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Abstract

In this paper we extend an existing audio background

modelling technique, leading to a more robust application

to complex audio environments. The determination of back-

ground audio is used as an initial stage in the analysis of

audio for surveillance and monitoring applications. Knowl-

edge of the background serves to highlight unusual or in-

frequent sounds. An existing modelling approach uses an

online, adaptive Gaussian Mixture model technique that

uses multiple distributions to model variations in the back-

ground. The method used to determine the background dis-

tributions of the GMM leads to a failure mode of the exist-

ing technique when applied to complex audio. We propose a

method incorporating further information, the proximity of

distributions determined using entropy, to determine a more

complete background model. The method was successful in

more robustly modelling the background for complex audio

scenes.

1. Introduction

In audio surveillance and monitoring applications, we

would like to segment infrequent or unusual sound from the

audio signal. Such sounds, considered to be foreground, are

relevant to higher level analysis, such as sound event clas-

sification. Consequently, a useful first stage of the audio

analysis is the detection of the background of the signal,

i.e. sounds that dominate the signal. To do this we model

the background, which we define as recurring and persistent

audio characteristics that dominate a portion of the signal.

We classify background audio into two types, simple, audio

emanating from a single source, and complex, audio from

multiple superimposed sound sources. For example, in the

case of an industrial processing plant, various processing

units produce different sounds that combine to form a com-

plex audio background.

Existing learning techniques for determining the

background explicitly model background or foreground

sounds [5]. Such methods require prior knowledge of the

audio. A simple technique involves determining high en-

ergy segments of the audio [9], e.g. sound level sensing.

Such methods can be unsupervised but lack the sophisti-

cation required to model complex background audio. Re-

cently, an online Gaussian Mixture model (GMM) video

background modelling technique [8], was adapted to ac-

commodate the processing of audio data [7]. This tech-

nique has the advantage of being adaptive and unsupervised,

and the use of multiple statistical models to characterise the

states of the data enables the method to be applied to more

complex data. However, the complex and dynamic nature

of audio results in background modelling for audio differ-

ing significantly from video. Consequently, complex audio

backgrounds form a source of error for the adapted algo-

rithm. Thus, an extension to the underlying theory of back-

ground modelling is necessary to more thoroughly account

for the complex audio backgrounds.

One failure mode is the fragmentation of the back-

ground representation across multiple distributions within

the GMM. Typically, the fragmented background represen-

tation consists of a distribution of large weight, the domi-

nant distribution, and a number of lower weighted distribu-

tions that are similar to the dominant distribution (see fig. 1).

Algorithms that solely consider the dominant model to con-

tribute to the background classify the lower weighted simi-

lar distributions as foreground. Thus, the fragmented back-

ground representation results in a portion of the background

not being included in the background model. We propose a

w = 0.7

w = 0.15w = 0.15

Figure 1. Mixture of 3 Gaussians

method to integrate the fragmented background representa-

tion to form a unified background model. To achieve this
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we consider both the dominance and proximity when de-

termining the background model. The proximity is used

to cluster similar distributions, and is determined using the

probabilistic entropy.

In this paper we extend a background modelling algo-

rithm for application to complex audio environments. The

modelling of the background enables the detection of fore-

ground events, which serves to highlight sections of inter-

est within the audio signal and focus higher level analysis.

The audio context related to foreground events can itself be

used as a tool for analysis, such as for content based brows-

ing. The extended algorithm enables the determination of

the background model from a fragmented background rep-

resentation. This results in a more robust method for mod-

elling complex audio background, accounting more com-

prehensively for the variability present in the audio data.

We test the resulting algorithm on a number of complex data

sets that represent instances of monitoring applications.

The layout of this paper is as follows. Section 2 de-

tails related work in audio surveillance and monitoring, and

the audio background modelling algorithm. Section 3 de-

scribes our approach to unifying the background model.

Section 4 then details the experimentation exhibiting the

improvement in the background modelling over a number

of audio data sets.

2. Background

2.1. Audio Surveillance and Monitoring

Audio analysis methods for surveillance and monitor-

ing include a tele-monitoring system for the detection of

sound events such as cries for help [9], and the detection

of alarm sounds [5]. Cowling [2] proposed a taxonomy for

the classification of environmental sounds for audio surveil-

lance. These methods focus on the detection of specific

sound events. In contrast our approach is an initial stage

in a framework with which to analyse the global and con-

textual information within the audio.

