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Abstract—In this paper, we propose a new inference algorithm, monitoring [15], network control [16], cooperative beamin
suitable for distributed processing over wireless network. The ing [17], and sensor networks [18]. Despite of its widesgrea
algorithm, called uniformly reweighted belief propagation (URW- use, BP is faced by a lack of convergence guarantees, as

BP), combines the local nature of belief propagation with tle . .
improved performance of tree-reweighted belief propagatn well as over-confidence of beliefs [19]. These problems have

(TRW-BP) in graphs with cycles. It reduces the degree of been partly addressed in [20], where a novel message passing

freedom in the latter algorithm to a single scalar variable,the algorithm was proposed, called tree-reweighted BP (TRW-

uniform edge appearance probability p. We provide a variational  BP). This algorithm has stronger convergence guarantégs [2

interpretation of URW-BP, give insights into good choices bp,  gnq often gives better performance than BP. However, TRW-

develop an extension to higher-order potentials, and compment BP i | th lecti f d optimizati dechl

our work with numerical performance results on three inference Involves the selec |0n.c_)_, an. Opumizauon over, S i

problems in wireless communication systems: spectrum seing €dg€e appearance probabilitie$his makes TRW-BP difficult

in cognitive radio, cooperative positioning, and decodingof a to implement in a network setting, as the choice of valid edge

low-density parity-check (LDPC) code. appearance probabilities involves a problem that is hard to
Index Terms—Distributed inference, approximate inference, Solve in a distributed manner.

belief propagation, message passing, factor graphs, tree- In this paper, we present a novel algorithm combining

reweighted belief propagation, variational methods. the distributed nature of BP and the improved performance
of TRW-BP in graphs with cycles. The new algorithm is
. INTRODUCTION called uniformly reweighted BP (URW-BP), as it collapses th

N wireless communication, belief propagation (BP) [1§dge appearance probabilities into a single scalar varids
I has found app"cations in many aspects of receiver d@)eCial cases, URW-BP reverts to BP under suitable choice
sign, including equalization, demapping, multi-user déts, of the variable, and corresponds to the optimal choice of
multi-antenna detection, and decoding [2]-[6]. Most nitabedge appearance probabilities in TRW-BP for certain types
in the latter application, the use of BP message passifiygraphs. While URW-BP admittedly is a straightforward
over a suitable graphical model has led to practical degpdifodification of TRW-BP, this paper for the first time indicate
algorithms for powerful error-correcting codes, such a(D that URW-BP is a powerful inference algorithm in its own
codes and turbo codes [7]. Recently, there has been ansnhtef@ht, and deserves deeper investigation. Our contribatare
from the wireless communication community to extend BP @S follows:
distributed problems, involving cooperation among midtip « We propose URW-BP as a practical (and in some case
spatially separated wireless devices. BP inherently |&sdt equivalent) alternative to TRW-BP for distributed infer-
well to distributed implementation, and is thus a powerful, ence problems;
yet practical algorithm to perform cooperative estimatzom o We interpret URW-BP as a multi-objective optimization
detection. In fact, BP-based cooperative message pasking a problem, trading off single-variable entropy and correla-
gorithms have been applied to a wide variety of problems, in- tion among variables, thus enabling URW-BP to mitigate
cluding cooperative positioning [8]-[10], artificial idligence overconfidence of beliefs in BP; and
[11], computer vision [12], cognitive radio [13], [14], krdoss o Through simulations, we show that URW-BP consistently
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tional convenience, we considetto be a discrete random vari- @
able with finite domain. Our goal is to determine the marginal

a posteriori distributionsp(z,,|y), for every component,,.
Brute-force computation qf(z,,|y) is often intractable, due to h1 b2

®)
b3
the high-dimensional nature &f Practical algorithms can be
developed by harnessing the factorization of bpth|x) and N ]
p(x). The factorization depends on conditional independence Y12 Vs

of the variables and is problem-specific. For concreterness,

will focus on factorizations of the form Figure 1. Markov random field (top) and factor graph (bottoof)the
factorizationp(x|y) o< ¢1(x1)d2(x2)d3(x3)Y12(x1, x2)P23 (T2, 23).

