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Abstract

We propose a novel method to merge convolutional
neural-nets for the inference stage. Given two well-
trained networks that may have different architec-
tures that handle different tasks, our method aligns
the layers of the original networks and merges them
into a unified model by sharing the representative
codes of weights. The shared weights are fur-
ther re-trained to fine-tune the performance of the
merged model. The proposed method effectively
produces a compact model that may run original
tasks simultaneously on resource-limited devices.
As it preserves the general architectures and lever-
ages the co-used weights of well-trained networks,
a substantial training overhead can be reduced to
shorten the system development time. Experimen-
tal results demonstrate a satisfactory performance
and validate the effectiveness of the method.

1 Introduction

The research on deep neural networks has gotten a rapid
progress and achievement recently. It is successfully applied
in a wide range of artificial intelligence (AI) applications, in-
cluding computer vision, speech processing, natural language
processing, bioinformatics, etc. To handle various tasks, we
usually design different network models and train them with
particular datasets separately, so they can behave well for spe-
cific purposes. However, in practical AI applications, it is
common to handle multiple tasks simultaneously, leading to
a high demand for the computation resource in both training
and inference stages. Therefore, how to effectively integrate
multiple network models in a system is a crucial problem to-
wards successful AI applications.

This paper tackles the problems of merging multiple well-
trained (known-weights) feed-forward networks and unifying
them into a single but compact one. The original networks,
whose architectures may not be identical, can be either sin-
gle or multiple source input. After unification, the merged
network should be capable of handling the original tasks but
is more condensed than the whole original models. Our ap-
proach (NeuralMerger) contains two phases:
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Figure 1: Two tasks accomplished by feed-forward networks, where
model A (or B) consists of cA (or cB) convolution and fA (or fB)
fully-connected layers, respectively. Our NeuralMerger unifies the
two models into a single one consisting of max(cA, cB) convolution
and max(fA, fB) fully-connected layers for the model inference;
E-Conv and E-FC are referred to as the Jointly-Encoded convolution
and fully-connected layers, respectively.

Alignment and encoding phase: First, we align the architec-
tures of neural network models and encode the weights such
that they are shared among the networks. The purpose is to
unify and co-use the weights of different neural networks.

Fine-tuning phase: Second, we fine-tune the merged model
with partial or all training data (calibration data). A method
following the concept of distilling dark knowledge of neural
networks in [Hinton et al., 2014] is employed in this phase.

Neural network models may have very different topolo-
gies. Currently, this study focuses on merging feed-forward
networks, while merging networks with loops remains a fu-
ture work. A modern feed-forward network consists of sev-
eral kinds of layers, including convolution, pooling, and full-
connection, which is generally referred to as a convolutional
network (CNN). When merging two CNNs, our approach
aligns the same-type layers (convolution; full-connection)
into pairs. The layers in a pair are merged into a single layer
that shares a common weight codebook through the proposed
encoding scheme. The codebooks in the merged single model
can be further trained via back-propagation algorithm; it thus
can be fine-tuned to seek for performance improvement.
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Figure 2: Example of merging three models, ZF, VGG-avg, and
LeNet into a single one for the inference stage via our NeuralMerger.

1.1 Motivation of Our Study

Merging existing neural networks has a great potential for
real-world applications. To tackle multiple recognition tasks
in a single system based on either unique or various signal
sources, a typical approach is to design a new model and train
the model on the union datasets of these tasks, eg., [Kaiser
et al., 2017; Aytar et al., 2017]. Such “learn-them-all” ap-
proaches train a single complex model to handle multiple
tasks simultaneously. However, two issues may arise. First, it
is hard to choose a suitable neural-net architecture for learn-
ing all the tasks well in advance; hence, a trial-and-error pro-
cess is required to conduct suitable architectures. Second,
learning from a random initial with large training data of dif-
ferent types could be demanding. To tackle these issues, the
networks with bridging layers among the original models are
conducted as a joint model for multi-task learning in [Ruder,
2017]. However, increased complexity and size of the joint
model hinder their availability on resource-limited or edge
devices in the inference stage.

