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Introduction
Running, flying and swimming occur in very different

physical environments. Not surprisingly then, the mechanics
of moving a body on legs that contact solid ground are vastly
different from what is required to achieve weight support in
air, or to move a neutrally buoyant body through liquid
(Alexander, 2003). Despite these differences there are strong
convergences in certain functional characteristics of runners,
swimmers and fliers. The stride frequency of running
vertebrates (Heglund et al., 1974; Alexander and Maloiy,
1984; Heglund and Taylor, 1988; Gatesy and Biewener,
1991) scales with approximately the same mass exponent
(M–0.17) as swimming fish (Drucker and Jensen, 1996).
Velocity of running animals (Pennycuik, 1975; Iriarte-Diaz,
2002) scales with approximately the same mass exponent
(M0.17) as the observed and theoretically predicted speed of
flying birds (Pennycuick, 1968; Tucker, 1973; Lighthill,
1974; Greenewalt, 1975; Bejan, 2000). Force output of the
musculoskeletal motors of runners, swimmers and fliers
conforms with surprisingly little variation to a universal
mass specific value of about 60·N·kg–1 (Marden and Allen,

2002). What explains these consistent features of animal
design?

In the absence of a theory that unifies design features across
different forms of locomotion, biologists have concentrated on
potentially common constraints. For example, Drucker and
Jensen (1996) hypothesized that the scaling of muscle
shortening velocity for maximal power output during
oscillatory contraction (M–0.17; Anderson and Johnston, 1992)
might explain the common scaling of stride frequency.
Numerous authors have hypothesized that scale effects in
locomotion are caused by constraints related to biomechanical
safety factors and the need to avoid premature structural failure
(McMahon, 1973, 1975; Biewener and Taylor, 1986;
Biewener, 2005; Marden, 2005), or to maintain dynamic
similarity (Alexander and Jayes, 1983; Alexander, 2003).

Here we take the different approach of starting not with
constraints but with general and presumably universal design
goals that can be used to deduce principles for optimized
locomotion systems. Our approach is approximate (order of
magnitude accuracy) and is not intended to account for all
forms of biological variation. Rather it predicts central

Biologists have treated the view that fundamental
differences exist between running, flying and swimming as
evident, because the forms of locomotion and the animals
are so different: limbs and wings vs body undulations,
neutrally buoyant vs weighted bodies, etc. Here we show
that all forms of locomotion can be described by a single
physics theory. The theory is an invocation of the principle
that flow systems evolve in such a way that they destroy
minimum useful energy (exergy, food). This optimization
approach delivers in surprisingly direct fashion the
observed relations between speed and body mass (Mb)
raised to 1/6, and between frequency (stride, flapping) and
Mb

–1/6, and shows why these relations hold for running,
flying and swimming. Animal locomotion is an optimized
two-step intermittency: an optimal balance is achieved
between the vertical loss of useful energy (lifting the body
weight, which later drops), and the horizontal loss caused

by friction against the surrounding medium. The theory
predicts additional features of animal design: the Strouhal
number constant, which holds for running as well as flying
and swimming, the proportionality between force output
and mass in animal motors, and the fact that undulating
swimming and flapping flight occur only if the body
Reynolds number exceeds approximately 30. This theory,
and the general body of work known as constructal
theory, together now show that animal movement
(running, flying, swimming) and fluid eddy movement
(turbulent structure) are both forms of optimized
intermittent movement.
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239Unifying theory of running, swimming and flying

tendencies. Furthermore, such a theory is not mutually
exclusive of other hypotheses such as common
constraints, because constraints have evolved within a
design framework, i.e. perhaps theory can provide
explanations for the nature of constraints.

The theory presented here follows from the more
general constructal theory of the generation of flow
structure in nature (Bejan, 1997, 2000, 2005). According
to the constructal law, in order for a flow system to persist
(to survive) it must morph over time (evolve) in such a
way that it accomplishes the most based on the amount of
power or fuel consumed. The latest reviews show that the
constructal law accounts for spatial and temporal flow
self-optimization and self-organization in animate and
inanimate natural flow systems (Bejan, 1997, 2000;
Poirier, 2003; Bejan and Lorente, 2004). Examples
include river basins, lung design, turbulent structure,
vascularization, snowflakes and mud cracks.

How can constructal theory be applied to the streams
of mass flow called running, flying and swimming? In the
same way that it has been applied to design features of
inanimate flow systems such as the morphing of river
basins and atmospheric circulation (Bejan, 1997, 2000),
by examining how locomotion systems can minimize
thermodynamic imperfections (friction, flow resistances)
together, such that at the global level the animal moves the
greatest distance while destroying minimum useful energy (or
food, or ‘exergy’ in contemporary thermodynamics; Bejan,
1997). We show that this theoretical approach delivers in
surprisingly simple and direct fashion the body-mass scaling
relations for running, flying and swimming – the complete
relations, the slopes and the intercepts, not just the exponents
of the body mass.