N
p(X|y) X H an(xn) H wl17l2 (Illv'rlz)v (2)

n=1 (hl2)e€ Equations (3)—(4) are iterated until the beliefs converge.

wherecx denotes proportionality up to a multiplicative constant 2) Tree-Reweighted Belief Propagatiotn TRW-BP, the

(including, but not limited tol/p(y)) and £ is the set of message from,, ., to X,, is given by
variable indices for which there is an interaction. Suchdac

izations can be conveniently expressed by a graphical model Hp =X (T0) = ®)
; i mon—1

such as aMarkov random field where vertices correspond P € A CE T A C:) B ()

to variables and their single-variable factors,) and edges Tom

correspond to factors/(, ;,). Note that the set of edges in the H MZ";’iaxm (Zm),

Markov random field is exactl¢. Alternatively, the factor-

ization can be represented byfactor graph where vertices ) o

correspond to both variables and factors, and edges coni¥égte the belief is given by

a variable vertex with a factor vertex when the correspamdin Pm,n

variable appears in the corresponding factor. We will focus bu(@n) o ¢n(xn)m1€_j[vn i s, (@n) %

on factor graphs, as they will enable an easier extension to . . . .

higher-order interactions later on. As an illustration afttb As in BP, (5)~(7) are iterated until the beliefs converge.

graphical models, see Fig. 1. In wireless networksmay The values{ pm n} (m.n)ce are the so-called edge appearance

represent the number of nodes in a netwark, a variable probabilitie$ (EAPS) of the factor vert|ce$wm7n}(m7n)€g..

of interest, andy;, ;, an interaction between pairs of nodes The perf_or_mar_1ce of TRW-BP depends on the choice of

Detailed examples will be discussed in Section IV. EA_PS' Optlmlzatl(_)n over_the EAPs (referred to hereops
timized TRW-BP is possible, but corresponds to an outer

B. Message Passing Algorithms iterative loop, involving a high-dimensional optimizatiprob-

Given a factor graph gi(x]y), we can run anessage pass- lem over {pm.n}(m,n)ce. Moreover, the set of valid EAPs
grap x1y), gep is non-trivial: given a graphG and the set%(G) of all

ing algorithmand determine approximations of the marginals __ . . T
. ) possible spanning trees, we can introduce a distributiar ov
p(zn|y), called beliefs, denoted by, (z,). Various message ; :
! . the spanning tree$t < p(T") < 1, for T' € T(G). For a given
passing algorithms have been proposed, arguably the m

popular of which is belief propagation (BP). Alternatives&sstt”bunon' the EAP of factot),, ,, is then given by

include naive mean field (MF) [22], TRW-BP [20], and Prn = Z p(T) x I {vertex v, , € T}, (8)
generalized BP (GBP) [23]. When the factor graph is cycle- TET(@) '

free, BP and TRW-BP are equivalent and provide the exac . - . .
marginals, i.e.pn(xn) = p(xnly), ¥n,z,. When the factor Where]l{-} is the indicator function. Note that whe# is a

graph contains cycles, BP and TRW-BP are not guaranteed'®®: €VerY factor vertex., , appears in every spanning tree,
yield the true marginal posteriors, or even to convergelat af® thatPm.n = 1, ¥(m,n) € €. When the graptG contains
1) Belief Propagation:Assuming the variableX,, appears cycles, there must _be at least opg,,, < 1'_ .
in the factory,, ., the BP messagdrom ., . to X,, is given BP can now be mterpreteq as a modlflcat|0n of TRW-BP,
’ ’ wherep,, ., = 1, ¥(m,n) € &, irrespective of the structure of

keEN . \{n}

b
y G. Note that this choice of EAPs is not valid for a graph with
Hpr X (Tn) = () cycles.
Zd’m(xm)wm,n(xmvxn) H Hapry =X (Im)a
. kEN\{n} I11. UNIFORMLY REWEIGHTED BELIEF PROPAGATION
wherek € A, indicates that there exists a factoy, ,. The A. Description
beliefs are updated according to In order to combine the simplicity and distributed nature of
b () o b () H P (). 4 BP vath the improved perforlmance qf TRV\{—I?P in graplhs v_vﬁh
e cycles, we propose a novel approximate inference algorithm

called uniformly reweighted belief propagation (URW-BR).
1For notational convenience, we will express beliefs andsagss in terms
of messages from factor vertices to variable vertices. Bgss from variable 2The terminology ofdgeappearance comes from the Markov random field
vertices to factor vertices will not be considered, excep&ection II-C. representation op(x|y), where the factors).,,,, are represented by edges.