2.2. Audio Background Modelling

We adapted the video method proposed by Stauffer et

al. [8] for application to the audio domain [7]. To model the

background, the incoming audio signal is segmented into

fixed duration audio clips. A number of features are cal-

culated for each clip and combined to form the observed

feature vector for the current clip, Xt. A single multidi-

mensional GMM, that accounts for dependencies between

features, is then used to model the background. The recent

history is modelled by a mixture of K Gaussian distribu-

tions. The probability of observing Xt is

P (Xt) =

K
∑

i=1

ωi,t ∗ η(Xt, μi,t, Σi,t). (1)

The weight of each model, wi,t, is related to the propor-

tion of recently observed feature vectors at time t that are

accounted for by model i. Each Xt is associated with a

model within the GMM using on-line K-means approxima-

tion, comparing Xt to each model in the GMM. A model

represents Xt if Xt is within P standard deviations of its

mean. The highest ranking model that represents Xt is se-

lected as the matching model, with models ranked in de-

scending order according to ωi/σi. If no match is deter-

mined for Xt, the model of lowest weight is replaced by a

new model with μ = Xt, a high initial variance, and a low

initial ω. The GMM is then updated, the weights for the K
distributions at time t, are

ωk,t = (1 − αω ∗ Mk,t)ωk,t−1 + α(Mk,t), (2)

where ωk,t is the weight of the kth model at time t, and Mk,t

is 1 for the matched model, and 0 otherwise. The weights

are subsequently normalised. The Gaussian distribution pa-

rameters for the matched model are updated to reflect Xt:

μt = (1 − ρ)μt−1 + ρXt, and (3)

Σi,j
t = (1 − ρ)Σi,j

t−1 + ρ(X i
tX

j
t ), (4)

where ρ = αge
−

1

2d
(Xt−μt−1)T Σ−1

t−1
(Xt−μt−1) (5)

and Σi,j
t is the (i, j) element of the covariance matrix, Xn

t

is the nth element of Xt and d is the dimension of Xt. The

value αω determines the rate of adaptation of a model to

the background, and αg determines the update rate of the

Gaussian distribution parameters. Foreground classification

is determined using FG =
∑khit

k=K ωk < T where khit is

the matched model and K corresponds to the model of low-

est rank, with ranking determined in descending order by

wi. The remaining models are considered background. The

threshold T represents the background classification toler-

ance, with a lower T resulting in more distributions being

regarded as background.

3. Unification of Background

3.1. Background Fragmentation

As described above, the models of the GMM are ranked

according to wi/σi when determining the matching model

for Xt. The σi acts as a constraint on the model, restricting

the growth of the variance by decreasing rank as variance

increases. The absence of this constraint leads to the for-

mation of models with high variance, which are less sen-

sitive to foreground events and changes in the background.
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This is due to the high degree of variation present in com-

plex audio backgrounds. However, this constraint can re-

sult in the fragmentation of the background representation

across a number of distributions. An increase in the vari-

ance of a model will decrease the model’s rank, irrespective

of the support, ω, for the model. As a result, a model of

lower weight can have a higher rank compared to the domi-

nant model within the background representation. If such a

model has a high degree of similarity to the dominant model

in the feature vector space, both models will be deemed to

represent Xt. The model of lower ω will be selected as the

matched model for Xt in preference to the dominant model

if the dominant model has a lower rank due to a larger vari-

ance. We term the lower weighted matched model a satellite

distribution (see fig. 1). This results in a background rep-

resentation that is fragmented, with dominant and satellite

distributions present. As the satellite models are of lower

weight, considering only the dominance by ωi in determin-

ing foreground classification results in the satellite models

being erroneously classified as foreground. This error is

implicit due to the proximity of the satellite and dominant

distributions of the background representation.

3.2. Background Unification using Entropy

We incorporate the satellite distributions into the back-

ground model using a combination of proximity and dom-

inance to determine a unified background representation.

We use entropy to determine the similarity between the

matched model for Xt and the remaining models of the

GMM. The Information Radius (IR) [6], a symmetric form

of the Kullback-Leibler divergence ([1], pg. 18) is used to

calculate entropy. The combined weight of the dominant

and satellite distributions, W (E), is then used to determine

the foreground classification:

FG =

(

W (E) +

K
∑

k=1

W/∈IR (k)

)

< T (6)

where W (E) =

K
∑

k=1

WIR (k)

WIR(i) =

{

ωi, IR(khit, ki) < TIR

0, otherwise.

