(bn(xn)||p(xn|y)) and we

average it over all nodes. We first consider a small network of
4 nodes, with correlation factorsλn,m modeled as uniformly
distributed random variables between0.2 and 4. Nodes are
deployed randomly in a circular area of unit diameter. We
then defineR as the communication range of nodes in the
network: ifR = 1, all nodes can communicate with each other,
therefore many loops are present in the graph; on the contrary,
low values ofR result in fewer loops. Fig. 3 shows the average
KLD of beliefs computed through standard BP and URW-BP
as a function ofρ for different values ofR. We observe that
URW-BP outperforms standard BP (corresponding toρ = 1),
especially for large values ofR. Also, the best value ofρ
(denoted asρ∗) tends to decrease asR → 1 as an effect of
the increasing number of loops in the graph.

Fig. 4 combines the results of simulations performed on
networks of different size (N from 4 through15) and shows
the best value ofρ (according to average KLD) as a function
of the average degreenD. Results confirm the dependency of
ρ∗ on the average degree of the graph, as discussed in Sec.
III-D. In particular, the approximate expression (28) proves to
be increasingly accurate asnD ≫ 1.

B. Case Study 2: Cooperative Positioning

1) Problem Formulation:The second application of URW-
BP that we consider is cooperative positioning in wireless
networks. In this case, the goal of each node (referred to as
targets) is to estimate its own position based on a set distance
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measurements with nearby targets and and few fixed reference
nodes (referred to as anchors), assuming a fully distributed
architecture. These distance estimates can be obtained using
well-known measurement techniques (e.g., time of arrival,
received signal strength). Contrary to the previous case, we
deal here withcontinuousvariables. Also contrary to the
previous case where over-confidence of the beliefs is not
detrimental as long as the estimates are correct, here the
situation is quite different: for safety-critical applications, e.g.,
tracking of robots or unmanned aerial vehicles (UAVs), it is
important not only to have good position estimates, but alsoto
know the uncertainty. When a belief is overconfident, a target
may take improper actions (e.g., crash into another UAV).

We considerN targets and minimum 3 anchors scattered
randomly in a planar region, and denote the two-dimensional
location of then-th node (target or anchor) byxn. Targetn
obtains a noisy measurementymn of its distance from node
m, given by

ymn = ‖xm − xn‖+ vmn, (38)

wherevmn represents the noise drawn from some distribution
pv (e.g., Gaussian or the empirical distribution found from
real measurements). As in the previous case study, we assume
nodes can only communicate with nearby devices within a
predefined radiusR > 0. Thus, ymn is available to target
n only when ‖xm − xn‖ < R. Hence,m ∈ Nn when
‖xm − xn‖ < R. Letting φn(xn) = pn(xn) be the a priori
distribution of the position of then-th target,ψm,n(xm, xn) =
p(ymn|xn, xm) the likelihood function, and collecting the
target positions in a vectorx, and the distance estimates in
a vectory, the a posteriori distributionp(x|y) is of the form
(2):

p(x|y) ∝
N
∏

n=1

pn(xn)
∏

(m,n)∈E

p(ymn|xn, xm), (39)

where the product over couples(m,n) is only over nodesm
within communication range of targetn, i.e., m ∈ Nn. The
goal of targetn is to determine its beliefbn(xn) ≈ p(xn|y).
From the belief, the target can easily find a point estimate
(e.g., the mean ofbn(xn)) and associated uncertainty (e.g.,
the covariance matrix, or any percentile).

2) Implementation Aspects:Since the variables are now
continuous, all sums in message update equations in Section
III have to be replaced with integrals. As the localization prob-
lem is nonlinear and potentially non-Gaussian, exact message
representation and updating is not tractable. Therefore, we
resort to a non-parametric version of URW-BP (URW-NBP)
where the beliefs and message update equations are performed
using particle-based approximations (see [8]–[10] for more
details on NBP). Contrary to the first case study, in cooperative
localization, BP and URW-BP can harness the broadcast nature
of the wireless channel, as detailed in [8].

