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Unifying approach to left-handed material design
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We show that equivalent circuits offer a qualitative and even quantitative simple explanation for the be-
havior of various types of left-handed (or negative-index) metamaterials. This allows us to optimize design
features and parameters while avoiding trial and error simulations or fabrications. In particular, we apply
this unifying circuit approach in accounting for the features and in optimizing the structure employing par-
allel metallic bars on the two sides of a dielectric film. © 2006 Optical Society of America

OCIS codes: 160.4760, 260.5740.
Left-handed materials exhibit a negative permeabil-
ity, �, and permittivity, �, over a common frequency
range.1 Negative permeability is the result of a
strong resonance response to an external magnetic
field; negative permittivity can appear by either a
plasmonic or a resonance response (or both) to an ex-
ternal electric field. Negative � and negative � lead to
a negative index of refraction, n, and to a left-handed
triad of k� , E� , H� ; hence the names “negative-index ma-
terials” (NIMs) or “left-handed materials.” Pendry et
al.2,3 suggested a double metallic split-ring resonator
(SRR) design for negative � and a parallel metallic
wire periodic structure for an adjustable plasmonic
response. Several variations of the initial design have
been studied; among them, a single-ring resonator
with several cuts has been proved capable of reaching
negative � at a higher frequency4; in Fig. 1(a) a two-
cut single ring is shown schematically. This, by con-
tinuous transformation, can be reduced to a pair of
carefully aligned metal bars separated by a dielectric
spacer of thickness ts.

5,6 In Figs. 1(b) and 1(c) the
view in the �E� ,k� � and �E� ,H� � planes of this structure
is shown together with the directions of k� , E� , H� of the
incoming electromagnetic field.

The design shown in Figs. 1(b) and 1(c), besides its
simplicity, has distinct advantages over conventional
SRRs. The incident electromagnetic wave is normal
to the structure, as shown in Fig. 1(c), which enables
us to build NIMs with only one layer of sample and to
achieve a relatively strong response. Conventional
SRRs, although they exhibit magnetic resonance that
may produce negative �, fail to give negative � at the
same frequency range, and hence by themselves they
are incapable of producing NIMs. An extra continu-
ous wire is needed to obtain negative � via a plas-
monic response.2,7 In contrast, the pair of parallel
metallic plates is expected to exhibit not only a mag-

netic resonance [Fig. 2(c), antisymmetric mode] but

0146-9592/06/243620-3/$15.00 ©
also an electric resonance as well [symmetric mode],
properly located in frequency by adjusting the length,
l, of the pair.

The simulations were done with the CST Micro-
wave Studio (Computer Simulation Technology
GmbH, Darmstadt, Germany) by using the lossy
metal model for copper with a conductivity �=5.8
�107 for a single unit cell with a periodic boundary
in the �E� ,H� � plane; field distribution and scattering
amplitudes have been calculated. The � and � in Fig.
5 below were obtained by a retrieval procedure.8 At
the magnetic resonance the two plates sustain anti-
parallel currents, producing a magnetic field B� con-
fined mainly in the space between the plates and di-

Fig. 1. (Color online) The two-cut single metallic SRR (a)
can be transformed to a pair of parallel metallic bars sepa-
rated by a dielectric; (b) view in �E� ,k� � plane; (c) view in
�E� ,H� � plane. Adding continuous wires results in design (d)
[view in �E� ,H� � plane], which can be modified to (e) a fully
connected one on both sides of the thin dielectric board.
The dashed squares define unit cells with dimensions ax

� � �
(parallel to H), ay (parallel to E), and az (parallel to k).
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rected opposite to that shown in Fig. 1(c); the electric
field, because of the opposite charges accumulated at
the ends of the two plates, is expected to be confined
within the space between the plates and near the end
points. Indeed, detailed simulations, shown in Fig.
2(c), confirm this picture.

At the electric resonance the currents at the two
bars are parallel (symmetric mode); the magnetic
field lines go around both bars, while the electric field
is confined mostly in the space between the nearest-
neighbor edges of the two pairs of bars belonging to
consecutive unit cells.

The field and current configurations for both the
antisymmetric and the symmetric mode can be ac-
counted for by equivalent R, C, L circuits as shown in
Fig. 3 (in which for simplicity the resistor elements
have been omitted). Near the magnetic resonance fre-
quency, for a current configuration as in Fig. 3(c), the
magnetic field is between the two plates, and it is, to
a good approximation, uniform [Fig. 2(b)]. Hence the
total inductance L, as calculated by the magnetic
field energy, is L=2Lm���ts /w�l, where l is the
length of the wire, ts is the thickness of the dielectric
spacer, and w is the width of the wire.