URW-BP, the EAPs in (5)—(7) are all equal (and denotegly whereZ(b,, ) is the mutual information between,, andz,,:
so their optimization is a scalar optimization problem. te t

following sections, we will connect BP, TRW-BP, and URW- (b)) = Z b (T, 2 ) log M (15)
BP in a variational interpretation, comment on the condio ’ e b (T )bn (0)

under which URW-BP and optimized TRW-BP coincide, and

cast URW-BP as a solution to a multi-objection optimizatioff 'S Shown in [23] that BP (3)—(4) is an iterative method to
problem. find of a stationary point of the Lagrangian corresponding to

the problem (13), withM(G) replaced byL(G) and #H(b)
B. Variational Interpretation replaced byHpeche (). . .
1) General Formulation:Given any distributiorb(x), the 3) Tree-Reweighted Belief Propagatioin TRW-BP, the

Kullback Leibler di 241 bet d . setM(QG) is also outer-bounded by the convex B€t7). For
gil\J/enalgy eibler divergence [24] betweditx) andp(x]y) is a fixed set of valid EAPs, the entrogy(b) is replaced by a

convexupperbound

KL (0]) = 3 b0x) o ) ©)

>0
xly)

If we insert (2), and perform some straightforward manipula
tions, we can express this inequality as

N
Hblp) =D Hbw) = Y punZbmn),  (16)

(m,n)eE

where we have introduced the VECIOE= 01,0 ](m,n)ce- We

logp(y) = H(b) +x(b) (10) note again that BP corresponds to setting: 1 in TRW-BP.
where? (b) denotes the entropy of the distributiéfx), i.e., For a fixedp, the stationary points of the Lagrangian lead to
H(b) = — >, b(x)logb(x) and (5)—(7), following a similar line of reasoning as in [23].
N 4) Uniformly Reweighted Belief Propagatiom URW-BP,
- similar to BP and TRW-BP, the s&f(G) is outer-bounded by
xb) nz::l ; Pa{n) 108 () (D the setl(G). For a fixed value op e( IR{), the entropyH (b) is
n Z Z b (s ) 108 W (s ) approximated by
(m,n)€E Tm,Tn N
(12) HOlp) =D Hbw) = D> pLlbmn). (A7)
Note that (10) is valid with equality if and only i(x) = n=1 (m,n)e€
p(xly), Vx. Hence, we can write Again, BP is found by setting = 1. Stationary points of the
log p(y) = bé%ﬂ)& {H(b) + x(b)}, (13) Lagrangian lead to the TRW-BP equations given in (5)—(7),

with p,, = p, ¥(m,n) € &.
whereM(G) is the so-callednarginal polytopecorresponding
to the factor grapldz, which is the set of marginal distributions
{bn () 1221 @NA{byn (T, Tn)} (m,n)ece that can be related
to a global distributiorb(x) that factorizes according to the
same factor grapli’. The formulation (13) implies that if we In the original formulation of TRW-BP, only pairwise inter-
can solve the optimization problem, then the solutiol{is) = actions were considered, with a corresponding Markov rando
p(x]y), with corresponding maximum equal tog p(y). The field where variables are vertices and edges are pairwise
optimization problem turns out to be concaMieyt intractable: potentials. It was suggested in [20] that the extension to
unlessG is a tree, no explicit expression fét(b) is available higher-order interactions requires a graphical model ihat
and the number of constraints to descilié) is exponential hypergraph. A joint a posteriori distribution with highereer
in the size ofG [22]. BP, TRW-BP, and URW-BP can beinteraction is of the form
interpreted as approximate methods to solve (13).

; e : N L
2) Belief Propagation: In BP, the setM(G) is outer- p(xly) o ] én(@n) [ ¢1(zc), (18)
=1

C. Extension of TRW-BP and URW-BP Beyond Pairwise In-
teractions

bounded by the convex sk{(G), which is the set of marginal
beliefs {bn(2,)}221 and {bm n(Tm,&n)}(mnyee, that are o
mutually consistent, but need not be consistent with angajlo Where zc, € x. We now present two distinct TRW-BP
belief b(x). It can be shown thal(G) is a convex set,and Message passing algorithms. o

that whenG is a tree,M(G) = L(G) [22]. Secondly, the 1) Using Factor Appearance Probabilitie®ased on factor

entropy in (13) is replaced by the so-called Bethe entropy 9raphs, we have derived TRW-BP equations for arbitrary in-
teractions [25]. The message from factor verggxo variable

N . .
Hpeune (D) = Z H(by) — Z T(bmn), (14) vertex X, is given by
n=1

n=1

n)eg _ 1/p
() Hop— X, (‘rn) = E % l (‘TCL ) X (19)
3Since x(b) is linear inb, the entropy# (b) is concave inb, and the set ~Tn
M(G) is a convex set. pi—1 Pk
x x x
4Since any convex combination of marginal beliefs is agaiala\marginal H Om( m)’uwlﬂxm( m) H MW%XM( m);

belief. meC\{n} keEN\{1}



where) denotes summation over all variables except D. Discussion of URW-BP

The beliefs are given by 1) URW-BP as a Multi-Objective Optimization Solution:
b () < b () H 1 (). (20) We can write the URW-BP objective function for general
IEN, o interactions as

Here, the variableg, refer to the appearance probabilities of al L

the factor verticeg); in the collection of trees. We have made x() + Z H(bn) — pZI(bCZ),
a slight abuse of notation, as herec ,, means that there n=t =1
exists a factor); that has as variablé&,,. For URW-BP, we
simply set allp; = p.

