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ABSTRACT. In this paper we develop procedures to construct simultaneous confidence bands for
p potentially infinite-dimensional parameters after model selection for general moment condition
models where p is potentially much larger than the sample size of available data, n. This allows
us to cover settings with functional response data where each of the p parameters is a function.
The procedure is based on the construction of score functions that satisfy certain orthogonality
condition. The proposed simultaneous confidence bands rely on uniform central limit theorems
for high-dimensional vectors (and not on Donsker arguments as we allow for p > n). To con-
struct the bands, we employ a multiplier bootstrap procedure which is computationally efficient
as it only involves resampling the estimated score functions (and does not require resolving the
high-dimensional optimization problems). We formally apply the general theory to inference on
regression coefficient process in the distribution regression model with a logistic link, where two
implementations are analyzed in detail. Simulations and an application to real data are provided

to help illustrate the applicability of the results.

1. INTRODUCTION

High-dimensional models have become increasingly popular in the last two decades. Much re-
search has been conducted on estimation of these models. However, inference about parameters
in these models is much less understood, although the literature on inference is growing quickly;
see the list of references below. In particular, despite its practical relevance, there is almost no
research on the problem of construction of simultaneous confidence bands on many target param-
eters in these models (with one exception being [9]). In this paper we provide a solution to this
problem by constructing simultaneous confidence bands for parameters in a very general framework
of moment condition models, allowing for many functional parameters, where each parameter itself
can be an infinite-dimensional object, and the number of parameters can be much larger than the
sample size of available data. As a substantive application, we apply the results to provide simul-
taneous confidence bands for parameters in a functional logistic regression model, which includes
the so called distributional regression and conditional transformation models as special cases. (In
particular, this contribution goes much beyond [9], which considers the special case of many scalar

parameters).
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Specifically, we consider the problem of estimating the set of parameters (0.;)ueu jep in the

moment condition model
EP[muj(I/Va eujynuj)] = 07 UAS Z/[, ] € [ﬁ]v (1'1)

where W is a random element that takes values in a measurable space (W, Ayy) according to the
probability measure P, and U C R% and [p] := {1,...,p} are sets of indices. For each u € U and
J € [P}, mu; is a known score function, 0, is a scalar parameter of interest, and 7, is a potentially
high-dimensional nuisance parameter. Assuming that a random sample of size n, (W;)},, from the
distribution of W is available together with suitable estimators 7,; of 7,; for v € U and j € [p], we
aim to construct simultaneous confidence bands for (6y;)ucy jejp that are valid uniformly over a
large class of probability measures P, say P. Specifically, for each u € U and j € [p], we construct an
appropriate estimator éuj of 8, along with an estimator of the standard deviation of \/ﬁ(éuj —0u;),
Ouj, such that

CaOuj - By CaOuj

Pp (éu] - \/ﬁ X< Huj X euj + \/ﬁ

where a € (0,1) and ¢, is an appropriate critical value, which we choose to construct using a

sup =o(1), (1.2)

pPeP

, for all uGUande[ﬁ])—(l—a)

multiplier bootstrap method. The left- and the right-hand sides of the inequalities inside the
probability statement (L2]) then can be used as bounds in simultaneous confidence bands for 6,;’s.
In this paper, we are particularly interested in the case when p is potentially much larger than n
and U is an uncountable subset of R%, so that for each j € [p], (0y;)ucy is an infinite-dimensional

(that is, functional) parameter.

This general framework covers a broad variety of applications. For example, consider a finite-
dimensional generalized linear model for a response variable Y and covariates D and X given
by

Ep[Y | D, X] = A(Dby + X'S0), (1.3)

where D is a scalar, X is a p-vector (p is potentially large), A: R — R is a known link function, 6
is a parameter of interest, and [y is a nuisance parameter. This model is a particular case of our

general framework with the moment condition
Ep [{Y — A(Db + X’ﬁo)}D] =0, (1.4)

where U is a singleton, p = 1, 8,; = 0y and n,; = By for u € U and j € [p], and W = (Y, D, X).
Another example fitting into our framework is a logistic regression model with functional response

data
Ep[Y, | D, X] = A(D'0,+ X'B,), uel, (1.5)

where D is now a p-vector with p being potentially much larger than n, 6, = (6y1,...,0up) is
a p-vector of parameters of interest, « = [0,1] is a set of indices, Y, = 1{Y < (1 —u)y + ugy}
for some constants y < g and all v € U, and A: R — R is the logistic link function defined by
A(t) = exp(t)/{1 +exp(t)} for all t € R. Here we have p infinite-dimensional parameters (0,;)ueus,
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7 =1,...,p. This example is important because it demonstrates that our methods can be used
for inference about the whole distribution of the response variable Y given D and X in a high-
dimensional setting, and not only about some particular features of it such as mean or median.
This model is called a distribution regression model in [2I] and a conditional transformation model
in [23], who argue that the model provides a rich class of models for conditional distributions, and
offers a useful generalization of traditional proportional hazard models as well as a useful alternative
to quantile regression. We develop inference methods for many functional parameters of this model

in detail in Section [Bl

In the presence of high-dimensional nuisance parameters, construction of valid confidence bands
is delicate. High-dimensionality requires relying upon regularization that leads to lack of asymptotic
linearization of the estimators. This lack of asymptotic linearization in turn typically translates
into severe distortions in coverage probability of the confidence bands constructed by traditional
techniques that are based on perfect model selection; see [29], [30], [31], [39].

To deal with this problem, we consider moment conditions
EP[TJZ)U](I/V? 9uy’777uj)] =0, wel, je [ﬁ] (16)

based on score functions %,; with an additional “near orthogonality” property that makes them

immune to first-order changes in the value of the nuisance parameter, namely

~0, wel, jelp, (1.7)
r=0

ar{Ep i (W, mug + 77} }

for all 77 in an appropriate set where 0, denotes the derivative with respect to r. For example, in the
finite-dimensional generalized linear model (I3]), a score function with such a near orthogonality
property is

(W, 0,m0) = {¥ = A(DO + X' o) } (D = X'30),

where the nuisance parameter is 79 = (30,7)), and v € argmin, Ep[f3{D — X'v}?] for ¢ =
N (D6 + X'By). It satisfies the moment condition (L) and also satisfies the near orthogonality
condition (L) since

05 {Eplv(W,60,8,70)1}| _

0, {Be (W0 Aol = ~Ep[{Y — A(Dby + X'0)}X| =0,

— —Ep|f}{D - X'3}X]| =0,

where the first line holds by the definition of vy, and the second by (L3]). Because of this orthogonal-
ity property, we can exploit the moment conditions based on these new score functions to construct
a regular, \/n-consistent, estimator of #y even if non-regular, regularized or post-regularized, esti-
mators of 5y and =y are used to cope with high-dimensionality. Then we can construct confidence

bands for 6y based on this regular estimator.

Our general approach, which is developed in Section 2] can be described as follows. First, we

transform the moment conditions (ILI]) into those based on the score functions (1G] with the near
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orthogonality property (LT, and use these new moment conditions to construct an estimator éuj
of 6, for all w € U and j € [p]. Second, under appropriate regularity conditions, we establish a
Bahadur representation for éuj’s. Third, employing the Bahadur representation, we are able to
derive a suitable Gaussian approximation for the distribution of éuj’s. Importantly, the Gaussian
approximation is possible even if both p and the dimension of the index set U, d,, are allowed
to grow with n, and p asymptotically remains much larger than n. Finally, from the Gaussian
approximation, we construct simultaneous confidence bands using a multiplier bootstrap method.

This approach makes use of the results on high-dimensional central limit and bootstrap theorems
established in [I5], [I7], [18], [19], and [20].

Although regularity conditions underlying our approach can be verified for many models defined
by moment conditions, for illustration purposes, we explicitly verify these conditions for the logistic
regression model with functional response data (LH) in Section Bl We also examine the performance
of the proposed procedures in a Monte Carlo simulation study and provide an example based on
real data in Section Bl In addition, in the Supplementary Material, we discuss the construction
of simultaneous confidence bands based on a double-selection estimator. This estimator does not
require to explicitly construct the new score functions but nonetheless is first-order equivalent to

the estimator based on such functions.

We also develop new results for ¢1-penalized M-estimators in Section 4 to handle functional data
and criterion functions that depend on nuisance functions for which only estimates are available
(for brevity of the paper, generic results are deferred to Appendix[[ of the Supplementary Material,
and Section M only contains results that are relevant for the logistic regression model studied in
Section [3]). Specifically, we develop a method to select penalty parameters for these estimators and
extend the existing theory to cover functional data to achieve rates of convergence and sparsity
guarantees that hold uniformly over u € . The ability to allow both for functional data and
for nuisance functions is crucial in the implementation and in theoretical analysis of the methods

proposed in this paper.

Orthogonality conditions like that in (7)) have played an important role in statistics and econo-
metrics. In low-dimensional settings, a similar condition was used by Neyman in [36] while in
semiparametric models the orthogonality conditions were used in [34], [I], [35], [40] and [32]. In
high-dimensional settings, [5] and [2] were the first to use the orthogonality condition (L) in a
linear instrumental variables model with many instruments. Related ideas have also been used in
the literature to construct confidence bands in high-dimensional linear models, generalized linear
models, and other non-linear models; see [6], [45], [7], [42], [12], [25], [24], [9], [8], [11], [46], [37].
We contribute to this quickly growing literature by providing procedures to construct simultaneous

confidence bands for many infinite-dimensional parameters identified by moment conditions.



2. CONFIDENCE REGIONS FOR FUNCTION-VALUED PARAMETERS BASED ON MOMENT
CONDITIONS

In this section, we formally introduce the model and state our results under high-level conditions.
In the next section, we will apply these results to construct simultaneous confidence bands for many

infinite-dimensional parameters in the logistic regression model with functional response data.

We are interested in a set of parameters (0y;),cy,jelp Where for each u € U C R and j € [p] =
{1,...,p}, we have 0,; € O, a convex subset of R. Here U is possibly an uncountable set of
indices, and p is potentially large. We assume that for each u € U and j € [p], the parameter 6,
satisfies the moment condition

Ep[tuj (W, 0uj,nug)] = 0, (2.1)
where W is a random element that takes values in a measurable space (W, Ayy), with law deter-
mined by a probability measure P € P,, n,; is a nuisance parameter with 7,; € T;, a convex
set equipped with a norm || - [|¢, and the score function 1,;: W x ©,; x T,,; = R is a measurable
map (where we equip O,,; and T),; with their Borel o-fields). Here P, is some set of probability
measures on (W, Ayy).

We focus on the estimation of (0u;)ucy, jefp Using a random sample (W;)i, from the distribution
of W. We assume that for each u € U and j € [p], the nuisance parameter 7,; can be estimated by
7u; using the same data (W;)?_;. In the next section, we discuss examples where 7),;’s are based
on Lasso or Post-Lasso methods (although other modern regularization and post-regularization
methods can be applied). For each u € U and j € [p], we construct the estimator éuj of ,; as an

approximate €,-solution in ©,; to a sample analog of the moment condition (2IJ), that is,

sup {
u€U,jE[p]

where (0,,),>1 is some sequence of positive constants converging to zero.

En[tus (W, s 0] — i

9€®uj

Bt V.07 } < 0 = o0, (22)

Let Cy be a strictly positive (and finite) constant, and for each u € U and j € [p], let T,; be
some subset of T),;, whose properties are specified below in assumptions. As discussed before, we

rely on the following near orthogonality condition:

Definition 2.1 (Near orthogonality condition). For each v € U and j € [p], we say that 1,; obeys
the near orthogonality condition with respect to T,; C Tyj if the following conditions hold: The

Gateauz derivative map

Du,j,?[n - nuj] = 87’{EP [%j(W, euja nuj + 7’(77 - nuj))] }

r=r

ezists for all 7 € [0,1) and n € Tyj and (nearly) vanishes at 7 = 0, namely,

< Cobpn~ Y2, (2.3)

‘Du,j,o[ﬁ — 7]

for all n € Tyj. [



If the original score functions m,; do not satisfy this near orthogonality condition, we have to
transform them into score functions 1,; that satisfy this condition. At the end of this section, we
describe two methods to obtain score functions 1/,;. Together these methods cover a wide variety

of applications.

Let w and ¢y be some strictly positive (and finite) constants, and let ng > 3 be some positive
integer. Also, let (Biy)n>1 and (B, )n>1 be some sequences of positive constants, possibly growing

to infinity, where By, > 1 for all n > 1. Denote

unzzEp[ sup \\/ﬁEn[wuj<vv,euj,nuj>]\], Juj = o{Eplon W0} . (24)

ueld,je(p =Ouj
The quantity u, measures how rich the process {ty;(,0u;,nuj): v € U,j € [p]} is. In many
applications, it satisfies u, < C(1+d,, + log ]3)1/ 2 for some constant C. The quantity Juj measures
the degree of identifiability of 6,; by the moment condition (ZIJ). In many applications, it is

bounded in absolute value from above and away from zero.

We are now ready to state our main regularity conditions.

Assumption 2.1 (Moment condition problem). For alln > ng, P € Pp, u € U, and j € [p|, the
following conditions hold: (i) The true parameter value 0, obeys (21), and ©,; contains a ball of
radius Con~/?u, logn centered at 0,;. (ii) The map (0,n) — Ep[iby;(W,0,1)] is twice continuously
Gateaua-differentiable on ©,; x Tyj. (i) The moment function 1,; obeys the near orthogonality
condition given in Definition 2.1 for the set T,; C Ty;. (iv) For all 0 € Oy;, [Ep[thy;(W,0,n45)]| =
27Ty (0 — 0u5)| A co, where Jyj satisfies co < |Juj| < Co. (v) For all v € [0,1), 0 € O, and
N € Tuj,

(a) EP[(qu(VV’ 0,m) — ¢UJ(W/7 eujanm))z] < Co(l0 — 9uj| Vi — 77uj||e)w,
(b) ’arEP [wu](VVa Hanuj + 7’(77 - qu))] ‘ < Bln”ﬁ - nujHE}
(€) 107Ep[thu; (W, O + 7(0 = Ouz), g + (1 — 1us))]| < Ban(10 = Oul* V 10 — nu;l12)-

Assumption 2] is mild and standard in moment condition problems. Assumption [ZIi) requires
6. to be sufficiently separated from the boundary of ©,;. Assumption 2.II(iii) is discussed above.
Assumption 2.I{iv) implies sufficient identifiability of 6,;. Assumptions 2Z1[ii,v) are smoothness
conditions. Assumption2.[(ii) is rather weak because it only requires differentiability of the function
(0,m) — Eplby; (W, 6,n)] and does not require differentiability of the function (0,7n) — 1,,;(W, 0, 7).

n)n>

Next, we state conditions related to the estimators 7,j, v € U and j € [p]. Let (A,),>1 and
(Tn)n>1 be some sequences of positive constants converging to zero. Also, let (ap)n>1, (Vn)n>1, and
(Ky)n>1 be some sequences of positive constants, possibly growing to infinity, where a, > nV K,

and v, > 1 for all n > 1. Finally, let ¢ > 2 be some constant.

Assumption 2.2 (Estimation of nuisance parameters). For all n > ng and P € Py, the following
conditions hold: (i) With probability at least 1 — A,,, we have 7,; € Ty; for alluw € U and j € [p].
(i) For allu € U, j € [pl, and 1 € Tuj, |In — Nujlle < T (i1i) For all w € U and j € [p], we have
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Nuj € Tuj- () The function class Fi = {1y;(-,0,m): w € U,j € [p],0 € Oyj,n € Ty;} is suitably

measurable and its uniform entropy numbers obey

sgplog N(el|lFillgz, Fi, |l - lg.2) < vplog(an/e), forall0 <e<1 (2.5)

where Fy is a measurable envelope for Fi that satisfies | Fi||pq < Ky. (v) For all f € Fi, we have
co < ||fllp2 < Co. (vi) The complexity characteristics a,, and v,, satisfy

(a) (v log an/n)l/2 < Comn,
(b) (BinTn + uy log n/\/ﬁ)w/2(vn log an)l/2 + Y2y, K, log a, < Cyon,
c) n1/2B%ntnTn2 < Cydy,.

Assumption provides sufficient conditions for the estimation of the nuisance parameters
(Muj)ueu,jefp- 1t shows that the choice of the sets 7,; is delicate: setting 7,; large, on the one
hand, makes it easy to satisfy Assumption [Z2fi) but, on the other hand, yields large values of a,
and v, making it difficult to satisfy Assumption 2.2fvi). Suitable measurability of F7, required in
Assumption 22(iv), is a mild condition that is satisfied in most practical cases; see Appendix [Al
for clarifications. The index v, captures the complexity of the class of functions F; and typically
grows with d,,, p, and 7,;’s. In particular, in the case of approximately sparse models, like a logistic
regression model with functional response data studied in Section B, v,, can be typically set up-to
a constant as the sum of the dimension of the approximating model, the dimension of the selected
model, and the dimension of 4. However, we note that our conditions potentially cover other
frameworks, where assumptions other than approximate sparsity are used to make the estimation

problem manageable.

We stress that the class F; does not need to be Donsker because its uniform entropy numbers
are allowed to increase with n. This is important because allowing for non-Donsker classes is
necessary to deal with high-dimensional nuisance parameters. Note also that our conditions are
very different from the conditions imposed in various settings with nonparametrically estimated
nuisance functions; see, e.g., [44], [43], and [27].

The following theorem is our first main result in this paper:

Theorem 2.1 (Uniform Bahadur representation). Under Assumptions[21 and[22, for an estima-

tor (Ouj)ucu,jelp) that obeys equation (22), we have
\/ﬁagjl(éuj - eu]) = Gn&u; + OP((sn) in eoo(u X [ﬁ])

uniformly over P € Py, where 1y (+) := —Ju_jljgjll/}uj(-,ﬂuj,nuj) and aij = Ju_pr[ 5;’(Wv Oujr Muj)]-

The uniform Bahadur representation derived in Theorem 2] is useful for the construction of
simultaneous confidence bands for (0u;)ueu,je) as in (L2). For this purpose, we apply new high-
dimensional central limit and bootstrap theorems that have been recently developed in a sequence
of papers [15], [17], [18], [19], and [20]. To apply these theorems, we make use of the following

regularity condition.



Let (5 )n >1
(An)nEIa (A ) =1
where g, > 1, A, > n, and 4,, > n for all n > 1. In addition, from now on, we assume that ¢ > 4.

be a sequence of positive constants converging to zero. Also, let (o,)n>1, (gn)n>1,

, and (L, )n>1 be some sequences of positive constants, possibly growing to infinity,

Denote by wuj(-) = A;;Jujll/}u]( wjs Tuj) an estimator of l/Ju]( ), with Juj and o, being suitable

estimators of J,; and oy;.

Assumption 2.3 (Score regularity). For all n > ng and P € Py, the following conditions hold:
(i) The function class Fo = {1y (-): u € U, j € [p]} is suitably measurable and its uniform entropy

numbers obey

sgplog N(e||Follg,2, Fo, || - |@.2) < onlog(Ay/e€), forall0<e<1,

where Fy is a measurable envelope for Fy that satisfies | Fo|lpq < Lyn. (i) For all f € Fy and
k = 3,4, we have Ep[|f(W)[¥] < CoLE~2. (iii) The function class Fo = {4 () —TZ)\uj(')t uel,je
[} satisfies with probability 1 — A,: log N (e, Fo, || - Ip,.2) < 0nlog(Ay/e) for all0 < e <1 and
1£1lp,.2 < 65 for all f € Fo.

This assumption is technical, and its verification in applications is rather standard. For the
Gaussian approximation result below, we actually only need the first and the second part of this
assumption. The third part will be needed for establishing validity of the simultaneous confidence

bands based on the multiplier bootstrap procedure.

Next, let (Nuj)ueu,jefp denote a tight zero-mean Gaussian process indexed by U x [p] with
covariance operator given by Ep[?/)u]( Vb s (W)] for u,v’ € U and j,j' € [p]. We have the

following corollary of Theorem 2.1, which is our second main result in this paper.

Corollary 2.1 (Gaussian approximation). Suppose that Assumptions 2, (2.2, and [2:3(i,ii) hold.
In addition, suppose that the following growth conditions hold: 62, log A, = o(1), Liﬁgn log A, =
o(n*/7), and Li/ggn log A, = o(n'/3=2/(0) Then

Pp ( sup |\/_0u] ( uj 0u9)| > Pp < sup |Nuy| >‘ 0(1)

uwel,jEp] ueld,j<[p]

sup
teR

uniformly over P € P,.

Based on Corollary 2.1, we are now able to construct simultaneous confidence bands for 6,;’s
as in (EEZl) In particular, we will use the Gaussian multiplier bootstrap method employing the

estimates zﬁuj of zﬁuj To describe the method, define the process

o 1 -
G = (Gujlueujelp) = | —= Z&w(Wi) (2.6)
=1 u€lU,je[p]
where (&), are independent standard normal random variables which are independent from the
data (W;)?_;. Then the multiplier bootstrap critical value ¢, is defined as the (1 — «) quantile of
the conditional distribution of sup,cy ez |§uy| given the data (W;)"_ ;. To prove validity of this
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critical value for the construction of simultaneous confidence bands of the form (.2]), we will impose
the following additional assumption. Let (g,,),>1 be a sequence of positive constants converging to

Zero.

Assumption 2.4 (Variation estimation). For all n > ng and P € P,

Pp sup
uel,jEe[p]

The following corollary establishing validity of the multiplier bootstrap critical value ¢, for the

~

M—1‘>€n><An.

O'uj

simultaneous confidence bands construction is our third main result in this paper.

Corollary 2.2 (Simultaneous confidence bands). Suppose that Assumptions[21 —~[2.4] hold. In ad-
dition, suppose that the growth conditions of Corollary[21l hold. Finally, suppose that e, 0, 1log A, =
o(1), and 62 d,0n(log A,,) - (log A,) = o(1). Then

CaOuj

Vn

CaOuyj

Pp <éuj— \/ﬁ geuj<éuj+

, forallu e U and j € [ﬁ]) =1—a-o(1)
uniformly over P € P,.

2.1. Construction of score functions satisfying near orthogonality condition. We con-
clude this section with a short description of two methods that allow to construct score functions
y; that satisfy the required near orthogonality condition. Together these methods cover a wide

variety of applications.

First, suppose that the original functions m,; are score functions of the model of the form
(0,m) = Py, where 0 = (0uj)ucu,jels) and 1 = (Muj)ueu,jelp) are sets of parameters and Py, is the
distribution of W. In this case, one can transform m,,;’s into efficient score functions v,; that obey
the near orthogonality condition ([2.3) with Cy = 0 by projecting m,;’s onto the orthocomplement
of the tangent space induced by the nuisance parameter 7; see Chapter 25 of [43] for a detailed
description of this construction. Other relevant references include [44], [27], [7], and [9].

Second, suppose that the original moment conditions take the form
EP[muj(Wy euja/Buj) ‘ X] =0

for some random variable X and some vector of nuisance parameters f3,;, as, for example, in the

logistic regression model (IL3]). In this case, one can define the score functions t,,; for n = (5,7) as

Gus(W,0,1) = mag (W, 0,5) - (s.0(X) =7 5(X)
where

iugo(X) = p{Eplmu(W.0,607) | X1} and g 5(X) = 05{Bplmas (W, 005, 6) | X1}
=0u; =Puj
These score functions 1,,; satisfy 2.1) with n,; = (Bu;, Yuj) Where
-1

i — (85{EP[muj(VV7 9“3"@7%;%5()()]}‘5:5“) : 8B{Ep[muj(VV, 9uj,5)ﬁmj,9(X)]H9:9uj,



10

and also obey the near orthogonality condition (2.3]) with Cy = 0.

3. APPLICATION TO LOGISTIC REGRESSION MODEL WITH FUNCTIONAL RESPONSE DATA

In this section we apply our main results to a logistic regression model with functional response
data. We consider a response variable Y € R that induces a functional response (Y, )ucys by
Yy = H{Y < (1—u)y+uy} for aset of indices U = [0, 1] and some constants y < y. We are interested
in the dependence of this functional response on a p-vector of covariates, D = (D1, ..., Dj)" € RP,
controlling for a p-vector of additional covariates X = (Xj,...,X,)" € RP. We allow both p and p

to be (much) larger than the sample size of available data, n.

For each u € U, we assume that Y, satisfies the generalized linear model with the logistic link
function

EplY. | D, X] = A(D'0, + X'By) + ru (3.1)

where 6, = (0y1,...,0y5)" is a vector of parameters of interest, 3, = (Bui,...,Bup) is a vector
of nuisance parameters, r, = 7,(D,X) is an approximation error, A: R — R is a logistic link
function defined by A(t) = exp(t)/{1 + exp(t)} for all t € R, and P € P, is the distribution of
the triple (Y, D, X). As in the previous section, we construct simultaneous confidence bands for
the parameters (6y;)ucy jefp based on a random sample (Y;, D;, X;)iL; from the distribution of
(Y, D, X).