3) Performance Results:We considered a network with 4
anchors andN = 25 targets, in a square 20 m by 20 m
deployment area. For simplicity, we assume the noisevmn
has a zero-mean Gaussian distribution with standard deviation
30 cm. We performed ten iterations of message passing,
representing the messages with 500 particles. Performanceis
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Figure 5. Positioning performance as a function ofρ for different commu-
nication radii. The first row shows the averageℓ1 error, and the second row
the trace of the covariance matrix (denoted byΣ) of the belief.

measured in terms of the averageℓ1 positioning error and the
average trace of the covariance of the belief. Theℓ1 error for
target n is given by ‖xn − x̂n‖, where x̂n is the mean of
bn(xn). The results are averaged over 100 Monte Carlo runs.

Fig. 5 shows the performance of URW-BP as a function of
ρ ∈ [0.1, 1.5] for R = 6.6 m andR = 16 m after the tenth
iteration. We observe that for low connectivity, theℓ1 error is
relatively insensitive toρ for anyρ > 0.4. However, the beliefs
become more concentrated asρ increases. Hence, reducingρ
results in a more robust algorithm. When the connectivity is
increased (R = 16), the best value ofρ ≈ 0.3, while ρ = 1
induces around 20% additional error. Again, we observe more
concentrated beliefs with increasingρ. Overall, the differences
between BP and URW-BP are small.

C. Case Study 3: LDPC Decoding

1) Problem Formulation:Consider an LDPC code with an
L×N sparse parity check matrixH. Let x denote the trans-
mitted codeword andy the observation over a memoryless
channel, with knownp(yn|xn). The a posteriori distribution
of interest is now

p(x|y) ∝ p(y|x)p(x) (40)

=

N
∏

n=1

p(yn|xn)I{Hx = 0} (41)

=

N
∏

n=1

p(yn|xn)
L
∏

l=1

I

{

∑

m∈Cl

xm = 0

}

, (42)

where the summation is in the binary field, andCl is the index
set corresponding to the non-zero elements of thel-th row in
H. Clearly, we can make the association with (18) through
φn(xn) ↔ p(yn|xn) andψl(xCl

) ↔ I
{
∑

m∈Cl
xm = 0

}

.
2) Implementation Aspects:Messages can be represented

efficiently in the log-domain, similar to the cognitive radio
problem. It turns out that the message from variable nodeXn
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to check nodeψl, expressed as a log-likelihood ratio (LLR),
is given by (see (21) and (23))

λXn→ψl
= λch,n + ρ

∑

k∈N (Xn)

λψk→Xn
− λψl→Xn

, (43)

whereλch,n = log p(yn|xn = 1)/p(yn|xn = 0). The message
from variable node to check node depends whether we use (22)
or (24). Due to the nature ofψl(xCl

), ψ1/ρ
l (xCl

) = ψl(xCl
),

irrespective ofρ. Hence, using (22) leads to the standard
message passing rule, which we abbreviate as (see also [3,
page 160])

λψl→Xn
= f⊞

(

{λXm→ψl
}m 6=n

)

. (44)

On the other hand, using (24), the message from checkψl to
Xn becomes

λψl→Xn
= f⊞

(

{ρλXm→ψl
}m 6=n

)

+ (ρ− 1)λXn→ψl
. (45)

In either case, the belief regarding then-th bit is given by

λb,n = λch,n + ρ
∑

k∈N (Xn)

λψk→Xn
. (46)

For additional details see [25]. We perform a maximum of 20
decoding iterations and stop decoding once a codeword has
been found.

3) Performance Results:In Fig. 6, we plot the bit error rate
(BER) performance of a rate1/2 LDPC code withN = 256
andL = 128 at a fixed SNR as a function ofρ, over an AWGN
channel. We observe that using (23)-(24) yields a performance
worse than BP, for all values ofρ. On the other hand, when
using (21)-(22), we observe thatρ = 1 does not yield the
best performance and that the global minimum in the BER is
achieved byρ ≈ 0.9. The difference in BER between BP
and URW-BP is not large, but still significant considering
that we have used a real LDPC code, designed such that
loops are long and have limited impact on BP decoding. The
performance gap can be much greater in case of non-optimized
graph configurations, i.e., with many short loops.

