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ABSTRACT
This paper studies two increasingly popular paradigms for image
quality assessment - Structural SIMilarity (SSIM) metrics and In-
formation Fidelity metrics. The relation of the SSIM metric to Mean
Squared Error and Human Visual System (HVS) based models of
quality assessment are studied. The SSIM model is shown to be
equivalent to models of contrast gain control of the HVS. We study
the information theoretic metrics and show that the Information Fi-
delity Criterion (IFC) is a monotonic function of the structure term
of the SSIM index applied in the sub-band filtered domain. Our anal-
ysis of the Visual Information Fidelity (VIF) criterion shows that im-
provements in VIF include incorporation of a contrast comparison,
in addition to the structure comparison in IFC. Our analysis attempts
to unify quality metrics derived from different first principles and
characterize the relative performance of different QA systems.

Index Terms— Image quality, Structural Similarity, Visual In-
formation Fidelity, Quality assessment.

1. INTRODUCTION

There is increasing interest in objective methods of quality compu-
tation of images and since the ultimate receiver in a large number of
applications is a human observer, a large body of work in the litera-
ture has focused on computing the quality of an image as seen by a
human observer. Full reference quality assessment (QA) algorithms
assume the availability of a “perfect” quality reference signal and
a large body of work on quality assessment has contributed to the
study of this problem.
Different QA algorithms have been proposed in the literature

and the performance of these algorithms is usually evaluated by con-
structing a database of distorted images and obtaining ground truth
quality scores for these images from human observers. Statistical
metrics such as the correlation coefficient are then used as indicators
of performance after fitting the algorithm predictions to the subjec-
tive scores using a monotonic function. Such analysis has certain
drawbacks since the results depend on the form of the fitting func-
tion, optimization methods used in fitting and the choice of free pa-
rameters in the QA system. In this paper, we analyze two recently
developed, popular image QA paradigms known as the Structural
SIMilarity paradigm (SSIM) [1, 2] and the Visual Information Fi-
delity (VIF) paradigm [3, 4] in a general probabilistic framework.
We believe that the analytic characterization of these systems in this
paper avoids the drawbacks of experimental validation and deepens
our understanding of these metrics. We will also attempt to relate the
SSIM and VIF QA paradigms to more traditional QA metrics: the
Mean Squared Error (MSE) and HVS based image quality metrics.
We begin by introducing the notation that we will use through-

out this paper. Let F (i) denote a random variable that models a pixel
at spatial location i in the reference image. Similarly, letG(i) denote
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a random variable that models the corresponding pixel from the test
image. Let f̃(i) and g̃(i) denote the reference and test images re-
spectively. We define a sequence of N vectors f(i) and g(i), where

f(i) is composed of N elements of f̃(i) spanned by the window B1

and similarly for g(i). To index each element of f(i), we use the
notation f(i) = [f1(i), f2(i), . . . , fN (i)]T . Although the window
B1 can be of any shape, in practice, it usually spans a rectangular
region of connected pixels. Consider the linear shift-invariant fil-
tering of f(i) and g(i) by a family of two-dimensional sub-band
kernels, denoted h(i, k), where k indexes over each filter in the fam-
ily. Let X(i, k) and Y (i, k) denote random variables that model
the coefficient at spatial location i obtained by filtering the refer-
ence and test image patches with the kth filter h(i, k) respectively.
Let x̃(i, k) and ỹ(i, k) denote the coefficients of the kth sub-band
of the reference and test images respectively. Finally, defineM di-
mensional vectors x(i, k) and y(i, k) that containM coefficients of
x̃(i, k) and ỹ(i, k) spanned by a window B2 respectively. We use
similar notation to index each element of x(i, k) and y(i, k), i.e.
x(i, k) = [x1(i, k), x2(i, k), . . . , xM (i, k)]T etc.