Observe that for each u € U and j € [p], the standard score function for estimating the coefficient
6, based on (Bl is given by

My (W,0) = {Yu = A( D0+ X (05,5, 8L ) = 7 } Dy

where W = (Y, D, X) and X/ = (Dfﬁ}\ij/)v so that Ep[m,;(W,6,;)] = 0. However, this score

function does not satisfy the desired near orthogonality condition in general. We therefore proceed
to construct an appropriate score function using an approach from Section 2l Specifically, for
each u € U and j € [p|, define the coefficients

7. € argmin Ep[f(D; — X777 (3:2)
where f2 = f2(D,X) = Var(Y, | D,X) = Ep[Y, | D, X](1 — Ep[Y, | D, X]), so that
fuDj = fuX? 75+ v}, BplfuX7vl] =0. (3.3)
Also, denote 3, = 0,;7), + (9;[51\]., B;,)". Then a score function 1), is
Yui (W, 0, n4;) = {Yu = A((Dj — X790 + X’ﬂi) - Tu}(Dj — X7

where the nuisance parameter is 1,; = (7, ﬂi, ’yi) As we demonstrate in the proof of Theorem [B.1]
below, this function satisfies the desired near orthogonality condition. (Observe that when 7, = 0
almost surely, we have Var(Y, | D,X) = A'(D'0, + X'B,), so that we could define the weights
f2 = f2(D,X) using the alternative formula f2(D,X) = A'(D'6, + X'B,), which was used, in
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particular, in the Introduction. When r, # 0 with positive probability, however, two expressions
are not the same. We find it more convenient to work with the formula f2(D, X) = Var(Y,, | D, X).)

Next, we discuss possible estimators of 7,;. First, if D and X are chosen appropriately, r, =
r(D, X) is asymptotically negligible, so it can be estimated by O = O(D, X), the identically zero
function of D and X. Second, for %, we consider an estimator % defined as a post-regularization
weighted least squares estimator corresponding to the problem (B2). Third, for Bﬁ, we consider a
plug-in estimator

Bl = 0,75 + (O B (3.4)
where 5u and Bu are suitable estimators of 6, and 3,. In particular, we assume that gu and Eu

are post-regularization maximum likelihood estimators corresponding to the log-likelihood function
0,8) — —M,(W,0,3) where

My (W,0,8) = — (1{Yu = 1}log A(D'0 + X'B) + 1{Y, = 0} log(1 — A(D'6 + X’B))). (3.5)
The details of the estimators 51“ Bu, and % are given in Algorithm 1 below. The results in this paper

can also be easily extended to the case where gu, Eu, and %JL are replaced by penalized maximum

likelihood estimators §u and Bu and penalized weighted least squares estimator %, respectively.

To sum up, our estimator of 7,; is 7y; = (O, 3&, %) Substituting this estimator into the score

function v, gives

Gug (W0, 7005) = { Y = A((D; = X750)0 + XTB}) }(D; — X95]) (3.6)
and the sample analog (2:2)) of the moment condition (2] can be implemented as
0y € g il [En [t (W,0,705)] | (3.7)

The algorithm is summarized as follows.

Algorithm 1. (Based on the score function.) For each u € U and j € [p]:

Step 1. Run post-£1-penalized logistic estimator (£2]) of Y, on D and X to compute (§u, Bu)
Step 2. Define the weights f2 = f2(D, X) = A (D'6, + X'B.).

Step 3. Run the post-lasso estimator (£35]) of quj on qu J to compute %

Step 4. Compute Bﬁ in (34).

Step 5. Solve [B1) with 1,,;(W, 6,7,;) defined in ([B.6) to compute éuj.

Next, we specify our regularity conditions. For all u € U and j € [p], denote 7z = D; - X J ’yi.
Also, denote a,, = pVpVn. Let ¢, ¢1, and C; be some strictly positive (and finite) constants where
q > 4. Also, let (6,)n>1 and (A,),>1 be some sequences of positive constants converging to zero.
Finally, let (M, 1)n>1 and (M, 2)n>1 be some sequences of positive constants, possibly growing to

infinity, where M,,; > 1 and M, > > 1 for all n.

Assumption 3.1 (Parameters). For all u € U, we have [0, + ||Bull + max; ¢z I < €1 and
maX e 5 SUPgeo,; 0] < C1. In addition, for all uj,us € U, we have (||0uy — Ouy ||l + ||Buy — Buy ) <
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Cilug—uy|. Finally, for allu € U and j € [p], Ou; contains a ball of radius (loglog n)(log a,)3/? /n'/?

centered at 0y;.

Assumption 3.2 (Sparsity). There exist s = s, and %, u €U and j € [p], such that for allu € U,
- . “ijen s
1Bullo+[16llo +max; ez [Fllo < sn and max ;e (155 —all+sn /17 —ill1) < Ci(sn log an/n)'/2.

Assumption 3.3 (Distribution of Y'). The conditional pdf of Y given (D, X) is bounded by C1.

Assumptions are mild and standard in the literature. In particular, Assumption B.1]
requires the parameter spaces ©,,; to be bounded, and also requires that for each v € U and j € [p],
the parameter 6,; to be sufficiently separated from the boundaries of the parameter space ©,;.
Assumption [3.2 - 2l requires approximate sparsity of the model ([B]). Note that in Assumptlon B2
given that 47’s exist, we can and will assume without loss of generality that % = v/, for some
T c{l,...,p+p— 1}, where T = T? is allowed to depend on u and j. Assumption B3] can be

relaxed at the expense of more technicalities.

Assumption 3.4 (Covariates). For all u € U, we have (i) infj¢y— Ep[f2{(D’, X")&}?] > c1, (ii)
min; ,(Ep(| f2Z, X1 1) AEp[|f2D;X}2)) > ¢1, and (iii) max;, Ep[|Z] X} [?]1/3 1og1/_2 an < 0,n'/S.
In addition, (iv) supjei=1 Ep[{(D', X")E}Y] < C1, (v) Mny = Eplsup,ey jejj \Z]Fq]l/@q (vi)
My ysplogay, < 8yn' />4, (vii) Myo = {Ep[(|Dllo V | Xloc) M9, (vidi) My, 55, l0g" an <
5,n' 2=V and (ix) M My o5, < Spnt =3/,

This assumption requires that there is no multicollinearity between covariates in vectors D and
X. In addition, it imposes constraints on various moments of covariates. Since these constraints
might be difficult to grasp, at the end of this section, in Corollary B3, we provide an example for

which these constraints simplify into easily interpretable conditions.

Assumption 3.5 (Approximation error). For allu € U, we have (i) supj¢| = Ep[r2{(D', X")¢}?]
C1Ep[r?], (ii) Ep[r2] < Cis,logan/n, (iii) maxes) |Ep[ruZz]| < 8,n 12, and (iv) |ry (D, X)|
f2(D, X)/4 almost surely. In addition, with probability 1 — A, (v) SUDy 1/ je(j] (Enl(ro Z3/ £)%
En[ri/fg]) < Cisplogay/n.

<
<
+

This assumption requires the approximation error r,, = r,, (D, X) to be sufficiently small. Under

AssumptionBZL the first condition of Assumption holds if the approximation error is such that
< OEp[r?] almost surely for some constant C.

Under specified assumptions, our estimator (éuj)ueu,je[ﬁ} satisfies the following uniform Bahadur

representation theorem.

Theorem 3.1 (Uniform Bahadur representation for logistic model). Suppose that Assumptions
31 - hold for all P € P,. In addition, suppose that the following growth condition holds:
62 loga, = o(1). Then for the estimator (Hu])ueu]e satisfying [B.1), we have

\/ﬁagjl(éuj - eu]) = anu] + OP((sn) in eoo(u X [ﬁ])
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uniformly over P € P, where iy;(W) := —U;jlju_jlwuj(VV, Oujr Nuj) aij = Ep[J_j2 5;(VV= O Muj)],
and Jy; is defined in (2.4).

This theorem allows us to establish a Gaussian approximation result for the supremum of the
process {ﬁa;jl(éuj —0y):uel,jepl}:

Corollary 3.1 (Gaussian approximation for logistic model). Suppose that Assumptions 31 —[32
hold for all P € P,,. In addition, suppose that the following growth conditions hold: 52 log a, = o(1),
Mn27/17 log an = o(n'/"), and Mn2/13 log a, = o(n'/3=2/BD) . Then

sup
teR

Pp < sup h/ﬁa;}(éuj —0y5)] < t) —Pp < sup  |Ny;| < t)‘ =o(1)

ueU,jE[p] ueld,j€(p]
uniformly over P € P,, where (Nuj)ueu,je[ﬁ} is a tight zero-mean Gaussian process indexed by

U x [p] with the covariance operator given by Ep[thy; (W )by (W) for u,u’ € U and j,j' € [p].

Based on this corollary, we are now able to construct simultaneous confidence bands for the
parameters 60,;. Observe that
Juj = —Ep [N (D5 = X393)0,; + X961) (D; = X932,
and so it can be estimated by
Fug = B[N (D — X050, + X98) (D) — X7

for all w € U and j € [p]. In addition, aij = EP[JU_]?”L/J?U»(VV, 6., 1u;)], and so it can be estimated by

Gj = Eal o 005 (W, 0, 1))
for all w € U and j € [p]. Moreover, as in Section [ for all w € U and j € [p], define
QZW(W) = —3ujj;j7,buj(I/V, éuj,ﬁuj), and let ¢, be the (1 — «) quantile of the conditional distri-

bution of sup,cy jefz ]C?u]\ given the data (W;)?"_, where the process G = (gAuj)ueu,je[ﬁ} is defined
in ([Z.6). Then we have

Corollary 3.2 (Uniform confidence bands for logistic model). Suppose that Assumptions[31 —[32
hold for all P € P,,. In addition, suppose that the following growth conditions hold: 52 log a,, = o(1),
Mn27/17 log a, = o(n'/7), Mn2/13 log a, = o(n'/3=2/GD) and s, 1og> a, = o(n). Then

< CaOuj < CaOuj
PP <9uj_ - geuj\euj"i‘ -
N Jn

uniformly over P € P,.

, foralluel and j € [ﬁ]) =1—-a-o0(1) (3.8)

To conclude this section, we provide an example for which conditions of Corollary are easy

to interpret. Recall that a,, =nV pV p.
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Corollary 3.3 (Uniform confidence bands for logistic model under simple conditions). Suppose that
Assumptions [31) - [2.3, [34)(i,ii,iv), and [Z3(i,4,iv,v) hold for q > 4 for all P € P,. In addition,
suppose that {Ep[(||D]lso V|| X ||ec)?9]}/ 9 < Oy and SUPyers jelf] |villy < C1. Finally, suppose that
log” an/n = o(1), s2log®a,/n'=%1 = o(1), and SUPycur, el Ep[roZi]| = o((nlogay,)~'/2). Then
B8] holds uniformly over P € P,,.

Comment 3.1 (Estimation of variance). When constructing the confidence bands based on (B.8]),
we find in simulations that it is beneficial to replace the estimators &5 ; of o; by max{g2;, iij}
2

i ]

where iij =E, [E (D — X3})2] is an alternative consistent estimator of o

Comment 3.2 (Alternative implementations, double selection). We note that the theory developed
here is applicable for different estimators that construct the new score function with the desired
orthogonality condition implicitly. For example, the double selection idea yields an implementation
of an estimator that is first-order equivalent to the estimator based on the score function. The

algorithm yielding the double selection estimator is as follows.

Algorithm 2. (Based on double selection) For each u € U and j € [p]:

Step 1'. Run post-£1-penalized logistic estimator (£2]) of Y, on D and X to compute (gu, Eu)
Step 2'. Define the weights f2 = f2(D, X) = A (D/0, + X5.).

Step 3'. Run the lasso estimator ([Z4]) of quj on qu to compute %

Step 4'. Run logistic regression of Y, on D; and all the selected variables in Steps 1" and 3’

to compute éuj.

As mentioned by a referee, it is surprising that the double selection procedure has uniform
validity. The use of the additional variables selected in Step 3’, through the first order conditions
of the optimization problem, induces the necessary near-orthogonality condition. We refer to the

Supplementary Material for a more detailed discussion. [

Comment 3.3 (Alternative implementations, one-step correction). Another implementation for
which the theory developed here applies is to replace Step 5 in Algorithm 1 with a one-step pro-
cedure. This relates to the debiasing procedure proposed in [42] to the case when the set U is a
singleton. In this case instead of minimizing the criterion ([8.7)) in Step 5, the method makes a full

Newton step from the initial estimate,
Step 5. Compute 0,,; = §uj - ju_len[l/Juj(W, é\uj, Tuj)]-

The theory developed here directly apply to those estimators as well. ]

4. ¢(1-PENALIZED M-ESTIMATORS: NUISANCE FUNCTIONS AND FUNCTIONAL DATA

In this section, we define the estimators 5u, Bu, and %, which were used in the previous section,
and study their properties. We consider the same setting as that in the previous section. The
results in this section rely upon a set of new results for ¢1-penalized M-estimators with functional

data presented in Appendix[[l of the Supplementary Material.
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4.1. ¢1-Penalized Logistic Regression for Functional Response Data: Asymptotic Prop-
erties. Here we consider the generalized linear model with the logistic link function and functional
response data ([B.I). As explained in the previous section, we assume that gu and Eu are post-
regularization maximum likelihood estimators of 6, and [, corresponding to the log-likelihood
function M, (W, 0,5) = M, (Y,, D, X,0,3) defined in ([B5]). To define these estimators, let 9, and

Bu be ¢1-penalized maximum likelihood (logistic regression) estimators

~ o~

(0.5 € avgrgin (B [M,(Y0, D, X.0.9)] + 19,0057 (a.)

)

where X is a penalty level and \T/u a diagonal matrix of penalty loadings. We choose parameters \
and (I\’u according to Algorithm 3 described below. Using the ¢;-penalized estimators §u and Bu,

we then define post-regularization estimators gu and Bu by

~ o~

(@MBu) € argmeinEn[Mu(Yu,D,X,H,ﬁ)] : supp(#, B) C supp(Qy, Bu)- (4.2)

We derive the rate of convergence and sparsity properties of §u and Eu as well as of §u and Bu in
Theorem [Z1] below. Recall that a, =nV pV p.

Algorithm 3 (Penalty Level and Loadings for Logistic Regression). Choose v € [1/n,1/logn| and
c > 1 (in practice, we set ¢ = 1.1 and v = .1/logn). Define A\ = c/n® (1 — v/(2(p + p)Ny))
with N,, = n. To select \Tlu, choose a constant m > 0 as an upper bound on the number of loops
and proceed as follows: (0) Let X = (D/,X’)', m = 0, and initialize lAukp = %{En[f(g]}lﬂ for
kelp+pl. (1) Compute (6y,5,) and (6, 3,) based on W, = diag({lup.m,k € [p+ 5]}). (2) Set
lAuk,mH = {En[)N(,%(Yu — A(D'6, + X'B,))%}/2. (3) If m > m, report the current value of U, and
stop; otherwise set m <— m + 1 and go to step (1).

Theorem 4.1 (Rates and Sparsity for Functional Response under Logistic Link). Suppose that
Assumptions [Z1] — hold for all P € P,. In addition, suppose that the penalty level X and
the matrices of penalty loadings (I\’u are chosen according to Algorithm [3. Moreover, suppose that
the following growth condition holds: 62loga, = o(1). Then there exists a constant C such that
uniformly over all P € Py, with probability 1 — o(1),

~ ~ - |splogay, ~ ~ - |52 logay
sup (118 = 0ull + 118, = Bull) < O/ 2222 sup (118 — Oulls + 1B, — Bully) < Oy 22222,
ueld n ueld n

and the estimators 0, and Bu are uniformly sparse: sup,cy H§u||0 + ||§u||0 < Csy,. Also, uniformly
over all P € Py, with probability 1 — o(1),

~ ~ _ /s, logay, ~ ~ _ [s2logay,
sup (1 = 0ull + 13 = Bull) < O/ 2220 sup (110 — Gully + 118 — Bull ) < O/ 222,
ueU n = n
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4.2. Lasso with Estimated Weights: Asymptotic Properties. Here we consider the weighted
linear model B3]) for v € U and j € [p]. Using the parameter 7i, appearing in Assumption B2 it

will be convenient to rewrite this model as
fuDj = [uXI3, + fuTuj +vl,  Ep[fuX7v]] =0 (4.3)

where 7,; = X (’yﬂ — ”yﬁ) is an approximation error, which is asymptotically negligible under
Assumption As explained in the previous section, we assume that 77, is a post-regularization
weighted least squares estimator of ’yﬂ (or ’7&) To define this estimator, let ’y\ﬂ be an ¢1-penalized

(weighted Lasso) estimator
~7 . 1 2 j 2 )\ -
Yu € argmin { 3En[fy (D — X79)7T+ [ Wu;vlls (4.4)

where A\ and \T/uj are the associated penalty level and the diagonal matrix of penalty loadings
specified below in Algorithm 4 and where ]au’s are estimated weights. As in Algorithm 1 in the
previous section, we set Auz = fuZ(D, X)=N(D 0, + X' Bu) Using 77, we define a post-regularized

weighted least squares estimator
7, € argmin JE,[F2(D; ~ X77)°) + supp(y) € supp(3y). (4.5)

We derive the rate of convergence and sparsity properties of % as well as of ﬁﬁ in Theorem

below.

Algorithm 4 (Penalty Level and Loadings for Weighted Lasso). Choose v € [1/n,1/logn] and
¢ > 1 (in practice, we set ¢ = 1.1 and v = .1/logn). Define A\ = cy/n® (1 — v/(2(p + p)Ny))
with N,, = pp*n?. To select \T/uj, choose a constant m > 1 as an upper bound on the number
of loops and proceed as follows: (0) Set m = 0 and lAujkp = maxj<i<n HmefHOO{IETL[ZZDJQ]}V2
(1) Compute 77 and 7 based on \Tfuj = diag({lAujkvm,k: € p+p—1]}). (2) Set lAujk,mH =
{E, [f/:il(Dj - Xj%)2(Xg)2]}1/2. (3) If m > m, report the current value of 4 and stop; otherwise
set m <— m + 1 and go to step (1).

Theorem 4.2 (Rates and Sparsity for Lasso with Estimated Weights). Suppose that Assumptions
21 - hold for all P € P,. In addition, suppose that the penalty level X and the matrices of
penalty loadings \Tfuj are chosen according to Algorithm [f} Moreover, suppose that the following
growth condition holds: 62log a, = o(1). Then there exists a constant C' such that uniformly over
all P € Py, with probability 1 — o(1),

~i ~ [snloga L _ [s2loca
maxsup |57 — 74| < Cy/ 22222 and maxsup|[57 — 71| < Cy/ 220
J€lp] ueu n F€[B) ueld n

and the estimator % is uniformly sparse, max ez Sup,ecy H%Ho < Csy,. Also, uniformly over all
P € P, with probability 1 — o(1),

s - - [s,loga s , _ /s2loga
max sup |77, — 75 || < O/ ——— 8% and max sup |72 — 72 ||, < Oy 2n%80n
JED] ued n J€B] uelt n
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5. SIMULATIONS AND ILLUSTRATIVE APPLICATION

5.1. Monte Carlo Simulations. In this section we provide a simulation study to investigate
the finite sample properties of the proposed estimators and the associated confidence regions. We
report only the performance of the estimator based on the double selection procedure due to space
constraints and note that it has very similar to the performance of the estimator based on score
functions with near orthogonality property. We will compare the proposed procedure with the
traditional estimator that refits the model selected by the corresponding ¢1-penalized M-estimator

(naive post-selection estimator).

We consider a logistic regression model with functional response data where the response Y, =
1{y < u} for u € U a compact set. We specify two different designs: (1) a location model where
y = 2Py + & where ¢ is distributed as a logistic random variable, the first component of x is the
intercept and the other p — 1 components are distributed as N(0,%) with % ; = [0.5[*771; (2)
a location-shift model where 3y = {(z'8y + &)/2'9¢}> where ¢ is distributed as a logistic random
variable, r; = |w;| where w is a p-vector distributed as N(0,%) with ¥ ; = |0.5[*771 and ¥ has

non-negative components. Such specification implies that for each u € U
Design 1: 6, = u(1,0,...,0) — B3y and Design 2: 6, = u39y — Bo.

In our simulations we will consider n = 500 and p = 2000. For the location model (Design 1) we will
consider two different choices for 5y: (i) 5(()}) =2/j%forj=1,...,p, and (ii) B((]Zjl) = (1/2)/{j—3.5}>

for j > 1 with the intercept coefficient Béili) = —10. (These choices ensure max;>1 |fp;| = 2 and that
y is around zero in Design 2(ii).) We set ¥y = %(1, 1,1,1,0,0,...,0,0,1,1,1,1)". For Design 1 we
have U = [1,2.5] and for Design 2 we have U = [—.5,.5]. The results are based on 500 replications

(the bootstrap procedure is performed 5000 times for each replication).

We report the (empirical) rejection frequencies for confidence regions with 95% nominal coverage.
That is, the fraction of simulations the confidence regions of a particular method did not cover
the true value (thus .05 rejection frequency is the ideal performance). We report the rejection

frequencies for the proposed estimator and the post-naive selection estimator.

Table [ presents the performance of the methods when applied to construct a confidence interval
for a single parameter (p = 1 and U is a singleton). Since the setting is not symmetric we investigate
the performance for different components. Specifically, we consider {u} x {j} for j = 1,...,10.
First consider the location model (Design 1). The difference between the performance of the naive
estimator for Design 1(i) and 1(ii) highlights its fragile performance which is highly dependent on
the unknown parameters. In Design 1(i) the Naive method achieve (pointwise) rejection frequencies
between .032 and .162 when the nominal level is .05. However, in the Design 1(ii) the range goes from
0.018 to 0.904. We also note that it is important to look at the performance of each component and
avoid averaging across components (large j components are essentially not in the model, indeed for
j > 50 we obtain rejection frequencies very close to .05 regardless of the model selection procedure).

In contrast the proposed estimator exhibits a more robust behavior. For Design 1(i) the rejection
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p = 2000, n = 500 Pointwise Rejection Frequencies for each j € {1,...,10}
Design | Method | j=1 j—=2 j—=3 j—4 j=5 j—6 j—=7 j—=8 j—=9 j—10
1(i) Proposed | 0.042 0.040 0.062 0.050 0.044 0.028 0.044 0.048 0.042 0.036
Naive 0.100 0.098 0.108 0.108 0.162 0.110 0.078 0.072 0.068 0.032
1(ii) Proposed | 0.044 0.040 0.054 0.056 0.056 0.052 0.044 0.048 0.054 0.050
Naive 0.038 0.030 0.070 0.886 0.698 0.172 0.062 0.030 0.052 0.018
2(i) Proposed | 0.046 0.054 0.044 0.052 0.054 0.040 0.038 0.052 0.036 0.044
Naive 0.046 0.050 0.038 0.070 0.054 0.040 0.064 0.038 0.038 0.044
2(ii) Proposed | 0.092 0.074 0.034 0.088 0.082 0.046 0.068 0.058 0.068 0.070
Naive 0.034 0.972 0.182 0.312 0.916 0.096 0.028 0.018 0.016 0.024

TABLE 1. We report the rejection frequencies of each method for (pointwise) con-
fidence intervals for each j € {1,...,10}. For Design 1 we used &« = {1} and for
Design 2 we used U = {.5}. The results are based on 500 replications.

frequencies are between .028 and .062 while for Design 1(ii) the rejection frequencies of the proposed

estimator were between 0.044 and 0.056.

Table2 presents the performance for simultaneous confidence bands of the form {[éuj—(:v&uj, éuj—i—
cvoy;| for u € U x [p] where éuj is a point estimate, ,; is an estimate of the pointwise standard
deviation, and cv is a critical value that accounts for the uniform estimation. For the point estimate
we consider the proposed estimator and the post-naive selection estimator which have estimates of
standard deviation. We consider two critical values: from the multiplier bootstrap (MB) procedure
and the Bonferroni (BF) correction (which we expect to be conservative). For each of the four
different designs (1(i), 1(ii), 2(i) and 2(ii) described above), we consider four different choices of
U x [p]. Table 2] displays rejection frequencies for confidence regions with 95% nominal coverage
(and again .05 would be the ideal performance). The simulation results confirms the differences
between the performance of the methods and overall the proposed procedure is closer to the nom-
inal value of .05 . The proposed estimator performed within a factor of two to the nominal value
in 10 out of the 16 designs considered (and 13 out 16 within a factor of three). The post-naive
selection estimator performed within a factor of two only in 3 out of the 16 designs when using the
multiplier bootstrap as critical value (7 out of 16 within a factor of three) and similarly with the

Bonferroni correction as the critical value.

