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Abstract— This article describes the design and simulation
implementation of a behavior-based control system. The con-
trollers are designed using a command filtered, vector backstep-
ping (CFBS) approach. We use the results from hybrid system
control where multiple Lyapunov functions are used in order
to prove overall controller stability. We describe our approach
using a second order system as a simple example. The article
includes design of the control law and simulation based analysis
of the performance. The simulation confirms the theoretical
result. This method can be applied in designing a control
system that can be used for maneuvering of nonholonomic
robotic vehicles. As opposed to a single controller approach,
we apply a behavior-based control approach with switching
among different controllers which perform different tasks. All
the behaviors would be used together to complete complex
mission goals.

I. INTRODUCTION

Advances in robotic sensor technology, navigation, and

control enable advances in vehicle maneuverability and

planning strategies to allow scientific and military operators

to efficiently test and utilize new sensors in missions of

interest. For some searching applications it is a requirement

for a vehicle to accurately follow a specific trajectory, make

accurate turns and continue to follow the next specified

trajectory. Many of these missions require the vehicle to

function in complex, cluttered environments, to react to

changing environmental parameters, and find a collision-free

path through a workspace containing a significant number

of obstacles. For successful accomplishment of such a mis-

sion, at least two approaches are possible: a single analytic

controller or a number of controllers each accomplishing a

specific behavior.

An alternative approach to the single controller approach

is behavior-based control, wherein each behavior has a single

well-defined task. In [1], the behaviors are coordinated in a

subsumption architecture. An example is presented in [6].

A set of behaviors to achieve a task and a switching logic

coordinating the behaviors can be utilized. These algorithms

are criticized due to the lack of rigorous stability analysis

[8], [11]. However, when each behavior is implemented as

a nonlinear controller with a rigorous stability analysis the

main remaining issue is the design of behavior switching.

This issue is addressed herein from a hybrid systems per-

spective.

This article describes a Behavior-Based Command Filtered

Backstepping (CFBS) control design using a second order

system as a simple example. The model of the second order

system is described by eqns. (1–2). The reason that we use

the second order system is the analogy of its equations with

the kinematic and dynamic equations of motion of robotic

vehicles. The variable x1 is analogous to position while the

x2 variable is analogous to the velocity of a mobile robot.

In this article we consider two behaviors:

1) Behavior 1: a controller which controls both states, x1

and x2, that defines xo
2c and u to achieve tracking of

x1c; and,

2) Behavior 2: a controller which controls the second

system state, x2, through u to achieve tracking of x2c.

Making the comparison with the mobile robot control, the

Behavior 1 uses the velocity to control position while the

Behavior 2 controls the velocity without regard to the posi-

tion.

Throughout, this article refers to filtering of a signal xo
c to

produce a bandwidth limited signal xc and its derivative ẋc.

This is referred to herein as command filtering. As outputs of

command filter, xc is continuous, bounded, and differentiable

as long as xo
c is bounded. The design of the command filters

used throughout this article is explained in Appendix I. It

is important that the commanded trajectories be within the

maneuverability and actuation limits of the robots. Actuator

and control input saturation can be an issue; however, our

command filter can be designed to accommodate magnitude,

rate, and bandwidth constraints on the robot states and the

actuator signals. This design is beyond the scope of this paper

but the can be found in [5].

In this article, we derive and provide proofs for the two

theorems that ensure the stability of each behavior, as well

as, the stability of the overall hybrid Behavior-Based system.

The purpose of this article is to clearly demonstrate our

methodology on a simple system. Once demonstrated, this

methodology will be applied to a nonholonomic land robot,

Autonomous Underwater Vehicle (AUV), and Autonomous

Surface Vehicle (ASV) in our future work.

The article is organized as follows. Section II and Section

III show the second order system dynamics and derive

the control law signals for Behavior 1 and Behavior 2,

respectively. Section IV follows the method of [5], [3],

[4]. It presents and proves the theorems that guarantee the

stability of each behavior designed. Section V describes our

method for stable switching among behaviors. Finally, the

performance of the control system proposed is illustrated in

simulation in Section VI.
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II. CONTROL SIGNAL DERIVATION: BEHAVIOR 1

The objective of Behavior 1 is to force x1 to track x1c

where x1c and xo
1c are known exogenous signals, specified

by an operator or Mission Planner. The x1 state is controlled

by using x2 as an auxiliary control signal. The state x2 is

controlled by the control signal u.