As many models trained for various tasks are available
now, a practical way to integrate different functionalities in a
system would be leveraging on these individual-task models.
In this paper, we introduce an approach that merges differ-
ent neural networks by removing the co-redundancy among
their filters or weights. The proposed NeuralMerger can take
advantage of existing well-trained models. Our approach
merges them via finding and sharing the representative codes
of weights; the shared codes can still be refined by learning.
To our knowledge, this is the first study on merging known-
weights neural-nets into a more compact model. Because our
approach compresses the networks for weight sharing and re-
dundancy removal, it is useful for the deep-learning embed-
ded system or edge computing in the inference stage.

1.2 Overview of Our Approach

When merging two different CNN models CA and CB , the
output is a CNN model consisting of jointly encoded con-
volution (E-Conv) and fully-connected (E-FC) layers. An
overview of our approach is illustrated in Fig. 1 and an ex-
ample of merging three models via our approach is given in
Fig. 2.

Contributions of this paper are summarized as follows:

(1) Given well-trained CNN models, the introduced Neu-
ralMerger can merge them for multi-tasks even the models
are different. The merging process preserves the general ar-
chitectures of the well-trained networks and removes their re-
dundancy. It avoids the cumbersome-design and trial-and-
error process raised by the learn-them-all approaches.

(2) The proposed method produces a more compact model to
handle the original tasks simultaneously. The compact model
consumes less computational time and storage than the com-
pound model of the original networks. It has a great potential
to be fitted in low-end systems.

2 Related Work

To simultaneously achieve various tasks via a single neural-
net model, a typical way is to increase the output nodes (for
multi-tasks) of a pre-chosen neural-net structure and train
it from an initialization. In [Kaiser et al., 2017], Multi-
Model architecture is introduced to allow input data to be
images, sound waves, and text of different dimensions, and
then converts them into a unified representation. In [Aytar et
al., 2017], a deep CNN leverages massive synchronized data
(sound and sentences paired with images) to learn an aligned
representation. Nevertheless, as mentioned earlier, applying
the learn-them-all approaches has to pay cumbersome train-
ing effort and intensive inference computation.

Compressing a neural-net is an active direction to deploy
the compact model on resource-limited embedded systems.
To reduce the representation, binary weights and bit-wise op-
erations are used in [Hubara et al., 2016] and [Rastegari et al.,
2016]. Han et al. [Han et al., 2016] introduce a three-stage
pipeline: pruning redundant network connections, quantiz-
ing weights with a codebook, and Huffman encoding weights
and index, to reduce the storage required by CNN. Quantized
CNN (Q-CNN) [Wu et al., 2016] is proposed to address both
the speed and compression issues, which splits the input layer
space and applies vector quantization to each subspace. Re-
searchers also try to prune filters and feature maps to directly
reduce the computational cost [Molchanov et al., 2016][Li et
al., 2016][He et al., 2017]. Transferring the learned knowl-
edge from a large network to a small network is another
important direction towards effective network compression.
In [Hinton et al., 2014], distilling the knowledge of an en-
semble model into a smaller model is introduced.

Instead of compressing a single network, the goal of this
study is to merge multiple networks simultaneously. Besides,
our method can restore the performance of the jointly com-
pressed models by fine-tuning it with the training samples.

3 Deep Model Integration

Assume that model A (or B) consists of cA (or cB) convo-
lution (Conv) followed by fA (or fB) fully connected (FC)
layers. Let cmin = min(cA, cB). In our approach, a corre-
spondence (cA(i), cB(i)) is established between the Conv lay-

ers for the alignment of the two models, i ∈ {1 : cmin}; A(·)
is a strictly increasing mapping from {1 : cmin} to {1 : cA},
and B(·) is a strictly increasing mappings from {1 : cmin} to
{1 : cB}. Likewise, a correspondence (fA(i), fB(i)) is also

established between the FC layers for i ∈ {1 : fmin}.

