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ARTICLE

Unifying description of competing orders
in two-dimensional quantum magnets
Xue-Yang Song1, Chong Wang1,2, Ashvin Vishwanath1 & Yin-Chen He1,2

Quantum magnets provide the simplest example of strongly interacting quantum matter, yet

they continue to resist a comprehensive understanding above one spatial dimension. We

explore a promising framework in two dimensions, the Dirac spin liquid (DSL) — quantum

electrodynamics (QED3) with 4 Dirac fermions coupled to photons. Importantly, its excita-

tions include magnetic monopoles that drive confinement. We address previously open key

questions — the symmetry actions on monopoles on square, honeycomb, triangular and

kagome lattices. The stability of the DSL is enhanced on triangular and kagome lattices

compared to bipartite (square and honeycomb) lattices. We obtain the universal signatures

of the DSL on triangular and kagome lattices, including those of monopole excitations, as a

guide to numerics and experiments on existing materials. Even when unstable, the DSL helps

unify and organize the plethora of ordered phases in correlated two-dimensional materials.
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I
n recent years, gauge theories have been increasingly used to
describe quantum magnets, particularly when geometric
frustration leads to an enhancement of quantum

fluctuations1,2. In these situations, classical descriptions are
usually inadequate and entirely new ‘quantum spin liquid’ phases
can emerge, described by deconfined charges of the gauge theory.
Even when ordered states appear, the quantum interference
between different orders has no classical analog, but can be
captured by a gauge theory3,4. Progress in understanding quan-
tum magnets will have ramifications well beyond the insulating
state and could explain nearby conducting phases obtained on
doping5,6, including the high-temperature superconductors seen
in diverse systems from the copper oxide materials to the recently
realized twisted bilayer graphene7,8.

Previous gauge theory-based approaches have pursued differ-
ent approaches for bipartite and non-bipartite lattices. For
example, starting with a Schwinger boson-based representation of
spins, a Z2 gapped spin liquid is the natural ‘mother’ state for
describing non-bipartite lattices9–13, while the similar procedure
for the bipartite case indicated Neel and valence bond crystal
phases for bipartite lattices, separated by a deconfined quantum
critical point3,4,14. These paradigms which are ultimately based
on quantum disordering an initial classical ordered state (non-
colinear versus colinear order on the non-bipartite and bipartite
lattices, respectively) represent significant progress towards a
synthesis. However, here we will argue that an essentially quan-
tum parent state, the U(1) Dirac spin liquid (DSL) can capture
these insights and can further bridge bipartite and non-bipartite
lattices using a common framework.

Although there is a considerable theoretical literature on the U(1)
Dirac spin liquid, the properties of a crucial class of excitation, the
magnetic monopoles, have not, until now, been systematically
explored on different lattices. Here we compute the monopole
symmetry quantum numbers, which then allows us to make con-
siderable progress in understanding these remarkable states. The
magnetic monopoles are ‘instanton’ excitations, that occur at points
in the 2+ 1D spacetime. When they can be ignored (i.e. when
irrelevant in the RG sense), the Dirac spin liquid can be stabilized,
resulting in a significantly enlarged symmetry. In addition to the
conformal invariance of the fixed point, a defining feature of the
DSL is the emergence of a ~U(4) symmetry at low energies, which
incorporates both spin and lattice symmetries.

A useful analog in one lower dimension is the Luttinger liquid,
also a gapless phase that describes quantum liquids in 1+ 1D.
There too, the stability of the phase is threatened by instanton
excitations in the form of vortex tunneling events. Symmetry
transformation properties of the instanton insertion operators
play a key role in determining both stability and the nature of the
ordered phases which result following instanton proliferation.
The phase diagram of quantum spin chains1,15 and the superfluid
Mott transition of one-dimensional bosons16 can be understood
in these terms. When instantons are irrelevant, the gapless Lut-
tinger liquid is stabilized, but when they proliferate, a gapped
phase, such as the valence bond crystal or Mott insulator is
obtained. In fact, the Luttinger liquid theory can be reformulated
in terms of Dirac fermions coupled to a U(1) gauge field, and
hence can be viewed as the one-dimensional version of U(1)
Dirac spin liquid17–19.