The dynamic equation for the second order system is

described as

ẋ1 = f1(x1) + x2 (1)

ẋ2 = f2(x1, x2) + u (2)

We define tracking and integral errors as

x̄1 = x1 − x1c (3)

x̄2 = x2 − x2c (4)

ē =

∫

x̄2dt. (5)

The signal x2c and its derivatives ẋ2c is generated from

the signal xo
2c using the command filters as explained in

Appendix I. Define xo
2c as

xo
2c = −f1(x1) − K1x̄1 + ẋ1c (6)

Differentiating the tracking error x̄1 defined in eqn. (3) we

obtain the x̄1 tracking error dynamics

˙̄x1 = ẋ1 − ẋ1c

= f1 + x2 − ẋ1c = f1 + xo
2c + (x2 − xo

2c) − ẋ1c

˙̄x1 = −K1x̄1 + (x2c − xo
2c) + x̄2. (7)

We define the compensated tracking errors as

ν1 = x̄1 − ξ1 (8)

ν2 = x̄2 − ξ2 (9)

where

ξ̇1 = −K1ξ1 + (x2c − xo
2c) + ξ2 (10)

ξ̇2 = 0 (11)

with ξ1(0) = 0 and ξ2(0) = 0. If we then subtract eqn. (10)

from eqn. (7) we get the dynamics of the x1 compensated

tracking error

ν̇1 = −K1ν1 + ν2. (12)

Differentiating tracking error x̄2 defined in eqn. (4) and

following a similar procedure, now using u defined as

u = −f2(x1, x2) − K2x̄2 − Kiē + ẋ2c − x̄bs
2 , (13)

where the backstepping term, x̄bs
2 , will be defined in eqn.

(23) of the stability analysis of Section IV, we obtain the x̄2

tracking error dynamics

˙̄x2 = ẋ2 − ẋ2c

= f2(x1, x2) + u − ẋ2c

˙̄x2 = −K2x̄2 − Kiē − x̄bs
2 . (14)

Subtracting eqn. (11) from eqn. (14) the dynamics of com-

pensated tracking errors for x2 are

ν̇2 = −K2ν2 − Kiē − x̄bs
2 . (15)

The stability analysis in Section IV will use eqns. (12) and

(15).

III. CONTROL SIGNAL DERIVATION: BEHAVIOR 2

The objective of Behavior 2 is to control x2. This is im-

plemented by design of the control signal u. While Behavior

2 is active, the state x1 is not controlled.

Consider only the second state dynamics

ẋ2 = f2(x2) + u. (16)

The control signal u can be defined as

u = −f2(x2) − K2x̄2 − Kiē + ẋ2c, (17)

where x̄2 is the tracking error defined in eqn. (4). Since, the

signal ξ2 = 0, thus x̄2 = ν2, by substitution of eqn. (17) into

the eqn. (16), the compensated tracking error dynamics for

this controller is

ν̇2 = −K2ν2 − Kiē. (18)

The stability analysis in Section IV will use eqn. (18).

IV. STABILITY ANALYSIS OF BEHAVIOR-BASED

CONTROL DESIGN

This purpose of this section is to show that each of

the behaviors implements a stable controller. Two theorems

stated and proved in [3] hold. They can be applied to our

control design to ensure that it creates closed loop behavior

implementations in sense of Lyapunov. For clarity, we will

state the theorem for each of the behaviors separately.

Theorem 1: For the system described by eqns. (1–2):

B1. The feedback control law defined in eqns. (6), (10–11),

and (13), and the x2c command filter (using the design

in Appendix I) provides asymptotic stability for ν1, ν2

and boundedness of ξ1, ξ2, and ē.

B2. The feedback control law defined by eqn. (17), with

ξ2 = 0 provides asymptotic stability for ν2 and bound-

edness of ē.

△
This theorem will be proved in this section.

It is possible to derive standard backstepping (BS) con-

trollers for Behavior 1 and Behavior 2. Such approach would

require analytic computation of the derivative of each pseudo

control signal: xo
1c, xo

2c. This would be straight forward

in this simple example, but can be quite complicated for

systems with higher state order. A motivation for the CFBS

approach is that analytic computation of pseudo-command

derivatives is not required. Theorem 2 in [3] shows that

the difference between the BS tracking errors denoted by

x̃ and CFBS tracking errors denoted by x̄ (i.e. |x̄1 − x̃1| and

|x̄2 − x̃2|) are O
(

1
ωn

)

, which shows that the solution of the

BS and CFBS implementations can be made arbitrarily close

by choice of the command filter natural frequency ωn.
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Proof: B1

Choose the Lyapunov function for ν1 as

Vx1
=

1

2
ν2
1 .

