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Uniformly Supported Approximate Equilibria in

Families of Games

Yehuda John Levy∗†

September 8, 2021

Abstract

This paper considers uniformly bounded classes of non-zero-sum strategic-
form games with large finite or compact action spaces. The central class of
games considered is assumed to be defined via a semi-algebraic condition.
We show that for each ε > 0, the support size required for ε-equilibrium
can be taken to be uniform over the entire class. As a corollary, the value
of zero-sum games, as a function of a single-variable, is well-behaved in
the limit. More generally, the result only requires that the collection of
payoff functions considered, as functions of other players actions, have
finite pseudo-dimension.

Keywords: Small-Support Equilibrium; Semi-Algebraic Classes;
Vapnik-Chervonenkis Dimension
JEL Classifications: C72, C65, C13

1 Introduction

An important strand of literature in game theory is dedicated to computing how
many strategies players must randomize over if they wish to be playing, approx-
imately, an equilibrium. The primary technique was laid out in the the seminal
paper [1] which studied, among another class of linear problems, small-support
ε-optimal strategies in two-player zero-sum games. That paper demonstrates
that in an m×m matrix game (payoffs in [0, 1]), the players possess ε-optimal
strategies with support size O( 1

ε2 ln(m)), and in fact it is demonstrated that
this required growth rate is tight. For each player, an approximately optimal
strategy can be found, with high probability, by random sampling w.r.t. the dis-
tribution induced by an optimal strategy. Indeed, standard law of large number
arguments show that such a random sampling of an optimal strategy would con-
verge; the specific bounds are then obtained by bounds on the error, specifically
Chernoff’s inequality.

∗Adam Smith Business School, University of Glasgow, Glasgow, G12 8QQ, UK.
†The author is very grateful to Yacov Babichenko for many useful discussions, and to Ilan

Nehama and Miquel Oliu-Barton for helpful feedback.

1



This result was extended in [18] to ε-equilibria of any game with arbitrary
(but fixed) number of players, and then again extended by [4] to games with
variable number of players; specifically, to n-player games, m actions each, by
showing that ε-equilibrium exists in which each player uses strategies with sup-
port O( 1

ε2 (ln(m) + ln(n) − ln(ε))); see also [6], which improves the bound for
bimatrix games which are sparse (i.e., relatively few profiles give non-zero pay-
offs). Both papers discuss the implications for computation of approximate
Nash equilibria in quasi-polynomial time. Again, in both cases, the existence is
proven by showing that random sampling w.r.t. an equilibrium distribution will
again give, with high probability, an ε-equilibrium strategy profile. Although
not the topic of this paper, it is interesting to note that is unknown if the de-
pendence on the number of players in the later result is tight, or for that matter,
if dependence on the number of players is needed at all. This open question is
discussed further in [2].

One can naturally ask on the support size required if we allow the players
to possess a continuum of strategies, say, the unit interval. In general one could
not impose any bounds; indeed, any game with finitely many actions could be
embedded into one in which players have a continuum of actions, even in such
a way that gives continuous utility functions, while preserving (in an approriate
sense) the (exact and approximate) equilibria; this point is elaborated on in
Section 6. The question then is, for a class of games and given ε > 0, can the
size of support required for the existence of ε-equilibrium be bounded by some
function of ε > 0 and of the parameters or properties of the class?

A natural class of payoff functions to consider, a class which displays sig-
nificant regularity properties, are the semi-algebraic functions. Semi-algebraic
geometry has an intimate relationship with game theory, see, e.g., [22] or [20,
Ch. 6]. Semi-algebraic sets are those subsets of Euclidean spaces defined us-
ing logical formulas whose atoms are polynomial equalities and inequalities;
semi-algebraic functions are those with semi-algebraic graphs. The set of Nash
equilibria of a game with finitely many actions is naturally a semi-algebraic set,
as is the manifold of Nash equilibria (see [15]) and many other closely related
sets, mappings, and correspondences. The regularity and decomposition proper-
ties of semi-algebraic sets can be used, as in the above papers, to derive various
useful results concerning equilibria and how equilibria change as the game does,
and in turn, Nash equilibria and the Nash equilibrium correspondence have been
shown to be rich, universal is certain senses, in the appropriate classes of semi-
algebraic objects; see, e.g., [17], [27], [5].

In this paper, one of our central goals is to study classes of games with semi-
algebraic payoffs on semi-algebraic action spaces X1, . . . , XN . The complexity
(class, in this paper, following [7]) of a semi-algebraic payoff function on X1 ×
· · · ×XN can be defined in terms of the number of polynomials s of degree at
most r needed to define its graph. A particular case of such uniformly bounded
class over a collection of games arises when the payoffs are defined by a function
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which depends, in addition to the actions, on a parameter from a semi-algebraic
set Λ. Our paper’s main theorems, which will be stated in greater precision
later, can be summarized as follows:

Theorem 1.1. Let X1, . . . , XN be compact and semi-algebraic sets. For each
ε > 0, and s, r ∈ N, there exists m ∈ N, s.t. for each semi-algebraic game with
payoffs in [0, 1] of class (s, r), there is an ε-equilibrium of support at most m.
Furtheremore, if Λ is a semi-algebraic set, φ : Λ × X1 × · · · × XN → [0, 1]N

is semi-algebraic, there exists m ∈ N and a semi-algebraic mapping from Λ
assigning to φ(λ, ·) an ε-equilibrium with support of size at most m for each
λ ∈ Λ.

We note, for the latter part of the theorem, that if Λ were compact as well,
the result would following easily; however, this is not assumed. In particular,
we deduce as a corollary that if N = 2 and the games are zero-sum, and Λ is
an interval, the limits of the value at the end-points of the interval exist. This
result is shown despite the fact that the value, it turns out, need not be a semi-
algebraic function of the parameter; see [11]. We remark also that our proof
relies crucially on the boundedness of φ, i.e., on the payoffs being uniformly
bounded. If the corollary on zero-sum games were to be established without
the boundedness assumption, where the limit would be required to exist in the
extended real line R ∪ {−∞,∞}, it would imply the existence of the asymp-
totic value (that is, convergence of the discounted values) of stochastic games
with finitely many states, compact action spaces, and semi-algebraic transitions,
due to a result of Attia & Oliu-Barton, [3]. Indeed, that paper defines, from a
stochastic game, a family of auxiliary strategic-form games W k

λ (z) (one for each
state k) which depend on a parameter λ ∈ (0, 1] and on a real parameter z ∈ R,
and show that not only can the λ-discounted value of state k be characterized
the unique solution z of val(W k

λ (z)) = 0, but that if for each z, val(W k
λ (z))

converges quickly enough as λ → 0, then the limit of the discounted values
exist. We elaborate in Section 7. Hopefully the techniques presented here can
be extended to address this long-standing open question.