There is a long and productive history of optimality models
in analyses of animal locomotion (e.g. Tucker, 1973;
Alexander, 1996, 2003; Ruina et al., 2005), so much so that
the term maximum range speed is part of the common
vocabulary of the field and instantly brings to mind a U-shaped
curve of cost vs speed on which there is one speed that
maximizes the ratio of distance travelled to energy expended.
Our approach is similar in that it predicts maximum range
speeds, but differs from previous efforts by simultaneously
predicting stride/stroke frequencies and net force output, while
being general across different forms of locomotion. Like other
optimality models, our theory does not maintain that animals
must act or be designed in the predicted fashion, only that
over large size ranges and diverse taxa predictable central
tendencies should emerge. Ecological factors will often favour
species that move in ways other than that which optimizes
distance per cost, for example where energy is abundant and
the risk of being captured by active predators is high.
Evolutionary history and the chance nature of mutation
can also restrict the range of trait variation that has been
available for selection. These and other factors should act
primarily to increase the variation around predicted central
tendencies.

Running
Consider the cyclical motion of running, Fig.·1A. In order

to maintain a constant horizontal speed V, the animal must
perform work to account for its two mechanisms of work
destruction. One is the vertical loss W1: the destruction of the
gravitational potential energy accumulated at the peak of each
jump, W1=MbgH, where Mb is body mass and H is vertical
height deviation during the jump, which is destroyed during
each landing (for simplicity, we neglect elastic storage during
landing). The other is the horizontal loss, W2, which occurs
because of friction against the air, the ground, or internal
friction. Internal friction is diffuse and not readily described by
theory; for that reason we present a simplified theory in which
all work to overcome friction is external. The constructal law
calls for the minimization of the total destruction of work per
distance traveled L:

Throughout this paper we use the method of scale analysis
(Bejan, 2004), which consists of solving the appropriate
conservation equations as algebraic equations, with the
additional simplification that dimensionless factors of order
1 are neglected. A first illustration of this method is in
estimating the vertical loss term W1/L, where L=Vt, and t is
the time scale of frictionless fall from the height of the run
(H), namely t~(Hg–1)1/2. Since the types of animal motion that
we are considering are cyclical, with motion of body parts
along a roughly circular or oblong path and re-establishment
of starting positions at the beginning of each cycle, it follows
that height deviations, in this case the height of the run H,
scales with the body length scale Lb=(Mb/�b)1/3, where �b is
the body density. In conclusion, H~Lb and the vertical loss
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Fig.·1. (A) The periodic trajectory of a running animal, (B) model of foot
contact with soft ground, and (C) history of vertical movement during one
cycle, where F=0 refers to the time after t1 when the foot no longer exerts
a force on the ground. 
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term becomes W1/L=MbgH/Vt=MbgH/V(Hg–1)1/2, which
yields:

The horizontal loss W2/L depends on what friction effect
dominates the horizontal drag. Here we consider three different
drag models, and show that because they are of similar
dimension, the choice of friction model does not affect the
predicted optimal speed significantly.

Assume first that the drag is dominated by air friction. The
air drag FD is on the order of:

FD ~ �aV2Lb
2CD , (3)

where CD is a numerical factor of order 1 (neglected, as we
would do for any value of the drag coefficient within an order
of magnitude of 1) and �a is the air density. The horizontal loss
of useful energy is W2~FDL, which means that W2/L is replaced
by FD in Eqn·1. The total loss per unit length traveled is:

This total loss function can be minimized with respect to V by
solving the equation d(W/L)/dV=0, which yields the scaling
equation Mbg3/2Lb

1/2/V2
opt~�aVoptLb

2. The result is the optimal
speed:

where (�b/�a)1/3�10, because �b�103·kg·m–3 and �a�1·kg·m–3.
A compilation of velocity data (Fig.·2A) for animals running
over a variety of terrains shows that the speeds and their trend
are anticipated well by Eqn·5. Note that the same optimal speed
as in Eqn·5 is obtained if one sets equal (in an order of magnitude
sense) the two terms appearing on the right side of Eqn·4. In this
way, we see that to run at optimal speed is to strike a balance
between the vertical loss (the first term) and the horizontal loss
(the second term). Optimal running means optimal distribution
of losses (imperfections) during locomotion. In this regard it is
noteworthy that human runners recover approximately 50% of
external kinetic energy and gravitational potential energy stored
in elastic tissues (Ker et al., 1987), which means that about 50%
is lost to friction, both internally in the tissues and externally to
the environment. Thus, our simplified theory that considers only
external friction yields an estimate of friction loss that is close
to what occurs in actual elastic systems.