2. MSE AND HVS BASED METRICS

The MSE between image patches f(i) and g(i) is defined by:

MSE[f(i),g(i)] =
1

N

NX
j=1

[fj(i) − gj(i)]
2

HVS based metrics use psychophysical measurements of the
characteristics of the vision system to compute visual quality. QA
models based on the HVS are rather elaborate and model several
different aspects of the HVS, but we concentrate on models of con-
trast masking in the HVS. Contrast masking refers to the reduction
in visibility of a signal component (distortion) due to the presence of
another signal component of similar frequency and orientation (im-
age content) in a local spatial neighborhood. Contrast masking has
been modeled using contrast gain control which is a mechanism that
allows a neuron in the HVS to adjust its response to the ambient con-
trast, thereby keeping the neural responses within their permissible
dynamic range. HVS based metrics typically decompose the image
using a linear sub-band decomposition and gain control is modeled
in the sub-band decomposed domain. Contrast gain control models
usually take the form of a divisive normalization, where the response
of a neuron has an accelerating nonlinearity, but is also inhibited di-
visively by the response of a local pool of neurons [5, 6, 7]. As an
example, Teo and Heeger [6] use the following model to define the
response of a neuron to a signal x̃(i, k).

R[x̃(i, k)] = κ
x̃(i, k)2P

k∈K1
x̃(i, k)2 + C

(1)

Summation over the sub-bands in the denominator is only carried
out over those sub-bands with the same frequency, but different ori-

1200978-1-4244-1764-3/08/$25.00 ©2008 IEEE ICIP 2008



entations. κ restricts the dynamic range of the response and C is
a saturation constant that stabilizes the response when the denom-
inator is small. The saturation constant determines the normalized
response at low signal energies and is important because the masker
(image content) has little or no effect upon the detection of the signal
(distortions) in regions of low image/masker energy. The saturation
constant adjusts the contrast masking normalization for this effect in
this regime. This observation will prove useful in our discussion of
the structural similarity index next.

3. STRUCTURAL SIMILARITY METRICS

The structural similarity paradigm hypothesizes that the visual qual-
ity of a given image is related to the loss of structural information in
an image [2, 1]. Structure, by definition, is independent of the illumi-
nation of an image and the structure is computed after normalizing
the image patches for mean luminance and contrast. The SSIM index
between image patches f(i) and g(i) is then defined as a function of
a luminance comparison term l[f(i),g(i)], contrast comparison term
c[f(i),g(i)] and a structure comparison term s[f(i),g(i)].

SSIM[f(i),g(i)] = l[f(i),g(i)]c[f(i),g(i)]s[f(i),g(i)] (2)

l[f(i),g(i)] =
2μf(i)μg(i) + C1

μ2
f(i) + μ2

g(i) + C1
(3)

c[f(i),g(i)] =
2σf(i)σg(i) + C2

σ2
f(i) + σ2

g(i) + C2
(4)

s[f(i),g(i)] =
σf(i)g(i) + C3

σf(i)σg(i) + C3
(5)

Here, μf(i) and μg(i) are the sample means of f(i) and g(i) and

σ2
f(i) and σ2

g(i) are their sample variances. σf(i)g(i) is the sample
covariance between f(i) and g(i).

μf(i) =
1

N

NX
j=1

fj(i), σ
2
f(i) =

1

N

NX
j=1

`
fj(i) − μf(i)

´2
(6)

σf(i)g(i) =
1

N

NX
j=1

`
fj(i) − μf(i)

´ `
gj(i) − μg(i)

´
(7)

The initial metric based on structural similarity, known as the Uni-
versal Quality Index(UQI), is also defined by (2-5), withC1 = C2 =
C3 = 0. The constants C1, C2, C3 were included to obtain the im-
proved SSIM index to avoid instability when the denominators of the
luminance, contrast and structure comparison terms were too small.
Although the SSIM index is defined by three terms, the structure
term in the SSIM index is most important since variations in lumi-
nance and contrast of an image does not affect visual quality as much
as structural distortions [1].
Observe that the estimate of the correlation coefficient in (5) and

(7) implicitly assumes that [f(i),g(i)] are independent samples from
a Gaussian distribution, since (5) corresponds to a Maximum Like-
lihood (ML) estimate of the correlation coefficient under these as-
sumptions. This implicit assumption in defining (5) means that the
structure term of the SSIM index does not incorporate any informa-
tion regarding the distribution of the underlying pixels. To overcome
this drawback, we define a probabilistic SSIM index between ran-
dom variables F (i) and G(i), whose structure term is given by:

ρ[F (i), G(i)] =
Cov[F (i), G(i)]p
Var[F (i)]

p
Var[G(i)]

where ρ[F (i), G(i)] is the correlation coefficient between the ran-
dom variables. The SSIM index is then just a special case of
this more general probabilistic SSIM index obtained when the
[F (i), G(i)] are jointly Gaussian distributed.
Note that the use of the correlation coefficient in the SSIM index

implies measurement of the linear dependence between them as a
measure of visual quality. In Section 4, this observation will aid us
in understanding the relation between the SSIM and VIF metrics.