Similarly, our computation of monopole quantum numbers
sheds light on key issues such as: Can the Dirac spin liquid be a
stable ground state and if so what are its key experimental sig-
natures? If unstable, what are the likely alternate phases that are
stabilized in its place? What is the underlying difference between
bipartite and non-bipartite lattices?

Previously, early work on the square lattice quantum antiferro-
magnet, inspired by the copper-oxide materials, studied the

staggered flux and π-flux mean field theories20–23 within the
fermionic representations of spins. Renewed interest emerged
when analogous states on the kagome lattice were introduced in
refs. 24–28. The effect of fluctuations were studied in several
works29,30 and a dictionary relating fermion bilinears to local
operators and the enlarged symmetry of the Dirac spin liquid were
emphasized in refs. 28,31. Recently, the Dirac spin liquid on the
triangular lattice has been studied32–35. However, most works
have ignored the monopole excitations and their symmetry prop-
erties, with a few exceptions28,36–39. In ref. 40, the conceptual
framework to study monopoles with fermion zero modes was
introduced. The important role of the Dirac sea Berry phase for
spatial symmetries was invoked in ref. 36, while numerical calcu-
lations of projected wavefunctions revealed properties of monopoles
in refs. 28,37. A discussion of monopole symmetry properties on the
square lattice and a numerical evaluation was reported in ref. 38. A
trivial monopole was found, which appeared to be in conflict with
the Lieb–Schultz–Mattis–Oshikawa–Hastings theorem (LSMOH)
41–43. It was understood more recently that even with a trivial
monopole, the QED3 theory with Nf= 4 still possesses a symmetry
anomaly that forbids a trivial vacuum, in agreement with LSMOH
theorem44.

Here, we calculate symmetry transformation of monopoles
paying special attention to the subtle ‘Dirac sea’ contributions,
which arise from the Berry’s phase acquired by monopoles on
moving around gauge charges of the filled Dirac sea. The lattice
provides a short distance cutoff that allows us to calculate this
contribution, which proves crucial to the physics. We show that a
trivial monopole appears in the square lattice DSL, consistent
with duality-based arguments44 and earlier calculations38 and
does not contradict the LSMOH theorem. We then extend these
arguments to other lattices where the arguments and methods of
refs. 38,44 do not apply. The DSL on triangular and kagome is
more stable against monopole proliferation and proximate
ordered phases descend naturally from monopole quantum
numbers, e.g., the familiar 120o magnetic orders can be obtained
from monopole proliferation. Physical consequences of these
calculations for numerical simulations and experiments are then
discussed.

Results
Gauge theory description of spin systems and monopoles. We
will be interested in spin-1/2 systems on various two-dimensional
lattices. Let us briefly review the fermionic spinon decomposition
of spin-1/2 operators on the lattice which will lead us to the
desired gauge theory description. We first decompose the spin
operator

Si ¼
1

2
f
y
i;ασαβfi;β; ð1Þ

where fi,α is a fermion (spinon) on site i with spin α∈ {↑, ↓} and σ
are Pauli matrices. This re-writing is exact if we implement the

constraint
P

α f
y
i;α fi;α ¼ 1. To make progress, we consider a mean

field approximation that only imposes the constraint on average,
followed by a discussion of fluctuations (see ref. 2),

HMF ¼ �
X

ij

tijf
y
i fj: ð2Þ

There is a gauge redundancy fi ! eiαi f in the parton
decomposition Eq. (1), which results in the emergence of a
dynamical U(1) gauge field aμ that couples to the fermions f, i.e.
tij ! tije

iaij . The non-bipartite nature (second-neighbor hopping

on bi-partite lattice) is needed to make sure that the gauge group
is U(1) rather than SU(2)2. Next, we arrange the hopping term tij
such that the hopping model leads to a pair of Dirac nodes, per
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spin, at half filling. Such Dirac dispersions, with four flavors of
Dirac fermions (with two spin and two ‘valley’ labels) can be
realized on the honeycomb lattice with only nearest hopping, as
well as on other lattices (square, kagome, and triangular lattice)
with appropriate choice of tij as shown in Fig. 1. We note that the
mean-field Hamiltonian actually breaks lattice symmetry, but the
spin liquid state has all the lattice symmetry after we incorporate
the gauge constraint. For example, the triangular lattice ansatz
can be C6 invariant if we supplement space group operation with

an SU(2) gauge transformation ðfi;"; f yi;#Þ
T ! iσ2ð fi;"; f yi;#Þ

T .
In the low energy, long wavelength or infrared (IR) limit, the

theory reduces to the following Lagrangian:

L ¼
X

4

i¼1
�ψiiD=aψi; ð3Þ

where ψi is a two-component Dirac fermion with four flavors
labeled by i, and aμ is a dynamical U(1) gauge field. We choose
(γ0, γ1, γ2)= (iμ2, μ3, μ1), where μ are Pauli matrices. The
staggered flux state on square lattice has velocity anisotropy, but it
is irrelevant at large N limit31. This theory is also known as
quantum electrodynamics in three space–time dimensions, QED3

with four fermion flavors Nf= 4. The theory as written implicitly
assumes that the U(1) gauge flux, i.e. the total flux of the magnetic
field, jμ ¼ 1

2π εμνλ∂νaλ is conserved. This theory, sometimes

referred to as noncompact Nf= 4 QED3, flows to a stable critical
fixed point in the IR, as supported by recent numerical studies45.

However, it is clear that this conservation of flux cannot be the
consequence of a microscopic symmetry. Our model has no
corresponding U(1) symmetry at the microscopic level, which is
an artifact of a topological conservation law in the low-energy
model (hence we refer to this as U(1)top). This is remedied by
allowing for quantum tunneling between vacuaa of different total
flux. The tunneling events, instantons, occur at space–time points
and the corresponding operators that create (or destroy) 2π flux
quanta and are termed monopole (anti-monopole) operators.
Unlike most other physical operators, the monopole cannot be
expressed as a polynomial of fermion or gauge fields. Never-
theless, it is important to note that these operators are local: they
modify the magnetic field locally and the inserted 2π flux is
invisible at large distances. As such they should be included in our
Lagrangian Eq. (3). A key question will be whether physical
symmetries might restrict which monopole operators are allowed.
For this, we need to take a more careful look at the monopole
operators.

Monopoles and zero modes. Previous calculations of monopole
quantum numbers in gauge theories of quantum magnets have
largely focused on bosonic QED3 where the spinions are bosons,
such as in the CP1 models of quantum magnetism3,46,47. There

monopoles play a key role in descriptions of the Neel to valence
bond solid (VBS) transition in square lattice quantum antiferro-
magnets. The case of fermionic QED3 is in many ways richer, one
of which is the presence of monopoles zero modes. We will see
that this allows for a wider description of physical phenomena.
For example, both collinear and non-collinear magnetic orders
can be captured within a single theory, in contrast gauge theories
of bosonic spinons capture one or the other, depending on the
nature of the gauge group3,11,48.

In a theory with massless Dirac fermions, monopoles occur
along with fermion zero modes. Recall, massless Dirac fermions
in a magnetic field form Landau levels, in particular a zero energy
Landau level with a degeneracy equal to the number of flux
quanta Φ/2π. Thus, addition of 2π flux creates a fermion zero
mode for each Dirac fermion flavor, hence with Nf= 4 we expect
four zero modes. To maintain neutrality of gauge charge, we must
fill half these modes, which can be done in C4

2 ¼ 6 ways. So a
monopole operator can be schematically written as

Φ � f
y
i f
y
j M

y
bare; ð4Þ

where f
y
i creates a fermion in the zero-mode associated with ψi,

and Mbare creates a bare flux quanta without filling any zero
mode. These operator can be more precisely defined, through
state-operator correspondence, as states of the QED3 theory
defined on a two-sphere S2 with a 2π background flux40. The
Dirac zero-modes have zero angular momenta on the sphere in a
2π background flux. This implies that the monopoles are scalars
under the Lorentz group. In terms of the SU(4) flavor symmetry,
they form a vector of SOð6Þ ¼ SUð4Þ=Z2. Note, the monopoles
are in contrast to all other gauge invariant operators, such as
fermion bilinears only transform under SUð4Þ=Z4 without
carrying the U(1)top charge. Thus, all physical operators are
invariant under the combined action of the center of SO(6) and a
π-rotation in U(1)top. So the precise global symmetry group is:

SOð6Þ ´Uð1Þtop
Z2

ð5Þ

together with the Lorentz group and discrete symmetries
C0; T 0;R0 of the QED3 Lagrangian (3). One can certainly
consider 2π-monopoles in higher representations of SO(6), but in
this work we will assume that the leading monopoles (with lowest
scaling dimension) are the ones that form an SO(6) vector—this
is physically reasonable and can be justified in large-Nf limit.