The primary tool we use is that of Vapnik-Chervonenkis (VC) dimension and
its applications to uniform convergence of random sampling, as introduced in
[24]. These results show that if a class of sets has a certain bounded complexity,
formalized in terms of having a bounded VC dimension, then computing the
measure of sets via random sampling converges in probabiltiy at a uniform rate
over all sets in the class and over all probability measures. The results on uni-
form convergence for the VC classes (those classes of finite VC dimension) can
replace, with a considerable amount of care, the use of laws on large deviations
(in particular, Hoeffding’s inequality) in the proofs of [1] and [4]. Indeed, we
will show the assumption of the class of games being semi-algebraic of a specific
class can be replaced with the weaker assumption of the collection of payoff
functions considered, as a function of other players actions, having finite VC
dimension.
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The paper is outlined as followed. Section 2 presents background notions
and results on games, semi-algebraic geometry, and VC dimension. Section 3
develops these concepts to auxilliary results that we will use, many of which may
be of independant interest. Section 4 presents the results. Section 5 extends the
discussion to classes of games defined in an o-minimal structure, a generaliza-
tion of semi-algebraic structures. Section 6 has some discussion on the bounds
derived, and presents a technique of going from games with finite actions to con-
tinuous actions. Section 7 discusses potential connections to stochastic games.
Appendix A presents briefly a slightly different approach.

2 Background

2.1 Games and Equilibria

A (strategic-form) game consists of:

• Some finite number N of players.

• For each Player i ∈ [N ] = {1, . . . , N}, a set Xi of actions.

• For each Player i ∈ [N ] = {1, . . . , N}, a payoff function ui :
∏
i∈[N ]X

i →
R.

For ε ≥ 0, an ε-equilibrium (in pure strategies) of a game is a profile x =
(x1, . . . , xN ), with xi ∈ Xi for i = 1, . . . , N , such that for each i = 1, . . . , N and
each yi ∈ Xi,

ui(yi, x−i) ≤ ui(x) + ε

where x−i = (xj)j 6=i. A 0-equilibrium is termed simply an equilibrium.

Assuming each Xi has a σ-algebra on it (if Xi is, say, Polish, this will be
assumed to be the Borel σ-algebra), let ∆(Xi) denote the space of probability
distributions on Xi, which are referred to as mixed actions. The mixed extension
of a game is the game in which the set of actions Xi is replaced by ∆(Xi) for
each agent, and the payoff function ui is replaced by the payoff function (denoted
by the same letter, by mildly abusive notation),

ui(σ1, . . . , σN ) =

∫
∏

j X
j

ui(·)d(σ1 × · · ·σN )

If, e.g., each ui is measurable and bounded, the payoffs in the mixed extension
are well-defined.

An equilibrium (resp. ε-equilibrium) in mixed strategies - or, for the purposes
of this paper, simply an equilibrium (resp. ε-equilibrium) - is an equilibrium
(resp. ε-equilibrium) in pure strategies of the mixed extension.
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A mixed strategy si ∈ ∆(Xi) of some player i is said to be m-uniform, where
m ∈ N, if there exist1 x1

i , . . . , x
m
i s.t. si = 1

m

∑m
j=1 δxj

i
, where δz denote the

Dirac measure at z. Equivalently, si is finitely supported and si(x) ∈ 1
mZ for

each x ∈ Xi.

2.2 Semi-Algebraic Sets and Functions

Let R[x1, . . . , xN ] denote the ring2 of polynomials in N variables, x1, . . . , xN .
Recall that a Boolean algebra of subsets of a space is a collection that is closed
under finite unions, finite intersections, and complements. The semi-algebraic
subsets of RN are those sets in the smallest Boolean algebra containing all
sets defined by polynomial equalities or inequalities, i.e., all sets of the form
{x ∈ RN | P (x) ∗ 0}, where ∗ can be equality or weak/strong inequality, and
P ∈ R[x1, . . . , xN ].

Equivalently (e.g., [10, Ch. 2]), by the Tarsksi-Seidenberg theorem, semi-
algebraic sets are those that can be expressed as a formula in first-order logic
whose atoms are polynomial equalities or inequalities. In particular, we mention
the Tarski-Seidenberg theorem:

Theorem 2.1. Let A ⊆ RN be semi-algebraic, let πK : RN → RK denote the
projection to a subset K ⊆ {1, . . . , N} of coordinates. Then πK(A) is semi-
algebraic.

A semi-algebraic function f : A→ RK , where A ⊆ RN , is one whose graph
Gr(f) := {(x, y) ∈ A× RK | y = f(x)} is semi-algebraic: It follows from Theo-
rem 2.1 that the domain A is semi-algebraic, and that the image / inverse image
of a semi-algebraic set under a semi-algebraic function is also semi-algebraic; it
also follows that the composition of semi-algebraic functions is semi-algebraic.

The following is the Monotonicity Theorem for semi-algebraic functions, e.g.,
[12, Ch. 3].

Theorem 2.2. Let I ⊆ R be connected, and let f : I → R be semi-algebraic.
Then there is n ∈ N and a1 = inf I < a2 < · · · < an−1 < an = sup I s.t. f is
(weakly) monotonic and continuous in each sub-interval (ai, ai+1).

The following is the Semi-Algebraic Selection Theorem, proved in e.g., [20,
Thm. 4, Ch. 6]:

Theorem 2.3. Let X ⊆ Rn × Rm be a semialgebraic set, and let π be the
natural projection of Rn × Rm to Rn. Then there is a semialgebraic function
f : π(X)→ Rm s.t. Gr(f) ⊆ X.

1Note that the x1i , . . . , x
m
i need not be distinct.