Notice that at telecommunication or optical fre-
quencies, where the linear dimensions are in the tens
or hundreds of nanometers, the kinetic energy of the
drifting electrons makes a contribution comparable
or larger than the magnetic energy. Hence another
additional inductance must be added to the right-
hand side of the equation for L.4

Each capacitance Cm must be given by a formula of
the type Cm=�wl� / ts, where, by inspection of Fig.
2(c), l�=c1l with the numerical factor c1 in the range
0.2�c1�0.3. The capacitance Ce can be approxi-
mated by that of two parallel wires of radius tm and
length w at a distance b apart, Ce=��w / ln�b / tm�,
where tm is the thickness of each metallic bar and b is
the separation of neighboring pairs; see Figs. 3(a)
and 3(b) �b=ay− l�. The magnetic resonance fre-
quency, �m, is obtained by equating the impedance Z
(of Lm and Ce in parallel) with minus the impedence

Fig. 2. (Color online) At magnetic resonance the currents
field (b) [in the �H� ,k� � plane] and the electric field (c) [in the
of (b) magnetic field H� and (c) electric field E� on a logarith
−i /Cm� of the capacitance Cm.
Since Z= iLm� / �1−LmCe�
2�, we obtain �m

=1/�Lm�Cm+Ce��1/�LmCm. The last relation fol-
lows because, for the values we have used (l=7 mm,
w=1 mm, ts=0.254 mm, tm=10 �m, and b=0.3 mm),
Ce�0.1Cm. Combining the equations for L and Cm,
we find that

fm =
�m

2�
=

1

2�l����c1/2
=

1

2��c1�r/2

c

l
, �1�

where �r=2.53 is the reduced dielectric constant of
the dielectric, �r=� /�0. Equation (1) shows that fm is a
linear function of only 1/ l, which agrees very well
with our detailed simulation results.

For frequencies near the electric resonance, be-
cause of the mirror symmetry in Fig. 3(d), there is no

[in the �E� ,k� � plane, view in the H� direction], the magnetic
,k� � plane] are shown. Sizes of the cones show the intensity
scale.

Fig. 3. (Color online) Current distribution of the design
with two parallel metallic bars (a) [view in plane, one par-
allel plate is behind the other] can be accounted for by (b)
the equivalent circuit, which, since points 1 and 2 are
equivalent because of the periodicity, reduces to circuits (c)
and (d) for the magnetic and electric resonances,
respectively.
(a)
�E�

mic
current passing through the capacitances Cm. As a
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result the electric resonance frequency fe is given by
fe=1/ �2��CeLe�, where Le is expected to be of the
form �� /��g�w / l�, where g�x� is a function that for x
→0 behaves as −ln�x�.

We point out that fe is a rather sensitive function of
the small distance b, because Ce depends on b, while
Le is practically independent of b. Indeed the ratios
fe�2b� / fe�b� and fe�3b� / fe�b� for b=0.1 mm according to
the equation for Ce and equation for fe are, respec-
tively, 1.14 and 1.215, in good agreement with the
simulation results in Fig. 4 (1.13 and 1.21, respec-
tively); the dependence of both fm and fe on ay / l=1
+b / l is shown in Fig. 4.

Figure 4 in combination with Fig. 5 suggests the
optimum design parameters for making the two-bar
scheme produce negative index n: one has to avoid
the crossing region where, essentially, to a consider-
able degree the two resonances cancel each other.
Since the electric resonance is much stronger and
hence much wider, we have to bring the magnetic
resonance within the negative region of �; i.e., we
must have fe lower than fm as in Fig. 5(b), rather than
the other way around; i.e., we must have

� fe

fm
�2

=
Lm

Le
�1 +

Cm

Ce
� � 1. �2�

This can be achieved by increasing Ce, either by de-
creasing b or by increasing at the ends of each bar
the width w, choosing a double T shape for each bar.9

Still another possibility to make the negative � re-
gion wider (and more negative) is to add continuous
metallic wires as in Fig. 1(d), which produce a plas-
monic response.5 Adjusting the width of these wires
can make their effective plasma frequency fp larger
than the frequency f1 at which the continuous curve
in Fig. 5(b) crosses the axis �f1�16 GHz�.

Finally, the width of the bars, w, can increase until
the bars join the infinite wires, thus producing a con-
tinuous connected network that can be constructed

Fig. 4. (Color online) Magnetic resonant frequency fm
crossover with electrical resonant fe as ay / l=1+b / l varies
between 7.1 mm and 7.3 mm; a =20 mm.
x
by opening periodically placed rectangular holes in
uniform metallic films covering both sides of a dielec-
tric sheet.10–12

In this Letter we have shown that L, C equivalent
circuits can account for the electromagnetic proper-
ties of various negative-index artificial metamateri-
als (NIMs), even at a quantitative level; furthermore,
this simple unifying circuit approach offers clear
guidance in adjusting the design and optimizing the
parameters for existing and possible future NIMs.
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Fig. 5. (Color online) Retrieved �eff (solid curves) and �eff
(dotted curves) for two cut wires. (a) and (b) correspond to
points a (ay=7.3 mm, ax=20 mm) and b (ay=7.1 mm, ax
=20 mm) in Fig. 4. Notice that both responses are
Lorentz-like.