Instead of working with the explicit definition of monopoles
from Eq. (4), we shall simply think of the monopoles as six
operators {Φ1, ..., Φ6} that carries unit charge under U(1)top and
transform as a vector under SO(6): Φi→OijΦj. Clearly the lattice
spin Hamiltonians does not have such a large symmetry—
typically we only have spin rotation, lattice symmetries (lattice
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Fig. 1 Mean-field ansatz and band structure. a Mean-field ansatz of Dirac spin liquid on the square, triangular, and kagome lattice. Mean-field Hamiltonian

has only nearest hopping with a flux in each plaquette. b Band structure of the square lattice π-flux mean field ansatz with two Dirac cones at the

momentum points (k1, k2)= (±π/2, π/2)
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translation, rotation, and reflection) and time-reversal symme-
tries. The enlarged symmetry (such as SOð6Þ ´Uð1Þtop=Z2) will

emerge at low energy if terms breaking this symmetry down to
the microscopic symmetries are irrelevant. We will discuss this in
detail in the following subsection.

A key question addressed in this paper is: given a U(1) Dirac
spin liquid realized on a lattice, how do monopoles transform
under the microscopic symmetries? In other words, how are the
microscopic symmetries embedded into the enlarged symmetry
group? Clearly spin-rotation, acting on all gauge-invariant local
operators as an SO(3) group, can only be embedded as an SO(3)
subgroup of the SO(6) flavor group, meaning that three of the six
monopoles form a spin-1 vector, and the other three are spin
singlets. Denote the three singlet monopoles as V1;2;3 ¼ Φ1;2;3 and
the three spin-1 monopoles as S1;2;3 ¼ Φ4;5;6. In terms of filling
zero modes these operators can be written as

Vy1;2;3 ¼ ½εττ1;2;3�αβεss′σ f yα;sf
y
β;s′M

y
bare

Sy1;2;3 ¼ iε
αβ
τ ½εσσ1;2;3�ss′f yα;sf

y
β;s′M

y
bare

ð6Þ

where ε refers to the 2 × 2 antisymmetric matrix, σ, τ corresponds
to the spin and valley index and we have split the subscript in fi to
valley indices α, β, and spin s, s′. An important observation here is
that since monopoles are local operators, they transform as linear
representations of the symmetry group, in contrast to gauge
charged fermions that transform under a projective symmetry
group. Thus, for example, the monopoles transform as integer
spin representations, unlike the spinons which carry spin
one half.

Other discrete symmetries can be realized, in general, as
combinations of certain SO(6) rotations followed by a nontrivial
U(1)top rotation, and possibly some combinations of C0; T 0;R0.
(Remember that Lorentz group acts trivially on the 2π-
monopoles.) Many of these group elements can be fixed from
the symmetry transformations of the Dirac fermions ψi. For
example, if the symmetry operation acts on ψ as ψ→Uψ with a
nontrivial U∈ SU(4), then we know that the monopoles should
also be multiplied by an SO(6) matrix O that corresponds to U.
This SO(6) matrix O can be uniquely identified up to an overall
sign, which can also be viewed as a π-rotation in U(1)top. The
same logic applies to other operations including C; T ;R. The
only exception is the flux symmetry U(1)top: there is no
information regarding U(1)top in the symmetry transformation
properties of the low-energy Dirac fermions. Fixing the possible
U(1)top rotations in the implementations of the microscopic

lattice symmetries, and exploring their consequences, is our
main task.

Since this is a key point, let us expand on it. Recall that via the
state-operator correspondence, the monopole operators can be
constructed by filling the Dirac sea together with half of the zero
modes. Under a lattice symmetry, the transformation of zero
modes corresponds to the SO(6) matrix, while the phase factor of
U(1)top can be attributed to a Berry phase contribution, arising
from the filled Dirac sea of the gauge charged partons. Physically,
the U(1)top rotation arises from moving the monopole operator
around a closed path that encloses gauge charge. This also
inspires the numerical extraction of monopole quantum numbers
as we will describe in the “Methods” section36,38. We remark that
numerical calculations cannot determine monopole transforma-
tions under time reversal or reflections, while analytical methods
reported in a parallel work49 completely fix all transformations
and reproduce the numerical results.