2A ring is an algebraic structure with operations of addition and multiplication satisfying
certain axioms; we will not need to make use of the specific axioms, which can be found in
any introductory text on abstract algebra.
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2.3 (s, r) Class in RN

The following terminology follows (although differs slightly from3) [7]:

Definition 2.1. A set A ⊆ RN is said to be of class (s, r) if it can be defined
via Boolean formula containing s distinct atomic predicates, each of which is a
polynomial equality or inequality in N variables of degree at most r.4 We will
also say that A is of class (s, r) in B ⊆ RN if there is such a Boolean formula
φ s.t. A = {x ∈ B | φ(x)}.

2.4 The Vapnik-Chervonenkis Dimension

Definition 2.2. Let X be a set, and let C be a collection of subsets of X. A
set S = {x1, . . . , xn} ⊆ X is said to be shattered by C if for each A ⊆ S, there
is C ∈ C s.t. C ∩ S = A.

Definition 2.3. The Vapnik-Chervonenkis (VC) dimension of C as in the pre-
vious definition, denoted V Cdim(C), is the largest integer n ∈ N s.t. there exists
a set S ⊆ X of cardinality n which is shattered by C. (If there is no such largest
n ∈ N, V Cdim(C) =∞.)

The following result is [14, Thm 2.2]:

Theorem 2.4. Let C ⊆ Rk+n be of class (s, r). Let C be the class of sets in Rn
defined by

C =
{
Cy | y ∈ Rk

}
, where Cy = {x ∈ Rn | (y, x) ∈ C} (2.1)

Then V Cdim(C) ≤ 2k · log2(8ers).

In Theorem 2.4, the bound is demonstrated to be tight up to a logarithmic
factor.

2.5 The Pseudo-Dimension

Recall that 1B is the indicator function of the set B.

Definition 2.4. Let X be a measurable space, and let F ⊆ [0, 1]X be a collection
of functions. A set S = {x1, . . . , xn} ⊆ X is said to be P-shattered by F if there
is c ∈ [0, 1]n s.t. for every A ⊆ S, there exists fA ∈ F s.t. for i = 1, . . . , n,
fA(xi) ≥ ci iff xi ∈ A, i.e., 1[0,∞)(fA(xi)− ci) = 1A(xi).

The following concept origionated in [21]:

3That paper requires the atomic formulae to be strict polynomial inequalities, P (x) > 0,
while we allow weak or strong inequalities.

4The degree of a polynomial here refers to total degree, that is, the maximal total degree
of any of its monomials, where the total degree of a monomial is the sum of its exponents.
E.g., the degree of x2y2z3 is 7.
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Definition 2.5. For a collection F ⊆ [0, 1]X of functions, the pseudo-dimension
(a.k.a. P-dimension, or Pollard dimension) of F, denoted P − dim(F), is the
largest integer n ∈ N s.t. there exists a set S ⊆ X of cardinality n which is
P-shattered by F. (If there is no such largest n ∈ N, P − dim(C) =∞.)

Lemma 4.1 of [25, Ch. 4] states:

Lemma 2.6. For a collection F ⊆ [0, 1]X of functions, define a family C of
subsets of X × [0, 1] given by

C =
{
{x ∈ X, c ∈ [0, 1] | f(x)− c ≥ 0}

∣∣f ∈ F
}

Then P − dim(F) = V Cdim(C).

2.6 Uniform Convergence of Means

The following result can be found in, e.g., [25, Ch. 7, Thm 7.1]. Let X be a
measurable space, ∆(X) the space of probability measures on X, and for each
P ∈ ∆(X) and m ∈ N, let Pm be the product measure P × · · · × P on Xm.
For each family F of bounded measurable functions X → R, denote5 for each
P ∈ ∆(X), m ∈ N and ε > 0,

q(m, ε,F, P ) = Pm
(

(xj)mj=1 ∈ Xm
∣∣ sup
f∈F
| 1
m

m∑
j=1

f(xj)−
∫
X

fdP | > ε
)

(2.2)

and by q(m, ε,F) = supP∈∆(X) q(m, ε,F, P ).

Theorem 2.5. If F is a family of measurable functions X → [0, 1] of pseudo-

dimension d, then for all m ∈ N, and any 0 < ε < e ln(2)
4 (≈ 0.47),

q(m, ε,F) ≤ 8
(16e

ε
ln
(16e

ε

))d
· exp

(
− mε2

32

)
In particular, note that as d is smaller, q(m, ε,F) is smaller, i.e. the con-

vergence is quicker. This reflects the fact that a large value of d means the set
of functions F is ’complex’ in some sense, and a larger sampling is required to
uniformly approximate (in mean) the family well.

3 Auxilliary Results

3.1 Miscellaneous Results

Lemma 3.1. Let φ : (0, δ)→ R be a bounded function which can be uniformly
approximated by semi-algebraic functions. Then limλ→0 φ(λ) exists.

5To be precise, in general we should define (2.2) using the Pm-outer measure, as the event
we are taking the probably of need not be Pm-measurable. Every textbook the author has
seen on the subject has glossed over this point, which is easily overcome.
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Proof. Suppose (φn) is a sequence of semi-algebraic functions (0, δ) → R con-
verging to φ uniformly. By Theorem 2.2, vn := limλ→0 φn(λ) exists for each
n. (vn)n=1 is bounded; w.l.o.g., v := limn→∞ vn exists. We contend v =
limλ→0 φ(λ). Let ε > 0, let n be such that |φn − φ| < ε

3 uniformly and
|vn − v| < ε

3 , and let η > 0 be such that |φn(λ) − vn| < ε
3 for λ ∈ (0, η).

Hence for λ ∈ (0, η), |φ(λ)− v| < ε.

Proposition 3.2. Let Λ ⊆ Rk and X ⊆ Rn be semi-algebraic, and let φ :
Λ×X → [0, 1] be such that the graph of φ, Gr(φ) = {(y, x, z) ∈ Λ×X × [0, 1] |
z = φ(y, x)}, is of class (s, r), r ≥ 1, in Λ × X × R. Then the collection of
functions X → [0, 1] given by

F =
{
φy | y ∈ Rk

}
, where φy(x) = φ(y, x)

satisfies P − dim(F) ≤ 2(k + 1) · log2(8er(s+ 1)).