(25)

which we can interpret as a multi-objective problem with
trade-off parametep > 0. The functiony(b) is linear inb(x),

. N . . 5
For the sake of completeness, we also provide messdyd!® 2-n—1 #(bx) is concave inb(x).> Suppose we have two
passing rules when messages from variable vertices torfaggndidate solutionsi(x) and b(x), for which x(b) = x(b).

vertices are computed. In that case, the message from lerialy€n » = 1, the solution with the maximal Bethe entropy
vertex X,, to factor vertexy, n € C; is given by will be chosen. Maximizing Bethe entropy corresponds to
" ' maximizing the entropies ob,(x,) and at the same time

M,y (Tn) = (21)  minimizing the dependence among variables. When0, the
Gn(zn)m? L () mPE (), solution with the maximal entropy of the individual belig¥gl
i X ke/\l;l\{l} X be chosen, irrespective of the dependence (mutual infaormat

among the variables. Hendey decreasing, we can force the

while the message from factor vertéxto variable vertexx,,, . . ,
9 X " beliefs to be less concentratéice., less over-confident).

n € Gy Is now 2) URW-BP as Optimized TRW-BAn general, URW-
My, x, (2n) = (22) BP is not guaranteed to outperform TRW-BP. In fact, for
szl/pl (zc,) H mx, o (Zm). some graphs, URW-BP does not even correspond to a valid

distribution over spanning trees. However, we can describe
sufficient, though not necessary conditions, under whiciJR

Finally, the belief of variable:, is given by (20), wherg()(-)  Bp and optimized TRW-BP coincide. We will denote set
should be replaced by (-). These message passing rules Cardinality by| - |

be seen as extension of the sum-product algorithm from [26]. ) o _
2) Using Edge Appearance ProbabilitiesAn alternative Definition 1 (Symmetrlc factqr|z§\tlon)G|ven a factor graph
approach is to convert the factor graph to contain onfy, corresponding to a factorization

~y, meC\{n}

pairwise interactions [27]. Consider a factgf(x1,xz2, x3). N L
We can convert this part of the factor graph as follows p(x]y) o Hgbn(:cnwn)le(:cclwcl) (26)
(see also [22, page 289]): (i) introduce a new variable n=1 1=1

that takes values in the product domain (e.g.,zif € with L non-trivial factors, wheref, and f¢, represents
A;, thenz;, € Xy x Xy x A3); (i) introduce 3 factors parameters that fully determine the corresponding fumstio
Jui(zi, ) = Wz = xijay (z); (iii) replace in the factor We call the factorization symmetric when (| = |Ch|,
graph the factor vertex) (1,22, 23) with 4 factor vertices vk 1 € {1,...,L} and [N, | = [N,|, ¥m,n € {1,...,N};
Yi(z) =20 fy 1 (2, 21) fr,2(z0, 22) f1,3(21, 73), where the pa- (i) 6, = Om, Vmn € {1,...,N} and 0o, = bc,,
rametersa; € R are chosen such thdt < > . o; < 1. Vi€ {1,...,L}.
This latter factor graph only contains pairwise interaasio
on which we can apply the message passing rules (5).
example, settingy; = 0, these messages can in turn b _ . :
transformed to messages on the original factor graph,ngad‘ng factor graph is a tree, are uniform, i.ga,= p1, for some
to the message from variable verték, to factor vertexy, p € [0,1].
n € C; being given by The proof follows immediately from symmetry considera-
(23) tions. As a special case, [20, page 2327] points out that for
. symmetric factorizations with only pairwise interactipmise
Gn(wa)ml "y () [ w7k, (), optimal EAP in TRW-BP should be uniform, and is given by
keNn \{1} p=(N-1)/L, whereL = |£]. Introducingnp as the number
where p,,, is the edge appearance probability of the edg# pairwise interactions in which each variable is involyeal
connecting factor verticeX,, andZ; in the transformed factor simple counting argument yields, ~ 2L /N, so that

ll_égpposition 1. The optimal AEPs in TRW-BP for factoriza-
gons which are either symmetric, or for which the corresgron

an =i (xn) =

graph. The message from factor vertgxto variable vertex 92 1

A ~~ in(l,—(1-— 27

is give by p mm( ’nD< N)) &0
My, o x, (Tn) = (24) ~ min(1,2/np). (28)
Z Uy (xcl)mﬁé;j‘;il (CCn) H m%fﬁwl (fm)7 5Since entropy is concave, and summation preserves copcavit
~En meC;\{n} 8In the sense thaiC;| > 2.