Monopole symmetry actions summary and stability of the DSL.
The transformation properties of monopoles on various lattices
are summarized in the three tables below. The fact that mono-
poles are local operators implies that they transform as linear
(rather than projective) representations of the symmetry groups.
Note, the bipartite lattices have a trivial monopole, i.e. one that
transforms as the identity representation under all symmetries.
We elaborate on the consequences of this observation below.

In Table 1, the monopole transformation properties for the
honeycomb DSL and square lattice staggered flux DSL are
presented. Results for the square lattice align with the results ofM
transformations of ref. 38 after making the identification
Φ1=3 ¼ M3=2;Φ2 ¼ iM1;Φ4 � iΦ5 ¼ M4=6;Φ6 ¼ M5. For the

special case where the flux on the square lattice is ϕ= π an
additional unitary symmetry, charge conjugation, is present

which sends Φy1=3=4=5=6 ! Φ1=3=4=5=6; andΦ
y
2 ! �Φ2. Combining

this with T1=2;C4; T gives the transformations for translations

and rotations, time-reversal in this state.
The stability of the U(1) Dirac spin liquid can be discussed in

three stages. First, there is Eq. (3), QED3 with Nf= 4 flavors,
which neglects monopoles and has a global SU(4) flavor
symmetry. The stability of this theory has been discussed both
from the numerical (lattice gauge theory) perspective45,50 as well
as from the epsilon expansion,51, all of which conclude that it
flows to a stable fixed point. We therefore begin our discussion by
analyzing the remaining two effects—that of four fermion

Table 1 Summary of monopole transformations on square (staggered flux state) and honeycomb lattices, where Φ1/2/3 are spin

singlet monopoles (Φ± = Φ1 ∓ i Φ2) and Φ4/5/6 are spin triplet monopoles

Lattice T1 T2 Rx Rotation T Note

Square Φ
†

1 Φ1 �Φ1 �Φ1 �Φ3 Φ
†

1 Re½Φ1� as ψτ3ψ

Square Φ
†

2 �Φ2 �Φ2 �Φ2 �Φ2 �Φ
†

2 Im½Φ2� trivial

Square Φ
†

3 �Φ3 Φ3 Φ3 Φ1 Φ
†

3 Re½Φ3� as ψτ1ψ

Square Φ
†

4=5=6 �Φ4/5/6 �Φ4/5/6 Φ4/5/6 Φ4/5/6 �Φ
†

4=5=6 Re½Φ4=5=6� as ψτ2 � σ1=2=3ψ

Honeycomb Φ
†
þ e�i2π

3 Φ
†
þ e�i2π

3 Φ
†
þ Φ+ ei

π
3Φ

†
� Φ+ Im½Φ1� as ψτ1ψ

Honeycomb Φ
†
� ei

2π
3 Φ

†
� ei

2π
3 Φ

†
� Φ

−
ei

π
3Φ

†
þ Φ

−
Im½Φ2� as ψτ2ψ

Honeycomb Φ
†

3 Φ
†

3 Φ
†

3 Φ3 Φ
†

3 Φ3 Re½Φ3� trivial

Honeycomb Φ
†

4=5=6 Φ
†

4=5=6 Φ
†

4=5=6 �Φ4/5/6 �Φ
†

4=5=6 �Φ4/5/6 Im½Φ4=5=6� as ψτ3 � σ1=2=3ψ

Symmetry operations T1/2, Rx denote translation along two lattice vectors (for honeycomb T1/2 direction has 2π/3 angle between them) and reflection along horizontal bonds, respectively. Rotation

implies site centered four-fold rotation for the square lattice and hexagon centered six-fold rotation for the honeycomb. There is always a trivial monopole (highlighted in bold) for DSLs on both these

bipartite lattices. On proliferating the trivial monopole the emergent symmetry is reduced from U(1)top × SO(6)→ SO(5), and the 15 SO(6) adjoint fermion bilinears spilt according to 5+ 10. The five

fermion bilinears, which form an SO(5) vector, are now symmetry equivalent to five monopoles, as listed in the last column, which is relevant to the chiral symmetry breaking pattern described in the

discussion of Eq. (10)
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interaction terms that break SU(4) symmetry, and that of
magnetic monopoles.