Consider next the case of friction dominated by contact
with the ground. If the surface is flat and hard, we may use a
Coulomb friction model and write that the horizontal loss is
W2~�Fs, where the coefficient of friction � is a number of
order 1, F is the normal force during the foot contact time tc,
and s is the foot sliding distance, s=Vtc. The contact time scale
is dictated by the impact that the body experiences in the
vertical direction, such that when the body makes contact

(5)
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–1/6Mb
1/6 ,

⎛
⎜
⎝

⎞
⎟
⎠

1/3

(4)
W

L

Mbg3/2Lb
1/2

V
~ + �aV2Lb

2 .
⎛
⎜
⎝

⎞
⎟
⎠

(2)
W1

L

Mbg3/2Lb
1/2

V
~ .

A. Bejan and J. H. Marden

with the ground it is decelerated from its free fall
velocity (gH)1/2 to zero. Writing Newton’s second law
of motion, F~Mb(gH)1/2/t, and using H~Lb, we find
W2~�Fs~�[Mb(gH)1/2/t]Vt~�VMb(gLb)1/2, such that Eqn·1
becomes:

The horizontal loss term W2/L~�Mbg could have been
evaluated more directly by recognizing Mbg as the vertical
force exerted by the animal body on the ground, �Mbg as the
horizontal friction force, and �MbgL as the work destroyed by
ground friction along the travel distance L.

The monotonic function of V obtained for the total loss in
Eqn·6 indicates that there is a lower bound for the optimal
running speed. Minimum work per distance is achieved when
V exceeds the scale:

V ~ �–1g1/2�b
–1/6Mb

1/6 , (7)

which is essentially the same as the scale predicted in Eqn·5
and tested against animal data (Fig.·2A).

Consider finally the model of a highly deformable ground
surface such as sand, mud or snow of density � (Fig.·1B). A
‘high enough’ speed means that the accelerated terrain material
does not have time to interact by friction with and entrain its
neighbouring terrain material. This model is analogous to the
behaviour of a pool of fluid that is hit by a blunt body at a
sufficiently high speed. In summary, we assume that the sand
behaves as an inviscid liquid when it is suddenly impacted by
a blunt body (the foot), Fig.·1B.

The foot contact surface is A. The foot hits the ground with
the vertical Galilean velocity Vy~(gLb)1/2. By analogy with drag
in high-Reynolds flow, the vertical force felt by the foot during
impact scales as Fy~�Vy

2ACD, where CD is a constant of order
1. The work done by the foot to deform the sand vertically is
Fy�, where � is the depth of the sand indentation. This work is
the same as W1, hence Fy�~MbgLb.

The foot also moves horizontally to the distance � through
the sand. The horizontal drag force is Fx~�V2A1/2�CD, where
CD~1 and A1/2� is the frontal area of the foot as it slides
horizontally through the sand. The work destroyed by
horizontal deformation of the sand is W2~Fx�, where �=Vtc, and
the time of contact with the ground is tc~�/Vy. Putting these
formulae together, we find W2~V3Mb

2/�A3/2(gLb)1/2, and Eqn·1
becomes:

Vertical loss   Horizontal loss

The optimal running speed for minimal work per unit of length
traveled is:

(9)
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⎛
⎜
⎝

⎞
⎟
⎠

1/3

(8)
W

L

Mbg3/2Lb
1/2

V
~ + .

⎛
⎜
⎝

⎞
⎟
⎠

V2Mb
2

�A3/2Lb

⎛
⎜
⎝

⎞
⎟
⎠

(6)
W

L

Mbg3/2Lb
1/2

V
~ + �Mbg .

⎛
⎜
⎝

⎞
⎟
⎠

THE JOURNAL OF EXPERIMENTAL BIOLOGY



241Unifying theory of running, swimming and flying

0.1

1

10

100

1000

ρb 1/3
g1/2 ρb

1/6 Mb
–1/6

g1/2 ρb
1/6 Mb

–1/6

ρa

ρa
Fo

rc
e 

(N
)

Body  mass (kg)

C Force output
2gMb

Running with air drag; flying

Running on soft ground; swimming

0.01

0.1

1

10

10–7 10–6 10–5 10–4 10–3 10–2 10–1 100

10–7 10–6 10–5 10–4 10–3 10–2 10–1

104103102101

104103102101100

10010–7 10–6 10–5 10–4 10–3 10–2 10– 1

A

Running mammals
Running lizards
Running arthropods
Flying birds
Flying bats
Flying insects
Swimming fish
Swimming mammals
Swimming crustaceans
Swimming human

10 –5

10 –3

10 –1

10 1

10 3

10 5

Running mammals, reptiles, insects
Flying birds, bats, insects
Swimming fish, crayfish