Proof. Let ψ be the formula in y1, . . . , yk, x1, . . . , xn, z which witnesses that the
graph Gr(φ) is of class (r, s) in Λ×X × R. Define D ⊆ Rk+n+2

D = {(y, x, z, c) ∈ Λ×X × R× R | ψ(y, x, z) ∧ (z − c ≥ 0)}

and

D = {Dy,z | y ∈ Λ, z ∈ R}
=
{
{(x, c) ∈ X × R | φ(y, x)− c ≥ 0} | y ∈ Λ

}
(3.1)

where we recall the notation of (2.1), and define similarly C ⊆ Rk+n+2

C = {(y, x, z, c) ∈ Λ×X × R× [0, 1] | ψ(y, x, z) ∧ (z − c ≥ 0)} (3.2)

and

C = {Cy,z | y ∈ Λ, z ∈ R}
=
{
{(x, c) ∈ X × [0, 1] | φ(y, x)− c ≥ 0} | y ∈ Λ

}
(3.3)

By Theorem 2.4, since Λ× R ⊆ Rk+1 and D is of class (s+ 1, r),

V Cdim(D) ≤ 2(k + 1) log2(8er(s+ 1)). (3.4)

We claim6 V Cdim(C) ≤ V Cdim(D). Indeed, denoting V = X × R × [0, 1],
we have since 0 ≤ φ ≤ 1,

C = D ∩ V := {D ∩ V | D ∈ D}

so any set shattered by C is also shattered by D.

(3.3) is equivalent to:

C =
{
{(x, c) ∈ X × [0, 1] | f(x)− c ≥ 0} | f ∈ F}

so V Cdim(C) = P − dim(F) by Lemma 2.6. Combining this with (3.4) and the
fact that V Cdim(C) ≤ V Cdim(D) gives the desired result.

6In fact, they are equal, but we do not need this stronger claim.
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3.2 Uniform Convergence on Product Spaces

We need a generalization of Theorem 2.5, as the sampling is done via a product
distribution, and we want our sampling approximation to be a product distri-
bution as well. Fix N ∈ N. Suppose X can be decomposed X = X1×· · ·×XN ,
and we consider N classes of functions, F1, . . . ,FN , each consisting of functions
X1 × · · · ×XN → [0, 1]. For each i = 1, . . . , N , we modify the class Fi to the
class F′i of functions

∏
j 6=iX

j → [0, 1], henceforth called the induced classes,
given by

F′i = {φ(xi, ·) | φ ∈ Fi, xi ∈ Xi} (3.5)

i.e., all those functions derived from functions in Fi by specifying an arbitrary
input from Xi. We use the notation that for m ∈ N, [m] := {1, . . . ,m}. For

each N -tuple of measures Pi ∈ ∆(Xi) for i = 1, . . . , N , denote P =
∏N
j=1 Pj ,

Pm = P × · · · × P , P−i =
∏
j 6=i Pj , and, in the spirit of (2.2),

q̃(m,ε, (Fi), (Pi)) = Pm
(

(xj)mj=1 ∈ Xm
∣∣∣

max
i=1,...,N

sup
f∈Fi

sup
xi∈Xi

∣∣ 1

mN−1

∑
j∗∈[m]N−1

f(xi, x
j∗
−i)−

∫
X

f(xi, ·)dP−i
∣∣ > ε

)
where, for each i = 1, . . . , N , in the relevant sum, we view j∗ as an element of∏
k 6=i[m] ∼ [m]N−1 and xj∗−i is the N − 1-tuple which specifies action x

j∗(k)
k for

player k 6= i. Further denote,

q̃(m, ε, (Fi)) = sup
(Pi)Ni=1∈

∏N
i=1 ∆(Xi)

q̃(m, ε, (Fi), (Pi))

The following proposition is likely the most significant piece of technical ma-
chinery developed in this paper:

Proposition 3.3. If the induced classes F′1,. . . ,F′N defined by (3.5) are each of

pseudo-dimension at most d, then for all m ∈ N, and any 0 < ε < e ln(2)
8 ,

q̃(m, ε, (Fi)) ≤
16N

ε

(32e

ε
ln(

32e

ε
)
)d · exp(−mε2

128
) (3.6)

The proof technique is similar to that of [4, Lem. 3.4], except that instead
of appealing to Hoeffdings inequality, we appeal to Theorem 2.5, which results
in additional care needed throughout; unlike [4], we also account for each of the
classes F1, . . . ,FN separately.

Proof. Fix probability measures P1 ∈ ∆(X1), . . . , PN ∈ ∆(XN ), and m ∈ N.

Fix 0 < ε < e ln(2)
8 . Let z = (z(k))mk=1, where z(k) = (z1(k), . . . , zN (k)), be the

random variable in (X1 × · · · ×XN )m which distributes by Pm. Fix a player,
the first w.l.o.g.. For every j∗ = (j2, . . . , jN ) ∈ [m]N−1 and every ` ∈ [k], denote
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z−1(j∗+`) = (z2(j2+`), . . . , zN (jN+`)), where arithmetic of indices is modular.
Hence, we can write, for each ` ∈ [m], each x1 ∈ X1 and u1 ∈ F1,

1

mN−1

∑
j∗∈[m]N−1

u1(x1, z−1(j∗)) =
1

mN−1

∑
j∗∈[m]N−1

u1(x1, z−1(j∗ + `))

and therefore,

1

mN−1

∑
j∗∈[m]N−1

u1(x1, z−1(j∗)) =
1

mN

∑
j∗∈[m]N−1

m∑
`=1

u1(x1, z−1(j∗ + `)) (3.7)

Define for each j∗ ∈ [m]N−1 the random variable d(j∗) by

d(j∗) =

{
1 if sup

u1∈F1,x1∈X1

∣∣ 1
m

∑m
`=1 u1(x1, z−1(j∗ + `))−

∫
u1(x1, ·)dP−1

∣∣ > ε
2

0 otherwise

Hence, we have

d(j∗) +
ε

2
≥ sup
u1∈F1,x1∈X1

∣∣ 1

m

m∑
`=1

u1(x1, z−1(j∗ + `))−
∫
u1(x1, ·)dP−1

∣∣
Note also that for each fixed j∗, the random variables z−1(j∗+1), . . . , z−1(j∗+m)
are independent and distribute according to P−1, which is just the marginal of
P . Hence, by Theorem 2.5 (applied to the class {u1(x1, ·) | u1 ∈ F1, x1 ∈ X1},
with ε

2 instead of ε),

E[d(j∗)] ≤ 8
(32e

ε
ln(

32e

ε
)
)d · exp(−mε2

128
)