. . . . . “Note thatnp is also the node degree in the corresponding Markov random
and the belief of variable:;, is again given by (20)' where field, and thathy + 1 is the variable vertex degree in the corresponding factor

¢ (+) should be replaced by (-). graph.



This outer minimization can be solved numerically to find
the bestp [20]. In contrast, URW-BP and BP generally do
not satisfy the two inequalities above, so direct optimarat
over p is not possible. Moreover, similar to BP, URW-BP is
not guaranteed to converge. However, following an analysis
similar to [29], one can show that the sufficient conditioois f
convergence of URW-BP are less stringent than for BP.

0.9
0.8
0.7
0.6
0.5
IV. CASE STUDIES

In this section, we will apply URW-BP to a three practi-
cal applications, involving discrete and continuous \alga,
centralized and distributed processing, and pairwise db we
as higher-order interactions. The first application inesha
o s p . . 5 > 4 cognitive radio network, where devices determine whetfer o

no not the spectrum is being utilized. The second application

involves determining positions of wireless devices thioug

Figure 2. Value ofp as a function of the average node degree according gooperation. The goal of every device is to determine its own
(28). position based on distance estimates with respect to neighb
and reference nodes. The final application involves degpdin
of LDPC codes. In all three cases we show that URW-BP
outperforms BP. For case studies 1 and 2, we assume perfect
medium access control, which is a common assumption for
istributed inference problems [30], [31].

0.4r

0.3

0.2

0.1

Note that for trees,L, = N — 1, so thatnp ~ 2, with
corresponding = 1.

While symmetric factorizations are not very interestin
from a practical perspective, we can expect that URW-B
should perform close to optimized TRW-BP as long as the ] ] N ]
factorization exhibits sufficient symmetry or when the éact A~ Case Study 1: Signal Detection for Cognitive Radio
graph is sufficiently tree-like. The conditions for sufficie 1) Problem Formulation:In cognitive radio networks, sec-
symmetry are not explored here, and are a topic for futue@dary users (SU) are granted access to the spectrum of
research. However, as we will see in the following sectiopyimary users (PU), when said spectrum is not used by the
the class of factorizations for which URW-BP outperforms BPU. This allows spatial reuse of scarce spectrum. Prior to
turns out to be quite large. using the channel, the SU must sense the spectrum and decide

In the context of distributed inference, where there Are whether or not any PUs are present. As PUs correspond to
devices, with a total of. bi-directional communication links signal sources with a precise physical location, it is reabte
among devicespp corresponds to the average connectivityp assume that two SU that are close to each other are likely
and can be estimated by running a simple consensus algorittomobserve the same PU signal state, whereas observations
over a network [28]. The relationship (28) is shown in Fig. Zof SU that are far apart are most likely independent. Based
It is clear that for high network connectivity, we can expedn [32], these properties can be captured through (i) binary
URW-BP to outperform BP. variables ¢, € {0,1}, where z,, = 1 means that the

Finally, we note that choosing according to (27) is not channel is occupied near the location of theh SU), (ii)
guaranteed to outperform BP. In practice, the best value @fservationsy,, (reflecting the signals collected by theth
p will depend on the strength of the interactions betweeslJ) with corresponding likelihoods,, () = p(y»|z»), and
variables. For example, with very strong interactions leemv (iii) spatial correlation$betweent,, andz,,, ¥m, . (5, Tm) =
variables along a spanning tree, and very weak interaction® (A nI{zn = =, }), Where\,, ,, > 0 generally decreases
between variables outside of the spanning tree, thebesgt  with the distance between the two SUs. The set of neighbors
be close to 1, irrespective ofp. Contrary to TRW-BP, an N, in this case is defined implicitly as the set of SU that are
explicit optimization overp is not possible. In TRW-BP, the within communication range with the-th SU [13]. The joint

optimization problem for a fixeg is a posteriori distributiorp(x|y) is of the form (2):
maximize  H(b|p) + x(b) (29) N
st bel(G). p(x]y) o Hp(yn|xn) H exp(An,mI{zn, =z }),
We know that for any € L(G) we have the upper bound ! (mon) € 32)
logp(y) < H(blp) + x(b). (30) where the product over couplés:, n) is only overm < n,

for which m € A,,. The goal of then-th SU is to determine
Hence, the tightest upper bound is found by solving tHe (z,) ~ p(x,|y), wherey = [y1,...,yn].