5.2. Application to US Presidential Approval Ratings. In this section we illustrate the
applicability of the tools proposed in this work with data on US presidential approval ratings used
in [I3]. There several economic and political factors that impact presidential approval ratings. In
this illustration, we are interested on the impact of unemployment rates and on the impact of time
in office on the approval rate of a sitting president. However, the impact of such factors might not
be homogeneous and in fact depend on current ratings. For example, a sitting president is likely
to have a fraction of voters who would support him regardless of economic factors. Thus, a low
unemployment rate might not have an effect when approval ratings are low and have a significant
effect when approval ratings are high. This would imply a different effect on different parts of the

conditional distribution of the approval rating.
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p = 2000, n = 500 Uniform over U x [p]
Design Method [1,2.5] x {1} {1} x [10] [1,2.5] x [10] {1} x [1000]
Proposed 0.054 0.036 0.048 0.040
1(i) Naive (MB) 0.126 0.136 0.172 0.032
Naive (BF) 0.014 0.124 0.026 0.032
Propose 0.270 0.036 0.032 0.142
1(ii) Naive (MB) 0.014 0.802 0.934 0.404
Naive (BF) 0.000 0.802 0.718 0.376
Design Method [—.5,.5] x {1} | {.5} x [10] | [-.5,.5] x [10] {.5} x [1000]
Proposed 0.364 0.038 0.052 0.062
2(i) Naive (MB) 0.116 0.040 0.022 0.048
Naive (BF) 0.018 0.038 0.000 0.046
Proposed 0.140 0.090 0.408 0.084
2(ii) Naive (MB) 0.002 0.946 0.996 0.362
Naive (BF) 0.000 0.946 0.944 0.298

TABLE 2. We report the rejection frequencies of each method for the (uniform)
confidence bands for U x [p]. The proposed estimator computes the critical value
based on the multiplier bootstrap procedure. For the naive post-selection estimator
we report the results for two choices of critical values, one choice based on the
multiplier bootstrap (MB), and another based on Bonferroni (BF) correction. The

results are based on 500 replications.

To study the distributional effect of these factors we use a logistic regression model with functional
data as described in Section Bl Letting Y denote the approval rating, we define Y,, = 1{Y < u} to
be the binary variable that indicates if the approval rating is below the threshold u € U = [.45, .65].

For each level of approval rating u € U we estimate the model
E[Yu | Dunemm Dtim67 X] = A(eu,unempDunemp + Hu,timeDtime + Xlﬂu) + 7y

where Dynemp denotes the unemployment rate, Dyine the number of months the president has been
in office, 7, a (small) approximation error, and X denotes several additional control variables. In
addition to the linear terms for the variablesEl used in [13], we also consider interactions among
controls. Therefore, for each u € U we have a generalized linear model using logistic link function

with 160 variables and 603 observations.

We construct simultaneous confidence bands for both coefficients (p = 2) uniformly over u € U.
Although p < n for every u € U, the full model (applying logistic regression with all regressors) led
to numerical instabilities and other numerical failures. We proceed to construct (asymptotically)

valid confidence regions based on the double selection procedure for functional logistic regression.

Figure [[ displays the estimation results. Specifically, the figure displays point estimates of each
coefficient for every u € U (solid line), pointwise confidence intervals (dotted line), and uniform
confidence bands (dot-dash lines). Point estimates account for model selection mistakes and are
computed based the double selection procedure. For 95% coverage, the pointwise critical value is

taken to be ®1(.975) ~ 1.96 from the normal approximation and the critical value for uniform

IThose include dummy variables for each president, Watergate scandal, causalities in different wars, political

shocks, and other variables, see [13] for a complete description.
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FIGURE 1. The panels display pointwise (dotted) and uniform (dotdash) confidence bands for
the unemployment coefficient and the time-in-office coefficient. These confidence regions are set to
have 95% coverage and were constructed based on the double selection algorithm. The critical value
for the uniform confidence bands was set to 2.93 based on the multiplier bootstrap procedure with
5000 repetitions. For both coefficients, the lowest value of the upper confidence band is smaller

than the largest value of the lower confidence band.

confidence bands (uniformly over both coefficients and over u € U) was calculated to be 3.003 based

on 5000 repetitions of the multiplier bootstrap.

At 95% confidence level, the uniform confidence band rule out “no effect” over I/ for both
variables. Indeed, the straight line at 0 is not contained in the uniform confidence bands for either
variable. Next consider the process of the unemployment coefficient. The analysis suggests that the
unemployment rate has an overall negative effect on the approval rate of a sitting president (as the
coefficient is positive increasing the probability to be below a threshold). Regarding time-in-office,
the effect also seems to be predominantly negative. However, the impact is not homogeneous across
u € U. Indeed, the lowest value of the upper confidence band (0.007, v = 0.584) is smaller than
the largest value of the lower confidence band (0.013, u = 0.647), see the circles in the plot of the
process of the time-in-office coefficient. The impact seems to be greater for the lower and higher
values of u € U while the effect of seems negligible in the range of u € [.575,.625]. In particular, at

95% level, no effect is ruled out for large values of w.

APPENDIX A. NOTATION

A.1. Overall Notation. Throughout the paper, the symbols P and E denote probability and
expectation operators with respect to a generic probability measure. If we need to signify the
dependence on a probability measure P, we use P as a subscript in Pp and Ep. In the proofs, we
sometimes also use P as a subscript for random variables as in Wp. Note also that we use capital
letters such as W to denote random elements and use the corresponding lower case letters such as
w to denote fixed values that these random elements can take. For a positive integer k, [k] denotes
the set {1,...,k}.
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We denote by P, the (random) empirical probability measure that assigns probability n~! to each
W; € (W;)!_,. E, denotes the expectation with respect to the empirical measure, and G,, = G, p
denotes the empirical process /n(E,, — Ep), that is,

Grp(f) = G p(fW)) =02 S { (W) = Ep[f(W)]}, Eplf /f VAP (w
i=1

indexed by a class of measurable functions F: W — R; see [44], chap. 2.3]. In what follows, we
use || - ||p4 to denote the L9(P) norm; for example, we use || f(W)||p, = (J |f(w)|9dP(w))*/9 and
[F ) |Eng = (n7E30 [ F(W)]|9)9. For a vector v = (vi,...,v,)" € RP, |[v]jo denotes the £o-
“norm” of v, that is, the number of non-zero components of v, ||v||; denotes the ¢;-norm of v, that
is, |vlli = |v1] + -+ + |vpl, and |lv| denotes the Euclidean norm of v, that is, ||v]| = vv'v.

We say that a class of functions F = {f(-,t): t € T}, where f: W x T — R, is suitably
measurable if it is an image admissible Suslin class, as defined in [22], p 186. In particular, F is

suitably measurable if f: W xT — R is measurable and T is a Polish space equipped with its Borel
o-field, see [22], p 186.

APPENDIX B. A BOUND ON SPARSE EIGENVALUES FOR MANY RANDOM MATRICES

The following lemma is a generalization of the main result in [41] to many matrices. The proof

of the lemma is given in the Supplementary Material.

Lemma B.1. LetU denote a finite set and (Xyi)ueu, © = 1,...,n, be independent (across i) random
vectors such that X,; € RP with p > 2 and (E[max<jc, max,ecy | Xuil|Z])/? < K. Furthermore,
for k> 1, define

5 1= BV (10872 U] + 10g"/2 p + (log k) (log "/ p) (10g/2 ) )
T
Then,
E sup  max |E, [(0'X,)* — E[(0'X.)%]] 1B 62 + 0, sup E,E[(0'X,)?]
6llo<k[l6]|=1 “EU [6llo<k,l|0]|=1,uetd

up-to a universal constant.

APPENDIX C. PROOFS FOR SECTION

In this appendix, we use C' to denote a strictly positive constant that is independent of n and
P € P,. The value of C' may change at each appearance. Also, the notation a, < b, means that
a, < Cb,, for all n and some C. The notation a,, = b, means that b, < a,. Moreover, the notation
a, = o(1) means that there exists a sequence (by,),>1 of positive numbers such that (i) |a,| < b, for
all n, (ii) b, is independent of P € P, for all n, and (iii) b, — 0 as n — co. Finally, the notation
a, = Op(b,) means that for all ¢ > 0, there exists C such that Pp(a,, > Cb,) < 1 — € for all n.
Using this notation allows us to avoid repeating “uniformly over P € P,,” many times in the proofs

of Theorem Il and Corollaries 2.1] and Throughout this appendix, we assume that n > nyg.
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Proof of Theorem 2.7l We split the proof into five steps.
Step 1. (Preliminary Rate Result). We claim that with probability 1 — o(1),

sup  [0y; — Ouj| S BinTn.
uel,je(p]

By definition of éuj, we have for each u € U and j € [p],

En[wu](VVa 97 ﬁu])] + €n,

En[wuj<w,éuj,ﬁuj>]\ < inf

Ge@uj

which implies via the triangle inequality that uniformly over w € U and j € [p|, with probability
1- 0(1)7
‘ Ep[ty; (W, 9,77uj)]|9:guj ‘ <€y + 20 + 205 < By, where (C.1)

I = sup
u€U,j€[p],0€O

En [0 (W, 0, 7u5)] = Ealthus(W:0,10)]| S Buna,

L= sup  [Eaftu;(W,0,m)] = Eplton; (W, 0,m)]| S 7

u€U,j€[p],0€O
and the bounds on I; and I, are derived in Step 2 (note also that €, = o(7,,) by construction of the
estimator and Assumption Z2(vi)). Since by Assumption BIiv), 27 Jy;(0uj — 0u;)| A co does not
exceed the left-hand side of (CI)), infy,ey jef [Juj| 2 1, and by Assumption Z2(vi), By,7, = o(1),
we conclude that

~1
sup  |0uj — Ous| S < inf ]Juj!> BinTn S BinTa, (C.2)
uel,j€lf] 2

uel ,je[p
with probability 1 — o(1) yielding the claim of this step.

Step 2. (Bounds on I; and I5) We claim that with probability 1 — o(1),
Il S BlnTn and 12 S Tn-

To show these relations, observe that with probability 1—o(1), we have I} < 214+ 1 and Iy < [44,

where

I, = sup Eany(VV, 0,m)] — EPW)UJ‘(VV’ 9’77)]"
uEU,FE[B],0€Ou;,nETu;
I s Bp[ihus (W, 0,7)] — Eplius (W0, 105)]|

ueld,j€[p],0€Ou;,nETu;

To bound I3, we employ Taylor’s expansion:

Iy < sup OrEp [ (W, 0, + (0 — )|
u€U,j€[p],0€Oj,nETu;,r€[0,1)

< Bln sup HTI - Tluj”e < BlnTna
ueU,j€[p],n€Tu;

by Assumptions 2.I|v) and 22(ii).
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To bound Iy,, we apply the maximal inequality of Lemma to the class F; defined in As-
sumption 22 to conclude that with probability 1 — o(1),

L, < n_1/2< vy log a, + n~V2H Yy, K log an>. (C.3)

Here we used: logsupg N (e||Fi||q,2, F1, || - [|@,2) < vnlog(as/e) for all 0 < e <1 with [[F1||pg < Ky,
by Assumption Z2(iv); supser, ||f||§372 < Cp by Assumption 22(v); a, > nV K, and v, > 1 by
the choice of a, and v,. In turn, the right-hand side of (C.3]) is bounded from above by O(7,) by
Assumption Z2(vi) since (v, log a,/n)"/? < 7, and

n~ ity K, loga, = n~Y 2124y, K, log a, < n=1/25, < n=1/2 < Ty
Combining presented bounds gives the claim of this step.

Step 3. (Linearization) Here we prove the claim of the theorem. Fix w € U and j € [p]. By

definition of éuj, we have

VA[En[thus (W, 0z, )| < inf v
uj

Bty (W, 0, ))| + /. (C.4)
Also, for any 6 € ©,; and 7 € Ty, we have
VB[P (W, 0,1)] = VnEn[Yu; (W, 0ujs Nuj)] — Gntbuj (W, Ouj, 1us) (C.5)
V(B (W, 8 1)) = B[t (W, 0,m)]) + Gthug (W, 0,1).
Moreover, by Taylor’s expansion of the function r +— Ep[1)y,; (W, 0y; + (0 — 64j), nuj +7(n — ;)]
Ep[thu; (W, 0,0)] = Ep[thu; (W, 0uj, 1u;5)] (C.6)
= Juj(0 = 0uj) + Dujoln — nus) + OFEP[W, 0uj + (8 — 0uj), 1 +7(0 — 1uy)]|,_;

for some 7 € (0,1). Substituting this equality into (C.5), taking 6 = 6,; and n = 7,;, and using
(C4) gives
VB[t (W, 0uj, )] + Juj (uj = 0uj) + Dugollug — 1]

eV + i VB[ (W, 0,70)] | + 111 ()| + | TEa(u, ), (eky
uj

where

I11(u,j) = Vi sup
rel0,1)

I15(u,j) = Gy (wuj(W, 0,1) — uj(W, 0uj, ﬁuj)) ‘

9

OB [ty (W, Ou 70 = 0ug) g +rln —maD) |,
=Vug ,"N="Tuj

Gzéujvn:ﬁuj .
It will be shown in Step 4 that
sup (|103(u, ) + |1 o(u, )| ) = Op(3n). (C38)
u€U,jE€[p]
In addition, it will be shown in Step 5 that
sup inf /n[E, [0y (W, 0,745)]| = Op(0n). (C.9)
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Moreover, €,v/n = 0(d,) by construction of the estimator. Therefore, the expression in (C1) is
Op(dy,). Further,

sup ‘Du,j,o[ﬁuj - qu] = Op(énn_1/2)
ueU,jE[p]

by the near orthogonality condition since 7,; € T,; for all v € U and j € [p] with probability
1 —o(1) by Assumption [Z2l(i). Therefore, Assumption [ZI|iv) gives

Ju_jl\/ﬁEn[qﬁuj(VV’ eujanuj)] + \/ﬁ(éw — Quj) = Op(5n),

sup
u€U,jE[p]

The asserted claim now follows by dividing both parts of the display above by o,; (under the
supremum on the left-hand side) and noting that o,; is bounded below from zero uniformly over
u €U and j € [p] by Assumptions 22[iii) and 22(v).

Step 4. (Bounds on ITi(u,j) and II5(u,j)). Here we prove (C.8). First, with probability
1- 0(1)7

sup  |[IT1(u, j)| < /nBa, sup ’éuj - euj’2 V [Ty — nuy'H \/_BlnB2" < On,
uel,jE[p] u€U,j€[p]

where the first inequality follows from Assumptions ZI(v) and [Z2i), the second from Step 1 and
Assumptions 2.2((ii) and 22(vi), and the third from Assumption 2.2(vi).

Second, with probability 1 — o(1),

sup |I1z(u,j)| < sup |Gn(f)]
uel,je[p] feFz

where

Fo = {wuj(‘a n) — wu]( ugﬂ]u]) uel,je [ ] ne u]7!9 euJ’ CBlnTn}

for sufficiently large constant C. To bound sup ez, |Gn(f)|, we apply Lemma[[.2l Observe that

sSup HfHPz sup Ep [(qu(VVa 0,m) — T/JuJ(VVv 9ua’v77uj))2]
feFs ueuvje[ﬁ]vw_euj‘gCBlnTnyrlenj
< sSup Co(l0 — euj‘ VI — 77uj”e)w S (Binma)”,

where we used Assumption EZI(v) and Assumption Z2(ii). Also, observe that (By,7,)*/? > n~%/*
by Assumption [Z2(vi) since By, > 1. Therefore, an application of Lemma [[L.2] with an envelope
Fy, =2F; and 0 = (CBlnTn)w/ 2 for sufficiently large constant C gives with probability 1 — o(1),

sup |G, (f)] < (B1n7'n)“/2 vy log a, + n~12tay, K, log a,, (C.10)
feF

since sup ez, |f| < 2supsez [f| < 2F1 and [|[Fi][p4 < Ky by Assumption 2.2(iv) and

log sup N (€||F2]|g.2, F2, || - [0,2) S vnlog(an/e), forall 0 <e<1
Q

by Lemma [KJ] because Fo C Fy — Fy for Fy defined in Assumption 2:2[(iv). The claim of this step
now follows from an application of Assumption [Z2[vi) to bound the right-hand side of (C.I10).
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Step 5. Here we prove (C9). For all u € U and j € [p], let 0,; = 0, — U_JIE [V (W, 0, M)

Then sup,,y, JElp |9uj uy| = Op(uy/y/n) since u, = EP[SuPueu,]e lvVnE, Wuy(Wujaeuyﬂ?uy)”]
and Jy; is bounded in absolute value below from zero uniformly over u € U and j € [p] by

Assumption Z[(iv). Therefore, 6,; € O, for all u € U and j € [p] with probability 1 — o(1) by
Assumption [ZIi). Hence, with the same probability, for all u € U and j € [p],

Eo 10 (W, 0,705 < V| En s (W, Bz, )]

0€0,;

and so it suffices to show that

Bty (W, By fug)]| = Op(60). (C.11)

wel,jE[p
To prove (CII)), for given u € U and j € [p], substitute § = 6, and n = 7,; into (CH) and use
Taylor’s expansion in (C.6). This gives
\/ﬁ E, [T/Jug(VVa éuja ﬁu])]‘ < En [T/Juj(W7 9uja nuj)] + Juj (éuj - euj) + Du,jﬂ[ﬁuj B nt]

where ﬁl(u,j) and ﬁg(u,j) are defined as I7;(u, j) and II5(u, j) in Step 3 but with ,,; replaced by
0,;. Then, given that SUPyeur,jel] 0uj — 0u;| < unlogn/y/n with probability 1 —o(1), the argument
in Step 4 shows that

sup (174w, )| + |TT2(u, )] ) = Op(6n).
ueU,jE€p|

In addition,
En[wu](VVa Hujy nuj)] + Juj(éuj - 9“]) =0

by the definition of 6,; and SUPyeur,jelp] | Dung0[Muj — Mugl| = Op(6,n~1/2) by the near orthogonal-
ity condition. Combining these bounds gives (CII), so that the claim of this step follows, and

completes the proof of the theorem. ]

Proof of Corollary 2.3l To prove the asserted claim, we will apply Lemma 2.4 in [I8]. Denote

Y26 By — Ouy) .

Zp= sup |n
uel, jE[p]

g

Under our assumptions, Lg/ 7gn log A, = o(nl/ 7), and so given that g, > 1 and A, > n, it follows
that log L,, < logn. Hence, since Ep[@Z](W)] = 1, Assumption 23|i) and Corollary 2.2.8 in [44]
imply that

Ep
ueU,jE[p]

sup |/\/'uj|] < \/Qn log(A,Ly,) < \/Qn log A,,. (C.12)

Further, Theorem 2.1l shows that

Zyp — sup ’Gnl/;u]‘ =Op
ueU,je[p

(0n), (C.13)
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and Theorem 2.1 in [20], together with Assumptions2.3(i,ii), shows that one can construct a version

Z of SUPycur jefp) NVuj| such that

" 7 | Ln@n IOg An Liz/g(gn lOg An)2/3
uei}if;[ﬁ} ’anu]’ - Zn - OP < n1/2_1/q n1/6 . (014)
Combining (C.13)) and (C.14) gives
= Lyoplog Ay, L,11/3(gn log A,,)%/3
|Zy, — Zyn| = Op <5n + 1—1/q /6 . (C.15)
Therefore, it follows from Lemma 2.4 in [I§] that (CI2) and (CI5) imply
sup |Pp(Zn <t) —Pp(Z, <t)| = o(1) (C.16)

teR

under our growth conditions 62p, log A,, = o(1), L%ﬁpn log A, = o(n'/7), and Lg/?’pn log A,, =
o(nl/ 3-2/ (3‘1)); note that formally their Lemma 2.4 requires Z,, to be the supremum of an empirical
process but this requirement is not used in the proof. The asserted claim now follows by substituting
the definitions of Z,, and Zn [

Proof of Corollary Denote ZF = SUPyeur,jel] ]C?u]] For all ¥ € (0,1), let ¢ be the (1 — 1)

quantile of sup,cy jeiz |NVuj|- We proceed in several steps.

Step 1. Here we show that cg satisfies the bound

& <Ep| sup  [Nyl| + /2log(1/9)

u€U ,j€[p]

for all ¥ € (0,1). Indeed, recall that Ep[./\/’gj] =1 for all w € U4 and j € [p]. Therefore, this bound
follows from Borell’s inequality; see Proposition A.2.1 in [44].

Step 2. Here we show that for any 9 € (0,1) and 3 € (0,9),

uel,jE(p]

cg_ﬁ—chCﬂ/Ep[ sup \Nu]]]

for some absolute constant ¢ > 0. Indeed, given that Ep[./\/'fj] =1 for all w € U and j € [p], this
bound follows from Corollary 2.1 in [16].

Step 3. Here we show that

‘ — Op (&W) : (C.17)

Indeed, the left-hand side of (CIT) is bounded from above by

7 _ LS eg oW
Zi- sw | 77 2 b (1)

ueU,jE[p

sup
uel,jEp]

sup
u€U,jE[p]

R 1> - 1 & —~ _
Guj — 7 ; Eibu;(W3)| = 7 ; &i(Yu (W) — wuj(Wi))‘ '
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Conditional on (W;)_,, n= /231" | SZ(QZUJ(WZ) — 1by;(W;)) is zero-mean Gaussian with variance
En[(JuJ(WZ) —1uj(W;))?] < 62 with probability at least 1 — A, by Assumption 2.3(iii). Thus, with
the same probability,

Er [ﬁ D €i(dug (W) = g (W) | <Wi>;-;1] <6/2ulog A,
i=1

by Assumption 2.3(iii) and Corollary 2.2.8 in [44]. Since A,, — 0, (CI7) follows.

Step 4. Here we show that one can construct a version Z, of SUPy,eu/, jel] |NVuj| such that

— 7,

nl/2—1/q nl/4

1 o - L, 0,log A, L,l/2(gn log A,,)3/4

sup | <= 3 &b (Wi)| = Za| = Op .

uelU,j€p| \/ﬁ ; !

Indeed, as was discussed in the proof of Corollary 2.1l we have log L,, < logn and Ep [1/_)5](W2)] =1

Therefore, the claim follows from Theorem 2.2 in [20] combined with Assumption Z3|(i,ii).

Step 5. Here we show that there exists a sequence of positive constants (9,,),>1 such that
¥y, — 0 and Pp (ca(l +en) > Cg—ﬁn> — 0. Indeed, Steps 3 and 4 imply that |Z* — Z,| = Op(ry)

where
T Lyonlog A, Li/*(0nlog A,)3
<
Tn S Ony/ On log A + 1214 + Yz .

Also, as in the proof of Corollary 21l Ep[Z,] < (o5 log A,)Y2. Hence, r,Ep[Z,] = o(1) under our
conditions, and so there exists a sequence of positive constants (x,)n>1 such that x, — oo but
XnrnBEp[Zn] = o(1). Further, let 8, = {Pp(|Z5 — Zpn| > xnrn)}*/2. Observe that £, = o(1) and

PP <PP<’Z:L - Zn’ > XnTn ’ (Wz)?:l> > /Bn> < /Bn

The last display implies that with probability at least 1 — 8, co < cg_ 5, t Xnrn. Hence, with
the same probability, using the bounds in Steps 1 and 2, we obtain for some sequence of positive
constants (¥,,),>1 such that ¥, = o(1),

ca(l+en) < (Cg—ﬁn + XnTn)(1 +en) < Cg—ﬁn
since XnrnEp[Zy] = 0(1) and e, (Ep[Z,])% = o(1) by assumption. The claim of this step follows.
Step 6. Here we complete the proof. We have

Pp( sup \\/ﬁfigjl(éu] - Hu])‘ < Ca> = Pp(‘\/ﬁdu_jl(éuj - Qu])’ < Caa'\uj/a'ujy Yu € u,j S [ﬁ])
u€lU,je[p]

<Pp( sup |Vnoy (B —b.)| < call+20)) +o(1)
wel,je[p

<Pp( sup Vo (s = 0u)| < oy, ) +o(1)
ueU,j€p|

=l—a+v,+o(l)=1—a+o(1)
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where the third line follows by Assumption [2.4] the fourth by Step 5, and the fifth by Corollary

2 Similar arguments also give the same bound from the other side. Therefore,

Pp| sup |\/ﬁau_j1(éuj —0uj)| S ca | =1—a+o(l). (C.18)
u€U,jE€[p]

This completes the proof. [

APPENDIX D. PROOFS FOR SECTIONS Bl AND [4]

See Supplementary Material.
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Supplementary Material for “Uniformly Valid Post-Regularization
Confidence Regions for Many Functional Parameters in Z-Estimation
Framework”

APPENDIX E. PROOFS FOR SECTION

In this appendix, we use ¢ and C to denote strictly positive constants that depend only on ¢;
and C7 (but do not depend on n, u, j, or P € P,). The values of ¢ and C' may change at each
appearance. Also, the notation a, < b, means that a,, < Cb, for all n and some C. The notation
ap 2 b, means that b, < a,. Moreover, the notation a,, = o(1) means that there exists a sequence
(bn)n>1 of positive numbers such that (i) |a,| < b, for all n, (ii) b, is independent of P € P, for
all n, and (iii) b, — 0 as n — co. Finally, the notation a,, = op(b,) means that for any C, we have
Pp(a, > Cby,) = o(1). Using this notation allows us to avoid repeating “uniformly over P € P,,”

and “uniformly over u € U and j € [p]” many times in the proofs of Theorem [B.I] and Corollaries

B.1-B.3

Proof of Theorem Bl Observe that for all u € U and j € [p], we have Ep[|Z32] < 1 by

Assumptions Bl and B4l We use this fact several times in the proof without further notice.