3.1. Relation to MSE

We define normalized random variables:

F
′(i) =

F (i) − E[F (i)]p
Var[F (i)]

, G
′(i) =

G(i) − E[G(i)]p
Var[G(i)]

(8)

where E stands for the expectation operator. We now observe that:

E
ˆ
[F ′(i) − G

′(i)]2
˜

= 2 (1 − ρ[F (i), G(i)]) (9)

It is fairly straightforward to show that the relation described by (9)
holds for the estimates of the correlation coefficient and MSE as
well:

MSE

„
f(i) − μf(i)

σf(i)

,
g(i) − μg(i)

σg(i)

«
= 2

„
1 −

σf(i)g(i)

σf(i)σg(i)

«
= 2{1 − s[f(i),g(i)]} (10)

where C3 = 0 in (10).
Thus, the structure term in the SSIM index computes an MSE

between normalized image patches. A different relation between
SSIM and the MSE between the original variables (f(i) and g(i))
has been reported [8]. Our analysis describes the relation between
SSIM and the MSE between normalized variables, a distinction that
is significant since we attempt to cast the role of this normalization
as accounting for contrast masking effects in the HVS as described
next.

3.2. Relation to HVS based metrics

The normalized variables described by (8) immediately remind us of
contrast gain control models used in HVS based metrics, described
in Section 2. In (9), the image pixels are normalized by their standard
deviation in a local neighborhood before computing a Minkowski
error metric. Thus, the contrast gain control model used in SSIM
can be defined by:

R[fj(i)] =
fj(i) − μf(i)q

1
N

PN

j=1

`
fj(i) − μf(i)

´2
(11)

We wish to emphasize the fact that the SSIM indices perform this
normalization in the image pixel domain. However, contrast masking
in the HVS is a phenomenon that occurs in a frequency-orientation
decomposed domain. For example, the masking effect is maximum
when the spatial frequency of the masker and the signal are identi-
cal. However, the SSIM metrics will not be able to account for such
effects. The analysis here suggests that applying the SSIM index in
the sub-band filtered domain would result in better performance. Im-
proved versions of the SSIM index that use such frequency decom-
position have been proposed [9, 10] and our analysis of the SSIM
index within a contrast gain control framework helps us understand
the reasons for the improved performance of these metrics. We will
see in Section 4 that the information theoretic metrics are also very
closely related to multi-scale structural similarity models.
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Relating the SSIM metrics to contrast masking models in HVS
based design also provides insights on the need for the constant C3

in (5). C3 in SSIM plays a similar role as the saturation constants
in HVS based metrics since contrast masking effects are minimal
in low signal energy regions. This interpretation helps explain the
reasons for the improved performance of the SSIM index over UQI.
Interestingly, the square of the response of the SSIM contrast gain
control model defined by (11) is equal to response of the Teo and
Heeger gain control model defined by (1), if the same inhibitory pool
of neurons is used and with the inclusion of a saturation constant in
the SSIM model. Finally, it has been observed previously that the
standard deviations in the denominator of the SSIM index reflect
masking and that the constant C3 attempts to account for the visibil-
ity of distortions when these standard deviations are small [11]. Our
analysis supports these observations and explicitly links SSIM and
contrast masking models.