In our method, the merged layers have to be of the same
type (Conv or FC). Given two layers, one in model A and the
other in model B, the principle to merge them is finding a set
of (fewer) exemplar codewords that represent the weights of
the layers with small quantization errors. The layers are thus
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jointly compressed for redundancy removal. Below, we first
consider unifying the Conv layers, and then the FC layers.

3.1 Merging Convolution Layers

Assume that some Conv layer in model A and some other in
model B are to be merged. The layer of model A has the input
volume size NA ×MA × dA, where NA ×MA is the spatial
size and dA is the depth (number of channels). The input
volume is convolved with pA convolution kernels, where the
size of each kernel is nA×mA×dA. The output of the Conv
layer in model A is thus a volume of NA×MA×pA (without
loss of generality, assume that padded convolutions are used.)

Likewise, similar notations apply to the respective layer in
model B. An input volume of the size NB × MB × dB are
convolved by pB convolution kernels of nB ×mB ×dB . The
output volume of that layer is of the size NB ×MB × pB .

We aim to jointly encode the convolution coefficients. As
there are pA (or pB) convolution kernels in the layers of A (or
B), we hope to find a new set of fewer (than pA + pB) exem-
plars to express the original ones so that the models are fused
and the redundancy between them is removed. To this end, a
viable way is to perform vector quantization (such as k-means
clustering) on the convolution kernels and find a smaller num-
ber of codewords (p < pA + pB) to jointly represent the
kernels compactly. However, it is demanding to make this
method practicable because the kernel dimensions could be
inconsistent (i.e., nA 6= mA or nB 6= mB).

To address this issue, we unify the different convolution
kernels by using spatially 1×1 convolutions, so that merging
CNNs with convolution kernels of different sizes is attain-
able. In the following, we review the operations in a convo-
lution layer at first and then show how to separate the dimen-
sions so that different layers are unified and jointly encoded.

Operations in Convolution Layer

The operations in a Conv layer of CNNs are reviewed as fol-
lows. Suppose x ∈ RN×M×d is the input volume (a.k.a. 3D
tensor) to a Conv layer and y ∈ RN×M×p is the output vol-
ume. Assume that p convolution kernels of size n × m × d
are applied to the layer, denoted as

{g(t) ∈ Rn×m×d|t = 1 · · · p}. (1)

Then, the t-th channel output is obtained as yt = x ⋆ g(t),
the volume convolution of x and g(t), and the output y is the
concatenation of yt,

y = [y1 y2 · · · yp]. (2)

Let xu ∈ RN×M and g
(t)
u ∈ Rn×m respectively be the u-th

channel of x and g(t). The volume convolution is formed by
summing the 2D-convolution results of the d channels:

x ⋆ g(t) =

d∑

u=1

xu ∗ g(t)u , (3)

where ∗ denotes the 2D convolution operator.
In CNNs, various n and m (eg., n = m = 3, 5, 7 · · · ) are

used in existing networks. Particularly, when n = m = 1,
the volume convolution of size 1 × 1 × d is often referred to
as a 1× 1 convolution in CNNs for all d.

Kernel Decomposition in Spatial Directions

In the above, the volume convolution is computed as a
spatially sliding operation (2D convolution) followed by a
channel-wise summation along the depth direction. In this
section, we show that, no matter what n and m are, it can be
equivalently represented by 1×1 convolutions via decompos-
ing the kernel along with the spatial directions as follows.

Given the kernel g(t), let g
(t)
[i0,j0],u

specify its entry at the

spatial location (i0, j0) of the u-th channel. In particular, let

g
(t)
[i0,j0]

∈ Rd stand for the 1 × 1 × d volume convolution

at (i0, j0); e.g., a kernel of spatial size 5 × 5 consists of 25
kernels of spatial size 1× 1, (i0, j0) ∈ {1 : 5} × {1 : 5}, ∀d.