For u € U and j € [p], define

Ty = {n= 0,0 @,5®): ) € £RIP), ) € RIT1P ) € I,

so that 7y = (4, Bl ) € T.uj, and T, is convex. Endow T),; with a norm || - || defined by

Inlle = VErRO D, X2V @IV [0l 5= 00,5%,9®) € T,,.

1/2

Further, recall that a,, = pV pV n and define 7,, = C(sy, log a,/n)"/* and

Tuj = {1} U {?7 = (W@ 9®) € Ty n® = 0, [P lo v [I1® o < Csn,
In® = BIIV In® = A < 7, [0 = Al < Cv/ama )

for sufficiently large C.
First, we verify Assumption [2Z](i). To bound u,, below we establish the following inequality:

v, — ¥y S VP + blug — . (E.1)
Recall that
f2=fAD,X)=Var(Y, | D,X) =Ep[Y, | D, X]|(1 - Ep[Y, | D, X)),

and so

|fi, = fi| < |Ep[Yu, | D, X] —Ep[Yy, | D, X]| S [uz —w (E.2)



3
by Assumption In addition,
EP[ <X](’Yu1 %))2} EP[ (XJ('YU1 ’YZ@)) (Dj — X, = (Dj = Xj’Yil)ﬂ
= —Ep |12, (X (4, = 7%.)) (D = X733,
= —Ep|(£2, = £2) (X7 (0, = 7,) ) (D = X73,)|
= —Ep| (72, — £2) (X (3, =7, ) 7] (E:3)

where the first line follows from adding and subtracting D, the second from the equality Ep| f2 L(Dj—
XJ’yUQ)XJ] = 0, the third from the equality Ep[f2 (D; — X7~3,)X7] = 0, and the fourth from
D;— Xty = Zul. Now, by the Cauchy-Schwarz inequality, the expression in (E.3]) is bounded in

absolute value by
<Ep[<Xj(7Z1—752))} E}‘D[(fu1 227 )])
< (Be[2, (X0, — ) ] Bp (72 27 ]>1/2
o el )

where the second line follows from Ep[(X7 (74, —vi.))2] < M — 7|12 < Ep[f2 (XY Vi — 7)),
which holds by Assumption B4] and the third line follows from (E.2)). Hence, (Ep| fu2 (X7 (7%1 —
V)22 S Jug — ual, and so

. . ) o SN2\ 1/2

I =i S (Be [ £2,(X00d, =) ) S fua = el (E.4)

Therefore,

v, =l < VP + Bl =Y | S Vo + blug — i,
and so ([E.J]) follows.

Next, let

G = {(Y,D,X) = 1Y <ug+ (1-u)y}: u eu},
Gy = {(Y,D,X) — Eplg(Y,D,X) | D,X]: g € gl},
G = {(Y,D,X) s D; — Xl u e u}, jelp.
Then the function class F = {Wuj (- 0ujsmug): w e U, j € [p]} satisfies
F C(G1—G2) - (UjepFaj)-

Observe that G; is a VC-subgraph class with index bounded by C, and so by Theorem 2.6.7 in [44],

its uniform entropy numbers obey

sup log N(eHﬁlHQQ,Ql, |- llg2) < Clog(C/e), forall0<e<1, (E.5)
Q
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where Fy = 1 is its envelope. In addition, Lemma [K2] implies that the uniform entropy numbers
of Gy obey the same inequalities with the same envelope ﬁ’l (but possibly different constant C').
Moreover, for any u € U and j € [p], by Assumptions B.] and and the triangle inequality,

il S 171+ snv10g an/n S Veal Bl + 50y 108 an/n S Venlvill +snv/log an/n S V/sn, (E.6)

because by Assumption 34} s, loga,/n = o(1). Therefore, (EI) and Lemmal[K3with & = 1 imply
that for all j € [p], the uniform entropy numbers of G3 ; obey

sup log N(eHﬁg”Q,g,gg,j, |- llg2) < Clog(an/e), forall0<e<1,
Q

where F3(Y, D, X) = sup,ey | 23] + Mn_%(HDHoo V || X|oo) is its envelope, and so Lemma [K.1] gives
that the uniform entropy numbers of U;¢(5Gs j obey the same inequalities with the same envelope

ﬁg. Hence, Lemma [K1] also shows that the uniform entropy numbers of F obey

suplog N (e||Fllg.2, F, || - lg.2) < Clog(a,/e), for all 0 < e <1, (E.7)
Q

where F(Y, D, X) = C{sup,ey |Zi| + M{%(HD”oo V || X |leo}) is its envelope. Now observe that
|F|| Pq S My and that ||f||p2 < 1 uniformly over f e F by Assumption B4l Therefore, it follows

~

from Lemma [[.2] that

u, = Ep[ sup ‘ﬁEn[¢uj(W 9uj,77uj)]H
u€U,jE€[p]

< 10g1/2(anMn,1) + n_1/2+1/an,1 log(anMp1) S logl/Q(anMnJ)(l +0pn) < Vl0ogay,
where the last two inequalities follow from Assumption B.4] and the facts that 6, = o(1) and that
log M,, 1 < logn, which is another consequence of Assumption [3.41 Hence, Assumption B.I] implies

that for all w € U and j € [p], ©,; contains a ball of radius Con~Y2u, logn centered at 6,; for all
sufficiently large n for any constant Cy. Therefore, Assumption 2I)(i) holds.

Next, Assumption 2I[ii) follows from the observation that for all w € U and j € [p], the map
(0,m) = ¥yj(W,0,n) is twice continuously Gateaux-differentiable on ©,,; x Ty,;, and so is the map

To verify the near orthogonality condition in Assumption 2I(iii), note that for all u € U, j € [p],
and n = (77(1)777(2)777(3)) € Tuj with n # n,;, we have
Dol =) = Ep |ruZi = N(Zif.; + X8 ZLX7 (1% = 8 = 0,50 = 1) )|
where we used the equality Ep[{Y, — A(Zﬁ@uj + X98%) — r,} X9 = 0. In addition, |Ep[r,Zi]| <
6,n~ /2 by Assumption Further, recall that Ep[f2Z3X7] = 0 and observe that
fi=fi(D,X) = Var(Y, | D,X) = Ep[Y, | D,X](1 - Ep[Y, | D, X))
= (A(D'0,+ X'By) +714)(1 — A(D'0, + X'By) — 14)
=N (D0, + X'By) + 1y — 12— 2r, A(D'0, + X',)
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where we used the equality A’(t) = A(t) — A%(t), which holds for all t € R. Hence,
[Ep 22104 + X781 21X (0 = 81— 00 (n® = 1) ||
. . . . 2
S (Bp|(ruz)?] - EBp | (X7 0P = 81— 0,50 = 20)) |)

1/2 . . _
< (Bplr2) " (10 = 81l + 10 = 7]} S snlogan/n S 8un”

1/2

where the second line follows from the Cauchy-Schwarz inequality and the observations that |r,| < 1
and that |A(¢)| < 1forallt € R, and the third line from AssumptionsB.4land B.5 (the last inequality
holds because s2 log? a,, < 62n by AssumptionB4). Also, when 1 = 7,;, we have [Dy,j 0[n—7u;]| = 0,
and so Assumption [ZJiii) holds.

Next, we verify Assumption 2I(iv). Fix u € U and j € [p]. Observe that
Juj = —Ep[N(Z10,; + X7 81)| 2P
= —Ep[f21Z1] + Ep[(ru — 12 — 2, A(D0 + X'8,))1 23]

Hence, by Assumptions 3.1 34 and and the Cauchy-Schwarz inequality,

. 1/2
sl = o1 = 4(Bplr BRI ZI1) T = e+ o(1),

and also |J,j| < 1 uniformly over u € Y and j € [p]. In addition,

1
Epfibug (W, 0,107)] = Juj(0 = 0u5) + 505 { Bp [t W01 }| (6 =00’

for some 6 € ©,;. Moreover, for all § € O,;, we have |0FEp[thy;(W,0,1m,;)]] < Ep[lZiP] <1
by Assumptions Bl and B4 since |A”(¢)] < 1 for all ¢ € R. These inequalities together imply
Assumption 2ZI]iv).

Next, we verify Assumption 2I(v) with w = 2 and By,, = Bs, = C for sufficiently large C'. Fix
wel,jep,re(01],0€0,;,andn= (nM,n®@ n®) e Tuj- We consider the case 1 # 1,

and the other case is similar. Denote
Ly =21X () =)+ [ruZ|, ha= ‘(Dj — XTI )0 + XIn® — Z]0,; — XIBl| - | Z]).
Then

Yuj(W,0,m) — (W, eujanuj)‘ <hip+1ip

since |A’(t)| <1 for all ¢ € R. In addition,

Ep((ruZ3)?] S Ep[r2] < n—null?, Ep[(XI (0P =402 < In® —A211% < [ln — 1|2
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by Assumptions B.5 and B4 respectively. Thus, Ep[I7,] < |7 — nu;llZ. Also,
Epll2s] < Ep|(Z0)2] - Bp(D; = XIn®)0 + X7 — Z]0,; - X78])%|
SEp[((D; = X0 + XIn® — Z16,; — X7 3))?]
SEp| (P = 81))?] + B (D30 = 0,))] + Ep |/ (190 = 200,,))?|
S In® = BLIR +10 = 0051 + Ep [ (X9 (0 = 0,))2] + Ep [ (X (0 = 4)0,)?]
S @ = BLP 410 = 0 + In® = AP S lIn— nuslI2 + 16 — 6us]?

where the first line follows from the Cauchy-Schwarz inequality, the second from Ep[(Z])?] < 1,
the third from the triangle inequality, the fourth from Assumption [3.4] and the triangle inequality,
and the fifth from Assumptions B and Bl and the fact that [[n® | < |V4] + (sn log an/n)Y2 < 1.
Therefore, Assumption 2I(v-a) holds.

To verify Assumption 2ZI[v-b), observe that under our conditions,
arEP [wu](W, 97 nuj + 7’(77 - nuj))] - EP [87’7/%](”/7 97 nuj + T(T/ - ﬁuj)) .
Further, denote
wr =230 = r0X7 (0D — 4)) + X B + rXT (n®) — 5],
Iy = —Xj(n(?’) - ’Yﬁ)(Yu = Azr) — (1= 7)ra),
Lo =r1u(Z] — X7 (n"® — A1),
Ly = —N(2,)(Z] = r X (Y =) (XT (0 = B]) — 0X7 () — 7))
Then 0,10y (W, 0,1y +7(n — 1uj)) = I2,1 + I22 + I23, and so

Ep [ar%j(W, 0,1 +1(n— nuj))} = Ep[l21] + Ep[l22] + Ep[l23).

Now, observe that

. ‘ . ‘ 1/2
Epllall S Be[1X/ 0 = i)l S (Be[IX7 0O = DP]) " < = mugle
where the first inequality holds since |r,| < 1, the second by Jensen’s inequality, and the third by
Assumption B4l Also, by the Cauchy-Schwarz inequality,
‘ . 1/2
Eplllal] < (Eplrd] - Bp|(Zu — X/ =90)%]) 7 S In = muglle

1/2

where the second inequality follows from (Ep[r2])1/2 < ||n — nu;lle. Moreover, since |A’(t)| < 1 for

all t € R, the Cauchy-Schwarz inequality gives

Bplliaal] S (Bp (21 - X9 )2 Ep [T — 8) — 69 —0)?])"" < I e

Therefore, Assumption 2I(v-b) holds.
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To verify Assumption 2I[v-c), denote
Iy = =ru X7 (@) = o)) + N (2,) X7 () = 40) (X7 (n®) = B) = 0X7 (¥ —42)),
Iy = —ry X7 (n® =),
Iy = —A"(2)(Z) — X (0 = y)) (X (n®) = B]) — 0X7 (nD) —47))?
+ N ()X () =) (X () = ]) — 06X (' — 1)),
so that 0,lo1 = I31, Oplao = I39, and O,I23 = I33. Now, observe that since |[A’(¢)] < 1 for all

t e R,

Ep[l 31 S VEPEFI® — 2l + 0% = ¥l U0 = Bl + 0P =) S lln = nujllZ

by the Cauchy-Schwarz inequality, the triangle inequality, and Assumptions 3.1l and B4l Similarly,
Ep[|I32]] < |7 — nujl|?. In addition, since |[A”(t)] < 1 for all t € R,

. . . . . . . 1/2
ErllTsal) S I = nusll? + (Be (24 = X0 — 502 Ep | (X7 (n® — 81) = 0X7 () — 50))"])
Slin— 77uj”z + [ln — nuj“g Slin— nusz
by the arguments used above, the Cauchy-Schwarz inequality, and Assumption[34l Also, the terms

in Ep[02ty; (W, 0y + 7(0 — 0uj),muj + 7(n — nuj))] arising from differentiation of 6, + (0 — 0,;)
can be bounded similarly. Therefore, Assumption 2.1 v-c) holds.

Next, we verify Assumption 2.2Ji). Observe that by Theorems 1] and 2] with probability
1—o0(1),

sup (110 = 0ull + 18 = Bull) S v/sulogan/n, sup (18ullo +1Bullo) S 50
uel uelU
sup |7 =7l S Vsnlogan/n, and  sup [Fillo S sn-
ueld j€[p) ueldje[p]
In addition, 3, = gu]% + (5; B\ BlY, and so uniformly over u € U and j € [p], with probability
1—o0(1),
135 = BLII < 18uj — Ougl IV + 16175 — Al + 16w = Oull + 118w — Bull S Vsnlogan/n

and || BﬁHo < $p. Moreover, uniformly over u € U and j € [p], with probability 1 — o(1),

I3 = il < 1A = Al + 1%, = Al S 13 = Flls + sn/log an/n

N \/Sn‘WzJL _71];H + Spy log a,/n S Sny/ log a,, /n

by Assumption and the triangle and the Cauchy-Schwarz inequalities. Therefore, Assumption
22(i) holds. In addition, Assumption Z2ii) holds by construction of T,; and since Ep[r?] <
Cysplogay/n, which in turn follows from Assumption Also, Assumption 22[(iii) holds by

construction of 7y;.
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Next, we establish the entropy bound of Assumption 22(iv) with v, = Cs,, and K, = CM,
for sufficiently large constant C' > 0 (recall that a, =pV pVn). Let

G1={(V,D,X) = (D, X')¢: € € RP*7, |y < Cisn, i€l < C
Gs.j = { (¥, D, X) = €(D; = Xn3) + X8 et |g <€}, j € [f]
for sufficiently large C'. Moreover, recall that W = (Y, D, X)) and let
Fii = {W = Py (W, 0,m):u €U, j € [pl,0 € Oy, € Tyj \ﬁuj},
Fiz = {W o 6ug(W,0,m05): w €Uy j € 3,6 € O}
Then Fi = F11 U Fi and
Fi1 C (G1 —A(Gs)) - Ga,
Fi2 C (91 — G2 + MUjeps,5) — MUje 95.4)) - (Uje9s.4)

where G1, Go, and G ;, j € [p], are defined above, because ,;(W, 0,1,;) = {H{Y <ug+(1-u)y}—
ru — AN(Z30 + X7 ﬂﬁ)}Zﬁ A bound for the uniform entropy numbers of G; is established above in
(E.R). Also, G4 is a union over (Ic)‘tf ) VC-subgraph classes with indices O(sy,), and so is A(Gy).
Hence, by Lemma [K.1]

sup log N(E”ﬁLl”QQ,le, |- llo2) < Csylog(ay/e), forall 0<e<1,
Q

where

ﬁl,l(W) = sup sup (2]Dj — Xj’y\)
uelU,JE[D] yeRP=1HP . ||y =~ 1 <Cy/5nTn

is an envelope of F 1. Observe that |D; — XJv| < |D; — XTI |+ | X (v — )| < SUPyeu,jelj] | Z3| +
| X |0 C'\/SrTn, and so

||FV1,1||P,q 5 Mn,l + +/ SnTnMn,2 S Mn,l
by Assumption B4l (observe that /s,7, M2 <1 and M, > 1).

Next we turn to J7 2. Bounds for the uniform entropy numbers of Ga and U;¢[;Gs,; are established
above. Consider Gs ; for j € [p]. Note that for all ui,us € U,

17, =Yl S Ve +Blue —uil, 7, S Ve,
182, = Bl S (102 = Ouslls + 118z = Busllt + 17z = uu I ) S v+ Bluz = e

by (E.I), (E.Gl), and Assumption Bl Therefore, for all &1, & € R such that [£;| < C and [&] < C,
and all uy,us €U,

H(E% 7, — &) — (&1, 8%, — &v),)

‘1 <& =&l + v+ 185, — B+ Clvd, — 42,1
S Vsnlé2 — &l + /p + Dlug — ua .
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Hence, Lemma implies that for all j € [p], the uniform entropy numbers of A(Gs ;) obey

sgplog N(E”ﬁ{,”QQ,A(g&j), |- llg2) < Clog(an/e), forall0<e<1,

where F5(Y, D, X) =1+ Mn_%(HDHoo V || X ||oo) is its envelope. Hence, by Lemma [K.1]

suplogN(e|]ﬁ172HQ72,.7-"1,2, Il llg2) < Clog(an/e), forall0<e<1,
Q

where Fyo(W) = O(1 + M3 (IDlle V I X]1)) - (s0Pucrssegs 121 + Mb(1Dllo V [ X)) s an
envelope of F o that satisfies | Fi2|pgy S My by Assumption B4 and the Cauchy-Schwarz in-

~

equality. Applying Lemma [KJ] one more time finally shows that the uniform entropy numbers
of F1 obey (23] with constants specified above and with an envelope F} = FVM Vv FVLQ satisfying
1Fillpg < M.

Next, we verify Assumption Z2(v). Fix u € U, j € [p], 0 € Oy, and n = (nM,n@ @)y e Tuj-
Then

. . 2 .
Ep[us (W, 0,0)%] = Bp [Bp | (Ya = A((D; = X0 )0 + X7y®) = n0)"| D, X|(D; = XIn)?]
> Ep[fi(D; — XIn®)* > ¢

where the first inequality follows from the fact that for any random variable £, the function z —
E[(¢ —2)?] is minimized at = E[¢] and in this case f2 = Var(Y,, | D, X), and the second inequality
follows from Assumption 34l In addition,

Ep (v (W,0,7)%] < Ep[(D; — X7n®¥)?] <1

by Assumptions Bl and B4l Therefore, Assumption 2.2(v) holds.

Finally, we verify Assumption 2.2(vi). The condition (a) holds by construction of 7,, and v,. To
verify the condition (b) observe that

(BlnTn)w/2(’Un log an)1/2 +n V2V K, log a, < n~1/2s, log a,, + n_1/2+1/qsnMn,1 log a, < 6n
by Assumption 3.4l In addition,
(uy logn/v/n)“? (v, log an)? < \/sn(logay,) - (logn)/v/n < 6,

because u, < (log an)l/ 2 which is established above, and s, log a, < 8,n'/271/9 which holds by
Assumption 34l The condition (b) follows. The condition (c) holds because

1/2 2 2 —~1/2
nt/ Bi, BonT: Sn / splogay, < 6,

as in the verification of the condition (b). This completes the verification of Assumptions 2] and
and thus completes the proof of the theorem. [
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Proof of Corollary [3.1l The asserted claim will follow from Corollary 2.T]as long as we can verify
its conditions. Assumptions 2] and were verified in the proof of Theorem Bl Therefore, it
suffices to verify Assumption 2.3[(i,ii) and the growth conditions of Corollary [2.1]

First, we verify Assumption Z3(i). Recall the function class F = {thy; (-, 0uj, 7u;): w €U, j € [p]}
defined in the proof of Theorem [3.I] where it is also proven that its uniform entropy numbers obey
(E7) with an envelope F satisfying || F| Pq S My,1. Also, note that Assumptlon 2I(iv) gives 1 <
|Jujl $1for all u €U and j € [p], and that Assumption Z2(v) gives 1 < Ep[yp? (W, 0u5,mu5)] S 1
for all w € U and j € [p]. Hence,

Foc{e fifeFeere<ig<cy,

and so Lemma [K.1] implies that the uniform entropy numbers of Fy obey

sup log N (€||Fol|,2, Fo, || - [|@,2) < Clog(ay,/e), forall 0 <e<1, (E.8)
Q

where its envelope Fy satisfies ||Fy|lpq < Mp1. Thus, Assumption 23(i) holds with o, = C,
Ap=a,=pVpVn,and L, = CM,;.

Next, we verify Assumption 23|(ii). For k = 3,4, u € U, and j € [p], we have
Ep 10 (W, 0ugs )| S B [ID; = XI7i ] 51
by Assumptions 3.1 and B4l since |Y,| < 1, |[A(t)] < 1for all ¢ € R, and |r,| < 1. Thus, Assumption
[2.3)(ii) holds with the same L,, = CM,, ; since M, > 1

Finally, with our choice of A, and g, the growth conditions of Corollary 2.T1hold by assumption.
This completes the proof. [ ]

Proof of Corollary The asserted claim will follow from Corollary 2.2 as long as we can verify
its conditions. Assumptions 2] and were verified in the proof of Theorem Bl Assumption
[23)(i,ii) was verified in the proof of Corollary B.Il Therefore, it suffices to verify Assumptions [2.3](iii)
and [24] and the growth conditions of Corollary

We split the proof into six steps. In Steps 1-3, we verify Assumption 2.4l In Steps 4 and 5, we
verify Assumption 2.3|iii). In Step 6, we verify the growth conditions of Corollary

Step 1. Here we show that
juj — Juj = op(log™tay)
uniformly over v € Y and j € [p]. For § € R, f € RPTIHP 4 € RF-1P and j € [p], define
G (W,0,8,7) = —N'((D; = X77)0 + XIB)(D; = X77)%,

Then j;j = En[%(VV, %,B&,%)] and J,; = ﬁlj(ﬁuj,ﬁi,%) for all w € U and j € [p]. Therefore,
by the triangle inequality,

|Juj uj| uj m]( u]vﬁu/yu + ‘mj u]vﬁu/yu) m]( U])ﬁuvlyu)
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Define
Go = {(Y.D.X) > —N'((D; = X7 4+ X7 ) (D; — X799

welj € 7,0 € Buyn = (10,1, 1®) € Ty \ s

Then by Assumption [2.2(i), with probability 1 — o(1),

Ealf(W)] — Ep[f(W)]|

Juj — mj(0uj, BL,70)| < sup
f€gs

for all w € U and j € [p]. In addition, Gg C —A/(G,) - G2, where the function class G, is introduced
in the proof of Theorem 3.1l Moreover,

((Dj — XI®)g 4 Xin?