W/∈IR(i) =

{

ωi, WIR(i) = 0 ∩ ωi < W (E)
0, otherwise.

IR(i, j) denotes the Information Radius metric between

two Gaussian distributions i and j, calculated as follows [6]

IR(i, j) =
1

2
[Dkl (i‖avg(i, j)) + Dkl (j‖avg(i, j))] (7)

where avg(i, j) is the average of the two distributions,

formed by averaging the mean and covariance matrices for

i and j. Dkl is the Kullback-Leibler (KL) divergence. The

threshold TIR is used to determine if two distributions, i and

j, are similar given IR(i, j). TIR is a property of the Infor-

mation Radius, and is defined as TIR = dn̄2

2 where n̄ is the

average number of standard deviations, σavg(i,j), of μi and

μj from the mean of the average distribution, μavg(i,j). The

threshold represents an upper bound for the information ra-

dius for a given n̄. That is, at least one distribution will be

within 2n̄σ of the other distribution.

4. Experimentation

4.1. Data

Continuous, unedited audio streams were used as test

data, with foreground events present at the time of cap-

ture. Three data sets (44.1kHz, 16bit, mono, wave for-

mat) of differing levels of audio complexity were used for

analysis. The lab data (10.6 minutes) consisted of a sim-

ple background recorded in a computer lab. The traffic data

(12.1 minutes) consisted of a complex background of traf-

fic noises from a busy road recorded outside. In processing,

the majority of the audio was considered to be background.

The kitchen data (19.9 minutes) consisted of multiple back-

grounds, both simple and complex, recorded in a kitchen

environment, with multiple foreground events (55s in to-

tal). A fourth data set (16kHz), consisting of 195 minutes

of industrial noise from a processing plant, was used. The

data consisted of a complex background of machinery and

wind noise, with foreground events including a jet of steam.

The ground truth for the data sets was defined in terms of

the foreground events, short duration events that are mean-

ingful in the context of the surrounding audio. The re-

maining audio was classed as background. For example,

in the context of the kitchen data, sound associated with the

kitchen was considered to be foreground (predominantly the

result of a user interacting with the environment). Traffic

noises such as sirens and car crashes are considered back-

ground. However, in the context of traffic, such sound

would be foreground. This restricts the concept of fore-

ground to events or activities of semantic interest. This re-

sults in the labelling of the ground truth background differ-

ing from the algorithmic definition of background, the lat-

ter forming a subset of the former. This analysis provides a

more accurate indication of the real world performance and

usefulness of the algorithm for a given application as the

context of the application is accounted for.
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4.2. Procedure

Each data set was divided into audio clips of duration

t (1.0s and 0.25s). For each clip, d audio features were

determined. A d − D GMM was used to model the back-

ground of the audio signal, classifying each audio clip in se-

quence. Two parameters determine the clustering of Xt; the

number of standard deviations used to determine if a model

represents Xt, P , and the model update parameter αg . The

values used for these parameters were optimised for each

feature set across all data sets, accounting for the accuracy

in modelling the background and sensitivity to changes in

the background. A value of T = 0.5 was used to enable

multiple models to be classed as background. A value of

n̄ = 1 was used to determine similarity, with an αω of 0.01.

Ten distributions were used in the GMM.

4.3. Evaluation of Results

The BG/FG classification result for each clip was then

compared with the ground truth. The accuracy of the de-

tection of the background clips was calculated according to

BGacc = TPBG

Nc−FGD
where TPBG is the number of back-

ground clips classified as background, Nc is the total num-

ber of clips, and FGD is the total number of foreground

clips correctly detected. A foreground event was considered

to have been detected if one or more clips were classified as

foreground within the duration of a ground truth foreground

event.

4.4. Audio Feature Set

Two feature sets were used to encapsulate the character-

istics of the audio signal content. The WE feature set (7 fea-

tures) consisted of the mean wavelet energy for seven fre-

quency sub-bands. Wavelet coefficients were constructed,

using six levels of decomposition, using the Daubechies

wavelet transform [3]. The sum of the absolute values of

the wavelet coefficients within each sub-band was aver-

aged by the number of coefficients within the band to cal-

culate the sub-band energies. The RF feature set (10 fea-

tures) consisted of predominantly frequency based features.