Its derivative along solutions of eqn. (12) is

V̇x1
= −K1ν

2
1 + ν1ν2. (19)

Combining eqns. (5) and (14) yields

¨̄e + K2 ˙̄e + Kiē = x̄bs
2 . (20)

We define the tracking error vector as q̄ = [ē, ν2]
⊤. The

tracking error vector dynamic equation is

˙̄q =

[

0 1
−Ki −K2

]

q̄ −

[

0
1

]

x̄bs
2 , (21)

where A =

[

0 1
−Ki −K2

]

, and B =

[

0
1

]

.

We choose the Lyapunov function for x2 as

Vx2
=

1

2
(q̄⊤Pq̄),

where P = diag([p1, p2]) is a positive definite diagonal

matrix. By the analysis in Appendix II

q̄⊤(A⊤P + PA)q̄ = −K2p2 < 0.

The derivative of Lyapunov function along solutions of eqn.

(21) is

V̇x2
=

1

2
( ˙̄q⊤Pq̄ + q̄⊤P˙̄q)

=
1

2
[q̄⊤(A⊤P + PA)q̄] − q̄⊤PBx̄bs

2

= −K2p2x̄
2
2 − x̄bs

2 p2x̄2

= −K2p2ν
2
2 − x̄bs

2 p2ν2. (22)

Define the overall Lyapunov function for Behavior 1 as

Vb1 = Vx1
+ Vx2

.

The time derivative of Vb1 along solutions of eqns. (12) and

(21) is

V̇b1 = −K1ν
2
1 + ν1ν2 − K2p2ν

2
2 − x̄bs

2 p2ν2.

which is the sum of eqns. (19) and (22). To remove the

sign indefinite terms of the above result, we define the

backstepping term as

x̄bs
2 =

ν1

p2
. (23)

With these definitions, the derivative of Vb1(t) satisfies

V̇b1 ≤ −K1ν
2
1 − K2p2ν

2
2 . (24)

Since the error state is [ν1, ν2, ē], the derivative of Vb1(t) is

negative semi-definite. This fact proves that the error state is

stable and, in particular, ē is bounded for all t ≥ 0. LaSalle’s

invariance theorem (page 128 in [7]), proves that the error

state subvector [ν1, ν2] converges to zero asymptotically.

Proof: B2

Similarly, choosing the Lyapunov function for Behavior 2 as

Vb2 = Vx2
=

1

2
(q̄⊤Pq̄),

by analysis similar to that above, the time derivative of Vb2

along solutions of eqn. (21), with the backstepping terms x̄bs
2

set to zero, satisfies

V̇b2 ≤ −K2p2ν
2
2 . (25)

Therefore, each element of q̄ is bounded and ν2 approaches

zero asymptotically.

Remark 1: The purpose of the integrator is to compensate

for model error in the dynamics of the x2 state. If, for

example, the actual system is ẋ2 = f2+A+u where eqn. (16)

has been modified by a model error term A, then a straight

forward analysis shows that ē(t) converges to (A/Ki). We

do not discuss model error further herein. Of course, in case

of land robot, AUV, or ASV there will be some model error.

V. SWITCHING ANALYSIS OF BEHAVIOR-BASED

CONTROL DESIGN

The purpose of this Section is to show that the switching

among behaviors does not lead to instability. The main idea

is that for overall stability of our Behavior-Based Control

design we much ensure three things:

1) Maintain stability during the time each behavior is

active.

2) Prevent Zeno Phenomenon.

3) Maintain stability at switching times.

We will show that the CFBS approach allows us to ensure

that the Lyapunov function, defined in terms of compensated

tracking errors, of the overall switched system is bounded at

all times by appropriate choice of the command filter’s initial

conditions made by a Mission Planner.

A. Behavior Stability

In Section IV we stated the stability properties for each

behavior. Using CFBS control design we ensure that dur-

ing each time interval for which a behavior is active, its

compensated tracking errors converge to zero asymptotically.