S (IDlloo V Il ) (I + 0 1)
S V2 +B(IPllse V 1X oo ) (In@ 11+ 1n]1)
SV B(IDl V IX )

uniformly over u € U, j € [p], 0 € O, and n = (M, @ 7)) = T, \ n.; by Assumptions Bl
Hence, applying Lemmas [K.T and KAl with K = M, on 2/q (p+ p)l/ 2 shows that the uniform entropy
numbers of Gg obey

suplog N (€| Fsllg.2,G6, || - |Q,2) < Csplog(an/e), forall0<e<1
Q

where Fs(W) = (1 + (|| D)o V [|X|c0)/( n2n2/q))F121(W) is its envelope, and ﬁl 1 is defined in
the proof of Theorem Bl Also, recall that HF1 1llpg S My 1, which is established in the proof of
Theorem [3.1] and so
4/q
(Ep[ max | Fy i)|q/4D

1<isn

(EPLIQZ%L |Fyy (W, i)\q/z})él/q * (EP[fE%@ (HDiuz ;/nuiiinoo>q/4’ﬁ1,1(Wz’)’q/2]>4/q

S n2/qM,2L71 + n4/q< K—HDD\;} ZnHQiiHOO >q/2] Ep [|ﬁ1,1(W)|q]>2/q S n2/‘1M¢2L,1

where the first line follows from the triangle inequality, and the second from the Cauchy-Schwarz
inequality and Assumption B4l In addition, ||f|p2 <1 for all f € Gg. Hence, Lemma [[.2] implies

that

sploga, M7 snlogay _
n n pre 7n o(log 1

sup
febs

ap)

Ed[f(W)] — Eplf(W)]]| S /2

with probability 1 — o(1) by Assumption B.4] and the growth condition s, log® a, /n = o(1).

Next, using the same arguments as those used to verify Assumption 2I(v-a) in Theorem BT
shows that

1 (Ouz, By ) = 15 (Ouzy B, ) | S N0uj — Ousl + 113 — B+ 175, — 7l
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1/2 uniformly over

and the right-hand of this inequality is bounded from above by (C's,, loga,/n)
u € U and j € [p] with probability 1 — o(1), as demostrated in the proof of Theorem Bl In turns,
(Csylogan,/n)t? = o(log™t a,) by assumption. Combining presented bounds gives the claim of

this step.

Step 2. Here we show that

En[?ﬁZ](W, euja ﬁug)] - EP[¢Z](VI/7 euja nuj)] = OP(lOg_l an)

uniformly over u € U and j € [p]. The proof of this claim is similar to that in Step 1, where the
main difference is that instead of —A’(-) in the function class Gg, we set Y,2 — 2V, A(-) + A2(-), with
the resulting function class having the same envelope and its uniform entropy numbers obeying the
same bounds as those derived fo Gg (up-to a possibly different constants).

Step 3. Here we finish the verification of Assumption 2.4l Observe that 1 < J,; < 1 and
1 S Ep[l; (W, 0u5,mu)] S 1 for all u € U and j € [p] by Assumptions 2ZI)(iv) and Z2(v). Hence,
1< JZ]- < 1, and so

@—1‘ < 0—75”—1‘5 Guj = Ouj

qu qu
< Ju_j2 - Ju_j2 En[ﬂ’i;(Wa eujy ﬁuj)] + Ju_j2 EnWZJ(W, euja ﬁug)] - EP[¢Z](VI/7 euja nuj)]
S juj - Juj + En[ﬂ’ig(W, gujy ﬁuj)] - EPWJEJ(VV’ eujy qu)] = OP(log_1 an)

uniformly over u € U and j € [p] by Steps 1 and 2. Therefore, Assumption [24] holds for some &,
and A,, satisfying ¢, loga, = o(1) and A,, = o(1).

Step 4. Here we show that the inequality concerning the entropy numbers of ]?0 in Assumption
Z3(iii) holds with ¢, = C, A, = a, = pV pVn, and A, = o(1). By construction of iuj, the
function class {TZJ\W() u € U,j € [p]} contains at most np functions (as u varies, new functions
appear only as u crosses one of the observations (Y;)? ;). Also, it follows from (E.8) in the proof
of Corollary Bl that the entropy numbers of Fo = {ty;(-): u € U, j € [p]} obey

N(& Fo, [l - llp,») < Clog(an||Follp, ,/€) < Clog(an/e), forall 0 <e<1,
with probability 1 — o(1). Hence,
log N (e, Fo, || - lp,.) < Clog(as/e), forall0<e<1

with probability 1 — o(1). The claim of this step follows.
Step 5. Here we show that the second part of Assumption 23(iii), that is, that with probability

1 — Ay, we have || f|p,, < S, for all f € ]?0, holds for some 6, and A, satisfying 8,, = o(log™! a,,)
and A, = o(1). By the triangle inequality,
‘ 6-\;]'1Ju_jl¢uj(vva éujy ﬁuj) - J;leLTj1¢uj(W Hujy qu) H]P’ )

<18 o = g T | ‘ g (W, O g )|, + i S [ 0ui (W s g) — g (W, B 1) _—
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We bound two terms on the right-hand side of this inequality in turn. To bound the first term,

observe that
\3_-1j_-1 _1J 1\ = op(log™' a,)

uniformly over v € Y and j € [p] by Steps 1 and 3 and since 1 < J,,; S 1and 1 < oy; S 1, which is
discussed in Step 3. Also, as established in the proof of Theorem [B.1] the uniform entropy numbers
of the function class F = {tui (-, Ouj, muz): w € U, j € [p]} obey (E) with an envelope F satisfying
|F||py S My.1. Moveover, Ep[f2(W)] < 1 uniformly over f € F by Assumption ZZ2(v). Therefore,
Lemma [[.3] shows that

Ep| sup Ealu; (W00, m)l] S 140~ Y200, (Viogan +n /Y90, 1 log ay, )
uel,je[p|

<1 +n_1+2/qM2 loga, <1,

~

where the second inequality follows from Assumption 34l Hence,

160t ot = 0ui Tt | 10 (W, Oz, 1)l . = o (log ™ a)
uniformly over v € U and j € [p].

To bound the second term, define

g7:{¢Uj(', ) ¢UJ( ujanw) uGU,jG[ﬁ]ﬁG@uj’l@—@quvCSnlogan/nﬂ?G%j}

for sufficiently large constant C' > 0 and 7,; appearing in Assumption Then G; C F; — Fq,
and so Lemma [K. ] together with the bound for the uniform entropy numbers of F; established in
the proof of Theorem [B.1]imply that the uniform entropy numbers of G; obey

suplog N (€| Fllg.2,97, | - l|gz2) < Csplog(a,/e), forall 0 <e<1,
Q

where Fy is its envelope satisfying || F7| p2 S M, 1. In addition, Assumption 2.2(i) together with
Step 1 in the proof of Theorem 2] imply that with probability 1 — o(1),

¢ug( uj/’?uy) Tpu]( ug,nu]) € gy
for all w € U and j € [p] (recall that in the proof of Theorem Bl we set By, = C and 7, =

(C'splogay/n)t/?). Also, Assumptions 2T v-a) and Z2(ii) show that Ep[f2(W)] < s,logan/n
uniformly over f € G7. Hence, it follows from Lemma that

Ep [qugp En[fQ(W)]] < splogay/n+ n_1/2+1/an,1 <’I’L_1/2Sn log a,, + n_1/2+1/an,1sn log an>
€Gr

< n_Hz/an%lsn log ay,.
Hence,
G T 1w (W, 0 ) — i (W, B 1) le,» = 0p(log ™ an)

uniformly over u € U and j € [p|] by Assumption B4 Combining presented bounds gives the

asserted claim and completes the verification of Assumption 2.3
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Step 6. Recall that the growth conditions of Corollary 2.1l were verified in the proof of Corollary
Bl where we set g, = C and A,, = a,,. The other growth conditions of Corollary 2.2}, ¢, 0, log A,, =
o(1) and 62 8, 0n(log Ay,) - (log A,,) = o(1) hold because we have ¢, = o(log™! a,,), o, = C, A, = an,

1

and 0, = o(log~! a,,). This completes the proof of the corollary. |

Proof of Corollary [3.3l To prove the asserted claim, we will apply Corollary Below we will
verify Assumptions B.4(iii,v,vi,vii,viii,ix), B.5l(iii), and the growth conditions of Corollary

Set

1/(2q9) ~ j
31, = (Ep (1Dl V Xt ]) 7 and Coi=1+ sup il
uell,je|p

so that M,, < Cy and C,, < 1+ C; by assumption. Observe that for all u € U and j € [p],
1Z}| = |Dj — X9 < (IDlos V 1 X |s0) - (1 + |7 11) < Crll[Dllso V 1 X o)

Then
1/

max (Bpl|ZiX{*) " < Cu(Be (1Dl v 1X11)]) " £ a2 51

]7
Therefore, given that log® a, = o(n) by assumption, it follows that Assumption B4(iii) holds for
some 0,, satisfying 62 log a,, = o(1).

Also,

and so Assumption B.4{(v) holds with M,, ; = C for sufficiently large constant C'. In addition, since

sup | Z;|*

1/(29)
< CuM, <1,
u€U,jE€[p]

52 log® a,, = o(n'~2/1), Assumption B4(vi) holds for some &, satisfying 62 log a, = o(1).

Further, Assumption B.4)(vii) holds with M,,» = M,, by definition of M,. In addition, since
52 log? a, = o(n'=?/7), Assumption B4(viii) holds for some &, satisfying 62loga, = o(1). Also,
Assumption B4l(ix) holds for some &, satisfying 42 log a,, = o(1) since My 2 = M, < C1, M,1<C,
$p < 0pnt/2714 and ¢ > 4.

Moreover, since sup, ey, ez [Ep [roZ3]| = o((nlog a,)~?), Assumption BJiii) holds for some 6,
satisfying 62 log a,, = o(1). Finally, the growth conditions Ms’/f log a,, = 0(n1/7) and Mi/l?’ log a, =
o(n'/372/B9)) hold because M, < C,, M, < C,log" a, = o(n), and log® a,, = o(n'~2/9).

Thus, there exists ¢,, such that Assumptions B4(iii,v,vi,vii,viii,ix) and B0l(iii) as well as all growth
conditions of Corollary are satisfied. Since all other conditions of Corollary are assumed,
the asserted claim follows from that in Corollary ]

APPENDIX F. PROOFS FOR SECTION [4]

In this appendix, we use C' to denote a strictly positive constant that is independent of n and
P € P,,. The value of C' may change at each appearance. Also, the notation a,, < b, means that

an < Cby, for all n and some C. The notation a,, 2 b, means that b, < a,. Moreover, the notation

~
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a, = o(1) means that there exists a sequence (b,),>1 of positive numbers such that (i) |a,| < b,
for all n, (ii) b, is independent of P € P, for all n, and (iii) b, — 0 as n — oo. Finally, the
notation a, Sp b, means that for any € > 0, there exists C' such that Pp(a, > Cb,) < € for all n,
and the notation a,, = p b, means that b, <p a,. Using this notation allows us to avoid repeating
“uniformly over P € P,,” many times in the proofs of Theorems 1] and

Proof of Theorem [Tl In this proof, we will rely upon results in Appendix [l In particular,
the asserted claims will follow from an application of Lemmas [l [2 and (with some extra
work). To follow the notation in Appendix [ define X, = (D', X’)" and w, = f2 and redefine
0, = (0.,,8.), 0, = (0,5, and p = p+p. Also, define a, = a,(X,) as a solution to the following

equation:
A(X]0,) + 1y = AMX, 00 + ay)- (F.1)

Since A is increasing, for each value of X, a, is uniquely defined. Then 6, satisfies ([I]) with

My (Yy, Xu,0,a) = —<1{Yu ~ 1} log (A(X;H + a(Xu))) +1{Y, = 0} log (1 AKX a(Xu))>)

o~

for 6 being a vector in RP and a being a function of X,. Similarly, 6, satisfies ([.2) where
My (Yy, Xy, 0) = My (Yy, Xy, 0,0) and O = O(X,), the identically zero function of X,.

To apply Lemmas [1l [.2] and [.3] we need to verify Assumption [LIl In addition, one of the
conditions in these lemmas is that (L5) holds with probability 1—o0(1). Verification of this condition
will be done with the help of Lemma [[.4] which in turn relies upon Condition WL. Therefore, below
we also verify this condition.

We first verify Condition WL with €, = 1/n and N,, = n. Observe that since U = [0, 1], we have
for any € € (0, 1] that N(e,U,dy) < 1/e, and so €, and N, satisfy the inequality N,, > N(e,,U,dy),
which is the first requirement of Condition WL. Further, as in front of Condition WL in Appendix

0 let

Su = aQMu(Yuy Xu,0, au)|6:6u

_ _ A AKX+ au(Xy)) o N (X + au(Xu))
B _<1{Y“ =4 AXL0u + au(Xy)) WYy =0k A(XL0, + au(Xy))

= = (10 = 11 = AKX + au(X0)) = 10 = OHA(XL 00 + au(X))) - Ko

)

- (Y- Bl X)X,

Then |Suk| < [Xuk|- In addition, since v > 1/n, we have

71— 5/(2pN,)) S Vog(pn) S Vlog ap.

Also, since f,, < 1, Assumption [B4l(ii,iii) yields log'/? a,, < 8,n'/6. Moreover, Assumption BAiv)

~

yields (Ep[|Su?])"/? < 1 uniformly over v € U and k € [p]. Therefore, Condition WL(i) holds
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for some ¢, satisfying ¢, < d,,. Assumption B4i,iv) also implies that uniformly over v € U and

k € [p], -

Ep[|Sul’] < Ep[|Xukl?] £ 1 and Ep[|Sul’] = Ep[| fuXul] 2 1, (F.2)

and so Condition WL(ii) holds for some C' and C' depending only on the constants in Assumption

B4

To verify Condition WL(iii), we apply Lemma[L.5l Observe that Y, = 1{Y < (1 —u)y +ug} and
the class of functions {H (-, u): u € U} with H(y,u) = I{y < (1 —u)y + ugy} is VC-subgraph with
index bounded by some C. Also, X, does not depend on u, and by Assumption B4l(iv,vii,viii),
Ep[|Xul*] < 1 uniformly over k € [p] and (Ep[||X,[|22])Y/ @0 < (5,n'/2-1/9)1/2 Moreover, by
Assumption B3] Ep[|Y, — Yir|*] = |u — /| uniformly over u,u’ € U. Therefore, Lemma [[5 with 2¢
replacing ¢ implies that Condition WL(iii) holds with A,, = (logn)~! and some ¢,, satisfying

5,11/210gan logl/zan_ (1)
Pn nl/4 nl/4 =old)

where the last assertion follows from logl/ 24, < 6,n'/%, established above, and 52 log a,, = o(n),
which holds by 62 log a,, = o(1).

Next we verify Assumption [[Il It is well-known that the function 6 — M, (Y,, Xy, 0) is convex
almost surely, which is the first requirement of Assumption [[LIl Further, let us verify Assumption
[LIlb). By Condition WL(iii), which was verified above, we have with probability 1 — o(1) that
|(E,, — Ep)[S2,]| = o(1) uniformly over u € U and k € [p]. So, it follows from (.2 that with the
same probability we have E,,[S?,] = (1 — o(1))Ep[S?,] uniformly over u € U and k € [p], and so
Assumption [LI|(b) holds for some A,,, ¢, and L satisfying A,, = o(1), £ =1 —0(1), and L < 1 for
any \T/u such that

(1—0(1))Ep[S2,] < ¥2,, <1 with probability 1 — o(1) uniformly over u € Y and k € [p]. (F.3)

Thus, it suffices to verify (E3]). In the case m = 0, we have by Lemma and Assumption
BA(i,iv,vii,viii) that E,[X2,] = (1 — o(1))E[X?2,] with probability 1 — o(1) uniformly over u € U
and k € [p]. Thus, (E3) holds since in this case,

1—-o0(1)
4

~ 1
= 1m0 = e <
and 47'E[X2] > E[f2X2] = E[S?%,] (recall that f2 < 1/4) with probability 1 — o(1) uniformly
over u € U and k € [p].

To establish (EL3) for m > 1, we proceed by induction. Assuming that (E.3]) holds when the
number of loops in Algorithm Bl is m — 1, we can complete the proof of the theorem to show that

X7 (6, — 0.) ||, 2 < (snlog an/n)/? with probability 1 —o(1) uniformly over u € U for m = m — 1.
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Then for m = m, we have by the triangle inequality that

T 2 ! Iy \12 1/2
Fukan = Luon] < (BalXZAACXL6,) + 7 — A8}

< (IACX00.) = AL, 2 + Irulle, 2) - max [ Xuslloo S o

1<i<n

uniformly over u € U and k € [p] since max;<;cp || Xuilloo <p n'/ DM, o by Assumption BZ(vii),
rulle, .2 Sp (sn1ogay/n)'/? by AssumptionBB(v), nt/ 9 M, 5(s, log a,/n)*/? < 8, by Assumption
[B.4lviii), and the fact that A is 1-Lipschitz (observe that M, 2 > 1, and so M, 2 < M72L2) Thus,
(E3) holds with the number of loops in Algorithm [ being m. This completes verification of
Assumption [LI|(b).

To verify Assumption [[}(a), note that for any ¢ € R,
{0 My (Yo, Xy 04) — Og My (Ye, Xty 0y ay) Y6 = {A(X)0,) — A(X] 0y + au (X))} X6 = —ry X0,
and so
B [0 My (Yus Xy ) — OpMoy(Yus Xy Ous au)]'d < 7w/ v wu‘|]P)n72HunX1/,L5||Pn,2
< Cnvaqu/L(sHPnQ

where the first line follows from the Cauchy-Schwarz inequality, and the second holds with proba-
bility 1 — A,, for some C,, satisfying C,, < (sp, log an/n)'/? by Assumption Thus, Assumption
[[1la) follows for given C,, and A, = A,, = o(1).

To verify Assumption [[1l(c), note that Lemma 0.2 in [IT] imply that for any v € U, A, C RP,
and § € Ay,

En[My(Yu, Xu, O + 6)] — B [My (Yo, Xu, 04)] — En[0o My (Yu, Xu, 04)]'0
+ 2law/VElle, oV T Xl 2 > (IVEX013, 2) A (@4, 1VE X005, 2)

where

E. [w. | X’ 5121)3/2
= 2 G e
Next, we bound |la,/\/Wy|lp, 2. Fix some arbitrary value of X,. Consider the case that r, =
ru(Xy) = 0. Then a, = a,(X,) = 0, and so combining the mean-value theorem and (E]) shows
that for some ¢ € (0, ay),

(F.4)

Ty = ay N (X0, +1).
Now, since the function A’ is unimodal,
N(X 00 +1) = N(X300) AN (X704 + ay).
Further, observe that A’(X’60, + a,) = f2 and
N(X0,) = A(X0,) - (1 — A(X]0,) = (MX]0y) + i —70) - (1 — AX,04) — 70 +70)
= fu —ru(l = MX00)) + ru(AX00) + 10) = fi = ru + 20 MX00) 2 f7 — T
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In addition, by Assumption B3, |r,| < f2/4, so that A/(X/,0,) > 3f2/4. Thus,

lay| < 4Tu/(3f2)

Similarly, the same inequality can be obtained in the case that r, = r,(X,) < 0. Conclude that

law/vVewulle, 2 S Ira/ falle,2 S V/sulog an/n

with probability at least 1 — A,, uniformly over u € U. Therefore, Assumption [ T|(c) holds for any
A, CR? with A, = A,,, C,, < (sploga,/n)'/? and §u, defined in (E4).

Next, we apply Lemma [LIl We have to verify the condition on G4, required in the lemma. To
do so, recall that A, = A, 1 U A, 2 where

w1 = {0: (07, [+ < 2¢[|0z, (11},

3nc||¥.,o oo
Au,zz{az ot < 2 lalle s, o)

Then g, defined in (E4) equals G, , AGa, , where G4, , and Ga, , are defined similarly. To bound

da, ., we have

1/2 1/2
qa, , = inf [wu’X/(SP]/ Zp i [wu‘X/(SF]/
wl = d€AL,1 MAX]Li<n ”Xuz”oo”5”1 §€EAL 1 nl/ 29) M 2”5”1
1/2 _
> inf n [wu|X{L5| } / R2¢

>
5€Aus /@D My 5(1 + 28)/5n |07l ~ 11/ CD My o(1 + 26)/5n
uniformly over u € U by Assumption B.4viii) and definition of koz. By Lemma [F.3] sparse eigen-

values of order ¢,s,, for some sequence ¢, — oo, are bounded away from zero and from above so

that Roz is bounded away from zero with probability 1 — o(1). Conclude that

. 1 1 1/2
S - sp log ay,
QAuws P TG0 0f Mpo(1+28)\/5n PV Onn

uniformly over u € U where the second inequality holds by Assumption B.4(viii) and the third by
Assumption 34(vi) (when we apply Assumption 3.4(vi), we use the fact that M, ; = 1, which in

~

turn follows from Assumption B.4(i)). Next, to bound g4, ,, we have

) [wu]X’élz] 1/2 . [wu]X’élz] 1/2
da, , = _inf >p ed
’ 0€AL,2 NAX]Li<n HXquooH(sul d€Au2 M /(2a) M, 2H5H1
A fle—1 ||\I’ HOO A

~ 3nC, ¢ nl/(QQ)Mmg ~ G 1RO M,

uniformly over u € U since sup,y H\IJ Yoo < 1 with probability 1 — o(1). Substituting A\ =
cy/n®1(1 —~v/(2pN,,)) and C,, < (sn, logan/n)l/2 gives

1/2
G, >p 1 > 1 < [ 5n log a,,
w2 /29 M, o oL 2p1a ™ Onn




48

uniformly over u € U. Moreover,
1\ =~ /s N s log an \ /2
<L+ —) W0l == 4 6EC,, S ("7g">
C nNKog n

< 1 with probability 1 — o(1). Hence, since d,, = o(1), the condition on G,

~

required in Lemma [[.T]is satisfied with probability 1 — o(1). In addition, note that (L) holds with
probability 1 — o(1) by Lemma [[4l Therefore, applying Lemma [[T] gives

vauX;(é\u - Hu)”lP’nQ S (snlog an/n)1/2 and ”511 —0ulli S (ng log an/n)1/2 (F.5)

with probability 1 — o(1) uniformly over u € U.

since sup, ey || uolloo

The second inequality in (E.5) gives the second inequality in the first asserted claim of the
theorem. To transform the first inequality in (F25]) into the first inequality in the first asserted
claim of the theorem (and also to prove other claims), we apply Lemma [.2l We have to verify
([LGl). To do so, note that

ilelll?l lrgfél ‘len(é\u —04)| SP nl/(Zq)MnQHé\u —Oull1 S {n_l+l/qu2z,23% log an}l/2 S 0 =o(1)

by Assumption [3.4)(vii, viii) and since M,, o > 1. Also, note that uniformly over ¢ and At in R with
|At| < 1, we have

el AL et ’et+At _ et‘
A(t+ At) — A(t)]| = - =
’ ( + ) ( )‘ 1+ et+At 14 et (1 + et-i—At)(l _|_et)
t| At t| At
-1 -1
e’le e | < A (t)At. (F.6)

- (1+ettAD(1+el) ~ (Ifeh)2 ~
Thus, with probability 1 — o(1),
196 M (Y, X, 0) = 0o M (Yusy X, 0))'0] = [A(X0:8) — ACX60)] - 1 X,:0]
SN (X000) - 1X05(0u = 0u)] - 1X3,0]
uniformly over i = 1,...,n and u € Y. Also, since |r,| < w, /4 by AssumptionB.5land w, = f2 < 1,
N(X1:00) = £2 — i + 2riANX,00) 4 12 < wyi + 3|rei] + wi < 3wy < 3v/Was;
see the expression for A’(X].6,) above in this proof. Therefore, for some constant C,
[ 0 M (Yo, X, 0u) = OpMa(Yar X, 0))'0] < Cll V0 X, O = 00) |2, 211 X0l 2
< Lol X30]p,. 2
with probability 1—o(1) uniformly over u € U for some L, satisfying L,, < (s, log a,/n)"/?. Hence,

since sup,cyy Gmax(Insn,u) < 1 with probability 1 — o(1) for some ¢, — oo sufficiently slowly by
< s, with probability 1 — o(1), which is the

~

Lemma [[£3] Lemma [[2] implies that sup,cy 10 lo

second asserted claim of the theorem.

In turn, since sup,,cy, ||§u||0 < s, with probability 1 — o(1), Lemma [[.3] also establishes that

V0 X8 — 0)lpn2 2 V0 X (B — 0u) [ p2 = (100 — b
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with probability 1 — o(1) uniformly over u € U, where the inequality follows from Assumption
B4li). Combining these inequalities with (E.5]) gives the first inequality in the first asserted claim

of the theorem.