Fr
eq

ue
nc

y 
(H

z)
V

el
oc

ity
 (

m
 s

–1
)

B

⎛
⎝

⎞
⎠

ρb 1/3
g1/2 ρb

–1/6 Mb
1/6

g1/2 ρb
–1/6 Mb

1/6

Running with air drag; flying

Running on soft ground; swimming

⎛
⎝

⎞
⎠

Fig.·2. Comparison of theoretical predictions with the speeds, stroke frequencies, and force outputs of a wide variety of animals (Iriarte-Diaz,
2002; Drucker and Jensen, 1996; Pennycuik, 1975; Heglund et al., 1974; Marden and Allen, 2002; Taylor et al., 2003; Rohr and Fish, 2004;
Bartholomew and Casey, 1978; Marsh, 1988; Wakeling and Ellington, 1997; Marden et al., 1997; Tennekes, 1997; Kiceniuk and Jones, 1977;
May, 1995; Arnott et al., 1998; Peake and Farrell, 2004; Muller and Leeuwen, 2004; Bartholomew et al., 1985; Blickhan and Full, 1987; Full
and Tu, 1991). The theoretical predictions are based on scale analysis, which neglects factors of order 1 and therefore should be accurate in an
order of magnitude sense.
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The simplest reading of this result makes use of the rough
approximation that animal bodies are geometrically similar
(especially when compared over large size ranges). In this case
(�A3/2/Mb)1/3 is a factor of order 1 that does not depend on Mb.

Eqn·9 shows that the optimal running speed or deformable
ground is:

Vopt ~ g1/2�b
–1/6Mb

1/6 . (10)

This formula, as does Eqn·5, agrees in both trend and
magnitude with the numerous speed data compiled by
empirical studies (Fig.·2A; note that Eqn·5 and 10 are plotted
on the figure, i.e. the lines on the plot are predicted from theory
and are not regression fits).

The corresponding stride frequency scale is topt~Vopt/Lb,
which yields:

t–1
opt ~ g1/2�b

1/6Mb
–1/6 . (11)

This agrees well with the observed proportionality between
stride frequency and body mass raised to –0.14 in the most
rigorously defined study of scale effects on stride frequency of
runners (Heglund et al., 1974). Quantitatively, the predicted
frequency is approximately 10 s–1·Mb

–1/6, when Mb is expressed
in kg (Fig.·2B).

In sum, the effect of the horizontal friction model is felt
through a factor that is a dimensionless constant in the range
1–10, namely (�b/�a)1/3 for air drag, �–1 for hard ground, and
(�A3/2/Mb)1/3 for deformable ground. The optimal running
speed is a remarkably robust result, always on the order of
g1/2�b

–1/6Mb
1/6. We propose that it is this robustness that accounts

for the allometric law connecting V with Mb
1/6 and frequency

with Mb
–1/6 in animals of so many different sizes and habitats

(Fig.·2A,B).
The analysis is summarized by the observation that we have

taken into account all the forces that the ground places on the
leg and which dissipate through friction all the work done by the
animal. We had to do this fully, without bias, without postulating
that the forces are aligned with the leg or some other direction.
The ground forces have one resultant, with two components,
horizontal and vertical. The work dissipated by the horizontal
component (W2) was estimated in three ways in the preceding
analysis. The work dissipated by the vertical ‘friction’ forces
(W1) is known exactly: it is the kinetic energy stored in the body
at the peak of its cycloid-shaped trajectory. We did not have to
model the friction process on the vertical because we know its
total effect: W1. This feature alone cuts through a lot of would-
be modelling, which is not relevant to the minimization of what
counts, namely the total dissipation per cycle (W1+W2).

Additional support for this running theory comes from the
calculation of the vertical force F that propels Mb to the height
H during each cycle (Fig.·1C). The force F acts during a short
time t1, when the leg makes contact with the ground, and the
movement of Mb upward is governed by Newton’s second law
of motion:

(12)
d2y

dt2
Mb = F – Mbg .

Integrating this from the initial conditions,

we find that the body altitude and vertical speed at the time t=t1
are:

When t exceeds t1, the body continues to move upward,
reaching y=H at t=t2, where dy/dt=0. Integrating Eqn·12 with
F=0, and satisfying the continuity conditions,

we find that

The body falls to the ground during the time

Next, we note that t1<t2, so that in an order of magnitude sense
t2�t3. Eliminating t1 and t2 from the results derived above, we
obtain:

Because y1 scales with H, and H>y1, the final result is:

In conclusion, the force produced by the leg while running
at optimal speed is a multiple (of dimension 1) of the body
weight. Below we show that the same theoretical force
characterizes flying and swimming. Fig.·2C shows that these
predictions are supported by the large volume of data on the
maximal force produced by animal motors over sizes ranging
from small insects to large mammals (Marden and Allen,
2002).