V. CONCLUSIONS ANDFUTURE WORK

In this paper we have proposed a new inference algorithm
for estimation and detection in wireless networks. This algo-
rithm, called uniformly reweighted belief propagation (URW-
BP), combines the local nature of BP with the improved
performance of TRW-BP in graphs with cycles. URW-BP also
leads to less concentrated beliefs and is thus more robust.
URW-BP includes one scalar tuning parameter (ρ), which
depends on the properties of the graphical model. We provided
a variational interpretation of URW-BP, give insights into
good choices ofρ, and develop an extension to higher-order
potentials. While we can only prove the optimality of URW-
BP for a restricted class of factorizations (i.e., symmetric
factorizations and factorizations for which the factor graph
is a tree), numerical results indicate the power of URW-
BP over BP for a much larger class of factorizations. In
particular, we have illustrated the performance of the proposed
method for three practical inference problems in wireless
communication systems, involving discrete and continuous
variables, centralized and distributed processing, and pairwise
as well as higher-order interactions. For each problem, we
found that URW-BP consistently outperforms BP, especially
for dense graphical models.

Our study did not include the effect of medium access con-
trol, packet loss, or time-varying network topology. However,
we expect similar results to those found in the literature on
belief propagation [36]–[38]. Secondly, we did not performa
detailed study regarding the convergence behavior of URW-
BP. For the three case studies we considered, we observed
that URW-BP generally converges, and does so at least as
fast as BP. Possibly, provably convergent variations of URW-
BP can be devised, similar to [39], although this may lead
to less practical algorithms. Finally, the choice of optimal ρ
is an open problem. An online algorithm to determineρ for
arbitrary network topologies and arbitrary variable interactions
is an interesting topic of future research.

REFERENCES

[1] J. Pearl, “Probabilistic Reasoning in Intelligent Systems. Networks of
plausible inference,”Morgan Kaufmann, 1988.

[2] A.P. Worthen and W.E. Stark, “Unified design of iterativereceivers
using factor graphs,”IEEE Transactions on Information Theory, vol. 47,
pp. 843–849, Feb. 2001.

[3] H. Wymeersch,Iterative Receiver Design. Cambridge University Press,
2007.

[4] A.W. Eckford, “Channel estimation in block fading channels using the
factor graph EM algorithm,” inProc. 22nd Biennial Symposium on
Communications, 2004.

[5] H. Niu, M. Shen, J. A. Ritcey, and H. Liu, “A factor graph approach to
iterative channel estimation and LDPC decoding over fadingchannels,”
IEEE Trans. on Wireless Communications, vol. 4, pp. 1345–1350, July
2005.

[6] Manyuan Shen, Huaning Niu and Hui Liu, “Iterative receiver design in
Rayleigh fading using factor graph,” inProc. IEEE Vehicular Technology
Conference (VTC Spring), (Hong-Kong), Apr. 2003.

[7] N. Wiberg, Codes and decoding on general graphs. PhD thesis,
Linköping University, Sweden, 1996.

[8] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization
in wireless networks,”Proc. of the IEEE, special issue on Ultra-
Wide Bandwidth (UWB) Technology & Emerging Applications, vol. 97,
pp. 427–450, Feb. 2009.



9

[9] A. T. Ihler, J. W. Fisher III, R. L. Moses, and A. S. Willsky, “Non-
parametric belief propagation for self-localization of sensor networks,”
IEEE Journal on Selected Areas in Communications (JSAC), vol. 23,
pp. 809–819, Apr. 2005.

[10] V. Savic, A. Poblacion, S. Zazo, and M. Garcia, “Indoor position-
ing using nonparametric belief propagation based on spanning trees,”
EURASIP Journal on Wireless Communications and Networking, Aug.
2010.

[11] B. J. Frey and N. Jojic, “A comparison of algorithms for inference
and learning in probabilistic graphical models,”IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 27, pp. 1392–1416, Sept. 2005.

[12] Y. Sheikh and M. Shah, “Bayesian object detection in dynamic scenes,”
in Proc. IEEE Computer Vision and Pattern Recognition (CVPR), June
2005.