It remains to prove the claim about the estimators gu We apply Lemma We have to verify
the condition ([7) on g4, required in the lemma. To do so, we first bound g4, from below for
A, ={0 € RP: ||0]|p < C's} where C is a constant such that 5, + s, < C's,, with probability 1—o(1)
uniformly over u € U. We have

3/2 1/2

Za = in E, [wu|X;0)] E,, [wa|X}0]
“seAw By [wa|XL0P] T seAn max [ Xoyillooll0]n
1<i<n

1/2
. En, [wu|X/0[?] / > Gmin(Csp, ) - log!/* a,,
I8l <Csn X [| Xui|oov/Cnlldlla ™ /sun!/CO My 5 ™ 51/251/4

>

uniformly over u € U, where the inequality preceding the last one follows from Assumption B.4|(vii)
and the definition of ¢uin(Csy,u), and the last one follows from Assumption B.4(viii) and the
observation that by Lemma [[.3] inf,crs dmin(C'sn,u) is bounded away from zero with probability

1 — o(1) uniformly over u € U.

Next we bound from above the right-hand side of (L7)). It follows by (L8] that uniformly over
u € U with probability 1 — o(1),

En[My(Yu, Xu, 02)] — En[My (Y, Xu, 04)] < snlog an/n

since A/n < (log an/n)'/?, Hé\u — 0|1 < (s2logay,/n)'/?, and SUP, el H\T’uoHoo < 1 with probability
1 — o(1). Furthermore, C), < (s, loga,/n)'/? and

sup [En[Sullloo < sUp [[Wuolloo | Paa EnlSullle S A/n
weU weU

with probability 1 — o(1) by the choice of \; see Lemma [[4l Hence, it follows that the right-hand
side of () is bounded up-to a constant by (s, log a,,/n)'/? with probability 1—o(1) uniformly over
u € U. Since s2loga,/n <1 (see Assumption B4l(viii) and recall that M, o > 1) and d,, = o(1),
the condition (L7) on ga, required in Lemma [[3] holds with probability 1 — o(1) uniformly over
u € U. Hence, Lemma [[.3] implies that

vauXu(gu - eu)HPnQ < (splog an/n)1/2

with probability 1 — o(1) uniformly over u € U. Finally, as in the case of gu’s, we also have
/W X (6 — 0.)p,2 2 |6 — 0.|| with probability 1 — o(1) uniformly over u € U, which gives the

last asserted claim and completes the proof of the theorem. [ ]

Proof of Theorem The strategy of this proof is similar to that of Theorem Il In particular,
we will rely upon results in Appendix [l with ¢/ and p replaced by U = U x [pland p=p+p—1,

respectively, where for @ = (u,j) € U, we set Yz = D;, Xz = (X7) = (Dfﬁ]\j,X/)/, 0z = 7,
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0z =71, 05 =7, az = (fu,Tuj), T = Tyj = X3 (i —74), and wy = f2. Note that for all @ € U, we
have that 6 satisfies (1)) where

M;(Ya, X5,0,a) = 271 f2(Dj — X760 —r)?

for 0 being a vector in R? and a being a pair (f,r) of functions of D and X. Similarly, 5& satisfies
([2) where My (Ya, Xa,0) = Mg (Ya, Xa,0, (fu, ©)) and O = O(D, X), the identically zero function
of D and X.

We first verify Condition WL with

o
= n1/2+1/q(p+ﬁ)1/2(Mr2L71 vV MEL’2)7

€n

N, = pp*n?, and the following semi-metric d;; on U: for all & = (u,j) and @ = (u/,5') in U,

di(@, ') = |u—'| if j = j" and dz(@, %) = 1 otherwise. Observe that N(e, U, d7) < p/e for all

€ > 0. Also, note that Mil \ Mfm < 6,n/?71/4 by Assumption BA(vi,viii), and so
1en < nlp+5)"2/80 < n(p +5)"/?

since §, > 1/n by Assumption B4li,vii,viii). Thus, €, and N, satisfy the inequality N, >
N (en,LN{ ,d;7), which is the first requirement of Condition WL.

Next, we verify Condition WL(i). As in front of Condition WL in Appendix[I], for @ = (u, j), let
Sa = Suj = 0pMa(Ya, X, 0, aq)lo—, = —fa(D; — X)) (X?) = —fa Z},(X7)'.
Then the inequality ®~*(1 — ¢) < y/log(1/t), which holds uniformly over ¢ € (0,1/2), implies that
(Ep(|Sar)2 @7 (1 = 5/2pNn) S (Bp[|ZLX]1P)M? log!? ay, < 8,m'®

uniformly over @ € Uand k € [p], where the second inequality holds by Assumption B:4{(iii). Hence,
Condition WL(i) holds for some ¢, satisfying ¢, < dj,.

To verify Condition WL(ii), note that by Assumption BZ(ii), we have Ep[SZ,] > 1 and
Ep[St) < Bp(1ZX]P] < BpllZEl" + (X7 S 1

uniformly over @ = (u,j) € U and k € [p] by Assumption B iv).

To verify Condition WL(iii), we use the decomposition
Sak = Sun = —(fi = FVAX]+ 12X (3l — i) X]
for @ = (u,j) and @ = («/,j) in Y. By (E2) and (EI) we have

u  Jul S _/ u_ u’ 1~ D _/ .
[fi = fol Slu—d| and g =7 lle € v/ + Blu— | (F.7)
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uniformly over u,u’ € U and j € [p]. Therefore, uniformly over @ = (u, j) and @ = (', j) in U such

that |u — u/| < €,, we have
1Sak = Sanl S (122X oo + 1 X7 123/p+ 5) - u—
< (1222 + 1X71%,) - /o + en. (F.8)

Since Ep[max; i<y, je[s SUPyey |Zf“|2] < nl/qu, and Ep[maxi <<, jefp 1 X7 2] < 1/¢1M2 by
Assumption B4(v,vii), we have by Markov’s inequality that with probability 1 — o(1),

sup  max |E,[Sar — Sak]| < Sam 12,
dg(,u")<en ke|p]

In addition, uniformly over @, @ € U with d(0,7') < €, and k € [p],

1/2

Ep(52 — 53 < (Bpl(Sar — S)?)) - (Brl(Sar + )

1/2
S (214 M2o) 0 +5) ) S o
Further, let U¢ denote a minimal €,-net for &. Using ([.7) and (E.8)), we obtain that with probability
1—o0(1),

sup max |(E, — Ep)[Szij < sup max  |[(E, — Ep)[SijH +0p.
ucll JEP],kEP] uelte J€[P].kE([p]

To bound the first term on the right-hand side of this inequality, we apply Lemma [B.1] with X,;
and p replaced by Sg; and p, respectively, and k = 1, where Sz; = (Saui, - - -, Sajpi) = fSZZZ”(Xf)
for o = (u,j) €U and i = 1,...,n. With

2 2\ vJ |12 2 4 4
K*=Ep [max sup max Su]k2:| <Ep|max sup |Z72|X7|%| <n /q(Mn’l + My 5),
1<isn yey j€[BkE[P] I<isnoyey jelp)

which holds by Assumption B4{(v,vii), the lemma yields

max —max ‘(En - EP)[Su]k]‘ <pn'/? 1/q(M2 + ]\42 o) loga, < 6,log'?a, = o(1)
ucUe je[pl,ke(p]

by Assumption B.4(vi) and (viii). Thus, Condition WL(iii) holds with some A,, and ¢, satisfying
A, =0o(1) and ¢, = o(1).

Next, we verify Assumption [LIl The function 8 — Mgz (Yz, X3, 6) is convex almost surely, which
is the first requirement of Assumption [[Il Further, to verify Assumption [[}(a), note that

00 M (Yo X, 00) = 0 Mau(Yas X, B0y 0/ = = (F2rs + (F2 = £2)21) - X5,
so that by the Cauchy-Schwarz and triangle inequalities, since w, = E, we have
[En [0 M (Y, X, 0u) = Op Moy (Ya, X, O, )]
< (Warusllen2 + 172 = FOZ3/ Fullen2) - V@ X5]p, 2.
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To bound sup,¢y/ jefs) H]‘;Fujﬂpmg, note that f, < 1, and so Lemma [Fshows that with probability
1- 0(1)7
sup || fufujllpn2 < sup  |Fujlle,e S (snlogan/n)'/?.
uel j€[p] ueld,j€(pl
Also, by Lemma [[.2] with probability 1 — o(1),

sup  ||(f2 — )23/ Fullpnz S (snlogan/n)*/2. (F.9)
wel,jE[p

Hence, Assumption[[T|(a) holds for some A, and C,, satisfying A,, = o(1) and C,, < (s, log a, /n)"/2.
To prove Assumption[I(b), as in Appendix[l, for @ = (u,j) € U, let Ugo = (I\lu_y() = diag({laox, k €
[p]}) where laor = Lujor = (En[S2,.])'/2, k € [p]. Note that by Condition WL(ii,iii), which is verified

above,
1< a0 S 1

with probability 1—o(1) uniformly over @ € U and k € [p]. Now, suppose that m = 0 (even though
Algorithm [ requires m > 1). Then uniformly over u € U, j € [p], and k € [p] with probability
1- 0(1)7

1/2

Lo 2 (EP0,x)2) " 2 (malsi0ixiyE) " 21

where the second inequality follows from the observation that |!)?u2Z - f2] < with probability

ur ’LLZ

1— 0(1) uniformly over i = 1,...,n and u € U (see m in the proof of Lemma [[.2]), and the

wel,jepl, and k € [p],

Tujio < mas || X7 oo (Ba[ DI/ Sp 0/ COME,

by Assumption B.4vii) since fu < 1. Therefore, Assumption [LI[(b) holds with some A,,, ¢, and L
satisfying A, = o(1), £ > 1, and L < n'/CD M, 5 log'/? ay,

To establish Assumption [[I(b) for m > 1, which is required by Algorithm H, we proceed by
induction. Assuming that Assumption [LI(b) holds with some A,,, ¢, and L satisfying A,, = o(1),
¢>1, and L < n'/CD)pr, 2 logl/ a, when the number of loops in Algorithm [ is m — 1, we can
complete the proof of the theorem to show that ||qu]( %)Hpm < (L + 1)(sploga, /n)'/?
with probability 1 — o(1) uniformly over v € U and j € [p] for m = m — 1. Thus, by the triangle
inequality,

£ 3 = )l 2 S (L4 1)(s7 log an/n)!/? (F.10)

with probability 1 — o(1) uniformly over w € U and j € [p] since

1FuX? (3 = Vi llpn2 < IX7 (7 = ) P, 2

< moax X7 - 17 = vl Sp 0/ G0 My (57 log an /)

1/2
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uniformly over v € Y and j € [p]. Then for m = m, we have uniformly over u € U, j € [p], and

ke [ﬁ]?

Bt — bugos] = | (BalFi)2(07 — x730)2) 7 = (BalFAXD2(D7 — x99))

< (BRI G- ) " (Bal(F2 - 1220207 — x0p)

< (1FX G = Al + 172 = £Z8/ Fulen.2) - mmax [1X7 oo

1<i<n

<p nl/(2Q)Mn72(si log ai/n)lﬂnl/@‘DMn,g = n_1/2+1/an2723n log a,,
< 6plog'’? a, = o(1)

where the second line follows from the triangle inequality and the observation that (fuz — 2 <
fA— 1 the third from f; < 1 and f, < 1, the fourth from (F39) and (EI0), and the fifth from
Assumption B4viii). Thus, for m > 1, Assumption [LT(b) holds for some A, ¢, and L satisfying
A,=o0(1),¢=1 and L < 1.

Further, Assumption[[lc) holds with A,, = 0 and ga, = oo for any Ay since for any @ = (u, j) €
U and § € R?, we have

E,[Mz(Ya, Xa, 05 + 0)] — B [Ma(Ya, Xa, 05)] = —Eo[f2(D; — X753) X768 + 27 B,y [(fuX76)]

and
2_1En[(ﬁﬁXj5)2] Z En[ﬁt(Xj‘s)z] = [VwaX3d|lp, 2
where we used f, < 1/2.

We are now ready to apply Lemma [[Il Observe that by Lemma [[4, )\ satisfies ([5) with
probability 1 — o(1). Also, as established in (E.12]) in the proof of Lemma [F.2] |fuzl — f2 < f2)2
with probability 1 — o(1) uniformly over i = 1,...,n and u € U. Therefore, since Lemma [F.3]
implies that for some ¢,, satisfying ¢,, — oo,

Fu X162 X' 5|2
o OB IR,
l8llo<tnsn 0] l8llo<tnsn [|6]]

with probability 1 — o(1) uniformly over @ € U, it follows that Fog 2> 1 with probability 1 — o(1).
In addition, sup; ;7 [[Vaollcc < 1 and sup, |W-illoo < 1 with probability 1 — o(1). Therefore,
applying Lemma [[1] gives

1£uX7 3 = F)le, 2 S (snlog an/n) /2 and |5 — 71 S (57, log an/n)"/? (F.11)
with probability 1 — o(1) uniformly over w € U and j € [p].

The second inequality in (EE11) gives the second inequality in the first asserted claim of the
theorem. To transform the first inequality in (ELI1)) into the first inequality in the first asserted
claim of the theorem (and also to prove other claims), we apply Lemma We have to verify
([C8). To do so, note that for @ = (u,j) € U, we have

186 Mz (Ya, Xa, 0a) — 0g Ma(Ya, Xa, 03)]'6] < |fuX? (02 — 0a)] - | fuX75].
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Therefore, by the Cauchy-Schwarz inequality and since f; <1,

[En[09Ma(Ya, Xa, 05) — 9sMa(Ya, Xa, 02))'0] < 1fuX7 3 = A)lle s 2ll fu X7 5le, 2
< Ln”X](S”Pn72
with probability 1—o(1) uniformly over o = (u, j) € U for some L, satisfying L, < (sploga, /n)'/2.
Thus, since sup;_;; dmax(lnsn, @) S 1 for some £, — oo with probability 1 — o(1) by Lemma [£3]
it follows from Lemma [[2 that sup,cy, |F4llo < sn with probability 1 — o(1) uniformly over u € U

and j € [p], which is the second asserted claim of the theorem.

In turn, with probability 1 — o(1), uniformly over v € U and j € [p], we have
1 X7 G = A e 2 2 1 fuX? G — ) len 2 2 157 — -
Combining these inequalities with (F.11]) gives the first inequality in the first asserted claim of the

theorem.

It remains to prove the claim about the estimators 75. We apply Lemmal[3l The condition (IZ7)
on g4, required in the lemma holds almost surely since g4, = oo. Also, it follows from (L8]) that

uniformly over w € U and j € [p] with probability 1 — o(1),
En [Mg(Ya, Xﬂ, gﬁ)] — En[Ma(Ya, Xﬂ, Hﬁ)] S Sn log an/n

since )‘/n N (log an/n)1/27 SUPyeut,je[p) ”;Y\:ljl - :Ysz”l < (3% log an/n)1/27 and SUPyeu,je(p) ”{I\/ujOHOO S
with probability 1 — o(1). Furthermore, C,, < (s, log a,/n)'/? and

sup | En[Sallloo < sup [[Waolloo W50 En[Sallloo S A/n
acl acl
with probability 1 —o(1) by the choice of \; see Lemmal[[4l In addition, uniformly over @ € U with

probability 1 — o(1), we have sz + s, < 85, and Gpin (C'sp, @) 2 1 for arbitrarily large C'. Hence, by
Lemma [[3]

IVwaX? (7, = ) lea2 S (snlog an/n)'?
with probability 1 — o(1) uniformly over u € U and j € [p]. Finally, as in the case of 33’s, we also
have ||\/wz X7 (3%, —¥)|lp,.2 2 |72 — 74| with probability 1 —o(1) uniformly over u € U and j € [p],

which gives the last asserted claim and completes the proof of the theorem. [ ]

AUXILIARY LEMMAS FOR PROOFS OF THEOREMS [.1] AND

Lemma F.1 (Control of Approximation Error). Suppose that Assumptions[31] —[32 hold for all
P e P,. Then for ry; = X7 (vl —~l), we have with probability 1 — o(1) that

sup En[ﬁij] < splogay/n
u€U,jE€[p]

uniformly over P € P,.
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Lemma F.2 (Control of Estimated Weights and Score). Suppose that Assumptions[3 1l —[3.0 hold
for all P € P,,. Then with probability 1 — o(1), we have

sup  ||(F2 — f2)Z2) Fullpn e S (snlogan/n)'/?
u€U,jE€[p]

uniformly over P € P,.

Lemma F.3 (Functional Sparse Eigenvalues). Suppose that Assumptions [31 — hold for all
P e P,. Then for £, — oo slowly enough, we have

sup sup 11— [ fu(D', X")ollp, 2/ | fu(D', X")d[p 2| = 0p(1) and
ueld ”6”0<€n57u”6“:1

sup 11— (D, X")6|p, 2/||(D', X")d||p.2| = op(1)
18ll0<rnsns 18]|=1

uniformly over P € P,.
Proof of Lemma [F.1l By Assumption B2 we have that sup,c; max;cp 1724110 < sn and

supmax (|13 — 7l + 217 = 74l ) < Cu(snlogan/n)*.
ueld JE[D]

Also, by (E4), we have ||v4 — 75,” < Ly|u — /| for some constant L. uniformly over u,u’ € Y. By
the triangle inequality,

sup En[fij]g sup |(En—Ep)[F5j]|+ sup Ep[?ij].
u€U,j€p] uel ,j€(p] u€U,j€[p]

Consider the class of functions G = {(D,X) — XI(v} —7): u € U,j € [p]} and gir =
{(D, X) — Xi(~] — VZT): u €U} for j € [p] and T C [p+ p — 1] being a subset of the components
of X7 with |T| < s,. Since 5 = ’yiT for some T = T2, it follows that G C Ujelp),|T|<s. 94,7 Also,
we have ||7iT - %'T“ < |l - Vi,|| for all u,u’ € U, j € [p], and T C [p + p — 1]. Therefore, for
fixed j and T, we have

(X (3l = Al = (X0 (g = )Y
= | X p = Y+ Vo = X (Gl = Vo + 7y = )
< (D, X’),”go”’YiT -7+ Yor = Yulllver = Yor + v — vl
<8I0, XY (13 sup [l {p + 5}/ i — il
ucl
< (ML, XY ) M = )

where L, = 8 sup,cy,jejj 21 {p + /2L, < a, and we will set M‘ = a2. Therefore, we have for
the envelope G(D, X) = [|(D', X")'[|2,(M 'L, 4 sup, ey jeiz 17 — 7%l17) that for all 0 < e <1 and
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all finitely-discrete probability measures @,

log N(e||Gllg.2:G% || - l0.2) S snlogan + max log (e|Gllgz2,Gir: |l - lo2)
JEDLIT|<s

< splogay +1log N (¢/M,U, dy)
< splogay, + log(ay/€) < s, log(ay/é).

By Lemma [[.2] since

max G(D;, X;)

1 -2 —j g2 —141 2
1<i<n < ntliM, (an L+ sup |17, - 7&”1) ST YIM,, 087 log ap,

ueU,je(p]

P2

we have with probability 1 — o(1) that

sup |(E, — Ep)[Fijll S

ueld j€[p) n n

< [ sn log ay,, s, log ay, s splogay, < splog ay,
n n n n

where we used that s, > 1, 7 = X9 (v — ), Ep[{(D', X")&YY] < C1||€||* by Assumption BAliv),
17 — 7|12 < C2s,, log an/n by Assumption B2 M, 252 1og a, < §,n' "/ implied by Assumption
[B4{(viii). Finally, the result follows since Ep[Fij] = Ep[{XI (v — )Y < I — 72112 < splogan/n
by Assumption [

\/sn log a, SUPyeu,je[f] Ep [Fﬁj] N snn_lﬂ/anQS% 10g2 an

Proof of Lemma [[.2. Recall that f2 = f2(D,X) = A/(D'6, + X’'f,) and that by Theorem

ELI we have SUPueu(ng = Oull + ”gu = Bull) £ (snlogay/n)!/? and sup,ey H(@ng&)’\\o < sn with
probability 1 — o(1). Also,
e (D X{(@0 LY — (04, BV} < max 1D XD o 10— 0l + I — Bul)

<p nl/@q)Mn,g(S% log an/n)l/2 <6,

by Assumption B4|vii, viii) since M, 2 > 1. Thus, for t,; = D;gu + X;Bu and t,; = D}0, + XS,
we have with probability 1 — o(1) that sup,cy e [tui — tui| < 5% = o(1), and so |A(tu;) —
A(ty)| < A (tyi)|twi — tui] uniformly over u € Y and i = 1,...,n as in (E.6). Hence, the inequality
|z(1—2x)—y(1—y)| < |r—y|, which holds for all z,y € [0, 1], implies that with probability 1 —o(1),

172 = £l < IAGu) = Atu) = il S A () [Fui — tual + ruil < f2/2 (F.12)
since |r,| < f2/4 by Assumption B.5 and

N (tui) = fai + 20 (tui)rus — Tai + g < fy + 3wl +ro; < fog + Alrus| < 213 (F.13)
by the definition of f2 and since |r,| < 1. Therefore, with probability 1 — o(1),

172 = 123 ) Fullpns S (2 = £2)Z2) Fullpn 2
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uniformly over u € Y and j € [p]. Hence, it suffices to show that with probability 1 — o(1),

sup  |[(f2 — 223/ fullpne S (snlog an/n)/>.
ueU,j€p|

Next, as in (E]), we have uniformly over u, v’ € U that |73, — 7&,”1 (p+p)"?|u — /|, and so,
given that Z — Z?, = X7 (’yi, —~3), we have by Assumption BZ|vii) that

max | 2], — Z},,| < ax [|(D; XD ool = vislh Sp 0O My 2 (p + §) P — o).

1<i<n

Moreover, as in (E.2)), we have uniformly over u,u’ € U that |f2 — f2| < |u—o/|.

Further, observe that for a > 1, the inequality |z| < log(y/a — 1) implies that

Ngy=—¢ - L 1 1
S (+en)2 e m 4246t T 21 4eltl) T 2y/a

Also, by Assumptions Bl B2l and BA(vii),

tuil < (D5, X0 lloo (18ully + 118111) < 0/ DMy, 54/551og n

with probability 1 — o(1) uniformly over w € Y and i = 1,...,n. Thus, applying the inequality
above with \/a — 1 = exp(nl/(Qq)Mn,Q\/sn logn) gives

f3i>A( i)/2 2 exp(— 1/(2‘1M 21/ sn logn)

with probability 1 — o(1) uniformly over u € f and i =1,...,n. So,

En[f, ] < exp(n'/ DM, 21/s,logn)

with probability 1 — o(1) uniformly over u € U.
In addition, let

-1
€=e, = <n1+1/q(M3,1 VM) (p+5)' 2 exp(n'/CV M, 21/s, log n)) :

and let U be an e-net of U with [U¢| < 1/e. For all i =1,...,n, let U; be a value of u € R such
that ¥; = (1 — u)y + uy. Note that fu does not vary with v on any interval [u,u] C U as long
as U; ¢ [u,u] for all i = 1,...,n. Also, since ¢ < n~3, with probability 1 — o(1), each interval
[u — 2€,u + 2¢] with u € U contains at most one value of U;’s by Assumption Now,

sup max E,[(f2 — f2)2(Z5/ fu)*] S sup maxE,[(f2 — f2)*(Z3/ fu)?)
ueld JE[D] uele JEP]

+ sup inf (Bu[(f7 — f)2(Z0/f) — (P = Fa)*(Zi/ fur))|

uel,jep ¥ eue
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and uniformly over j € [p] and u,u’ € U such that f, = f,/, we have with probability 1 — o(1) that
Eal(F2 = 1M 0/ 1) = (2 = F2VA (20 ) )7

Eal{(f2 = £20% = (2 = F22 N2/ 1271 + [Bal(F2 = 1202020 ) = (20,1 1))
Enl{(f2 = 0/ L)) + [Bal L (Z0) 102 = (230 ) £

S W = ulBAl(ZL/ £ + [Bl(Fh/ SDNRZL = Z WL+ ZE| + [Eall £/ £Z)2 (£ — 1))

Sp o' = ul - (102, 0O M o (p + 5) 20t DA, ) - B2

<

S

Thus, by the choice of €, and since with probability 1—o(1) each interval [u— 2¢, u+ 2¢] with u € U€

contains at most one value of U;’s, we have with probability 1 — o(1) that

El(F2 = FDX(Z0/ 1) = (T2 = F2YA(Z ) Fur ]| S sulog an/n.

sup  inf
ueld je[p) ¥ U

Further by (E£12) and (E£I3]), with probability 1 — o(1),

sup En[(fg - fu2)2(Zi/fu)2] S sup En[A/(tuiFﬁui - tui|2(Zi/fu)2]

uelUe,jep uelUe,jep
+  sup  En[ra(Z]/fu)’]
ueUe,j€(p|
< max sup E,[{(D', X")6}*(Z])?]snlog an/n

JEB] ueute ||5)|o<Cisn,|I5]|=1

+ sy logay,/n

for C large enough, where we used that sup,cy En[r2(Z2/fu)?] < snloga,/n with probabil-

ity 1 — o(1) by Assumption B5 and supueu(ng — 04| + HBU — Bu) < (snlogan/n)'/? and
supyey (| (0, 82) o + (8%, 8.) o) < sn with probability 1 —o(1). Therefore, since

Ep[{(D', X")6}*(Z])%] < Ep[{(D', X")6}')PER((Z))'? S 1,
to establish the statement of the lemma it suffices to show that with probability 1 — o(1),

max sup (B, — Ep)[{(D', X")6}*(Z1)%]| S 1.
JEB) uette,|5o<Csn,6]=1
To do so, we will apply Lemma [B1l with I replaced by U¢ x [p] and X,, replaced by Zi(D’', X'Y'.
We have
‘ 1/2 . 1/q
o J / N2 1/q j / A
K= (Bp| _max (25,0 XYIE]) " <nt/(Ep| max|Z)(D', X' 5] )

1<i<n,ucle

1/(2
) . < nl/an,2Mn,1

< n'fa (EP[H(D/,X/)/llig]EP[HZleig]
by Assumption B:4](v,vii). Also,

sup max Ep[(ZZ(D’,X’)(S)?] <1
16110 <Csn,||8]|=1 wEU,FE[P]
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by Assumption B4(iv). Then, by Lemma [BI] we have for

On = n—1/2f<83/2(log1/2 (Blss]) + (log 5p) (log"/ n)(log/? an>)

that
sup max |(E, — Ep)[(Z](D', X")8)%]| Sp b7 + 0.
[16]l0<C'sn,||8]|=1 wEUFEIP]
Now,
PIU < Ble <n'TVAUME LV MR ) (p + 5)* exp(n'/ D M, 54/s,log ),
so that

IOg(ﬁV/{ED 5 log a,, + nl/(zq)MnQ \V Sn log n.
Using Assumption B4vi,viii,ix) and since 62 log a,, = o(1), we have

(M1 V Mn,2)2sn log a,
nl/2—1/q

2 prd
M5 M, osn

n,

< 6y log'? a, = o(1) and ey o(1),

and so

1/2 nY/ap, 2M,, 1(log sn)(logl/2 n)(logl/2 an) N 3711/2n1/an,2Mn,1n1/(4q)M1/2 L/4 log 14,

<
nl/2 nl/2
_ < 2 15nlog an)1/2<MT2L723n log an>1/2 <M72L713n log n)1/4< M2 55, >1/4<M (M2 2sn>1/4
~ nl/2—1/q nl/2—1/q nl/2—1/q nl/2—1/q nl=3/q
= o
This completes the proof. [

Proof of Lemma [F.3l Both results follow from Lemma[B.Il We provide a proof only for the first

result (the second result is simpler and follows similarly).