Following the notation, we decompose an n×m×d volume
convolution into multiple 1×1×d convolutions and combine
them with shift operators: Without loss of generality, we as-
sume that the spatial sizes n,m of the kernel are odd numbers
and replace them with w = (n − 1)/2 and h = (m − 1)/2.
The t-th channel output yt can be equivalently represented as

yt =
w∑

i0=−w

h∑

j0=−h

S−i0,−j0 [x ⋆ g
(t)
[i0,j0]

], (4)

where g
(t)
[i0,j0]

(−w ≤ i0 ≤ w,−h ≤ j0 ≤ h) are the 1×1×d

convolutions depicted above, and S is the shift operator,

Si0,j0 [x](i, j, u) = x(i− i0, j − j0, u), ∀i, j, u, (5)

with i, j the spatial location and u (1 ≤ u ≤ d) the channel
index. Hence, for all n,m, the t-th channel output of the
volume convolution can be decomposed as the shifted sum
of nm 1 × 1 convolutions via Eq. 4. Then, the output y is
obtained via the concatenation in Eq. 2.

To address the issue caused by dimension mismatch in
merging two convolution layers, we then propose to take the
representation of 1×1 convolutions for both layers. Hence, a
kernel in model A is decomposed into CA = nAmA convo-
lutions of size 1× 1× dA and that in model B is decomposed
into CB = nBmB convolutions of size 1× 1× dB . The ker-
nel is then unified into 1 × 1 in the spatial domain no matter
whether nA (or mA) equals to nB (or mB).

Kernel Separation along Depth Direction

Then, we seek to jointly express the CAB 1× 1 convolutions
by a compact representation so that the two layers are co-
compressed, where CAB = pACA + pBCB and pA, pB are
the numbers of kernels of the layers in A and B, respectively.
Though the subspace dimensions in the spatial domain are
consistent (1× 1) now, they are still inconsistent in the depth
direction (dA vs. dB) and thus crucial to be jointly clustered.
To address this problem, we simply separate the 1 × 1 × d

kernel g
(t)
[i0,j0]

into non-overlapping 1 × 1 × r kernels along

the depth direction (r < d). As the convolution in CNNs are
summation-based in the depth direction, we divide the kernel

g
(t)
[i0,j0]

∈ Rd into ⌈d/r⌉ vectors of dimension r,

g
(t)
[i0,j0];〈v〉

∈ Rr, v = 1, · · · , ⌈d/r⌉, (6)
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Figure 3: Illustration of merging two models’ Conv layers having
the kernels of spatial size 3×3 and 2×2, respectively; each layer is
divided into 2 segments. They are decomposed into spatially 1 × 1
kernels and the kernels in every segment is clustered via k-means
clustering to build a coodbook. The convolutions are pre-computed
on the codebook, and a lookup table is built to index the results.

where g
(t)
[i0,j0];〈v〉

(of size 1× 1× r) is the v-th segment of the

original kernel. The output yt in Eq. 4 then becomes

yt =

⌈d/r⌉∑

v=1

w∑

i0=−w

h∑

j0=−h

S−i0,−j0 [x〈v〉 ⋆ g
(t)
[i0,j0];〈v〉

], (7)

where x〈v〉 ∈ RN×M×r is the v-th sub-volume of the input
x for d = dA or dB . Specifically, a spatially 1 × 1 kernel is
respectively segmented into ρA = ⌈dA/r⌉ (or ρB = ⌈dB/r⌉)
kernels of dimension r in model A (or B), where the last seg-
ment is padded with zero if necessary.