4. INFORMATION FIDELITY METRICS

4.1. The IFC Metric

In the information theoretic approach to quality assessment, the test
image is assumed to be the result of the reference image passing
through a distortion channel and the visual quality is hypothesized
to be related to the capacity of this communication channel [3, 4].
The sub-band filtered coefficients of the reference image are mod-
eled as random variables using natural scene statistical models. The
preliminary version of the information theoretic framework, known
as the Information Fidelity Criterion (IFC) [3], uses the scalar Gaus-
sian Scale Mixture (GSM) model [12, 13] and each scalar coefficient
is modeled as a random variable:

X(i, k) = Z(i, k)U(i, k)

whereZ(i, k) is a gain field andU(i, k) is assumed to be an Additive
White Gaussian Noise (AWGN) field of unit variance. The distortion
channel is modeled using:

Y (i, k) = β(i, k)X(i, k) + V (i, k)

where β(i, k) is the deterministic channel gain and V (i, k) is AWGN
of variance σv(k)2. The IFC index between X(i, k) and Y (i, k) is
then given by the mutual information between these random vari-
ables conditioned on Z(i, k):

IFC[X(i, k), Y (i, k)] = I[X(i, k), Y (i, k)|Z(i, k)]

=
1

2
log2

„
β(i, k)2Z(i, k)2 + σv(k)2

σv(k)2

«
(12)

We observe that due to the use of a linear channel model, the IFC
attempts to capture the linear dependence between X(i, k) and
Y (i, k). This observation hints at the possibility that IFC may be
closely related to SSIM. A well known result in information theory
states that the mutual information between two variables is a mono-
tonic function of the Pearson correlation coefficient between them
if the variables are jointly Gaussian [14]. This result is applicable
in our analysis since the GSM models the reference coefficients as
Gaussian when conditioned on Z(i, k) and the linear channel model
causes the reference and test coefficients to be jointly Gaussian.
Here, we prove that the same relation holds between the estimates
of these quantities used in IFC and SSIM.
To obtain estimates of Z(i, k) and β(i, k), we need to con-

sider a local neighborhood of coefficients surrounding the spa-
tial location i. In the IFC framework, each sub-band is treated

independently and hence, a local neighborhood is extracted by
considering coefficients in the same sub-band at adjacent spa-
tial locations [3]. Consistent with our earlier notation, we de-
note this local neighborhood extracted using a window B2 as
x(i, k) = [x1(i, k), x2(i, k), . . . , xM (i, k)]T for the reference
image coefficients and y(i, k) = [y1(i, k), y2(i, k), . . . , yM (i, k)]T

for the test image. Let Ẑ(i, k) denotes an estimate of Z(i, k) and

similarly for β̂(i, k). Since the reference image coefficients are
assumed to be zero-mean in the GSM model, the Maximum Likeli-
hood estimate of Ẑ(i, k) is given by:

Ẑ(i, k)2 =
1

M

MX
j=1

xj(i, k)2 = σ
2
x(i,k) (13)

If we assume that the parameters of the channel model are also es-
timated using the same window B2, the least squares estimate of

β̂(i, k) and the noise variance obtained using linear regression are
[3]

β̂(i, k) =
σx(i,k)y(i,k)

σ2
x(i,k)

(14)

σ̂v(k)2 = σ
2
y(i,k) − β̂(i, k)σx(i,k)y(i,k) (15)

The computation of the IFC index as described by (12) depends on
the way the parameters Z(i, k) and β(i, k) are estimated. Thus, (12)
can be thought of as a probabilistic IFC index (similar to the proba-
bilistic SSIM index). We obtain the sample IFC index by substituting
the estimates from (13) and (14) into (12):

IFC[x(i, k),y(i, k)] = −
1

2
log2

(
1 −

»
σx(i,k)y(i,k)

σx(i,k)σy(i,k)

–2
)

= −
1

2
log2

˘
1 − s[x(i, k),y(i, k)]2

¯
(16)

C3 = 0 in (16). Thus, the IFC index at a location in a sub-band
is a monotonic function of the structure term of the SSIM index
computed at the same location in the same sub-band, as long as
the window used in both metrics for estimation purposes are iden-
tical. The IFC index is applied in the sub-band filtered domain and
is better able to account for the contrast masking properties of the
HVS than SSIM and is very closely related to the multi-scale SSIM
index in [9]. In fact, if the same frequency decomposition and es-
timation windows are used in IFC and multi-scale SSIM, the local
quality indices obtained using both metrics will be equivalent due
to the monotonic relationship described by (16). These assumptions
are not very restrictive since the choice of window in [9] and [3] is
arbitrary. Further, the development of multi-scale structural simi-
larity is independent of the underlying frequency decomposition, as
is the information theoretic framework (the statistical models used
for natural scene modeling and distortion modeling are applicable
for any choice of frequency decomposition). However, no saturation
constant appears in (16) and hence, the IFC index will suffer from
instability issues in regions where the signal energy in a sub-band is
very low, similar to the UQI index.