Recall that by Assumption B.4)(i),

0t [£u(D, Xl 2 > e

Also, observe that for any x,y € [0, 1], we have

‘\/w(l—w) -y —y)( <Vlz—yl.

Therefore, since f2 = E[Y, | D, X](1—E[Y, | D, X]), by Assumption 3.3} for any u,u’ € U, we have

o=l < (1B =Y D, X)) < (@l —ul)
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Hence, since £,, — oo, with probability 1 —o(1) uniformly over u,u’ € U and § € RPT? with ||6]| =1

and ||0]|o < £,8n, we have

I fur (D', X")dllp, 2 = [l ful D', X7)3 ][, 2

< N (fw = fu)(D', X0, 2
— roxny
S ”ful fu”Pn,Q 11228‘5; H(Dsz) ”00”5”1

< ||fu’ - quPn,in/@q)MnQén Sn

1/2
< <C’1|u' —u|) nl/(2Q)Mn72€n Sn,

by Assumption B.4(vii). Thus, for

2
e al
T T Ol M2 s,
we have with probability 1 — o(1) that
sup Ifur (D, X")ol, 2 = [ fu(D', X")é|lp,, 2| < c1/Ln.

fu—/[<e, 18]l <n s, 3] =1

Now, let U€ be an e-net of U such that [U¢| < 3/e. We will apply Lemma [B.I] with ¢/ replaced
by U, k = £,s,, and X, replaced by f, (D', X’). Since 0 < f, < 1, we have

K = (B[ o ma 72101, X112 ) < (B o 1004 X2YI2]) 7 <m0

1<i<nuele

by Assumption B4(vii). Also,

sup max Ep[f2((D', X")6)?] < sup Ep[{(D', X")0}% < /C,

18]l0 <lnsn,13]|=1 4EU* 16]lo<€nsn,I6]=1

by Assumption B.4Yiv). Thus, applying Lemma [B1] gives

swp  max|(B — Bp) (£ (D', X)0)2)| Sp 8+
[16]l0<Lnsn,||6]|=1 4EU

where
b = n V2O 2V lnsn (log"/? a,) (log®? n).

Finally, by Assumption B4(viii),

SEL = n‘lH/quLgﬁnsn(log an)(log3n) < n‘”zﬁn%(logl/2 ay)(log®n) = o(1)

since £,, — oo slowly enough and logl/ an < 6,nY/6 by Assumption [B.4ii,iii). Combining presented

~

bounds gives the asserted claim. [ ]
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APPENDIX G. PrOOF OoF LEMMA Bl

Proof of Lemma Bl For T C {1,...,p}, let By = {6 € R?: ||§]| = 1,supp(d) C T'}. Also,
for T = Upr—Br x U, let R := sup(g 7 (i (0 Xui) )/ and M = maxi<icnueu | Xuilloo- By
symmetrization inequality, Lemma 6.3 in [28], we have

where X = (Xyi)uecu,1<i<n and (g;)7; is a sequence of independent Rademacher random variables

<2E [E| sup

(O,u)eT

i&i(elXui)2

nE [ sup max !En [(QIXU)2 — E[(G,Xu)2m
i=1

I0llo<k,|l0f|=1 wEU

that are independent of X. A consequence of Lemma 4.5 in [28] (see equation (4.8)) gives
Z £i(0' X i) Z 9i(0'Xui)?| | X]

i=1 1=1
where (g;)1"_; is a sequence of independent standard normal random variables that are independent

E| sup
(Ou)eT

| X| < (7/2)Y?E | sup
(Ou)eT

of X. In turn, an application of Dudley’s integral gives

En: gi(elXui)2

i=1

I :=E| sup

(Ou)eT

diam(7")
| X| < 8/ log'/? N(T,d, €)de
0

where diam(7) < 2Sup(g,u)g—(z?:l(H’Xui)4)1/2 < 2VEMR using that |0/ X ;| < || Xuilloo €1
M+V'k, and d is the corresponding Gaussian semi-metric. Furthermore, we have log N (T,d,e)
log || + max,ey log N (U= Br x {u},d,€), so that

<
<

diam(7)
I, < 16VEMRlog"? |U| + 8 / meazjdogl/z N(Upr=xBr x {u},d, e)de.
0 u

Now, for any (#,u) and (6, u) in DE := Ujp By x {u}, we have

1/2

A0, ), (0,0) = ({0 Xu)* = (0' X))
=1

1<i<n

< (Z{(H/Xm) + (éle')}z)l/Q max | (6 — 0) Xy
i—1

<2 sup (zn:(efx )2)1/2 max [(60 — 8) Xu| = 2R]6 — 4]
X ui ax - ui| = — VUl X,
(G,U)ET i=1 1<Z<’n

where we let [|0]|x, := maxi<i<y [0’ Xyi|. This implies that

N(DE,d,€) < N (DE/VE |- |x, e/ {2VER})

Therefore, since diam(7) < 2V kMR, we have

ueld

diam(7) 2vVEMR
/ maxlog'/2 N(D¥, d, e)de < / maxlog!/? N(DE VR | - |x,. ¢/ (2VER))de
0 0 u

M
= 2VEkR mazujilogl/2 N(DE/VE, || - |x,, €)de.
0 (S
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Note that Br/vk C B: and D¥/\/k C B! x {u} where B! := {# € RP: ||§||; < 1} and B} = {0 €
B': supp(d) C T}. It follows from Lemma 3.9 in [A1] that N(BY, || - ||x,,€) < (2p)Ac “M*logn for
all € > 0 and some universal constant A. Moreover, as in the discussion after Lemma 3.9 in [41],
we have N(BL, | - || x,,€) < (1+2M/e)* for all e > 0 and all T C {1,...,p} with |T| = k, so that
N(DE/VE | - |Ix..€) < (§) (1 +2M/e)* for all € > 0. Therefore,

M
max10g1/2 N(ij/\/E, Il 1lx.,,€)de

0 ueld

M/VE » M o
</ log!/? << )(1 +2M/€)k> d€+/ logl/2 ((2p)Ae M logn> de
0 k M/Vk

M 1/2 (P M/Vk 1/2 1/2 1/2 M de
< —log +Vk log(1 4 2M /€)de + AY*M (1og"/? n)(log"/?(2p)) —
VEk k 0 M/VE €

< Mlog'?p + M<1 + log(1 + 2\/E)) + AY2 M (log!/? n)(log1/2(2p))<logM - log(M/\/E)>
< M (10g"2 p + (log k) (l0g!/ n) (log"/* p)

up-to a universal constant where in the third inequality, we used the fact that integrating by parts

gives
M/VE
x/%/ log(1 + 2M /e)de < M(1 4 log(1 4 2Vk)).
0
Collecting the terms, we obtain
L < \/EMR(logl/2 U] +log'/? p + (log k)(log"/? n)(log'/? ))

Therefore, since K > (E[M?])'/?, setting

b = log!/? || + log/* p + (log ) (log /% n) 10g /2 p)

KVE
T

gives

I,=E su max |E, [(0'X,)? — E[(0'X,)?
i [neno@,ﬁenzl uett n [(7X0) (0 ]H]

s %%R] < (6a/K)(E[M?) (EIR? /n])'/? < 6,(E[R* /m])"/?
< On <I2 + sup JE[(0'X,) ])1/2

||9||0<k7||9||=1,u611

Thus, because a < 6, (a + b)'/? implies a < 62 + §,b'/?, we have

Ir S < (52 + 6, sup EnE[(Q/Xu)Q]
6]l0<k,||0]|=1,ucl

up-to an absolute constant. This completes the proof. [ ]
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APPENDIX H. DOUBLE SELECTION METHOD FOR LOGISTIC REGRESSION WITH FUNCTIONAL
RESPONSE DATA

In this section we discuss in details and provide formal results for the double selection estimator

for logistic regression with functional response data.

Algorithm 5. (Based on double selection) For each u € U and j € [p]:

Step 1. Run post-£;-penalized logistic estimator ([A.2]) of Y, on D and X to compute (gu, @L)
Step 2°. Define the weights f2 = f2(D, X) = N (D!, + X/B.).

Step 3’. Run the lasso estimator (£.4]) of quj on f,X to compute 3.

Step 4. Run logistic regression of Y, on D; and all the selected variables in Steps 1" and 2’

to compute éuj.

The following result establishes the Bahadur representation for the double selection estimator

(analog to Theorem 3.1 for score functions).

Theorem H.1 (Uniform Bahadur representation, double selection). Suppose that Assumptions[31]
~[3.4 hold for all P € P,,. Then, the estimator (éuj)ueu,je[ﬁ]J based on the double selection, obeys
as n — oo

i n(éuj - euj) = Gn&uj + Op(0n) in £°(U x [p])

uj

uniformly over w € U, where Eij = Ep[f2(D — X721

Proof of Theorem [H.Il The analysis is reduced to the proof of Theorem Bl Let fuj =
Supp(é\u) U Supp(gu) U supp(3) for which by Theorems Al and satisfies sup,ey jep T, wil S sn
with probability 1 — o(1). Therefore Step 3 is a post-selection logistic regression which yields an
initial rate of convergence [0,,; — Ou;| + [|0uippj — Ougill + 18w — Bull S (snlog an/n)'/2. Moreover,
by the first order condition of Step 3 we have

En[{Yuz — A(D]éu] + fo)]\]éu[ﬁ]\] + X//Bu)}(Dja X%«‘uj )/] =0 (Hl)

so that any linear combination yields zero. By setting the parameters (6/,, 3,) = (Oui)j» 0., ]\ B,
and 2, = (D, X% (1, ) = Dj;— X775, we recover the setting in the proof of Theorem Bl The
rest of the proof follows similarly. ]

The double selection procedure benefits from additional variables selected in Step 2. The (esti-
mated) weights used in the equation ensure that selection will ensure a near orthogonality condition
that is required to remove first order bias. In contrast, (naive) Post-£1-logistic regression does not
select such variables which in turn translates in to first order bias in the estimation of 6,;. We
stress that Step 2 is tailored to the estimation of each coefficient 6,; which enables the additional

adaptivity.

The double selection achieves orthogonality conditions relative to all selected variables in finite
samples. Although first-order equivalent to other estimator discussed here, this additional orthog-

onality could potentially lead to a better finite sample performance. To provide intuition why,
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consider the logistic regression case with p = dim(D) = 1 and & = {0} for simplicity. In this case
we have
E[Y|D,X] = A(Dfy+ X'By) and let f = A'(Dby+ X'fBp).
Letting 7 be the Lasso estimate of fD on fX we have that the one step estimator
0=0—En[(D— X3P Eal{Y — A(DO + X'B)HD — X'F)

is an approximate solution for the moment condition

E,[{Y — A(D§ + X'B)}(D — X'7)] = 0. (H.2)
Indeed, it is one Newton step from 9. Our proposed estimator based on estimated score functions

defines @ as an exact solution for ([L2)), namely
E,[{Y — A(Df + X'B)}(D — X'7)] = 0.

The double selection achieves that implicitly. Indeed, letting T = support(S) Usupport(7), the first

order condition of running a logistic regression of ¥ on D and X5 yields

E, [{Y — A(D6+ X')} ( )?A >] =0 (H.3)
T

where (6, 3) is the solution of the logistic regression. By multiplying the vector (1, —4’)’, the relation
above implies

E,{Y — A(DO+ X'3)}(D — X'7)] = 0.
since support(y) C T (the condition support(ﬁ) C T ensures that {3 is a good approximation of 3p).
Note that (H3) provides a more robust orthogonality condition and does not need to explicitly

create the new score functions as the other two methods.

APPENDIX I. GENERIC FINITE SAMPLE BOUNDS FOR /1-PENALIZED M-ESTIMATORS:
NUISANCE FUNCTIONS AND FUNCTIONAL DATA

In this section, we establish a set of results for ¢1-penalized M-estimators with functional data
and high-dimensional parameters. These results are used in the proofs of Theorems A.1] and

and may be of independent interest.

We start with specifying the setting. Consider a data generating process with a functional

response variable (Y,,),ey and observable covariates (X,,)yecy satisfying for each uw € U C R
6, € arg gnIiRn Ep[My,(Yy, Xu,0,a,)], (I.1)
cRp

where 6, is a p-dimensional vector of parameters, a, is a nuisance parameter that captures potential
misspecification of the model, and M,, is a known function. Here for all u € U, Y,, is a scalar random
variable and X, is a p,-dimensional random vector with p, < p for some p. We assume that the

solution 6, is sparse in the sense that the process (6, )ycys satisfies

10ullo < s, foralluel.
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Because the model (L) allows for the nuisance parameter a,, such sparsity assumption is very mild

and formulation ([l encompasses many cases of interest including approximately sparse models.

Throughout this section, we assume that n ii.d. observations, {(Yui, Xui)ueu iy, from the
distribution of (Yy, Xy )ueys are available to estimate (0,)ycys. In addition, we assume that an
estimate @, of the nuisance parameter a, is available for all © € /. Using the estimate a,, we use
the criterion function

My (Yo, Xu, 0) = My (Yo, Xu, 0,ay)
as a proxy for M, (Yy, Xy, 6y, a,). We allow for the case where p is much larger than n.

Since p is potentially larger n, and the parameters 6, are assumed to be sparse, we consider an

{1-penalized M, -estimator (Lasso) of 6,:

~

0, € arg m@in (En[Mu(Yu,Xu,H)] + %H\Tlumh) (I.2)

where X is a penalty level and \Tfu a diagonal matrix of penalty loadings. Further, for each u € U,

we also consider a post-regularized (Post-Lasso) estimator of 6,

bu € argminEn[M,(Y,, X, 0)] : supp(d) C T, (1.3)

where T}, = supp(gu).

We assume that for each u € U, the matrix of penalty loadings \Tlu is chosen as an appropriate

estimator of the following “ideal” matrix of penalty loadings: W,o = diag({luox,k = 1,...,p}),

where

bk = (Bn | (00 Ma (Vi Xo 0000)°] ) (14)
and Jp, My, (Yy, Xy, 0y, a,) denotes a sub-gradient of the function 8 — M, (Y, Xy, 0, a,) with respect
to the kth coordinate of 6 and evaluated at 8 = #,,. The properties of ¥,, will be specified below in
lemmas. Also, we assume that the penalty level A is chosen such that with high probability,

% > csup H@;(}En [agMu(Yu,Xu,eu,au)]Hoo, (L5)
where ¢ > 1 is a fixed constant. When U is a singleton, the condition (L)) is similar to that in [I4],
[], and [10]. When U is a continuum of indices, a similar condition was previously used in [3] in
the context of ¢i-penalized quantile regression.

For uw € U, denote T,, = supp(f,). Let £ and L be some constants satisfying L > ¢ > 1/c. Also,
let

- LC+ 1 o~ /\_1
c= le—1 21615 [W0lloo ¥ 4 lloo
where for any diagonal matrix A = diag({ax,k = 1,...,p}), we denote ||Al|sc = max;<k<p|ar|. Let

(Ay)n>1 be a sequence of positive constants converging to zero, and let (Cy,),>1 be a sequence of
random variables. Also, let w, = w,(X,) be some weights satisfying 0 < w,, < 1 almost surely.

Finally, let A, be some random subset of R and G4, be a random variable possibly depending on
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A, where both A, and g4, are specified in the lemmas below. To state our results in this section,

we need the following assumption:

Assumption I.1 (M-Estimation Conditions). The function 6 — M, (Y, Xy, 0) is convex almost
surely, and with probability at least 1 — A, the following inequalities hold for all u € U:

(a) |En[00 My (Y, Xu, 04) — 00 My (Y, Xu, Ou, ay)) 0] < Crll/wu X, 0]|p, 2 for all § € RP;
(c) forall o € Ay,

En[Mu(Yuy XU7 eu + 5)] - En[Mu(Yuy XU7 Hu)] - En[OGMu(Ym qu eu)]/(s + 2CnH\/ wuX;(S”]P’nQ
> {IVwa X011, o} A {4, V@ X8, 2} -

In many applications one can take the weights to be w, = w,(X,) = 1 but we allow for more
general weights since it is useful for our results on the weighted Lasso with estimated weights. Also,
in applications, we typically have C,, < {n~!s log(pn)}l/ 2. Assumption [T}(a) bounds the impact of
estimating the nuisance functions uniformly over u € /. The loadings (I\’u are assumed larger (but
not too much larger) than the ideal choice U, defined in (L4)). This is formalized in Assumption
[LIlb). Assumption [I}(c) is an identification condition that will be imposed for particular choices
of A, and Ga,. It relates to conditions in the literature derived for the case of a singleton &/ and
no nuisance functions, see the restricted strong convexity used in [33] and the non-linear impact
coefficients used in [3] and [§].

Define the restricted eigenvalue

Foe = inf,_inf ||V X (3, o |57,

where Agz,, = {4 : |07, [[1 < 2¢[|0r,[[1}. Also, define minimum and maximum spare eigenvalues

H\/ wqu/ﬁHI%’n,z

X512
H(5H2 and Cbmax(mau) = ” HP”B

) — ma
Brmin (1, 1) 1<lBlo<m  [10]2

1<|8flosm.
The following results establish the rate of convergence and a sparsity bound for the ¢;-penalized

estimator 6, defined in ([L2]) as well as the rate of convergence for the post-regularized estimator

0., defined in ([[3).

Lemma I.1. Suppose that Assumption [L1 holds with A, = {0 [|6%, |1 < 2¢[|or,[l1} U {d: [|d][1 <
-1 ~
%%Cn”,/wu)(&é”]pmg} and qa, > (L + )| Wyolloo MS Ly 66C,. In addition, suppose that A

nkog

satisfies condition (L3) with probability 1 — A,,. Then, with probability at least 1 — 2A,,, we have

2 Assumption [Tl (a) and (c) could have been stated with {C,/+/5}||6]|1 instead of C||\/waX.d|le, 2-
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for all w € U that

~ 1\ ~ A
VB XL~ 0l 2 < (L4 -) ||wuo||wni L 6iC,,

_ (14295 3nc| Tl I~ A3
_ < (2 TEVE 20 P w0 oo . z
Heu euHI = ( K¢ + A le—1 On) ((L * C) H\IIHOHOO’I’L/_{Q@

. n)

Lemma 1.2. In addition to conditions of Lemmall 1, suppose that with probability 1— A,,, we have

for some random variable L, and all w € U and § € RP that

‘{En[aeMu(Ym X, é\u) - aGMU(Yu, Xus HU)] '

< Lol X.3]e, 2 (1.6)

Further, for allu € U, let 5, = supp(fu). Then with probability at least 1 — 3A,,, we have for all
u €U that

~ . 2
Sy < mnel}\l/llu ¢max(m7 U)Lu,

where My, = {m € N: m > 2¢yax(m,u)L2} and L, ¥y _1 2{Cp + Ly}.

Lemma 1.3. Suppose that Assumption [[1 holds with Ay, = {6 : ||d]lo < Su + su} and

~ 1
QAU > 2ma‘x{ (En[Mu(YuaXU70u)] - En[Mu(YU7XU76u)]) / ’
+

Au u ]En Mu Yu7Xu7 9“7 u o0
<VS+$|![% L au)]| +3GQ}- (L7)
\/(bmin(su + Sus u)
Then with probability at least 1 — A,,, we have for all u € U that
~ -~ 1/2
VX B = 0l 2 < (BalMu(Yar X 80)] — EalMalYar X, 00)) |
Au U En Mu Yquuaem u)|||loo
L V5ut sullEn[0 A( Gl 430,
\/¢min(3u + Su, ’LL)
In addition, with probability at least 1 — A,,, we have for all u € U that
~ AL~
En[Mu(Yquuaeu)] _En[Mu(Yquuaeu)] _”6 _6 HISUPH\I/uOHOO (18)

A key requirement in Lemmas [[1land [.2is that \ satisfies ([[.3]) with high probability. Therefore,
below we provide a choice of A and a set of conditions under which the proposed choice of \ satisfies

this requirement. Let dyy: U x U — R4 denote a metric on U. Also, let
Su = 8€Mu(YuaXu79u7au)7 uel.
Moreover, let C' and C' be some strictly positive constants. Finally, (€,)n>1, (©n)n>1, and (Ny)p>1

be some sequences of positive constants, where ¢, = o(1).

Condition WL. The constants €, and N,, satisfy the inequality N,, > N(€,,U,dy) and the fol-
lowing conditions hold:

(i) sup max(Ep[|Sur[*]) 3071 (1 — v/{2pN,}) < un'/S;
ueld k€[p]
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(ii) C < Ep[|Surl?] < C, for allu € U and k € [p];
(iii) with probability at least 1 — A,,,

sup  |[En[Su—Suwlllo <un™ V%, and  sup  max||Ep[Shy—Shpl|+|(En—Ep)[Siill] < ¢
dy (u,u’)<en dy (u,u’)<en kelp]

Let
A= vn® (1 —y/{2pN,}), (1.9)
where 1 —~ (with v = 7, = 0(1)) is a confidence level associated with the probability of event (L),

and ¢ > ¢ is a slack constant. The following lemma shows that this choice of A satisfies (L.3]) with
high probability under Condition WL.

Lemma 1.4. Suppose that Condition WL holds. In addition, suppose that \ satisfies (L)) for some
d>candy=r,€[l/n,1/logn|. Then

Pp <)\/n > csup H\TJ;OlEn[Su]HOO> >1—v—o0(y) — A,.
ueU

Condition WL(iii) is of high level. Therefore, to conclude this section, we present a lemma that

gives easy to verify conditions that imply Condition WL(iii).