[13] F. Penna, R. Garello, and M. Spirito, “Distributed inference of channel
occupation probabilities in cognitive networks via message passing,” in
IEEE Symposium on New Frontiers in Dynamic Spectrum, pp. 1–11,
2010.

[14] J. Lei, R. Yates, P. Spasojevic, and L. Greenstein, “Cooperative sensing
of primary users in cognitive radio networks based on message passing,”
in 43rd Annual Conference on Information Sciences and Systems(CISS),
pp. 568 –573, 2009.

[15] Y. Mao, F. Kschischang, B. Li, and S. Pasupathy, “A factor graph
approach to link loss monitoring in wireless sensor networks,” IEEE
Journal on Selected Areas in Communications, vol. 23, no. 4, pp. 820–
829, 2005.

[16] M. Chiang, “Distributed network control through sum product algorithm
on graphs,” in IEEE Global Telecommunications Conference, vol. 3,
pp. 2395–2399, 2003.

[17] B. Ng, J. Evans, S. Hanly, and D. Aktas, “Distributed downlink
beamforming with cooperative base stations,”IEEE Transactions on
Information Theory, vol. 54, no. 12, pp. 5491–5499, 2008.

[18] M. Paskin, C. Guestrin, and J. McFadden, “A robust architecture
for distributed inference in sensor networks,” inFourth International
Symposium on Information Processing in Sensor Networks, pp. 55–62,
2005.

[19] Y. Weiss and W. Freeman, “Correctness of belief propagation in
Gaussian graphical models of arbitrary topology,”Neural Computation,
vol. 13, no. 10, pp. 2173–2200, 2001.

[20] M. Wainwright, T. Jaakkola, and A. Willsky, “A new classof upper
bounds on the log partition function,”IEEE Transactions on Information
Theory, vol. 51, no. 7, pp. 2313–2335, 2005.

[21] T. Roosta, M. Wainwright, and S. Sastry, “Convergence analysis of
reweighted sum-product algorithms,” inIEEE International Conference
on Acoustics, Speech and Signal Processing, vol. 2, pp. II–541–II–544,
2007.

[22] M. Wainwright and M. Jordan, “Graphical models, exponential families,
and variational inference,”Foundations and Trends in Machine Learning,
vol. 1, no. 1-2, pp. 1–305, 2008.

[23] J. Yedidia, W. Freeman, and Y. Weiss, “Constructing free-energy
approximations and generalized belief propagation algorithms,” IEEE
Transactions on Information Theory, vol. 51, no. 7, 2005.

[24] T. M. Cover and J. A. Thomas,Elements of Information Theory. Wiley-
Interscience, second ed., 2006.

[25] H. Wymeersch, F. Penna, and V. Savic, “Uniformly reweighted belief
propagation: A factor graph approach,” inIEEE International Sympo-
sium on Information Theory, 2011.

[26] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” vol. 47, pp. 498–519, Feb. 2001.

[27] M. Wainwright, T. Jaakkola, and A. Willsky, “MAP estimation via
agreement on trees: message-passing and linear programming,” IEEE
Transactions on Information Theory, vol. 51, no. 11, pp. 3697–3717,
2005.

[28] Y.-W. Hong, A. Scaglione, and P. K. Varshney, “A communication
architecture for reaching consensus in decision for a largenetwork,”
(Paris, France), pp. 1220–1225, July 2005.

[29] J. Mooij and H. Kappen, “Sufficient conditions for convergence of
the sum–product algorithm,”IEEE Transactions on Information Theory,
vol. 53, no. 12, pp. 4422–4437, 2007.

[30] R. Viswanathan and P. Varshney, “Distributed detection with multiple
sensors I. fundamentals,”Proceedings of the IEEE, vol. 85, no. 1, pp. 54–
63, 1997.

[31] R. S. Blum, S. A. Kassam, and H. V. Poor, “Distributed detection with
multiple sensors II. advanced topics,”Proceedings of the IEEE, vol. 85,
no. 1, pp. 64–79, 1997.

[32] H. Li, “Cooperative spectrum sensing via belief propagation in spectrum-
heterogeneous cognitive radio systems,” inWireless Communications
and Networking Conference, pp. 1–6, 2010.