4.2. The VIF metric

An improved extension of the IFC metric, known as the Visual In-
formation Fidelity (VIF) metric, uses a more sophisticated vector
GSM model [15]. However, in this paper, we restrict our analysis to
a scalar version of the VIF metric, where the natural scene model is
identical to that used in the scalar IFC index. In addition to the gain
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and additive noise distortion channel, VIF also models the HVS as a
distortion channel that both the reference and distorted images pass
through:

Y (i, k) = β(i, k)X(i, k) + V (i, k) + W (i, k)

χ(i, k) = X(i, k) + W (i, k)

Here,W (i, k) is an AWGN field that models the neural noise in the
HVS. The variance of this neural noise is assumed to be the same
for all sub-bands and we denote it by κ. χ(i, k) is the output of the
HVS channel that the reference image passes through. Now, the VIF
index is given by:

VIF[X(i, k), Y (i, k)] =
I[X(i, k), Y (i, k)|Z(i, k)]

I[χ(i, k), X(i, k)|Z(i, k)]
(17)

=

1
2
log2

“
β(i,k)2Z(i,k)2+σv(k)2+κ

σv(k)2+κ

”
1
2
log2

“
Z(i,k)2+κ

κ

” (18)

Estimation details of all parameters of the scalar VIF model are iden-
tical to those provided for the IFC model. The one extra parameter
in this model, namely the variance of the neural noise κ, is hand op-
timized in [4] and chosen to be 0.1. As before, (18) represents the
probabilistic VIF index. Replacing all quantities in (17) with their
estimates, we obtain the sample VIF index as

VIF[x(i, k), y(i, k)] =

log

»
1 − s[x(i, k),y(i, k)]2

„
σ2
y(i,k)

σ2
y(i,k)

+κ

«–

log

»
1 −

„
σ2
x(i,k)

σ2
x(i,k)

+κ

«–
(19)

We observe that the VIF index includes a structure comparison term
(s[x(i, k),y(i, k)]) as well as a contrast comparison term (due to the
appearance of functions of σ2

y(i,k) and σ2
x(i,k) in the numerator and

denominator respectively), similar to the SSIM index. One of the
properties of the VIF index observed in [4] was the fact that it can
predict improvement in quality due to contrast enhancement. Our
analysis of the VIF index explains this effect since the correlation co-
efficient between a contrast enhanced image and the reference image
is 1. The VIF index is > 1 in this case since σy(i,k) > σx(i,k). Ad-
ditionally, the VIF index avoids certain numerical instabilities that
occur in the IFC, since the IFC goes to∞ as s[x(i, k),y(i, k)] goes
to 1. The form of the contrast comparison in (19) ensures that the
VIF index is 1 when the reference and test images are identical.

5. CONCLUSIONS

The goal of this paper was to analyze the properties of two recently
developed image QA paradigms: the structural similarity framework
and the information theoretic framework. We showed that the struc-
ture term in SSIM can be interpreted as a divisive normalization
model of contrast gain control mechanisms in the HVS, thus es-
tablishing a relation between SSIM and HVS based quality metrics.
We then studied the information theoretic metrics and proved that
the IFC index is equivalent to the structure term of the SSIM index
applied between sub-band filtered coefficients. Our results indicate
that the current instantiation of the IFC (with a jointly Gaussian as-
sumption on the reference and test image coefficients) provides no
advantage over multi-scale SSIM indices locally and further investi-
gation of suitable channel models and their relation to visual quality
is needed. We also showed that the VIF index improves over the

IFC due to the use of a contrast comparison function, in addition to
the structure comparison. In the future, we would like to extend our
analysis to the vector VIF model.
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