Hence,

T1 := P
(

sup
u1∈F1,x1∈X1

∣∣ 1

mN−1

∑
j∗∈[m]N−1

u1(x1, z−1(j∗))−
∫
u1(x1, ·)dP−1

∣∣ ≥ ε)
= P

(
sup

u1∈F1,x1∈X1

∣∣∣ 1

mN

∑
j∗∈[m]N−1

m∑
`=1

u1(x1, z−1(j∗ + `))−
∫
u1(x1, ·)dP−1

∣∣∣ ≥ ε)

≤ P
( 1

mN−1

∑
j∗∈[m]N−1

sup
u1∈F1,x1∈X1

∣∣∣ 1

m

m∑
`=1

u1(x1, z−1(j∗ + `))−
∫
u1(x1, ·)dP−1

∣∣∣ ≥ ε)
≤ P

( 1

mN−1

∑
j∗∈[m]N−1

d(j∗) ≥
ε

2

)
≤ 16

ε

(32e

ε
ln(

32e

ε
)
)d · exp(−mε2

128
) (3.8)

where the equality follows from (3.7), the first inequality results from the triangle
inequality, the second is from the definition of d(j∗), and the last follows from
Markov’s inequality. The bound in (3.6), which differs from the bound in (3.8)
by a factor N , now follows by taking the bound over all players, as, denoting
T2, . . . , TN similarly, we have q̃(m, ε, (Fi)) ≤

∑N
i=1 Ti.

10



Hence, it follows immediately:

Proposition 3.4. If F1,F2, . . . ,FN are families of measurable functions X1 ×
· · · × XN → [0, 1] whose induced classes, defined by (3.5), are of pseudo-

dimension each at most d, 0 < ε < e ln(2)
8 , and

m >
128

ε2

(
ln(16N)− ln(ε) + d · ln

(32e

ε
ln(

32e

ε
)
))

(3.9)

then for each P =
∏N
i=1 Pi ∈

∏N
i=1 ∆(Xi), there exist x1

i , . . . , x
m
i ∈ Xi for

i = 1, . . . , N , s.t., denoting P ′i ∈ ∆(X) defined by P ′i = 1
m

∑m
j=1 δxj

i
and P ′−i =∏

j 6=i P
′
j,

|
∫
X−i

f(xi, ·)dP ′−i −
∫
X−i

f(xi, ·)dP−i| ≤ ε, ∀i = 1, . . . , N,∀f ∈ Fi,∀xi ∈ Xi

(3.10)
and furtheremore, given Zi ⊆ Xi s.t. Pi(Z

i) = 1 for each i = 1, . . . , N ,
x1
i , . . . , x

m
i can be chosen to be in Zi.

Proof. Choosing m large enough s.t. q̃(m, ε, (Fi)) < 1 in Proposition 3.3 gives
the existence of such x1

i , . . . , x
m
i ∈ Zi for i = 1, . . . , N .

4 Main Results

Theorem 4.1. Let X1, . . . , XN be separable metric spaces. Let 0 < ε < e ln(2)
16 ,

and let φ1, . . . , φN be continuous functions X1×· · ·×XN → [0, 1], such that the
game (φ1, . . . , φN ) possesses an equilibrium, and such that the induced classes

F′i = {φi(xi, ·) | xi ∈ Xi}, i = 1, . . . , N

each have pseudo-dimension at most d. Suppose

m >
512

ε2

(
ln(32N)− ln(ε) + d · ln

(64e

ε
ln(

64e

ε
)
))

(4.1)

Then the game (φ1, . . . , φN ) possesses an m-uniform ε-equilibrium.

When X1, . . . , XN are finite or compact metric, the existence of equilibrium
follows from [13, Sec. 2]. The short proof of Theorem 4.1 resembles the proof
of the main theorem in [4], but relying on our Proposition 3.4. Recall that the
support of a probability measure on a separable metric space is the smallest
closed set of full measure.

Proof. Let σ = (σi)
N
i=1 be a Nash equilibrium of the given game, 0 < ε < e ln(2)

16 ,
and m as in (4.1). By Proposition 3.4 (with ε

2 replacing ε, and Zi = supp(σi))

there are (xji )i=1,...,N,j=1,...,m s.t. x1
i , . . . , x

m
i are in supp(σi) for i = 1, . . . , N ,

11



and s.t. denoting sk = 1
m

∑m
j=1 δxj

k
for each player k, and writing (3.10) using

the notation of mixed strategies,

|φi(xi, s−i)− φi(xi, σ−i)| ≤
ε

2
, ∀i = 1, . . . , N,∀xi ∈ Xi

Since σ is an equilibrium, and φi is continuous, for every bi ∈ Xi,

φi(bi, σ−i) ≤ φi(si, σ−i) = maxφi(·, σ−i)

By choice of m and s1, . . . , sN , for any bi ∈ Xi,

φi(bi, s−i) ≤ φi(bi, σ−i) +
ε

2
≤ φi(si, σ−i) +

ε

2
≤ φi(si, s−i) + ε

Hence, (s1, . . . , sN ) is an m-uniform ε-equilibrium.

Remark 4.1. In Theorem 4.1, if each player has k actions, then d ≤ log2(k),
and equality can hold. Hence, up to a constant and the logarithmic factor

ln
(

64e
ε ln( 64e

ε )
)

, we recover the result of [4] discussed in the introduction, as

well as demonstrate the tightness of (4.1), up to said logarithmic factor, in
actions. As discussed in the introduction, the tightness of dependence on the
number of players is an open problem.

Remark 4.2. In the particular case of two-player zero-sum games, the full
strength of Proposition 3.4 is not needed for Theorem 4.1; one can show by
using simpler versions of our arguments that if ε > 0, d1, d2 denote the VC
dimensions of the induced classes F′1,F

′
2, respectively, and m1,m2 satisfy (4.1)

with d2, d1, respectively,7 replacing d, then there are mixed actions s1, s2 which
are m1,m2-uniform, respectively, which constitute a ε-equilibrium. Indeed, a
result of this sort was pointed out in [19, p. 21:6] for two-player zero-sum games,
with finitely many actions, in which the payoffs are 0− 1 valued.

Theorem 4.2. Let Xj ⊆ Rnj for j = 1, . . . , N , be semi-algebraic and compact,
and let Λ ⊆ RK be semi-algebraic.