[33] A. Dogandzic and B. Zhang, “Distributed estimation anddetection
for sensor networks using hidden markov random field models,” IEEE
Transactions on Signal Processing, vol. 54, Aug. 2006.

[34] V. Delouille, R. Neelamani, V. Chandrasekaran, and R. G. Baraniuk,
“The embedded triangles algorithm for distributed estimation in sensor
networks,” inProc. 2003 IEEE Workshop Stat. Signal Process., 2003.

[35] S. Venkatesh and M. Alanyali, “M-ary hypothesis testing in sensor
networks,” inProc. 38th Annu. Conf. Inform. Sci. Syst., Mar. 2004.

[36] V. Saligrama, M. Alanyali, and O. Savas, “Distributed detection in
sensor networks with packet losses and finite capacity links,” IEEE
Transactions on Signal Processing, vol. 54, pp. 4118–4132, Nov. 2006.

[37] O. Kreidl, Graphical models and message-passing algorithms for
network-constrained decision problems. PhD thesis, Massachusetts
Institute of Technology, 2008.

[38] C. Crick and A. Pfeffer, “Loopy belief propagation as a basis for com-
munication in sensor networks,” inUncertainty in Artificial Intelligence,
vol. 18, 2003.

[39] T. Meltzer, A. Globerson, and Y. Weiss, “Convergent message passing
algorithms: a unifying view,” inProceedings of the Twenty-Fifth Confer-
ence on Uncertainty in Artificial Intelligence, pp. 393–401, AUAI Press,
2009.

Henk Wymeersch (S’99, M’05) received the Ph.D.
degree in Electrical Engineering/Applied sciences
in 2005 from Ghent University, Belgium. He is
currently an Assistant Professor with the Department
of Signals and Systems at Chalmers University of
Technology, Sweden. He is also affiliated with the
FORCE research center on fiber-optic communica-
tion. Prior to joining Chalmers, he was a Postdoc-
toral Associate with the Laboratory for Information
and Decision Systems (LIDS) at the Massachusetts
Institute of Technology (MIT). He is a member

of the IEEE, Associate Editor for IEEE Communication Letters and the
European Transactions on Telecommunication (ETT). He served as Guest
Editor for EURASIP Journal on Wireless Communications and Networking
(special issue on Localization in Mobile Wireless and Sensor Networks)
and is the author of Iterative Receiver Design (Cambridge University Press,
August 2007). His research interests include algorithm design for wireless
transmission, statistical inference and iterative processing.

Federico Penna received a M.S. degree (2008,
with honors) in Communications Engineering from
Politecnico di Torino, Italy. In 2008 he was a re-
search engineer with Istituto Superiore Mario Boella,
Torino, Italy. From 2009 to 2011 he was a Ph.D.
student at Politecnico di Torino. During his Ph.D.
he spent three months as a visiting researcher at
Chalmers University, Gothenburg (Sweden), and six
months at UCLA, Los Angeles, CA (USA). At
the end of 2011 he joined the Fraunhofer Heinrich
Hertz Institute in Berlin, Germany, as a post-doctoral

research fellow. His research interests include distributed signal processing,
multi-sensor signal detection, and cooperative positioning.

Vladimir Savic received Dipl. Ing. Degree in Elec-
trical Engineering from the University of Belgrade
(Serbia), in 2006. From October 2006 to May 2008,
he worked as Digital IC Design Engineer in Elsys
Eastern Europe, Belgrade. In June 2008, he joined
Universidad Politecnica de Madrid (Spain), where
he is currently research assistant and PhD student.
During Sept-Nov. 2010, he was visiting researcher
at the Stony Brook University (NY, USA), and
during Sept. 2011 - Jan. 2012, he was visiting
researcher at the Chalmers University of Technology

(Gothenburg, Sweden). His research interests include cooperative localization
and tracking in wireless networks, message passing methods, Monte Carlo
methods, particle filtering, and distributed signal processing.


	Uniformly Reweighted Belief Propagation for Estimation and Detection in Wireless Networks-TitlePage.pdf
	diva-81321