We use a simple notation useful for two behaviors, but

the idea generalizes to a larger number of behaviors. Let

i = 0, 1, 2, ... denote switching time. Note that i can be

expressed as a function of j = 0, 1, 2, .... We assume that

Behavior 1 is active initially at i = 0, i.e. t = t0. Behavior

1 is active on t ∈ [t2j , t2j+1] while Behavior 2 is active on

t ∈ [t2j+1, t2j+2]. We have already shown that

1. V̇b1(t) ≤ 0 and discussed stability properties for the

time interval t ∈ [t2j , t2j+1], and

2. V̇b2(t) ≤ 0 and discussed stability properties for the

time interval t ∈ [t2j+1, t2j+2].

B. Zeno Phenomenon

We ensure that the Zeno effect, a situation where the

solution of the system makes an infinite number of discrete

transitions between behaviors in a finite amount of time,

is precluded. This means that we must only allow a finite
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number of switches of the behaviors in any finite amount

of time. This is accomplished at the mission planning level

by ensuring sufficiently long duration of each behavior, for

instance, by limiting the rate of change of our command

signals. This is discussed in [5] and will not be discussed

further herein.

C. Switching Stability

We use the results from hybrid systems theory [9], [10],

[2] in order to prove the stability during the time instances of

switching among behaviors. As explained in [9], [10], [2],

we can ensure stability of the switched system if we can

show that the Lyapunov functions for each behavior do not

increase at subsequent switching instants.

Given a second order system described by eqns. (1) and

(2). We define the following two behaviors:

B1. The control law for the first behavior is

xo
2c = −f1(x1) − K1x̄1 + ẋ1c,

ẍ2c = ζ2ωn2
ẋ2c − ωn2

(x2c − xo
2c),

ξ̇1 = −K1ξ1 + (x2c − xo
2c),

u = −f2(x1, x2) − K2x̄2 − Kiē + ẋ2c − x̄bs
2 .

Mission Planner or operator defines xo
1c and x1c.

B2. The control law for the second behavior is

ẍ2c = ζ2ωn2
ẋ2c − ωn2

(x2c − xo
2c),

u = −f2(x2) − K2x̄2 − Kiē + ẋ2c.

Mission Planner or operator defines xo
2c and x2c.

The variables x̄1 = x1 − x1c and x̄2 = x2 − x2c are the

state tracking errors, while ζ2, ωn2
, K1, K2, Ki are positive

design parameters.

The concern for proving stability of the switched system

is to show that Vb1 (t2j) ≥ Vb1(t2j+2) and Vb2 (t2j+1) ≥
Vb2(t2j+3). We have now set the notation framework for

stating and proving Theorem 2 which ensures that the

stability properties are maintained at behavior switching time

instances.

Theorem 2:

B1. If, at each start of Behavior 1 (t = t2j), the Mission

Planner selects the initial values of the filtered com-

mand signals to be equal to the current state values,

x1c(t2j) = x1(t2j) and x2c(t2j) = x2(t2j), the signals

ξ1(t2j) = ξ2(t2j) = 0, and the integral error to maintain

its value (i.e. ē(t+2j) = ē(t2j)), then the Lyapunov

function, Vb1 , at each start of each Behavior 1 is a

decreasing sequence, Vb1(t2j+2) ≤ Vb1(t2j).
B2. If, at each start of Behavior 2 (t = t2j+1), the Mis-

sion Planner selects the initial values of the filtered

command signal to be equal to the current state value,

x2c(t2j+1) = x2(t2j+1), and the integral error to

maintain its value (i.e. ē(t+t2j+1
) = ē(tt2j+1

)), then the

Lyapunov function, Vb2 , at each start of each Behavior

2 is a decreasing sequence, Vb2(t2j+3) ≤ Vb2 (t2j+1).

△

Proof: Behavior Switching

The Lyapunov functions for each behavior are defined as

Vb1 =
1

2
ν2
1 +

1

2
(q̄⊤Pq̄)

and

Vb2 =
1

2
(q̄⊤Pq̄),

where ν1 = x1 − x1c − ξ1 and ν2 = x2 − x2c − ξ2 are the

compensated tracking errors, and the tracking error vector

q̄ = [ē, x̄2]
⊤, with each element defined as ē =

∫

x̄2 and

x̄2 = ν2.