Let us begin with the scaling dimension of the monopole
operator. Within a large Nf approximation, the scaling dimension
is: Δ1= 0.265Nf− 0.0383+O(1/Nf), so setting Nf= 4 yields Δ1

= 1.02 < 3, which implies that this operator is strongly relevant.
While the true scaling dimension at Nf= 4 could be different, this
is unlikely to exceed 3. We will therefore assume that the single
monopole operator is a relevant perturbation. For the bipartite
lattices, the presence of a trivial monopole implies a single
monopole insertion operator is allowed on symmetry grounds in
the Lagrangian. Then, we do not expect the U(1) Dirac spin liquid
to be a stable phase. What does it flow to? The most likely
scenario is that chiral symmetry is broken, i.e. a mass term is
developed by spontaneous symmetry breaking. This still leaves a
gapless photon, which is removed by monopole proliferation52.
We will argue below that this does not lead to additional
symmetry breaking, and conclude that the colinear Neel order or
common VBS orders on bipartite lattices are likely to be realized
in this theory at the lowest energies.

On the other hand for the non-bipartite lattice DSLs
considered here, i.e. the triangular and kagome DSL, no such
trivial monopole is present. This has a number of consequences.
First, the QED3 theory discussed here could potentially represent
a stable phase, with an enlarged SU(4) ×U(1)/Z4 global symmetry
which appears in the low-energy limit. We discuss this and other
possibilities below. First, let us discuss the issue of monopole
operator scaling dimensions. For the triangular lattice, under
translations (see Table 2), note that Φ1,2 have k1= π/3 and Φ3 has
k1=−2π/3, and the lowest order invariant monopole terms are:

ΔLTriangular ¼ Φ1Φ2Φ3 þ h:c: ð7Þ

Note, the mismatch in momentum with fermion bilinears,
which only pick up phase factors that are multiples of π, implies
that there is no invariant term with a smaller monopole charge.
Although zero modes for 6π (three-fold) monopole as in Eq. (7)
carries Lorentz spin-1, the leading-order three-fold monopoles
contain lorentz singlet ones and transform formally as the above
term, detailed construction contained in Supplementary Note 4.
Within a large Nf calculation53, the scaling dimension of this
triple monopole is Δ3= 1.186Nf− 0.422+O(1/Nf) ~ 4.32, which
makes it very likely to be an irrelevant perturbation at the SU(4)
symmetric fixed point. The remaining operator to inspect is the

four fermion that breaks SU(4) symmetry, that can be written as

L4 ¼
P3

a¼1 ð�ψσaψÞ
2 � ð�ψτaψÞ2. While this operator is irrelevant

at tree level, interactions could change its scaling dimension. A
recent epsilon expansion study51 reports the scaling dimension of
this operator to be Δ4f= 3.17, which means it would remain
irrelevant, although significant uncertainty is associated with this
scaling dimension, and other approximations, such as large Nf,
imply that it is relevant35. This would decide whether the Dirac
spin liquid a stable phase, with no relevant operators, or a critical
point with a single relevant operator, which would require tuning
of the four fermion term L4 to access35. In either case it is
expected to be relevant to understanding the phase structure on
the triangular lattice.

In contrast, on the kagome lattice an inspection of the
monopole and mass term transformation laws imply (see Table 3)
the following two invariant terms:

ΔL1
kagome ¼ M01 Φ1e

i2π3
� �

þM02ðΦ2Þ þM03 Φ3e
�i2π3

� �

þ h:c:

ΔL2kagome ¼ ei
2π
3 ðΦy1Þ2 þ ðΦy2Þ2 þ e�i

2π
3 ðΦy3Þ2 þ h:c:

ð8Þ

where M0i � �ψτiψ. Note, the first term involves a combination of
a single monopole insertion operator and a fermion bilinear,
which may be regarded as the excited state of a monopole with
larger scaling dimension, and the second term refers to doubled
monopole insertion and preserves symmertry if considering the
associated lorentz singlet operator, details in Supplementary
Note 4. The scaling dimensions for these operators, estimated
from large Nf is Δ1� ¼ Δ1 þ 2

ffiffiffi

2
p
� 3:84 and

Δ2� ¼ 0:673Nf � 0:194 � 2:50. While the second one is nomin-
ally relevant, their closeness to 3 implies that we should leave
open the possibility of a stable phase or critical point on the
kagome lattice described by a U(1) Dirac spin liquid. Regardless
of stability, this difference in the nature of the monopoles from
the bipartite case will have an important impact on proximate
orders that we document below. In particular, relatively complex
magnetic orders such as the 120° state and the 12 site VBS pattern
on the triangular lattice are captured.