Let ρ = min(ρA, ρB). There are then CAB kernels of size
1× 1× r for the segment 1 ≤ v ≤ ρ. To jointly represent the
kernels of both layers, we use C codewords (C < CAB) in
the dim-r space to encode the convolution coefficients com-
pactly. We run the k-means algorithm with various initials for
the CAB vectors and then select the results yielding the least
representation error to produce the C codewords (i.e., cluster
centers of k-means), for v ∈ {1, · · · , ρ}. 1

E-Conv Layer and Weights Co-use

The merged convolution layer (called the E-Conv layer), is
a newly-formed layer where the weights are co-used among
the convolution kernels: Denote the C codewords in the v-th
subspace to be {bc,v ∈ Rr|c = 1 : C}. We then replace
each dim-r kernel at the spatial site (i0, j0) in the subspace

v (namely, g
(t)
[i0,j0];〈v〉

∈ Rr) with bπ(i0,j0,v,t);v , the closest

codeword in the dim-r space, where π(i0, j0, v, t) ∈ {1 : C}

1For those remaining segments, ρ + 1 ≤ v ≤ max(ρA, ρB),
we also use C codewords to encode the pACA (or pBCB) dim-r
vectors in the respective subspaces if dA > dB (or dA < dB).

is the code-assignment mapping. Eq. 7 is then simplified as

yt =

⌈d/r⌉∑

v=1

w∑

i0=−w

h∑

j0=−h

S−i0,−j0 [x〈v〉 ⋆ bπ(i0,j0,v,t);v]. (8)

Because the number of codewords C is fewer than that of the
total kernel vectors CAB , Eq. 8 can be executed more effi-
ciently via computing the 1 × 1 convolutions of the C code-
words at first:

x〈v〉 ⋆ bc,v (∀c = 1 · · ·C, v = 1 · · · ρ), (9)

and then storing the results in a lookup table at run-time. The
run-time operation of 1 × 1 convolution is thus replaced by
table indexing. Hence, the convolution kernels of the two
models A and B are representationally shared in a compact
codebook, {bc,v|v = 1 : C}, and the computation time is
saved. An illustration of the E-Conv layer is given in Fig. 3.

When choosing the codewords C fewer, the amount of
convolution coefficients is reduced to C/CAB . The merged
model is thus co-compressed as it consumes less storage than
the total required for the two convolution layers. As for the
computational speed, each xi,j;〈v〉 ∈ Rr is replaced with

an index and there are NMd/r entries for indexing in x〈v〉,
where i, j are the spatial location. Let τx and be the time
unit for a table-indexing operation and τr be the time unit
for a 1 × 1 × r convolution. The speedup ratio is then
(Cτr + NMdτx/r)/(CABτr) in terms of the complexity.
Hence, when the codewords C is fewer or the subspace di-
mension r is larger, the speedup is getting higher.

Derivatives of the Merged Layer

Besides condensing and unifying the convolution operations,
the E-Conv layer is also differentiable and so end-to-end
back-propagation learning still remains realizable. However,
evaluating the derivatives would be hard based on the table-
lookup structure as the indices are not continuous. Hence, the
table is used for the inference stage in our approach. While
for learning, we slightly change the form of Eq. 8 to conduct
the derivatives of yi,j;t (the output at the spatial location i, j
of channel t) to {bc,v} (the codewords). From Eq. 8,

yi,j;t =

⌈d/r⌉∑

v=1

w∑

i0=−w

h∑

j0=−h

〈xi+i0,j+j0,〈v〉, bπ(i0,j0,v,t);v〉,

(10)
where 〈·, ·〉 is the inner product. Let Φ = [bc,v] ∈ Rr×C be
the matrix whose columns are the dim-r codewords of the v-
th segment. Let βi0,j0,v,t ∈ RC be the one-hot vector where
the c-th entry in βi0,j0,v,t is 1 if c = π(i0, j0, v, t); otherwise
the entry is 0. Then, the codeword mapping bπ(i0,j0,v,t);v in
Eq. 8 can be replaced by bπ(i0,j0,v,t);v = Φβi0,j0,v,t. Hence,
the derivative of the E-Conv layer is conducted as

∂yi,j;t
∂Φ

=

⌈d/r⌉∑

v=1

w∑

i0=−w

h∑

j0=−h

xi+i0,j+j0,〈v〉β
T
i0,j0,v,t. (11)

As Φ is the matrix consisting of the codewords {bc,v}, they
can then be fine-tuned via the gradients for learning.
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3.2 Merging Fully-connected Layers

The volume input to an FC layer is re-shaped to a vector in
general. Let xF ∈ RNI be the input vector of an FC layer
and yF ∈ RNO be its output. Then yF = WxF , where
W ∈ RNO×NI are the weights of the FC layer.