Let φ : Λ ×
∏N
j=1X

j → [0, 1]N be semi-algebraic, such that for each fixed

λ ∈ Λ, φ(λ, ·) is continuous. Let 0 < ε < e ln(2)
16 . Suppose Gr(φi) is of class

(s, r), r ≥ 1, in
∏
iX

i × R for each i = 1, . . . , N , and suppose

m >
512

ε2

(
ln(32N)− ln(ε) + 2 · (max

i
ni+ 1) · log2(8er(s+ 1)) · ln

(64e

ε
ln(

64e

ε
)
))

(4.2)
Then there exists semi-algebraic mappings σji : Λ → Xi, i = 1, . . . , N , j =
1, . . . ,m, s.t. for each λ ∈ Λ, the profile (s1, . . . , sn) defined by si = 1

m

∑m
j=1 δσj

i (λ)

for i = 1, . . . , N , is an m-uniform ε-equilibrium of φ(λ, ·).

7No, that’s not a typo - the condition on m1 uses d2, and the condition on m2 uses d1.
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Remark 4.3. Note that Theorem 4.2 allows for each φi to be the restriction to∏N
i=1X

i of a function with graph of class (s, r) defined on a larger domain. This
observation is useful, as the sets X1, . . . , XN may be complex (e.g., consisting
of many isolated points) while φ’s graph can be defined on a larger simpler
domain (e.g., a hypercube); we may also wish to study approximate equilibria
as we vary the domains X1, . . . , XN .

Proof. As remarked above, the existence of Nash equilibrium in φ(λ, ·) for each
λ ∈ Λ follows from, e.g., [13, Sec. 2]. From Proposition 3.2, it follows that for
each fixed λ ∈ Λ, and each i = 1, . . . , N , the family of functions X−i → R given
by

{φi(λ, xi, ·) | xi ∈ Xi}

is of pseudo-dimension at most 2(ni + 1) · log2(8er(s + 1)). Hence, for m as
in (4.2), the existence of an m-uniform ε-equilibrium in φ(λ, ·) for each λ ∈ Λ
follows from Theorem 4.1. The graph of the correspondence Φ which assigns to
each λ ∈ Λ its m-uniform ε-equilibria8 is given by

{(λ,(aji )i=1,...,N,j=1,...,m) | ∀i = 1, . . . , N,∀bi ∈ Xi,

1

mN−1

∑
j∗∈[m]N−1

φ(λ, bi, a
j∗
−i) ≤

1

mN

∑
j∈[m]

∑
j∗∈[m]N−1

φ(λ, aji , a
j∗
−i) + ε}

where for j∗ = (j∗[k])k 6=i ∈ [m]N−1 =
∏
j 6=i[m], aj∗−i specifies a

j∗[k]
k for each

player k 6= i. Hence Gr(Φ) is semi-algebraic. Hence, by the semi-algebraic
selection theorem, Theorem 2.3, there exists the desired σ.

Proposition 4.4. Let Xj ⊆ Rnj for j = 1, . . . , N , be semi-algebraic and com-
pact.

Let φ : (0, δ) × X1 × X2 → R be bounded and semi-algebraic, with X1, X2

compact and semi-algebraic, and for each λ ∈ (0, δ), let vλ denote the value of
φ(λ, ·). Then limλ→0 vλ exists.

The proposition follows immediately from Theorem 4.2 and from Lemma
3.1.

Remark 4.5. As pointed out in the introduction, if limλ→0 vλ were shown to
exist in R∪ {−∞,∞} under the other assumptions Proposition 4.4 but without
the boundedness condition, it would imply the existence of the asymptotic value
(that is, convergence of the discounted values) of stochastic games with finitely
many states, compact action spaces, and semi-algebraic transitions, due to a
result of [3]; see Section 7.

8Formally, Φ assigns, to each λ, N m-tuples, possibly with repeats, which present the
strategies each player should mix over; an m tuple (a1i , . . . , a

m
i ) for Player i corresponds to

the mixed strategy 1
m

∑m
j=1 δaj

i
.
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5 Extensions

A generalization of semi-algebraic structures are o-minimal structures (see, e.g.,
[12]):

Definition 5.1. An o-minimal structure on R is a sequence (Sn)n∈N such that
for each n:

1. Sn is a Boolean algebra of subsets of Rn.

2. A ∈ Sn → A× R ∈ Sn+1 and R×A ∈ Sn+1.

3. {(x1, . . . , xn) ∈ Rn | xi = xj} ∈ Sn for each 1 ≤ i < j ≤ n.

4. A ∈ Sn+1 → π(A) ∈ Sn, where π : Rn+1 → Rn is the usual projection
map.

5. {(x, y) ∈ R2 | x < y} ∈ S2.

6. S1 consists precisely of finite unions of open intervals9 and points.

The semi-algebraic sets are an example of an o-minimal structure. But there
are others: E.g., the globally subanalytic sets: There exists an o-minimal struc-
ture that contains all sets of the form {(x, t) ∈ [−1, 1]p × R | f(x) = t} where
f : [−1, 1]p → R, p ∈ N, is a function which can be extended analytically to a
neighborhood of [−1, 1]p. (See, e.g., [9]). For further examples, see [12] and the
references therein.

Given fixed o-minimal structure, its elements are called definable (in that
structure). A function is definable if its graph is definable. (Indeed, [11] dis-
cusses stochastic games, which have a long relation to semi-algebraic geometry
- see, e.g., [20, Ch. 6] - in which the primitives of the game are definable.)

The monotonicity theorem, Theorem 2.2, and the selection theorem, Theo-
rem 2.3, hold for o-minimal structures as well (see [12], Ch. 3 and Section 6.1,
respectively). [16] shows that if A ⊆ Rn × Rm is defineable in an o-minimal
structure, then the collection

A =
{
{(y, x) ∈ A} | y ∈ Rn

}
is of finite VC dimension; see also [12, Ch. 5]. Using this, one can show as we
have done for the semi-algebraic case:

Theorem 5.1. Fix an o-minimal structure. Let Λ ⊆ RK be definable, let
X1, . . . , XN be definable and compact, and let φ : Λ ×

∏N
j=1X

j → [0, 1]N be
definable, such that for each fixed λ ∈ Λ, φ(λ, ·) is continuous. Let 0 < ε <
e ln(2)

16 . Then, for m ∈ N large enough, there exists definable mappings σij : Λ→
Xi, i = 1, . . . , N , j = 1, . . . ,m, s.t. for each λ ∈ Λ, the profile (s1, . . . , sn)
defined by si = 1

m

∑m
j=1 δσj

i (λ) for i = 1, . . . , N , is an m-uniform ε-equilibrium

of φ(λ, ·).
9Infinite endpoints allowed.
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6 Discussion on Bounds, From Finite Actions to
Continuum

In this section we show how to embed a game with finite action spaces into
a continuous game with action spaces being the unit interval, such that if the
original game did not have small support ε-equilibria, then neither does the
resulting game.