Flying
The proportionality between speed and Mb

1/6 has been
examined previously using constructal theory, to predict
speeds of animal and machine flight (Bejan, 2000). That the
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same proportionality rules optimal running is not a
coincidence; rather it is an illustration of the fact that a
universal principle is involved. Running requires least food
when during each cycle a certain amount of work is destroyed
by vertical impact, and a certain amount by horizontal friction.
The same balancing act is responsible for optimal flight: W1 is
the work (MbgH) required to lift the body that had fallen to the
vertical distance H during the cyclic time interval t~(H/g–1)1/2.
During the same period, the work spent on overcoming drag is
W2~FDL, where L~Vt, FD~�aV2Lb

2CD and CD~1. Cycles in
which the vertical and horizontal losses (W1, W2) alternate in
order to maintain cruising at constant altitude are sketched in
Fig.·3A. The total work spent per distance traveled is:

The altitude increment (H) achieved during each stroke of the
wing is dictated by the wing length scale, which is the length
scale of the flying body, H~Lb. From Eqn·21 we learn that the
spent work is minimal when (Fig.·2A):

The wing flapping frequency that corresponds to this optimal
flying speed is t–1~Vopt/Lb, or:

which is the formula shown in Fig.·2B. The correspondence
between observed wing beat frequencies and this prediction
(Fig.·2B) is not as satisfying as that for velocities or stride
frequencies of runners or swimmers, but nonetheless the
agreement is generally within one order of magnitude. The
dimensionless frequency is the Strouhal number:

which for optimal flight becomes a constant:
St~(�a/�b)1/3~10–1. This agrees with the large volume on St data
on animal flight (Taylor et al., 2003).

Swimming
Swimming exhibits the same body-mass scaling as running

and flying, not because of a coincidence, but because
swimming is thermodynamically analogous to running and
flying. Swimming is another example of optimal distribution
of imperfections in time, or the optimization of intermittency
(cf. chapter 10 in Bejan, 2000). The analogy with flying is
shown in Fig.·3.

The new aspect of the present analysis of swimming is the
vertical loss, W1~MbgLb. This work is spent by the fish in order
to lift above itself the body of water (Mw, the same as the fish

(24)St = ,
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mass because the fish and the water have nearly equal density)
that it displaces during one cycle. The theory is that the product
MwLb represents W1/g, not that during each cycle the fish lifts
the mass Mw to the height Lb. The duration of the cycle,
t~(Lbg–1)1/2, is the time in which the lifted water mass falls, to
occupy the space just vacated by the fish. During this time, the
fish (Mb) and its water-body partner (Mw) can be thought of as
a ‘big eddy’ that will dissipate W1 in time and space, in the
wake. The fish mass Mb is as much a part of the eddy as the
water mass Mw.

During the same time interval, the fish also overcomes drag
by performing the work W2~FDL, where L~Vt~�bV2L2CD and
CD~1. The fish body density �b is the same as the water density.
In sum, the total work spent per unit travel is:

The optimal swimming speed is:

Vopt ~ g1/2�b
–1/6Mb

1/6 , (26)

which agrees well with empirical data for animal swimming
speeds (Fig.·2A). The optimal undulating frequency of the
body is:

t–1
opt ~ Vopt/Lb ~ g1/2�b

1/6Mb
–1/6 , (27)

(Fig.·2B), with the corresponding Strouhal number, which
agrees in an order of magnitude sense with all known
observations.

The net force output for travel at the speed that minimizes
work per distance traveled is 2gMb. The force 2gMb plotted in
Fig.·2C is the order of magnitude of the average force exerted
by the fish, which is remarkably close to the maximum force
indicated by the empirical data in Fig.·2C. The average force
scale 2gMb also holds for flying (eqn 9.49 in Bejan, 2000, p.
239), and is comparable with the maximum force estimated in
this article for running (H/y1)gMb. This is why in Fig.·2C the
line F=2gMb is compared with the force data for all forms of
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Fig.·3. (A) The periodic trajectory of a flying animal, and (B) the
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animal locomotion. [Note that this differs from the ~6gMb

figure for motor force output (Marden and Allen, 2002;
Marden, 2005) because in the present case Mb refers to total
body mass rather than motor mass, and animal motors average
about 20–75% of body mass].

To put swimming in the same theory with flying and
running (Fig.·2) may seem counterintuitive, because fish are
neutrally buoyant and birds are not. This ‘intuition’ has
delayed the emergence of a theory that unifies swimming
with the rest of locomotion. In reality, there are gravitational
effects in swimming just as in flying and running. Water in
front of a moving body can only be displaced upward,
because water is incompressible and the lake bottom and
sides are rigid. Said another way, the only conservative
mechanical system (the only spring) in which the fish can
store (temporarily) its stroke work W1 is the gravitational
spring of the water surface that requires a work input of size
W1~Mbg Lb.