B1. If Mission Planner selects the initial values of the filters

at each start of Behavior 1 (t = t2j) as stated in

Theorem 2, we have ν1(t2j) = ν2(t2j) = ξ1(t2j) =
ξ2(t2j) = 0. Thus, the Lyapunov function, Vb1(t2j) =
ē2(t2j). Since V̇b1 (t) ≤ 0 for t ∈ [t2j , t2j+1], we have

that ē2(t2j) ≥ ē2(t2j+1).
B2. If Mission Planner selects the initial values of filters

at each start of Behavior 2 (t = t2j+1) as stated in

Theorem 2, we have ν2 = ξ2 = 0. Thus, the Lyapunov

function, Vb2(t2j+1) = ē2(t2j+1). Since V̇b2(t) ≤ 0 for

t ∈ [t2j+1, t2j+2], we have that ē2(t2j+1) ≥ ē2(t2j+2).

The hybrid system stability requirement states that the Lya-

punov function at the initial occurrence of one subsystem is

equal or less than the Lyapunov function at the initial time

of the last occurrence of the same subsystem [9], [10], [2].

Following our notation for Behavior-Based hybrid system,

the Lyapunov function at the time when one behavior is

switched in is equal or greater than the Lyapunov function at

the time when the same behavior is switched in next. Since

we showed that

Vb1(t2j) = ē2(t2j) ≥ ē2(t2j+2) = Vb1(t2j+2)

for Behavior 1 and

Vb2 (t2j+1) = ē2(t2j+1) ≥ ē2(t2j+3) = Vb2(t2j+3)

for Behavior 2 the hybrid stability requirement is met.

D. Summary

The analysis in Section IV showed that the Lyapunov func-

tion defined for each behavior is nonincreasing during the

time when each of the behaviors is active.The analysis in

this section showed that the Lyapunov function defined for

each behavior is nonincreasing at behavior switching time

instances. Therefore, we can conclude that when perfect

modeling of the plant is assumed, the Lyapunov function

of each behavior remains zero at all times.

VI. SIMULATION RESULTS

The purpose of this section is to show the simulation of

our controller for the second order plant. We simulated both

behaviors and switching between them. Behavior 1 has the

goal to cause x1 to track a signal defined by the Mission

Planner to be xo
1c = sin(t). During Behavior 2, the goal is

to cause x2 to track a signal defined by the Mission Planner
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to be xo
2c = 5. In Behavior 1, control of the x1 state generates

a command for the x2 state by eqn. (6), while the second

state generates control signal u to achieve the xo
2c command

according to eqn. (13).

Figures 1–3 present the results of an 60 second simulated

mission, during which five switching instances between be-

haviors occurred. The control law parameters are as follows:

f1 = f2 = 1, K1 = 1, K2 = 1, Ki = 0.1, ζ1 = ζ2 = 0.9,

p2 = 1 for Behavior 1 and f2 = 1, K2 = 0.1, Ki = 0.1,

ζ2 = 0.9, p2 = 1 for Behavior 2.

The plot showing x1 and x2 versus time is shown in

Figure 1. Each of these two plots contains three curves, for

example x, xo
c , and xc. Note that during the time period

that Behavior 2 is active, x1 state plot in Figure 1 is not

shown, actually zeroed out, since during that behavior x1

state is not controlled and xo
1c and x1c are undefined. The

same was done for the remaining plots in Figures 2–3. Note

that for each state, xc converges to xo
c at the rate determined

by ωn1
= 10 rad

s
and ωn2

= 100 rad
s

for Behavior 1, and

and ωn2
= 1 rad

s
for Behavior 2. The signal x2 converges to

and tracks x2c throughout the simulation. The top graph of

Figure 2 shows x̄1 and ν1. Due to the selection of the CF

initial condition, as discussed in Section V, ν1(t) is zero.

During the time interval following behavior switching while

x2c converges to xo
2c, x̄1 increases and then converges back

toward zero as predicted by the theory. During such time

intervals a bounded transient is clearly evident in ξ1 as seen

in the bottom graph of Figure 2.

Figure 3 plots Vb1(t) versus time for Behavior 1 and
∣
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∣

∣
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⊤

∣
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. Since the tracking error for x1 state is not

zero until the x2 state converges to its desired value, xo
2c,

the

∣

∣

∣

∣

∣

∣
[x̄1, x̄2]

⊤

∣

∣

∣

∣

∣

∣
will increase during that convergence time,

as expected. The Lyapunov function defined in terms of

the compensated tracking error is decreasing at all times.

This result confirms our theoretical conclusion showing that

the Lyapunov function of the CFBS approach starts at the

value which is a function of the integral error (ē) at the

beginning of each behavior, decreases during the duration of

each behavior, and maintains its value during the instances

of switching between behaviors.