Unlike Conv layers that have sliding operations, all the op-
erations in FC are summation-based. Thus, given the two
weight matrices of models A and B, namely, WA and WB ,
we simply divide them into length-r segments along the row
direction. The dim-r weight vectors in the same segment are
then clustered via k-means algorithm and C codewords are
found. In this way an E-FC layer is built as well, and It is
easy to show that the E-FC layer is also differentiable.

3.3 End-to-end Fine Tuning

As both E-Conv and E-FC layers are differentiable, once their
codebooks are constructed, we can then fine-tune the entire
model from partial or all training data through end-to-end
back-propagation learning. The training data are referred to
as calibration data and the fine-tuning process is called the
calibration training in our work. Codebooks are also used
for the weights quantization in the single-model compression
approach [Wu et al., 2016]. However, unlike our work that
the codebooks in all layers are tunable in an end-to-end man-
ner, only the codebook in a single layer can be tuned per time
(with the other layers fixed) in [Wu et al., 2016], making its
learning process inefficient and demanding to seek better so-
lutions. Besides, our approach merges and jointly compresses
multiple models, instead of only a single model.

Two error terms are combined for the minimization in our
calibration training. One is the classification (or regression)
loss utilized in the original models A and B. The other is the
layer-wise output mismatch error; when applying the input xI

to the model A (or B), the output of every layer in the merged
model should be close to the output of the associated layer in
A (or B), and L1 norm is used to measure this error. We use
a framework (TensorFlow [Abadi et al., 2016]) to implement
the calibration training.

In the inference stage, to make the approach generaliz-
able to edge devices that may not contain GPUs, we use
CPU and OpenBLAS library [Zhang et al., 2012; Wang et
al., 2013] to implement the merged model with the associ-
ated codebooks. To make fair comparisons, the Conv lay-
ers of the individual models compared with ours are real-
ized via the unrolling convolution [Chellapilla et al., 2006;
Anwar et al., 2017] that converts the volume convolution into
a single matrix product, which is commonly used as an effi-
cient implementation for the Conv layer. Our code is publicly
available at GitHub2.

4 Experiments

In this section, we present the results of several experiments
conducted to verify the effectiveness of our approach.

4.1 Merging Sound and Image Recognition CNNs

The first experiment is to merge two CNNs of heterogeneous
signal sources: image and sound. Although the sources are

2https://github.com/ivclab/NeuralMerger

different, the same network (LeNet [LeCun et al., 1998]) is
used. It is applied to two datasets of two tasks: sound classi-
fication dataset, and dressing style classification dataset.

Sound20 dataset

This dataset contains 20 classes of sounds recorded from
animal and instrument with 16,636 training samples and
3,727 testing samples. It is constructed using Animal Sound
Data [Keogh, 2012] and Instrument Data [Juliani, 2016]. The
raw signals are converted to 2D spectrograms and then re-
sized to 32×32 images for classification. It is public available
at: https://github.com/ivclab/Sound20

Fashion-MNIST dataset

Fashion-MNIST [Xiao et al., 2017] contains a collection of
60,000 training and 10,000 testing images of size 28 × 28 in
10 classes of dressing styles. To make the image size compat-
ible with LeNet models, we resize the input images to 32×32
in our experiments.

LeNet consists of 2 Conv layers with 32 and 64 kernels
of size 5 × 5 × 1 and 5 × 5 × 32, respectively, each fol-
lowed by a 2× 2 max-pooling, and then an FC layer of 1024
units and a γ-way output (γ is the number of classes). Before
merged, LeNet can achieve 78.08% and 91.57% accuracy on
the above sound (Sound20) and image recognition (Fashion-
MNIST) tasks, respectively. The models are simply aligned
and merged layer by layer since they are identical.