Elevation of the water surface has been demonstrated and
used in the field of naval warfare, where certain radar systems
are able to detect a moving submarine by the change in the
surface water height (termed the Bernoulli hump) as it passes
(unpublished US Naval Academy lecture; www.fas.org/man/
dod-101/navy/docs/es310/asw_sys/asw_sys.htm) and is also
evident in the data from recent studies that have examined
water movement patterns around swimming fish. A two-
dimensional study of water movement around the body of
swimming mullet (Müller et al., 1997) shows positive pressure
in front of and around the head of the fish (Fig.·4C), and suction
on alternating sides of vortices that form along the fish’s
posterior and in its wake. Regardless of depth, this pressure
around the head must raise the water surface (at a very low
angle except when the body is near the surface) over a large
area centered near the anterior end of the fish, and some of this
raised water subsequently falls into the vortices of the wake.
A three-dimensional study of the wake of fish with a
homocercal (symmetrically lobed) tail (Nauen and Lauder,
2002) found that there is a measurable downward force in these
wake vortices, amounting to about 10% of the thrust force, and
that there is a downward force on the head, which we interpret
as the reaction force to the elevated water surface (Fig.·4B).

Previous analyses of wave effects on swimming (Hertel,
1966; Webb, 1975; Webb et al., 1991; Videler, 1993; Hughes,
2004) have focused on swimming in shallow water, where
there are additional drag costs from the formation of surface
waves. Surface waves (Fig.·4D) are horizontal motion of water
away from the high pressure and elevated water surface height
above a swimming fish (the Bernoulli hump; our W1). As depth
increases, fish must still displace water upward, but the effect
of that submerged wave on the water surface becomes less and
less perceptible because the area over which the free surface
rises in order to accommodate W1 is very large, and net
horizontal motion of the water surface and associated frictional
costs become negligible. Thus, even though the cost of surface
waves decreases with increasing depth, the scales of water
movement in the vicinity of the fish are dictated by the fish size
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(mass, length), not by the depth under the free surface. The
vertical work W1 is non-negligible near the surface (Fig.·4D),
where it is the cause of horizontal surface waves that impose
additional swimming costs. What has not been appreciated
previously is that this vertical work is non-negligible and is
fundamental to the physics of swimming at all depths.

The swimming cycle sketched in Fig.·3B is identical to that
of a shallow-water gravitational wave of depth Lb, wavelength
2Lb and horizontal speed V~(gLb)1/2, which is also the speed of
a hydraulic jump. This is not a coincidence. The fact that this
wave speed is the same as the optimized swimming speed
(g1/2�b

–1/6Mb
1/6) and the observed swimming speeds of fish

(Drucker and Jensen, 1996) and marine mammals (Rohr and
Fish, 2004) (Fig.·2A) provides additional support for the theory
that, fundamentally, swimming is an optimized intermittent
movement in the gravitational field, like flying and running.

To summarize, in order to advance horizontally by one body
length, the fish lifts the equivalent of a body of water of the
same size as its body, to a height equivalent to the body length.
What the fish does (tail flapping) is felt by the hard bottom of
the lake. The hard crust of the earth supports all the flappers
and hoppers, regardless of the medium in which the particular
animal moves.

Comparison of model predictions against empirical data
So far we have only visually compared the empirical data

against predictions from the theory (Fig.·2). In order to
examine the fit between data and theory more rigorously, we
show in Table·1 the mass scaling exponents estimated from
regression slopes of log10 transformed mass vs velocity,
frequency, and net force output of runners, fliers and
swimmers. This table shows also the mean log10 difference
between empirical data and predicted values (Fig.·2).
Together, these comparisons address how well the data fit the
theory in terms of both scaling exponents and magnitude. All
of our predicted mass scaling exponents are based on the
assumption of geometric similarity (L=[M/�b]1/3), but small
and statistically significant deviations from this assumption
tend to be the rule rather than the exception throughout the
literature on animal scaling. Wingspan of birds shows a
particularly large divergence from geometrical similarity,
scaling as Mb