following problem:
8In general, higher-order interactions (e.g., between =, andz,) are

: possible as well, though, similar to [32], these interati@re neglected for
logp(y) < min e {H(blp) +x()}. (B1)  Eonniiciy,
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Figure 3.
range (bottom) for a simple network of 4 nodes,,,, ~ U(0.2,4). The
value p = 1 corresponds to standard BP.
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Figure 4. Best EAPA*) based on average KLD vs. average degige

The likelihood functionsp,, (x,,) = p(y.|z,) account for
the detection performance of each nodeAssume that each
node uses as test statistic for detection a vectof afi.d.

signal received samples, and that noise and PU signal ane b(?fe

complex Gaussian random variables with variangeand o2
respectively. Then, it can be readily shown that igr = 0
(i.e., when no PU is accessing the channel aroundnttie
SU), y. ~ CN(0,021s), while for z,, = 1 (i.e., when a PU
is active),y,, ~ CN(0, (o2 + 02)Is), wherels is the S x S
identity matrix.

We note that distributed signal detection can be seen

cation graph. Thus, the messageg,, , - x,, (z,) from (5)
in the factor graph is transmitted from theth SU to the
m-th SU. For binary variables, it is convenient to repre-
sent messages with log-likelihood ratios (LLRS). Introidgc
Yo = log(é,(0)/¢,(1)), and accounting for the fact that
i (0,1) = 1l %(1,0) = 1 and s 5,(0,0) = 9pl/a(1,1) =
exp(Am,n/p), WE can expresgi,, . x, (rm) as a scalar
quantity:

33
Mwm,n—>Xm(1) (33)

M, —m = log

m,n

=U

Y. M|,

keN \{m}
(34)

y In + (P - 1)]\/[m—>n + P

whereU(a, b) = log(1 + e**?)/(e® + €b), which is a function

Average KLD vsp (top) and vs. normalized communicationthat can be computed efficiently for amyb € R. Similarly,

the beliefs in LLR representation are given by
bn (0)

B, = log o)) (35)
¢n(0) Hme/\/ HZ, —X (O)
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8 () [ Lnen, “Z;m,nﬁXn (1) (%9

meN,

3) Performance ResultsTo evaluate the performance of
URW-BP, we compute for each node in the network the
Kullback-Leibler divergence (KLD) between belief and true
posterior, defined aKLD,, = KL (b, (z,)||p(z,]y)) and we
average it over all nodes. We first consider a small network of
4 nodes, with correlation factors, ,, modeled as uniformly
distributed random variables betweér?2 and 4. Nodes are
deployed randomly in a circular area of unit diameter. We
then defineR as the communication range of nodes in the
network: if R = 1, all nodes can communicate with each other,
therefore many loops are present in the graph; on the cgntrar
low values ofR result in fewer loops. Fig. 3 shows the average
KLD of beliefs computed through standard BP and URW-BP
as a function ofp for different values ofR. We observe that
URW-BP outperforms standard BP (corresponding te 1),
especially for large values aoR. Also, the best value op
noted ag*) tends to decrease d8 — 1 as an effect of
the increasing number of loops in the graph.

Fig. 4 combines the results of simulations performed on
networks of different size/ { from 4 through15) and shows
the best value op (according to average KLD) as a function
of the average degreey. Results confirm the dependency of

* on the average degree of the graph, as discussed in Sec.
IASD. In particular, the approximate expression (28) m@sto

a special case of the more general problem of distributgd increasingly accurate as, > 1.

parameter estimation, or multiple hypothesis testingdistl

in the context of wireless sensor networks (see, for example _ ) o
[33]-[35]). The proposed method can be extended accordin§l: €ase Study 2: Cooperative Positioning

to these applications.