The features were selected using an attribute selection tech-

nique [10] over a number of temporal and frequency do-

main features, calculated for background audio extracted

from the traffic and lab data sets. The feature set consists of

selected mel-cepstrum coefficents (MFCC), the mean and

standard deviation of the zero crossing rate (ZCR [11]), and

the ZCR and mean energy of selected wavelet sub-bands.

The MFCCs for each clip were generated using a 25 or-

der MFCC set [4] and averaging corresponding coefficients

over the clip.

4.5. Results

Figure 2 shows an example of the background modelling

process for the first 80 minutes of the industrial data set for

the RF set. The figure shows the foreground audio (top)

as determined by the algorithm, and the original waveform

(bottom). The foreground at the beginning of the sequence

corresponds to the algorithm adapting to the background.

The plant had an anomaly in sound when a jet of steam

was released, resulting in a foreground event surrounded by

complex industrial noise at 31 minutes (point A). The detec-

tion of the steam event demonstrates the advantage of using

audio background modelling over sound level sensing. The

16 minutes of audio preceding the steam event, background,

has a maximum energy of 70.9dB, and a mean of 58.0dB.

The steam event, 4 minutes long, has a maximum energy of

66.7dB, and a mean of 57.9dB.

Table 1 shows selected results for background classifi-

cation accuracy and foreground recall, both with the use of

entropy information (unified background results), and with-

out (fragemented background results).

Table 1. Accuracy with and without entropy.
Data (s) Foreground Background

( % ) ( % )

without with without with

Lab WE 0.25 100 100 90.8 92.3

Kitchen WE 1 100 100 62.3 62.3

Kitchen RF 1 94.1 94.1 78.1 83.8

Kitchen WE 0.25 100 100 74.6 77.9

Kitchen RF 0.25 100 100 92.3 94.1

Traffic WE 1 - - 59.6 65.9

Traffic RF 1 - - 79.0 81.7

Traffic WE 0.25 - - 69.8 83.3

Traffic RF 0.25 - - 93.1 93.2

Industrial WE 1 99.4 99.4 86.3 86.3

Industrial RF 1 95.2 95.2 99.9 99.9

Industrial WE 0.25 100 100 77.3 96.7

Industrial RF 0.25 95 94.8 99.4 99.7

4.6. Analysis

Due to the stability of the simple background of the lab

set, the use of the entropy offers little advantage. The low

variance of the data set results in a single distribution be-

ing sufficient to model the background, with few satellite

models present in most cases.The presence of satellite mod-

els is linked to the variability of both the data set, and the

feature set with respect to the data set, which results in the

background fragmentation. This is observed in the marginal

increase in performance for the lab data.

For the background accuracy, the use of entropy leads to

an overall improvement in the performance, with the most
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Figure 2. Industrial data foreground audio.

significant gain in performance occurring for the more com-

plex data, e.g. the industrial data set. A second result evi-

dent from table 1 is the greater increase in performance for

the WE set in comparison with the RF set, and the 0.25s clip

size compared to the 1s clip size. These results justify our

motivation for using entropy as the improved performance

is due to the incorporation of satellite models into the back-

ground model. The foreground detection accuracy was un-

affected for the data sets examined. The exception is the RF

set for the industrial data at 0.25s, which is attributed to the

reduced sensitivity to the start and end times for foreground

events due to the averaging of features over clips.

The addition of entropy results in the WE becoming a

viable feature set, particularly at the higher clip resolution

(0.25s). The improved detection of foreground events for

the WE set is necessary for certain applications. While the

RF set has a high background accuracy for the industrial

data set, the high foreground detection of the WE is required

for applications such as hazard detection, so that no hazards

are missed. Thus, the combination of entropy and WE cal-

culated at 0.25s is an appropriate solution for this problem.

Furthermore, a decrease in clip size increases sensitivity to

short duration foreground events.

5. Conclusion

This paper proposes improvements to a previous ap-

proach to audio background modelling. We solve the mis-

classification of non-dominant background distributions by

considering the dominance of a cluster of distributions,

grouped by similarity, to determine the unified background

model. Similarity was determined as a property of the clus-

tering phase of the algorithm, matching distributions in a

similar manner to the matching of an observation to a distri-

bution in the GMM. This method was successful in combin-

ing fragmented background representations where present.

This increased the robustness of the background modelling,

particularly with respect to more complex audio data, and

variability encapsulated in the audio features and the analy-

sis resolution.
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