There are two main parameters, r and C, in our method,
where r is the length of the segment and C is the number
of codewords. As the input layer’s depth of LeNet is 1,
we set r = 1 for the first Conv layer of both models and
choose C = 64 for it. Then, we alter the parameters of
r ∈ {8, 16, 32} and C ∈ {64, 128, 256} for the remaining
Conv- and FC-layers (except for the classification layer) and
find the parameters per layer according to the performance
when merging this layer only. By doing so, we conducted two
settings, namely ‘ACCU’ and ‘LIGHT’, as shown in Table. 1,
where ‘ACCU’ enforces the accuracy and ‘LIGHT’ enforces
the model size and inference speed, respectively. We test the
inference speed of our model on the Intel Xeon CPU E5-2640
v4 (single thread). The C++ codes from [Wu et al., 2016],
which adopts OpenBLAS library and realizes unrolling con-
volution based on Caffe’s [Jia et al., 2014] CPU-mode imple-
mentation, is used and enhanced to realize the inference stage
of our work.

The overall performance (after calibration training) and ac-
curacy drop (denoted by ↓) are shown in Table 2. With the
setting of ‘ACCU’, over 10 times of the compression ratio
can be obtained on the joint model size, while only a negligi-
ble accuracy drop is imposed. As can be seen, for the image
task, the accuracy of our merged model drops only 0.68%;
for the sound task, the merged model even achieves a better
accuracy than the original model (−0.06% accuracy drop).
Under the ‘LIGHT’ setting, our approach can achieve over
15 times of joint model-size compression with less than 1.4%
accuracy drop. Fig. 4 further shows the influence calibration
data amount. It can be seen that no matter for the ‘ACCU’ or
‘LIGHT’ setting, more training data yield a lower accuracy
drop in overall.
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Para. Conv1 Conv2 Fc1

ACCU 1/64 8/128 8/128
LIGHT 1/64 32/128 8/64

Table 1: The parameters of r/C for ’ACCU’ and ’LIGHT’ settings
in merging two LeNet models (while the classification layers are not
co-compressed).

Para. Compr. Speedup Sound ↓ Image ↓

ACCU 10.4× 1.3× -0.06% 0.68%
LIGHT 15.3× 1.8× 0.76% 1.40%

Table 2: Compression ratio, Speedup, and Accuracy drop of sound
and image merged model. The speedup ratio is tested on the CPU of
Intel(R) Xeon(R) CPU E5-2640 v4, in the single-thread model.

As our approach finds several codewords per layer and then
performs end-to-end calibration training to refine the code-
words, it is also applicable to an individual model. One may
wonder how the individual models perform when they are
compressed via our approach. For an even comparison, we
use the same r/C settings to encode the single sound (or im-
age) model and also fine-tune it using all training data. Hence,
the compressed single model consumes the same resource as
our merged one (i.e., they have exactly the same model size
and execution time). As shown in Table 3, when the sound-
only model is compressed, the accuracy is slightly dropped by
0.4%; that is, our merged model can achieve even better ac-
curacy while an additional functionality (image recognition)
is added. On the other hand, when the image-only model
is compressed, the accuracy-drop only changes little (from
0.51% to 0.68%) but an extra functionality (sound recogni-
tion) is supplemented. We owe that the two models have co-
redundancy in between, and thus jointly encoding the mod-
els can take advantage of the additional inter-redundancy to
achieve a better representation.

4.2 Merging Clothing and Gender CNN Classifiers

In the second experiment, we merge two image classifiers
(one for clothing and the other for gender recognition) into
a single model holding double functionalities. The cloth-
ing classifier adopted is VGG-avg [Yang et al., 2018] which
substitutes the first FC layer in the VGG-16 model [Si-
monyan and Zisserman, 2014] with average-pooling; it has
been shown that VGG-avg achieves similar performance to
VGG-16 while consuming far less storage. The gender clas-
sifier adopted is ZF-Net [Zeiler and Fergus, 2014] that has
fewer layers than VGG-avg. The overall structures and align-
ment between them can be found in Fig. 2.