Lemma I.5. Suppose that for allu e U, X, = X and Y, = H(Y,u) where Y is a random variable
and {H(-,u): uw € U} is a VC-subgraph class of functions bounded by one with index Cy for some
constant Cy > 1. In addition, suppose that for all w € U, we have S, = (Y, — Ep[Y, | X]) - X.
Moreover, suppose that maxyep, Ep[X;l] < C, C < sup,ey kelp] Ep[S2,] < C, and Ep[|| X|| &)Y <
K., for some constants C,C > 0 and q > 4 and a sequence of constants (K,)n>1. Finally, suppose
that Ep[|Y, — Y|t < Culu — |V for any u,u’ € U and some constants v and C. Then we have
with probability at least 1 — (logn)~! that

log(npK,)\1/2  K,log(npK,)
S Sullle S (ZE0R") T+ T (110
log(npK,)\1/2 = Kjlog(npk,)
_ 2 < (A n) Zn OV IR
sup mase (B, — Bp)[S3]| 5 (=5 =)+ ST (111)
max [Ep[S3; — 2]l S du, ')/ (112)

kelp]

up-to constants that depend only on C,C,Cy,C,, q, and v.

APPENDIX J. PROOFS FOR APPENDIX [I]

Proof of Lemma [[L1l. For v € U, let §, = 0, — 0, and Sun = Ep[0gMy(Yy, Xy, 04, ay)]. Through-
out the proof, we will assume that the events (a), (b), and (¢) in Assumption [[.T] as well as the event
(LH) hold. These events hold with probability at least 1 — 2A,,. We will show that the inequalities

in the statement of Lemma [[L1] hold under these events.
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By definition of 6, we have E,,[M,, (Y, Xu, 0u)] + 29,011 < En[My (Y, Xuy 00)] + 20,0,
Thus,

>

~

A
;H‘If Out, |1 — —||‘I’ Ou,e|l1
)\L
H‘I’uo%Tqu - —H‘I’uo%TCHl (J.1)

Moreover, by convexity of 6 — M, (Y, Xy, 0), we have
En[Mu(Ya, Xu, 00)] = En[Mu(Ya, Xu, 00)] > Enl09Mo(Ya, Xu, 04)]'61 (4:2)
> =2 Gaoull — Cull VXL 5,
where the second inequality holds by Assumption [[I[a) and A/n > csup,y H@;&Sumﬂoo since
[0 Mu (Y, Xu, 00))0u| =[Sy 100 + {En 00 Mu(Ya, Xus 0u)] — Sun}t 0ul
< 1St n0ul + {En 09 Mu(Yu, Xu, 04)] = Suin} dul
<1850 SunlloolPuodull + Callv/wuX dulle, 2
< 2 Buobulh + Cull VX B e, > (1.3

Combining (I)) and (DEI), we have

)\Cf )\LC—I— 1
H‘I/uo5u Tell1 <

108z, 1+ CollviwuXbdule, 2, (J.4)

n

and for ¢ = Lt sup, ., H\I’uoHooH‘I/ !loo, We have

nc||\I’

i :
—_ wXy,
e AT A

Now, suppose that 6, & Agz., namely |[6,,7¢(1 > 26H5u 7, |l1- Then

10u,7g 1 < €lldu,z, [l + <

n ||

—”‘”c VB Lbullp

26|90 1)
6wz, 1 < Elldur, 1 + N o

and so
HCH‘I’ Hoo
”(Su,Tuul X \ /e C vauX/(S ”Pn,

since ¢ > 1. Also,

Iouzglh < ol + 2w e v, o
and so
Iouzglh < 22 Wl s e, o
Therefore,
foulh < 22 Wbl o, o = 1 (15)

A le
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as long as 0, & Agz,. In addition, if 6, € Agz,, then

S
1uzll < Valldur. ]l < %urwuxgaunpngzn
C

Hence, in both cases, we have

Next, for every u € U, since A, = Aoz, U {0 : ||0][1 < "c”fcuolan |/wu X0, 2}, it follows
that 0, € A,, and we have

llv wqu,;‘Su”I%PnQ A {un B, wqu/L(su”lP’n,?}
< En [Mu(Yuy XU7 é\u)] - En [Mu(Ym qu eu)] - En[aeMu(Yuy XU7 Hu)]/(su + 2071”\/ wuXL(SuH]P’nQ

INA =
< (L+2) 51 Puodum i +3Cu VT Xl le, 2
INA -~ /
< (L4 2) 2l wlloe {2+ 11} + 3Call Vit X, ulle, 2

< {(2+ 2) Bl 22 + 620, XLl o

where the second line follows from Assumption [L1l(c), the third from (I1I), (L3]), and ¢ > 1/c, the
fourth from ||(I\’u05u,Tu I < ||(I\’u0||oo||5u,Tu |l and ([L.g), and the fifth from definitions of I,,, IT,, and

¢. Thus, as long as

1N\, = A
I R [
C nKk

n, foralluel,

which is assumed, we have

IRNES AV's
WXLl 2 < (L4 2) [Tl 2L
c nkos

This gives the first asserted claim. The second asserted claim follows from

cCp, =:111,, foralluecl.

10ulls < Hou € Az u}l[dullt + 1{0u & Azzu}|dullr

(14 2¢)y/s 3nc|]\I/ oo
- w0 o VIII,.
Kog TN A le—1 )

This completes the proof. [ ]

< (1 +20)I1, + 1, < (

Proof of Lemma [[.2l For u € U, let Sy, = E,[0g M, (Y, Xy, 04, ay)]. Throughout the proof, we
will assume that the events (a), (b), and (c) in Assumption [Tl as well as the events (LE) and (LG
hold. These events hold with probability at least 1 — 3A,,. We will show that the inequalities in
the statement of Lemma [[.2] hold under these events.

By definition of the estimator Hu, there is a subgradient OgE,, [M,, (Y, X, , w)] of By [My(Ya, X, @\u)],
such that for every j with |0uj| > 0,

|( laﬁE (M, (Yu,Xuae )])]| = A/n.
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Therefore, we have

A = (@ O Mo (Ve Xo 87 |

< ”( 1Su n)TuH + ”( 1{E [3@M (Yquuae )] - Su,n})fu”
"‘H( 1{E [Op M., (Yquuae ) — aGMu(YuaXuveu)]})fu”

<P Taolloo 1T g EnlSun]loo v/5u + |75 l0cChn s Ve X0l 2
é :17 0 Ogé\u

1 e sup {En[09My(Ya, X, 0) — 99 My (Yu, X, 04)]}6]
||<5||—1 16]l0 <Sw

e v + HOO{C +Ln}  sup 1 X20lp, 2
cen 1611=1,16]l0 <5

where the first inequality follows from the triangle inequality, the second from Assumption [[1](a),
and the third from Assumption [T(b) and inequalities (L) and (L6).
¥t o L
Now, recall that L, = "% {Cy + L, }. In addition, note that supysj—1,s,<s. X013, o =

¢max(3u, ) Thus, we have

Consider any M € M, = {m € N : m > 2¢na(m,u)L2}, and suppose that 5, > M. By
the sublinearity of the maximum sparse eigenvalue (Lemma 3 in [4]), for any integer £ > 0 and
constant £ > 1, we have @pax(Ck, u) < [€]Pmax(k,u), where [¢] denotes the ceiling of ¢. Therefore,

A’U, 2 n

since [k| < 2k for any k > 1. Therefore, we have M < 2¢max (M, u)L%L which violates the condition
that M € M,. Therefore, we have 5, < M. In turn, applying (I]) once more with 5, < M we
obtain 8, < ¢max(M,u)L2. The result follows by minimizing the bound over M € M,,. [

Proof of Lemma [[.3l The second asserted claim, inequality (L8]), follows from the observation
that with probability at least 1 — A,,, for all u € U, we have that

A~ A~ o~ A~ ~ AL~ ~
< = Wubullt = =[[Wubullt < = (|0 — Oull1 - sup || Vullooc < —1|0u — Oull1 - sUP [[¥uo]| oo,
n n n uel n uel

where the first inequality holds by the definition of §u, the second by the definition of §u, the third
by the triangle inequality, and the fourth by Assumption [1L(ii).

To prove the first asserted claim, assume that the events (a), (b), and (c¢) in Assumption [l
hold. These events hold with probability at least 1 — A,. We will show that the asserted claim

holds under these events.
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For u € U, let 6y = Oy — O, Supn = B[99 My (Yu, Xu, Ous an)], and iy, = ||\/0y X0, ]|p, 2. By the
inequality in Assumption [[1l(c), we have
EL A {QAUEU} S En[Mu(Yuy XU7 gu)] - En[Mu(Yuy XU7 Hu)] - En[aGMu(Ym qu eu)]/gu + 2Cn£u

V /s\u + SuHSu,nHoo
\/¢min(§u + Sus u)

where the second inequality holds by calculations as in (I.3]), and the third inequality follows from

~ — ~ V8, + s ~
[6ullt < V5w + sulldull2 < i = H\/wqu/L(su”PnQ’
\/quin(su + Suyu)

Next, if 2 > Ga,tu, then

— g _Au 0 Au L
qa,ty < q2 {En[Mu(YmXua eu)] - E”[M“(Y“’X“’ Hu)] i/2 + q2 bu,

so that £, < {Ep[My(Yu, Xu, 04)] — En[My(Ya, Xu, 6,)]}/%. On the other hand, if 2 < ga,Z,, then

<A{EW My (Y, Xy 00)] — Ep[My(Ya, X, 0)]} + F ( v S:f s(“AHSJ“F’””;O + 3C’n) .
min (Su Su

SR

Since for positive numbers a, b, ¢, inequality a? < b+ ac implies a < v/b + ¢, we have

=~

¢min(3u + su)

In both cases, the inequality in the asserted claim holds. This completes the proof. [ ]

Proof of Lemma [[L4l For brevity of notation, denote ¢ = ¢,. Also, let A, denote the event
that the inequalities in Condition WL(iii) hold. Then Pp(A,) > 1 — A,,. Further, by the triangle

inequality,
sup [ Wt B [Sul oo < max W En[Su]]lo (1.8)
weld uel€

+ sup H‘Ij;(JlEn [Su] - \I';/%)En [Su’] Hoo
uelU e ' €U ,dy (uu')<e

where U€ is a minimal e-net of U so that U] < N,,.

For each k = 1,...,p and u € U¢, we apply Lemma [T with Z; := Sy;, p = 1, and £, = ", L,
where ¢’ is a small enough constant that can be chosen to depend only on C and C. Then Condition
WL(4,ii) implies that

1

1/6

2p N, 4,
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where M, = (Ep[Z7])Y/?/(Ep[Z{])'/3, and so applying Lemma [T} the union bound, and the

inequality |U€| < N, gives

‘\/ﬁEn[Suk” -1 v 1/3
P >0 (1 - < 29N, - —— - (1+ O n/ <v+ J.9
P\ 70 () | < g (o) <o o) 00

since ¢, = o(1). Also, observe that

- En[suk”
max ||, YEnlSullleo = sup max ’7
wele ” 0 [ ]H weUe ke[p} /En[Sik]

Therefore, (I1.9]) implies that with probability at least 1 —~ — o(7y),

-1 < n- 1251 7 '
ume%;gH‘I’uo En[Sullls <n o 1 2N, (J.10)

Further, by the triangle inequality,

sup 190 En[Su] — Ui EnlSu] [l
uele ' €U, dy(uu’)<e
< sup 1Tt = Ut Wo]lol |V a En[Sul [l oo (J.11)

wEU© ! €U, dyg (u,u! ) <e

+ sup IEn[Su — SU’]HOOH{I};/%)”OO (J.12)

w,u’ €U, dy (u,u’)<e

To control the expression in (LII), note that by Condition WL(ii), on the event A,, Work i
bounded away from zero uniformly over v € U and k € [p]. Thus, we have uniformly over u € U
and k € [p| that

(Pooen — Yorbre) Yokt = 1Wuork — Cwork Yo bre S [Puokk — Yuwork| (J.13)
on the event A,,. Moreover, we have

sup  max [{Ea[SZ}/2 — {EalS2]}?| (4.14)

! €U dyy (u,u’)<e KE (7]

1/2
< sup max (|Bg[S%] — EalS2,))

w,u’ €U, dy (u,u’)<e kelp]

2 2 2 1/2 1/2
< s max (2B, — Ep)[SE] + [Ep[st - S2)) S ek
w,u €U, dy (u,u’)<e kelp]

on the event A,,. Thus, relations (II3) and (I.I4) imply that

sup ||(\Ij;01 - \II;/]G)\IIUO||OO S 90;/2
w,u’ €U, dyy (u,u’)<e

on the event A,,. Also, using standard bounds for the tails of Gaussian random variables gives

ot (10 ) S VRN ).

2pN,,
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Thus, on the intersection of events A,, and (LI0]), we have
sup ”(\I’;Ol - \IJ;/%))\I’uOHOOH\IqolEn[Su]”oo S (‘:Dn/n)l/2 V10g(pPNy /7).
welle ! €U dyy (u,u’)<e
Finally, on the event A,, we have that the expression in (I12)) satisfies

sup |En[Su — Su’]HOOH‘Ij;%)Hoo < @nn_l/Z-
w,u’ €U, dy (u,u’)<e

It follows that on the intersection of events A, and (I.I0), for n large enough, we have

/
T-1 -1 c—C -1 2
sup U K, [S,] — U, E,[S, < . P <1 _ ) 7
wel . u' €U, dy (u,u’)<e H uo n[ U] w0 n[ “ ]”OO C 2pNn

where we again used standard tail bounds for the tails of Gaussian random variables. The asserted
claim now follows by recalling the inequality (IL8) and noting that Pp(A4,) > 1 — A, and that
(II0) holds with probability at least 1 — vy — o(y). [
Proof of Lemma [[.5l For j € [p], let

Fi = {(Y,X) - VX u € u}, Fi= {(Y,X) — X,;Ep[Y, | X]: ue u},

gj= {(Y,X) HXJZCZ: uGU}

where ¢, =Y, — Ep[Y, | X]. Note that the function F(Y,X) = || X[« is an envelope both for F;
and for ]:]’ for all j € [p]. By assumption, F' can be chosen to satisfy || F||p, < Kp.

Because F; is a product of a VC-subgraph class of functions with index bounded by Cy and a

single function, Lemma [K.}(1) implies that its uniform entropy numbers obey
log N(e[|[FllQ2, Fj, || - l.2) S log(e/e), 0 <e<1. (J.15)
Also, Lemma implies that the uniform entropy numbers of .7-"]’- obey

€
log SZPN(GIIFHQ,%JT]@ [ ll@2) < 10gSgPN<§IIF||Q,2,fj, - ||Q,2>’ 0<e<L (J.16)

Further, since G; C (F; — ]:]’-)2, G = 4F? is an envelope for G;, and the uniform entropy numbers
of G; obey for all € € (0, 1],

€
log N (e Gllo.2, G| - o) < 2108 N (5 12F o2, F5 = F I o) (3.17)
€ €
<210g N (§1Fllga: Fis I - lgz) +210g N ({1 Fllaa: 7. I - lo:2)
€
< dlogsup N (5lFllo2: 75 1 loz).

where the first and the second lines follow from Lemma [K.1](2), and the third from (I.I6]). Hence,
Lemma [K.1[2) implies that the uniform entropy numbers of G = Uj¢,G; obey

log N(€|Gll@2, G, | - l2) < log(p/e), 0<e<1,



where G = 4F? is its envelope. Therefore, since |S,;| < 2|X;| and max;<, Ep[X4] <
assumption, Lemma [.2] implies that with probability at least 1 — (logn)~*

9

log(npK,,) n n?/1K?

Supmax|(E —Ep)[Sy]l S - " log(npK,),

ueld J <p n

which gives ([LIT]).
To verify (LI0), note that

sup maxEp[X (C —Cu)?l < sup mapr[XJZ(Yu —Yu)?
dyy (uu)<1/n JE[P] dyg (u,u')<1/n JELP]

< swp max{Ep[X[I}{ER[(Yy — Yu) '}
dyg (u,u/)<1/m ISP

< sup Ju—d)? <nv2
du(u,u’)gl/n

Therefore, Lemma [.2 implies that we have with probability at least 1 — (logn)~!

i

sup  [[En[Su — Swlllec = Td (SUP max |Gy (X (Cu — Cu))]

dy (u,u’)<1/n )<1/n JEP

log(npK) n'/1K, log(npK,)

< )
~ nltv/2 n

which gives ([LI0]).
Finally, to verify ([I12)) note that uniformly over u,u € U and j € [p], we have
[Ep[Sh; — Sajll = [Ep[(Suj — Swj)(Suj + Swj)|

< (Bpl(Suy — 5u) - (Bls] + Bpls])

< (Beb v —v?)) " < (Belx)) " (Bl — vi)!) " S dual

This completes the proof.

APPENDIX K. BOUNDS ON COVERING ENTROPY

Let (W;)_; be a sequence of independent copies of a random element W taking values in a
measurable space (W, Ayy) according to a probability law P. Let F be a set of suitably measurable

functions f: W — R, equipped with a measurable envelope F': VW — R.

Lemma K.1 (Algebra for Covering Entropies).  Work with the setup above.

(1) Let F be a VC subgraph class with a finite VC index k or any other class whose entropy is
bounded above by that of such a VC subgraph class, then the uniform entropy numbers of F obey

Sup log N(el|[Fllg2, F, |l - l@2) S 1+ klog(1/€) v 0
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(2) For any measurable classes of functions F and F' mapping W to R,

log N(e| F'+ F'llg2, F + F, || - [l02) <log N (5 Fllgz2, F. |l - l@z2) +1og N (51F Iz F' [ loz2) »
log N(e| F'- F'llg2, F - F'. || - llg2) <log N (51 Fllg.2: F, [ - lo2) +1log N (5[1F g2, ' | - llo.2) »
N(e|F'V Flllg2. FUF, |- llgz2) < N (el Fllge, F. |l - llg2) + N (el F g2, F'. I - lo2) -

(3) For any measurable class of functions F and a fized function f mapping W to R,

logsgpN(eH\f\ Fllga, f-Fill - llg2) < IOgSgPN(6/2HFHQ,2f7 I ll.2)

(4) Given measurable classes F; and envelopes Fj, j = 1,...,k, mapping W to R, a func-
tion ¢: R¥ — R such that for f;,g; € Fj, |o(f1,--, fr) — o(g1,---,g)| < Z?Zl Lj(x)|fj(z) —
g;(®)], Lj(x) > 0, and fized functions f; € Fj, the class of functions L = {¢(f1,..., fx) —
&(fry--o s fi): fj € Fjoj=1,...,k} satisfies

k
logsup N ZLFH oz | < X logsup N (£1Fl0e: 7. loa)-
7=1

Proof. See Lemma L.1 in [I1]. [

Lemma K.2 (Covering Entropy for Classes obtained as Conditional Expectations). Let F denote
a class of measurable functions f: W x y — R with a measurable envelope F. For a given f €
F, let f: W — R be the function f(w = [ f(w,y)dpy(y) where p, is a regular conditional
probability distribution over y € Y condztzonal onw €W. Set F ={f: fe€F} and let F(w) :=
[ F(w,y)duy(y) be an envelope for F. Then, for r,s > 1,

logsup N (el Fllg., 7,1 o) < logsup N((e/0"[1Fl g 7, - )
Q

where @ belongs to the set of finitely-discrete probability measures over W such that 0 < HF”QT’ <
oo, and @ belongs to the set of finitely-discrete probability measures over W x Y such that 0 <
[1Fllg , < oo. In particular, for every e >0 and any k > 1

logsgpN(e,]:', || ’ ||Q7k) < logSEPN(G/Qa]:a || : Hé,k)

Q
Proof. See Lemma L.2 in [I1]. [
Lemma K.3. Consider a mapping 4 — &; from U= [0,1]% into RP and the class of functions
F=Az— M'&): u e LN{} mapping RP into R where M: R — R is L-Lipschitz. Assume that
1€ay — Eayll1 < Clltig — | for all @y, iia € U for some constant C > 0. Then, for any M > 0 the

uniform entropy numbers of F satisfy

suplog N(€||F||g.2,F, || - |g,2) < klog(3LCMk/e), for all 0 < e <1,
Q

where F(z) = sup, 7 IM(2'8a)| + M7Y|7|lo, € RP, is its envelope.
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Proof. Consider any f1, fo € F. There exist @y, @y € U such that fi(z) = M(2'&,) and fo(z) =
M(2'&,) for all z € RP. Therefore, since M is L-Lipschitz, we have

IM("&a,) = M(2'8a, )| < Llalloollur = Sunllt < LllzllocClltiz — tia]

< LCM iz =t [{M ™ |[]loo + sup, g M (a'€a)[}

< LCM|ag — @ || F(z)

by definition of the envelope F(x) = M ~!{|x||o + sup, ;7 IM(2'€z)|. Thus, for any finitely discrete

probability measure () on RP,

1f2 = fillg2 < LOM [ty — || - || F|@,2-

Recall that since By, C BaVk we have N(Boo, || - ||, €) < N(BaVk, || - |, €) < (1 +2Vk/e)* where
the last inequality follows from standard volume arguments. Furthermore, for any ¢ < vk we have
1+ 2vk/e < 3k/e. Therefore log N (e[| F| g2, F, | - lo.2) < klog(3LOCME/e). [

Lemma K.4. Let F be a class of functions with an envelope F. Also, let M: R — R be an
L-Lipschitz function bounded in absolute value by a constant M. Assume that for some positive

constants C1 and Cy, the uniform entropy numbers of F obey

suplog N (€||Fl|g,2, F, || - lg,2) < C1log(Ca/e), for all 0 < e < 1.
Q

Then for any constant K > 0, the uniform entropy numbers of the class of functions M(F) =
{M(f): f € F} obey

suplog N (el Fuuc oz MF) | -lgz) < Crlow(Ca /o), for all0 < e< 1,
where Fyyr)y = M + LF/K is its envelope.

Proof. The result follows from the observation that for any f’, f” € F and any finitely-discrete
probability measure Q,

M) = M2 < LI — follg2,

so that if 7 can be covered by k balls of radius €||F'||g2 (in the || - [|g,2 norm), then M(F) can be
covered by k balls of radius eL||F||g2 (in the same norm). [

APPENDIX L. SOME PROBABILISTIC INEQUALITIES
Lemma L.1 (Moderate deviations for self-normalized sums, [26]). Let Z,..., Z, be independent,
zero-mean random variables and € (0,1]. Let Sy =301 Zs, V2, =0 Z2,

1/{2+u}

n 1/2 n
M, = {%ZE[Z?]} /{%ZEH&-P**‘]} >0
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K
and 0 < £, < n2C+wW M,. Then for some absolute constant A,

P(|Snn/Van| = x) A _u M,
; : -1 € 5—, <z < n2Ct — — 1.
2(1 — b(a) g OS TS

Let (W;)?_, be a sequence of independent copies of a random element W taking values in a
measurable space (W, Ayy) according to a probability law P. Let F be a set of suitably measurable
functions f: W — R, equipped with a measurable envelope F': W — R.

Lemma L.2 (Maximal Inequality I, [18]). Work with the setup above. Suppose that F' > sup e r |f]
is a measurable envelope for F with |F|pq, < oo for some ¢ > 2. Let M = max;<, F'(W;) and
02 > 0 be any positive constant such that SUpfer ||f||%372 <o? < ||F||%32 Suppose that there exist

constants a > e and v > 1 such that

10gsgp N(el[Fllg2; F, |l - llg2) < vlog(a/e), 0 <e<1.

Epl|Gallr] < K <\/wz log <aH Jm) | Am log <W)> |

where K is an absolute constant. Moreover, for every t > 1, with probability > 1 — t~9/2,

Then

1Gallr < (1 + )EP[[|Gnll7] + K(q) [(0 + 0 VM| pg)VE + Ofln_mllM\lmt}, Va > 0,

where K(q) > 0 is a constant depending only on q. In particular, setting a > n and t = log n, with

probability > 1 — c(log n)_l;

al|F| p2 vl| M|l pq al|F|lpa
< 9 9 b .
IGnllr < K(g,¢) <U\/v log < - + Tn log Y , (L.1)

where | M||p, < n'/9||F||p, and K(q,c) >0 is a constant depending only on q and c.

Lemma L.3 (Maximal Inequality II, [18]). Work with the setup above. Suppose that the conditions
of LemmalL.2 are satisfied. Then

al P,
KIMlpa (g (1E 22 +v||MHp,2log( )
Vvn o Vn

Ep B 2W))ls| - sup Erl ()] <

where K is an absolute constant.

Proof. The proof of the asserted claim coincides one-by-one with that given for the corresponding
inequality in Lemma 2.2 of [I8], with the constant 3 replaced everywhere by the constant 2. At the
end of the proof, the entropy integral

4
76) = [ sup\/1+log N(e o2 7. - la:2)de
0 Q

is bounded by d(vlog(a/8))"/? under our condition on the uniform entropy numbers of F. [
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