1) Problem Formulation:The second application of URW-

2) Implementation AspectsAs every SU in the network BP that we consider is cooperative positioning in wireless
corresponds to a variable,, URW-BP can be implementednetworks. In this case, the goal of each node (referred to as
distributedly by mapping the factor graph to the communtargets) is to estimate its own position based on a set distan



measurements with nearby targets and and few fixed refere . R=66m o R=16m

nodes (referred to as anchors), assuming a fully distibut  — —
. . . . €4 € 016

architecture. These distance estimates can be obtained u: =
well-known measurement techniques (e.g., time of arrive %3 %0‘15
received signal strength). Contrary to the previous case, ' o0
deal here withcontinuousvariables. Also contrary to the ! 013
previous case where over-confidence of the beliefs is r 0 05 7 15 012 05 7 s
detrimental as long as the estimates are correct, here Rede .
situation is quite different: for safety-critical appltaans, e.g., _ 1 _ 10"
tracking of robots or unmanned aerial vehicles (UAVS), it i ”g , °'§
important not only to have good position estimates, but @iso ﬁw a \\\
know the uncertainty. When a belief is overconfident, a tiarg T T
may take improper actions (e.g., crash into another UAV). & &

We considerN targets and minimum 3 anchors scattere 107 107
randomly in a planar region, and denote the two-dimensior I 9 ot L

location of then-th node (target or anchor) hy,. Targetn

obtains a noisy measuremepf,,, of its distance from node Figure 5. Positioning performance as a functionpdr different commu-

m, given by nication radii. The first row shows the average error, and the second row
Ymn = |Tm — 20| +v (38) the trace of the covariance matrix (denoted ¥y of the belief.
mn m n mn»

wherew,,,, represents the noise drawn from some distribution

pvo (8.9., Gaussian or the empirical distribution found frofeasured in terms of the averagiepositioning error and the
real measurements). As in the previous case study, we assymgrage trace of the covariance of the belief. Therror for
nodes can only communicate with nearby devices Withi”térgetn is given by ||z, — &y, where, is the mean of
predefined radiusz > 0. Thus, .., is available to target j, (» ) The results are averaged over 100 Monte Carlo runs.
n only when |lz,, —z,[| < R. Hence,m € N, when g 5 shows the performance of URW-BP as a function of
[z — 2| < R. Letting én(z5) = pn(wn) be the a priori ¢ 191 1.5] for R = 6.6 m and R = 16 m after the tenth
distribution of the position of the-th targety. . (¥m. x) = jteration. We observe that for low connectivity, theerror is
P(Ymn|2n, zm) the likelihood function, and collecting the rg|atively insensitive t for anyp > 0.4. However, the beliefs
target positions in a vectax, and the distance estimates inyecome more concentrated asncreases. Hence, reducipg

a vectory, the a posteriori distributiop(x[y) is of the form aqits in a more robust algorithm. When the connectivity is

(2): increased R = 16), the best value op ~ 0.3, while p = 1
N induces around 20% additional error. Again, we observe more
pxly) o< [[on(@n) T p@mnln, 2m), (39) concentrated beliefs with increasipgOverall, the differences
n=1 (mn)e& between BP and URW-BP are small.

where the product over couplés:, n) is only over nodesn

within communi_cation range of_targezt_, i.e, m e N,. The C. Case Study 3: LDPC Decoding

goal of targetn is to determine its belieb,, (z,) ~ p(x,|y).

From the belief, the target can easily find a point estimatel) Problem Formulation:Consider an LDPC code with an

(e.g., the mean ob,(x,)) and associated uncertainty (e.g.l x N sparse parity check matrild. Let x denote the trans-

the covariance matrix, or any percentile). mitted codeword angy the observation over a memoryless
2) Implementation AspectsSince the variables are nowchannel, with knowrp(y, |z, ). The a posteriori distribution

continuous, all sums in message update equations in Sec@brinterest is now

[l have to be replaced with integrals. As the localizatioolp

lem is nonlinear and potentially non-Gaussian, exact ngessa p(xly) oo ply[x)p(x) (40)

representation and updating is not tractable. Therefoee, w B N Hx — a1

resort to a non-parametric version of URW-BP (URW-NBP) - Hp(yn|xn) {Hx = 0} (41)

where the beliefs and message update equations are pedforme ";1

using particle-based approximations (see [8]-[10] for enor _ I —0 42

details on NBP). Contrary to the first case study, in cooperat li[lp(anxn) ll_Il ; m » (42)
n= = m 1

localization, BP and URW-BP can harness the broadcastaatur
of the wireless channel, as detailed in [8]. where the summation is in the binary field, afidis the index
3) Performance ResultsWe considered a network with 4 set corresponding to the non-zero elements of/ttierow in

anchors andV = 25 targets, in a square 20 m by 20 mH. Clearly, we can make the association with (18) through
deployment area. For simplicity, we assume the neisg on(zn) <> p(ynlzs) andy;(zc,) < H{Zmecl Tm =0}.