The clothing and gender datasets employed are depicted as
follows. The Adience Dataset [Eidinger et al., 2014] contains
face pictures of different genders and ages, where 11,136 im-
ages (each resized to 227 × 227) are used for training and
the other 3,000 are for testing. The Multi-View-Clothing
dataset [Liu et al., 2016] contains clothing images of different
views with over 250 attributes organized in a tree, where the
frontal images (37,485 for training and 3,000 for testing) and
the 13 attributes of the first two layers are used to construct
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Figure 4: Accuracy drop vs. data ratio in calibration stage.

Parameter Image ↓ Sound ↓

ACCU 0.68% -0.06%

Sound only N/A 0.40%
Image only 0.51% N/A

Table 3: Comparison of the merged model (ACCU) with the indi-
vidual sound and image models compressed via our approach. Each
individual model and the merged model use the same parameters of
r/C and have identical model size and execution speed, but more
tasks can be done in the merged model.

a classifier of 17 classes. Before merged, ZF-Net and VGG-
avg achieve 83.43% and 89.80% accuracies on the gender and
clothing classification tasks, respectively.

Because the kernel sizes in the two models are not al-
ways consistent, they are merged via the decomposition into
1× 1× r convolutions as described in Section 3.1. Similar to
the process in the first experiment, we choose the parameters
r/C and conduct two settings ‘ACCU’ and ‘LIGHT’, where
the former stresses accuracy and the latter emphasizes com-
pression/speed. The detailed parameter settings are reported
in Table 4, and the overall performance is reported in Table 5.
As the model sizes of both VGG-avg and ZF-Net are larger
than that of LeNet, there are more redundancies between the
models. Hence, an even better performance is achieved than
that of experiment 1. In the ‘ACCU’ setting, the compression
ratio exceeds 12 times with even an increase of the accuracy
in the clothing classification task (negative accuracy drop).
The compression ratio is enhanced to more than 20 times with
acceptable accuracy drops on the ‘LIGHT’ setting.

Besides, Table 6 shows the results when compressing the
individual models by using our approach under the same set-
ting. It can be seen that similar (or even slightly better) ac-
curacies can be obtained, with an additional merit that the
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Para. Group1,2 Group3 Group 4,5 Fc1 Fc2

ACCU 32/256 16/256 8/256 4/128 4/64
LIGHT 32/128 32/128 16/128 8/128 8/64

Table 4: The parameters of r/C for ’ACCU’ and ’LIGHT’ settings
in the clothing and gender merged model. Each group is a stack of
two or three 3 × 3 Conv layers defined in VGG-16 model.

Para. Compr.
Clothing Gender

Speedup Acc. ↓ Speedup Acc. ↓

ACCU 12.1× 1.5× -0.83% 1.8× 0.27%
LIGHT 20.1× 2.8× 0.50% 2.5× 1.58%

Table 5: Overall performance of the merged model for image classi-
fication of clothing and gender.

merged model holds an extra functionality than the individ-
ual models. The results reveal that our approach can exploit
both the intra- the inter-models redundancy and demonstrate
satisfactory performance on merging deep learning models.

4.3 Merging More Models

Finally, we show that our method can merge more models in-
crementally. The clothing-gender model in the above is added
with another one, LeNet, for sound recognition (Fig. 2). In
Table 7, the accuracy-drop changes are negligibly small but
one more usage is added, which further confirms that our
method can employ the redundancy among the models to en-
force an efficient representation.

5 Conclusions

In this paper, we present a method that can unify multiple
feed-forward models into a single but more compact one. To
our knowledge, this is the first study on merging well-trained
deep models for the inference stage. In our method, overall
architectures of the original models are preserved. The uni-
fied model is still differentiable and can be fine-tuned to re-
store or enhance the performance. Experimental results show
that the merged model can be extensively compressed under
very limited accuracy drops, which makes our method poten-
tially useful for deep model inference on low-end devices.
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