0.39 (Rayner 1987). Because larger fliers have
relatively longer wings, they should have a more negative
mass scaling of wingbeat frequency than predicted by our
model. The observed scaling exponents in Table·1 fall near
the predicted values of 0.167 and –0.167 for velocities and
frequencies, with the exception of wing beat frequency of
fliers (–0.26), which differs from our model in the correct
direction given the unusual scaling of avian wing dimensions
(see Appendix·1). In general, empirical scaling slopes vary
because of the identity of the species sampled, taxonomic
differences in the scaling of body dimensions, variation
between studies in animal behaviour and methodology, and
statistical assumptions (Martin et al., 2005). Thus, although
we do not find statistical support across the board for the exact
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scaling slopes predicted from the theory, in all cases the
scaling exponents derived from theory fit the data about as
well as could be expected. Regarding magnitude, it is not
possible to statistically examine the fit between dimensional
predictions and data, other than the expectation that the data
should fall within a range that spans about 0.1 to 10-fold of
the predictions. As shown in Fig.·2 and Table·1, that is what
we find for speeds, frequencies and force outputs. Many
biologists will dismiss as meaningless a theory that has plus
or minus one order of magnitude accuracy, but keep in mind

that this theory uses only density, gravity and mass, without
any fitting constants, to make these predictions.

Concluding remarks
A new theory predicts, explains and organizes a body of

knowledge that was growing empirically. This we have done
by bringing the cruising speeds, frequencies, and force outputs
of running, flying and swimming under one theory. This theory
falls within the growing field of constructal theory, which has

Fig.·4. The blue line (A) shows schematically and in exaggerated form the slight elevation of the water surface over a large area (which requires
total work=MgLb per body length travelled) that is centered over the anterior of a swimming body. (B,C) Reproductions of summary diagrams
from two studies (Nauen and Lauder, 2002; Muller et al., 1997) of hydrodynamics of fish swimming. (B) The downward angle (–3°) of the
central jet through the wake vortices formed by the tail of a mackerel, and the downward force (shown as a torque by the green arrow in this
diagram) on the head. Both of these features are consistent with water lifted at the anterior end that falls at the posterior end. (C) A two-
dimensional representation of water pressure and motion around a swimming mullet, with high pressure (P) at the anterior end and low pressure
(S) on alternating sides of the vortices formed along the posterior. (D) Photos of a trout swimming slowly forward into a gentle current while
held near the surface by a fine fishing line (not visible). Elevation of the water surface occurs over an arc at the anterior of the fish, with apparent
patterns of flow and pressure quite similar to those depicted in C. Vertical displacement of the water surface during swimming at greater depth
is spread over a larger area and harder to detect, but is fundamentally the same.
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been used previously to account for form and design of
inanimate flow structures (Bejan, 2000). Animal locomotion is
no different than other flows, animate and inanimate: they all
develop (morph, evolve) architecture in space and time (self-
organization, self-optimization), so that they optimize the flow
of material. In the past it made sense to describe the flapping
frequencies of swimmers and flyers in terms of the Strouhal
number (St). It made sense because such animals generate
eddies, and because St is part of the language of turbulent fluid
mechanics. After this unifying theory of locomotion, one can
also talk about the Strouhal number of runners, St=t–1Lb/Vopt,
which in view of the first part of the analysis turns out to be a
constant in the 0.1–10 range, just as for swimmers and flyers.
The St constant is an optimization result of the theory, and it
belongs to all flow systems with optimized intermittency,
animate and inanimate.

All animals, regardless of their habitat (land, sea, air) mix
air and water much more efficiently than in the absence of flow
structure. Constructal theory has already predicted the
emergence of turbulence, by showing that an eddy of length
scale Lb, peripheral speed V and kinematic viscosity �
transports momentum across its body faster than laminar shear
flow when the Reynolds number LbV/� exceeds approximately
30 (cf. chapter 7 in Bejan, 2000). This agrees very well with
the zoology literature, which shows that undulating swimming
and flapping flight (i.e. locomotion with eddies of size Lb) is
possible only if LbV/� is greater than approximately 30
(Childress and Dudley, 2004).

And so we conclude with a promising link that this simple
physics theory reveals: the generation of optimal distribution
of imperfection (optimal intermittency) in running, swimming
and flying is governed by the same principle as the generation
of turbulent flow structure. The eddy and the animal that
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produces it are the optimized ‘construct’ that travels through
the medium the easiest, i.e. with least expenditure of useful
energy per distance traveled.

Appendix
Bodies with two length scales

The scale analysis presented in this paper is based on the
simplest geometrical model for a body that runs, flies or swims:
the body geometry is represented by one length scale,
Lb~(Mb/�b)1/3. We covered a large territory with this simple first
step, and we can do more if we adopt a slightly more complex
model. One reason for trying this next step is that some of the
scatter (discrepancies) between the present formulae and speed
and frequency data can be attributed to changes in body shape
as body mass increases. Another reason is to show how the
present theoretical approach can be used in future studies of
more complicated living systems and processes.