has a zero-mean Gaussian distribution with standard dewiat 2) Implementation Aspectdlessages can be represented
30 cm. We performed ten iterations of message passimdficiently in the log-domain, similar to the cognitive radi
representing the messages with 500 particles. Performanceroblem. It turns out that the message from variable n¥de



. V. CONCLUSIONS ANDFUTURE WORK

In this paper we have proposed a new inference algorithm
for estimation and detection in wireless networks. Thioalg
rithm, called uniformly reweighted belief propagation (WR
BP), combines the local nature of BP with the improved
performance of TRW-BP in graphs with cycles. URW-BP also
leads to less concentrated beliefs and is thus more robust.
URW-BP includes one scalar tuning parametgy), (which
depends on the properties of the graphical model. We prdvide
a variational interpretation of URW-BP, give insights into
good choices o, and develop an extension to higher-order
p potentials. While we can only prove the optimality of URW-
BP for a restricted class of factorizations (i.e., symngetri
factorizations and factorizations for which the factor gira
is a tree), numerical results indicate the power of URW-
BP over BP for a much larger class of factorizations. In
particular, we have illustrated the performance of the psapol
method for three practical inference problems in wireless
communication systems, involving discrete and continuous
variables, centralized and distributed processing, amviza
to check node);, expressed as a log-likelihood ratio (LLR).as well as higher-order interactions. For each problem, we
is given by (see (21) and (23)) found that URW-BP consistently outperforms BP, especially
for dense graphical models.

Our study did not include the effect of medium access con-
trol, packet loss, or time-varying network topology. Howgv
whereAcn, n = 1og p(yn|zn = 1)/p(yn|rn = 0). The message e expect similar results to those found in the literature on
from variable node to check node depelnds whether we use (BR)ief propagation [36]-[38]. Secondly, we did not perfoam
or (24). Due to the nature ofi(zc,), ¥,*(z¢,) = ¥u(zc,),  detailed study regarding the convergence behavior of URW-
irrespective ofp. Hence, using (22) leads to the standarlp For the three case studies we considered, we observed
message passing rule, which we abbreviate as (see alsoy{d: URW-BP generally converges, and does so at least as
page 160]) fast as BP. Possibly, provably convergent variations of JRW
BP can be devised, similar to [39], although this may lead
to less practical algorithms. Finally, the choice of optirpa
is an open problem. An online algorithm to determjméor
arbitrary network topologies and arbitrary variable iatdions
is an interesting topic of future research.

10°

BER

—e— URW-BP using (21)-(22)
— URW-BP using (23)-(24)
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Figure 6. Performance of URW-BP after 20 decoding iteratias a function
of the scalar parameterfor an LDPC code, at a fixed SNR, /Nog = 3dB).
BP corresponds tp = 1.

AX, = = Achyn + P Z A X, — Ay ox,,  (43)

kEN (X5)

Ay —x, = f@ ({Axmﬁwl}min) : (44)

On the other hand, using (24), the message from chedk
X,, becomes

Ap—x, = f@ ({p)\Xm*M/)z }m;ﬁn) + (P = DAx, >y, (45)

In either case, the belief regarding theth bit is given by

Moy = A\ + A . 46
bn chn TP Z Y= Xn ( ) [1] J. Pearl, “Probabilistic Reasoning in Intelligent Syres. Networks of
keEN (Xy) plausible inference,Morgan Kaufmann1988.

For additional details see [25]. We perform a maximum of 2¢2] A.P. Worthen and W.E. Stark, “Unified design of iterativeceivers
decoding iterations and stob decoding once a codeword has using factor graphsEEE Transactions on Information Theompol. 47,
g p g pp. 843-849, Feb. 2001.

been found. [3] H. Wymeersch|terative Receiver DesignCambridge University Press,

3) Performance Resultdn Fig. 6, we plot the bit error rate . iovc\)/Y'E ciord. “Chanmel estimation i block fading cheats using

. . \W. Eckford, “Channel estimation in block fading c! using the

(BER) performan_ce of a ratla/2 LDPC, code withV = 256 factor graph EM algorithm,” inProc. 22nd Biennial Symposium on
andL = 128 at a fixed SNR as a function of over an AWGN Communications2004.
channel. We observe that using (23)-(24) yields a perfoo@an [5] H. Niu, M. Shen, J. A. Ritcey, and H. Liu, "A factor graph@pach to
worse than BP, for all values ¢f. On the other hand, when
using (21)-(22), we observe that = 1 does not yield the
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