First we describe the transformation. Essentially, one embeds the finite
actions spaces into the unit interval, and extends the payoffs piece-wise multi-
linearly. Formally: Let N ∈ N, and let A1, . . . , AN be finite actions for N
players, G :

∏N
i=1A

i → RN a game, and embeddings Ai → [0, 1], which includes
0, 1 in each of their ranges, identifying Ai as a subset of [0, 1]. Define a game
G̃ : [0, 1]N → [0, 1]N in the following manner: For each i = 1, . . . , N and each
xi ∈ [0, 1], let φ±(xi) be defined by

φ−(xi) = max{ai ∈ Ai | ai ≤ xi}, φ+(xi) = min{ai ∈ Ai | ai ≥ xi}

Hence, xi ∈ [φ−(xi), φ+(xi)]; φ−(xi) = φ+(xi) = xi if xi ∈ Ai; and if xi /∈ Ai,
(φ−(xi), φ+(xi)) ∩Ai = ∅. We let G̃ be the piece-wise multi-linear extension of
G, i.e., for each i = 1, . . . , N and each xi ∈ [0, 1], let λi(xi) ∈ [0, 1] be s.t.

xi = λi(xi) · φ+(xi) + (1− λi(xi)) · φ−(xi)

if xi /∈ Ai, and arbitrarily ∈ [0, 1] if xi ∈ Ai; and then set

G̃(x1, . . . , xN ) =
∑

s∈{±}N

[ ∏
j|s[j]=+

λj(xj)
∏

j|s[j]=−

(1−λj(xj))
]
G(φs[1](x1), . . . , φs[N ](xN ))

(6.1)
Such G̃ is easily seen to be semi-algebraic and Lipshitz.

Now, fix ε ≥ 0, and suppose the origional game G has no ε-equilibrium with
strategies which have support ≤ K. We contend that G̃ has no ε-equilibrium
with strategies which have support ≤ bK2 c. Suppose it had such a ε-equilibrium
(s1, . . . , sN ). Intuitively, weight α on some xi ∈ [0, 1] corresponds to putting
weights αλ(xi), α(1 − λ(xi)), on φ−(xi), φ+(xi) ∈ Ai, respectively. More for-
mally: For each i = 1, . . . , N , define ti from si by replacing each action used
with the closest actions in Ai with the appropriate proportions, i.e.,

si =

Mi∑
j=1

δxi
j
→ ti :=

Mi∑
j=1

[
λi(xij)δφ+(xi

j) + (1− λi(xij))δφ−(xi
j)

]
Then it follows

G̃i(·, s−i) ≡ G̃i(·, t−i)

and
max
Ai

Gi(·, t−i) = max
Ai

G̃i(·, t−i) = max
[0,1]

G̃i(·, t−i)
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So (t1, . . . , tN ) is a ε-equilibrium with support ≤ 2 · bK2 c ≤ K, a contradiction.
Clearly also

maxGi = max G̃i, minGi = min G̃i, ∀i = 1, . . . , N

and if G is a two-player zero-sum game, then so is G̃.

In particular, using the results of [1, Sec. 5] which provides zero-sum games
which require arbitrarily large support for ε-equilibria:

Theorem 6.1. For each K ∈ N, there is ε > 0 and a semi-algebraic Lipshitz
two-player zero-sum game G̃ : [0, 1]2 → [0, 1] s.t. there do not exist ε-optimal
strategies for each player with support of size at most K.

Let us unbox this theorem a little; we will use the ’Big O’ notation, wheref =
O(g) means f ≥ C · g for asymtotically for some C > 0; the ’Big Omega’ no-
tation, where f = Ω(g) means g = O(f); and the ’Big Theta’ notation, where
f = Θ(g) means f = O(g) and g = O(f).

Recall that [1, Sec. 5] shows that there is C > 0 s.t. for n large enough
and ε, there exists a zero-sum game Gn,ε, with n strategies for each players and
payoffs 0−1-valued, s.t. there do not exist for both players ε-optimal strategies

in Gn,ε with support size ≤ C log(n)
ε2 . Let G̃n,ε denote the transformation of

Gn,ε, as described above, to a zero-sum game with strategy space [0, 1] for each
player. The above argument shows there do not exist for both players ε-optimal

strategies in Gn,ε with support size ≤ C
2 ·

log(n)
ε2 . Hence, the dependence on ε

in Theorem 4.2, which is Θ( 1
ε2 log( 1

ε )), is tight up to the factor log( 1
ε ), which is

much less significant than the factor 1
ε2 .10

Let us unbox further: The resulting game G̃n,ε have semi-algebraic payoffs
easily seen to be of class (at most) (O(n2), O(1)). Hence, for fixed ε > 0, The-
orem 4.2 shows that ε-optimal strategies exist with support Θ(log(n)). Hence,
although it is possible that the class of the payoffs of G̃n,ε may be of class
(sn, O(1)) with sn much less than Θ(n2), we must have log(sn) = Ω(log(n)).

7 Potential Connections to Stochastic Games

The seminal paper [23] studies the following model of zero-sum stochastic games:

• K - A finite set of states.

• I, J - Finite action sets.

• r : K × I × J → R - A payoff function.

10This additional logarithmic factor is already presented in the bounds in [4], and it is not
clear if it is required.
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• Q : I × J → RK×K - A mapping to stochastic matrices.

• A discount rate λ ∈ (0, 1).

The game is played in discrete time. If at some stage of the game and the
players select an actions i ∈ I, j ∈ J , the probability of transition from k to ` is
given by Qk,`(i, j). The payoff starting at stage z1 = k ∈ K, if zt is stage at t,
under stationary strategies σ : K → ∆(I), τ : K → ∆(J), is

γkλ(σ, τ) = Eσ,τ [λ

∞∑
t=1

(1− λ)t−1r(zt, σ(zt), τ(zt)) | z1 = z]

and γλ = (γkλ)k∈K . Let vλ ∈ RK denote the λ-discounted value, where vkλ is the
value in the game with initial state k.