Consider the analysis shown for flying in Eqn·21–23, but
instead of the one-length body description (Lb), recognize that
the geometry of a large bird with its wings spread out
(flapping or gliding) is better captured by two length scales:
the wing span Lb, which is horizontal, and the body or wing
thickness, Yb, which is vertical. By making this change, we
are saying that the flying bird looks more like a flying saucer
(volume Lb

2Yb) than a sphere (volume Lb
3). The body mass

scale is:

Mb ~ �bLb
3� , (A1)

where � is the geometric shape ratio of the two-scale body:

(A2)� = < 1 .
Yb

Lb

Table·1. Comparisons of empirical data against the model predictions 

Observed mass Mean log10 difference between data 
Model scaling exponent* (N) P value† and dimensional analysis prediction‡

Running velocity 0.17±0.014 (98) NS
Friction=air –0.19±0.22
Friction=ground 0.80±0.22

Flying velocity 0.13±0.010 (72) <0.05 0.133±0.14
Swimming velocity 0.19±0.023 (27) NS –0.06±0.28

Running stride frequency –0.19±0.020 (11) NS
Friction=air –1.26±0.11
Friction=ground –0.26±0.11

Flying wing beat frequency –0.26±0.015 (77) <0.001 –1.18±0.23
Swimming stroke frequency –0.14±0.01 (27) <0.05 –0.14±0.15

Running force 1.12±0.08 (4) NS –0.30±0.23
Flying force 0.93±0.011 (166) <0.001 0.026±0.14
Swimming force 1.03±0.07 (8) NS 0.16±0.09

*Estimated from the slopes of log10 transformed least-squares regressions; mean ± s.e.m. 
†P values are given for t-test of scaling exponent vs 0.167 or –0.167. NS, not significant.
‡Mean ± s.d.
Data sources are indicated in the legend of Fig.·2.
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Next, we redo the analysis leading to Eqn·21. As before, for
the W1/L term we use H~Lb. To estimate FD, we use LbYb in
place of Lb

2, so that the second term on the right side of Eqn·21
reads �aV2LbYb. In place of Eqn·22 and 23 we find:

Flying bodies have smaller shape ratios (�) when they are
larger. This is true of insects, birds and airplanes alike. The
fluid mechanics reasons for why this trend must exist deserve
a study of their own. Here, we accept empirically the notion
that � decreases as M increases, and write that in a narrow
enough range of large M values, � behaves as:

� ~ (constant) M–a·, (A5)

where a>0. This means that the group (M/�), which appears in
Eqns·A3 and A4, behaves as Mm, where m>1 because m=1+a.
In conclusion, the M effect in Eqn·A3 and A4 is:

Vopt ~ (constant) Mm/6·, (A.6)

t–1
opt ~ (constant) M–m/6·, (A.7)

meaning that the modulus of the exponent of M should become
larger than 1/6 when M increases. This conclusion agrees with
Vopt data for birds (e.g. fig.·9.13 in Bejan, 2000), which shows
that the exponent of M in Eqn·A6 becomes greater than 1/6 as
M increases. The same conclusion is in agreement with
observations that wing beat frequencies are more closely
proportional to Mb

–0.26 rather than Mb
–0.17 (Table·1; Rayner,

1987).
In conclusion, the accuracy of the theoretical approach

presented in this paper can be improved by basing it on more
realistic (multi-scale) body geometries.

List of symbols and abbreviations:
a the exponent describing how � scales with body 

mass
A1/2 frontal length scale of a foot
CD drag coefficient
F force 
FD drag force in air
FX drag force on foot sliding on the ground
Fy force normal to a horizontal surface
g gravitational acceleration
H vertical height deviation during a cycle of 

locomotion
L horizontal distance traveled during a cycle of 

locomotion
Lb a characteristic length of an animal
m a mass scaling exponent that equals 1+a
M mass

(A4)
�b

�a

Mb

�
t–1
opt ~ g1/2�b

1/6 .
⎛
⎜
⎝

⎛
⎜
⎝

⎞
⎟
⎠

1/3 ⎞
⎟
⎠

–1/6

(A3)
�b

�a

Mb

�
Vopt ~ g1/2�b

–1/6 ,
⎛
⎜
⎝

⎛
⎜
⎝

⎞
⎟
⎠

1/3 ⎞
⎟
⎠

1/6

Mb body mass
Mw water mass
s foot sliding distance
St Strouhal number
t time
tc duration of foot contact with the ground during one 

cycle
t–1
opt optimal cycle frequency 

V velocity
Vopt optimal velocity; maximizes distance per total work 

expended
Vy vertical velocity
W1 work expended in the vertical plane
W2 work expended in the horizontal plane
y vertical distance above the ground
Yb characteristic body length along the dorso-ventral 

axis
� coefficient of friction
� depth of ground indentation during foot impact  
� horizontal sliding distance by a foot impacting the 

ground
� ratio of characteristic lengths that describes body 

shape
� kinematic viscosity
�a air density
�b body density
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