VII. CONCLUSION

In this article we argue and provide simulation based

confirmation that some missions can be successfully solved

by decomposing the mobile robot control problem in terms of

different control behaviors while assuring that the asymptotic

stability is maintained. We used results from hybrid control

research to design and rigorously show that our behavior-

based control approach is provably stable in the sense of

Lyapunov. The control design is defined by control behaviors

and a logic for switching between the behaviors. We have

explicitly proven stability of the switching phenomenon

by selecting the behavior thresholds, at mission planning

and command filter design level, consistently based on the

multiple Lyapunov function. We created two behaviors and

the logic of switching between them for the second order
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Fig. 1. States x1 and x2 vs. time: Blue (solid) line is the actual state,
green (dashed) line is the command, and the red (dotted) line is the filtered
command.
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Fig. 2. Top - Error signals x̄1 and ν1 vs. time. Bottom - Signal ξ1 vs.
time.

system. Our future plans include the similar control design

for land robot, AUV, and ASV in which we would extend

our design and formulate multiple behaviors for solving some

complex missions.

APPENDIX I

COMMAND FILTER

The purpose of this appendix is to provide an example and

discussion of a command filter. Advanced control approaches

often assume the availability of a continuous and bounded

desired trajectory xc(t) and its first r derivatives x
(r)
c (t).

The first time that this assumption is encountered it may

seen unreasonable, since a user will often only specify a

command signal xo
c(t). However, this assumption can always

be satisfied by passing the commanded signal xo
c(t) through

a single-input, multi-output prefilter.

The motivation of command filtering is therefore to de-
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Fig. 3. Lyapunov Function and ||[x̄1, x̄2]⊤|| vs. time.

termine the signals xc(t) and ẋc(t) with |xo
c(t) − xc(t)|

being small, without having to analytically or numerically

differentiate xo
c . The effects of command filtering on the

backstepping stability analysis are analyzed in [5], [3], [4].

The summary of that analysis is that for a properly designed

command filter (unity DC gain to the first output which is

the integral of the second output) the closed-loop command

filtered implementation of the backstepping controller will

be stable and the tracking error will be O
(

1
ωn

)

where ωn is

the bandwidth of the command filter. Therefore, the effect of

command filtering on tracking error can be made arbitrarily

small by increasing the parameter ωn. The choice of ωn is

not dependent on the actuator bandwidth.

The state space implementation of such a filter is

ẋ1 = x2

ẋ2 = −2ζwnx2 − w2
n (x1 − xo

c)

where xc = x1 and ẋc = x2. Note that if xo
c is bounded,

then xc and ẋc are bounded and continuous. The transfer

function from xo
c to xc is

Xc(s)

Xo
c (s)

= H(s) =
w2

n

s2 + 2ζwns + w2
n

(26)

which has a unity gain at low frequencies, damping ratio ζ
and undamped natural frequency ωn. The error |xo

c(t)−xc(t)|
is small if the bandwidth of xo

c(s) is less than the bandwidth

of H(s). If the bandwidth of xo
c is known and the goal of the

filter is to generate xc and its derivative with |xo
c −xc| small,

then the designer simply chooses ωn sufficiently large.

Note that the signal ẋc is computed by integration, not

differentiation. This helps to decrease the effects of mea-

surement noise; nonetheless, noise will impose a tradeoff in

how large of a value can be selected for ωn.

APPENDIX II

LYAPUNOV EQUATION

The purpose of this appendix is to show that by choosing

a specific symmetric and positive definite matrix P we get a

symmetric and positive semidefinite matrix Q that is useful

in the proof of eqn. (21).

We can write the Lyapunov Equation as

A⊤P + PA = −Q.

Since

A =

[

0 1
−K2 −K1

]

,

and

B =

[

0
1

]

,

if we choose

P =

[

p1 0
0 p2

]

,

where K1 = Ku or Kr, K2 = Ki
u or Ki

r, p1, and p2 are

positive constants, we have

−Q =

[

0 p1 − K2p2

p1 − K2p2 −2K1p2

]

.

We can choose p1 = K2p2, then p1 −K2p2 = 0. Therefore,

P =

[

K2p2 0
0 p2

]

,

Q =

[

0 0
0 2K1p2

]

,

and

PB =

[

0
p2

]

,

which will be used in the derivation of eqn. (22).
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