[3] derives a characterization for the asymptotic value limλ→0 vλ; the limit
had been known to exist by the results of [8]. The essence of the convergence
of limλ→0 vλ is that vλ is semi-algebraic when K, I, J are finite, and hence the
limit exists by piece-wise monotonicity.

The analysis in [3] begins as follows. By standard dynamic programming
results, e.g. [20, Ch. 2], the payoffs (as a function of initial state) is given by
for pure strategies i ∈ IK , j ∈ JK :

γλ(i, j) = λr(i, j) + (1− λ)Q(i, j)γλ(i, j)

where r(i, j) = (rk(ik, jk))k∈K and Q(i, j) = (Qk,k′(i
k, jk))k,k′∈K . Denoting

d0
λ(i, j) = det(I − (1− λ)Q(i, j))

and dkλ is similarly defined by replacing k-th column of I − (1 − λ)Q(i, j) with
λr(i, j), Cramer’s rule gives

dkλ(i, j)− γkλ(i, j) · d0
λ(i, j) = 0

Hence, defining for each z ∈ R, λ ∈ (0, 1), k ∈ K, the game with action spaces
IK , JK ,

W k
λ (z)[i, j] = dkλ(i, j)− z · d0

λ(i, j)

we see that W k
λ (γkλ(i, j))[i, j] = 0 for every pair of pure strategies i ∈ IK , j ∈ JK .

Theorem 1 of [3] shows:

Theorem 7.1. For each k ∈ K, vkλ is unique solution to val(W k
λ (z)) = 0.

Not only this, but vkλ is a 0 of val(W k
λ (·)) in a strong sense. Theorem 2 of

[3] shows:
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Theorem 7.2. Denote for z ∈ R, k ∈ K,

F k(z) := lim
λ→0

valW k
λ (z)

λK
∈ R ∪ {±∞} (7.1)

Then limλ→0 vλ = w ∈ RK , where for each k ∈ K, wk is unique solution to

z > wk → F k(z) < 0

z < wk → F k(z) > 0 (7.2)

For I, J,K finite, the limit in (7.1) exists in R ∪ {±∞} by piece-wise mono-
tonicity, Theorem 2.2. Section 6B of [3] discusses extensions to the case when
I, J are compact metric spaces (and r, q are continuous); K remains finite. It
is pointed out there that Theorem 7.1 extends readily to this case. However,
Theorem 7.2 may fail as the limit (7.1) need not exist. Indeed, [26] shows that
for such games, limλ→0 vλ need not exist. However, a variation of Theorem 7.2
readily follows:

Theorem 7.3. Assume that the limit (7.1) exists for each k ∈ K, z ∈ R. Then
limλ→0 vλ = w ∈ RK , where for each k ∈ K, wk is unique solution to (7.2).

Hence, the question arises - for which stochastic games does the the limit(7.1)
exist? More generally:

Given φ : (0, 1)×X×Y → R continuous and semi-algebraic, does limλ→0 valφ(λ, ·, ·)
exists in R ∪ {±∞}?

In our paper, we have shown in Proposition 4.4 that the answer is affirmative
when φ is bounded. However, when φz : (0, 1)×I×J → R is give by φz(λ, i, j) =

1
λKW

k
λ (z)[i, j] for some k ∈ K and z ∈ R, the resulting φz is clearly in general

not bounded, and this case is still open.11

8 Appendix: Alternative Approach

The following result is derived using similar techniques in [7]:12

Theorem 8.1. Let A(n, s, r) be the collection of all semi-algebraic sets in Rn
of class (s, r). Then V Cdim(A(n, s, r)) ≤ 4s

(
r+n
r

)
· log2

(
2s(2s+ 1)

(
r+n
r

))
.

Like for Theorem 2.4, the bound in Theorem 8.1 is demonstrated to be tight
up to a logarithmic factor.

11It will be bounded for all z ∈ R and k ∈ K if, e.g., the game remains in the same state at
all times regardless of actions; it is not clear if this is the only case.

12The statement in that paper, Claim 8 of p. 217, gives a slightly better bound but con-
siders only Boolean combinations of sets defined using strict polynomial inequalities. To be
consistent with the rest of the paper, we’ve modified the result to allow equalities and weak
inequalities, which requires at worst doubling the number of polynomials needed.
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Proposition 8.1. For X ⊆ Rn, let F(n, s, r) denote the class of all functions
X → [0, 1] whose graphs in X × R are of class (s, r). For r ≥ 1,

P − dim(F(n, s, r)) ≤ 4(s+ 1)

(
r + n+ 1

r

)
· log2

(
2(s+ 1)(2s+ 3)

(
r + n+ 1

r

))
.

The proof mimics that of Proposition 3.2, except uses Theorem 8.1 instead
of Theorem 2.4.

Theorem 8.2. Let Xj ⊆ Rnj for j = 1, . . . , N , be semi-algebraic and compact.

Let 0 < ε < e ln(2)
16 , and let φ1, · · · , φN be payoff functions X1 × · · ·XN →

[0, 1] with graphs of class (s, r) in X1 × · · ·XN × [0, 1], r ≥ 1; denote n0 =
maxi

∑
j 6=i nj, and suppose

m >
512

ε2

(
ln(32N)− ln(ε)

+ 4(s+ 1)

(
r + n0 + 1

r

)
· log2

(
2(s+ 1)(2s+ 3)

(
r + n0 + 1

r

))
· ln
(64e

ε
ln(

64e

ε
)
))
.

(8.1)

Then the game (φ1, . . . , φN ) posseses an m-uniform ε-equilibrium.

Proof. As remarked above, the existence of Nash equilibrium in each such game
follows from, e.g., [13, Sec. 2]. From Proposition 8.1, it follows that for each
i = 1, . . . , N , the family of functions X−i → R given by

{φi(λ, xi, ·) | λ ∈ Λ, xi ∈ Xi}

is of pseudo-dimension at most 4(s+1)
(
r+n0+1

r

)
· log2

(
2(s+1)(2s+3)

(
r+n0+1

r

))
.

Hence, for m as in (8.1), the existence of an m-uniform ε-equilibrium follows
from Theorem 4.1.
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