Symmetry breaking, monopole proliferation, and ordered
states. Now, we will be concerned with identifying ordered states
that can be reached from the Dirac spin liquid, either as a result of

Table 2 Triangular lattice: fermion bilinears and monopole

symmetries

T1 T2 R C6 T
M00 + + − + −

Mi0 + + + − +

M01 − − −M03 −M02 +

M02 + − M02 M03 +

M03 − + −M01 M01 +

Mi1 − − Mi3 Mi2 −

Mi2 + − −Mi2 −Mi3 −

Mi3 − + Mi1 −Mi1 −

Φ
y
1 e�iπ

3Φ
y
1 ei

π
3Φ

y
1 �Φ

y
3 Φ2 Φ1

Φ
y
2 ei

2π
3 Φ

y
2 ei

π
3Φ

y
2 Φ

y
2 �Φ3 Φ2

Φ
y
3 e�iπ

3Φ
y
3 e�i2π

3 Φ
y
3 �Φ

y
1 �Φ1 Φ3

Φ
y

4=5=6 ei
2π
3 Φ

y

4=5=6 e�i2π
3 Φ

y

4=5=6 Φ
y

4=5=6 �Φ4/5/6 �Φ4/5/6

The Mij ¼ ψσ iτ jψ denotes the 16 fermion mass terms. Their transformation under lattice and

time reversal symmetry are shown followed by the corresponding table for the six magnetic

monopoles Φi. Symmetries T1/2, R, C6 denote translation and reflection marked in Fig. 1, and

six-fold rotation around a site, respectively

Table 3 Fermion bilinear and monopole symmetries on the

kagome lattice

T1 T2 Ry C6 T
M00 + + − + −

M01 − − −M03 M02 +

M02 + − M02 −M03 +

M03 − + −M01 −M01 +

Mi0 + + − + +

Mi1 − − −Mi3 Mi2 −

Mi2 + − Mi2 −Mi3 −

Mi3 − + −Mi1 −Mi1 −

Φ
y
1 �Φ

y
1 �Φ

y
1 �Φ3 ei

2π
3 Φ

y
2 Φ1

Φ
y
2 Φ

y
2 �Φ

y
2 Φ2 �ei

2π
3 Φ

y
3 Φ2

Φ
y
3 �Φ

y
3 Φ

y
3 �Φ1 �ei

2π
3 Φ

y
1 Φ3

Φ
y

4=5=6 Φ
y

4=5=6 Φ
y

4=5=6 �Φ4/5/6 ei
2π
3 Φ

y

4=5=6 �Φ4/5/6

Symmetry transformation of fermion bilinears and monopoles on the kagome lattice, where

Mij � ψσ iτ jψ. Translations are marked in Fig. 1. Ry, C6 denotes reflection with respect to y-axis

and six-fold rotation around center of hexagon. The six-fold rotation symmetry acting on

monopoles cannot be incorporated into the vector representation of SO(6) owing to the

nontrivial Berry phase, which is in line with the magnetic pattern expected on the kagome lattice
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an intrinsic instability, or because interactions are tuned to trigger
a phase transition. The scenario that we will assume is that of a
two step process with spontaneous mass generation occurring
first, i.e. a fermion bilinear spontaneously acquires an expectation
value by symmetry breaking, followed by the monopole pro-
liferation and confinement52. This particular ordering of con-
densation is not universal but rather provides a controlled limit
for our purpose. The 16 fermion bilinears are classified as 1 ⊕ 15,
a singlet and adjoint representation of SU(4)~SO(6). Depending
on the symmetries of the interaction, a mass term �ψMψ, with M
being either the identity or a vector such asM= (M01, M02, M03),
can be generated. This is captured by the following Gross–Neveu
type model:

L ¼
X

4

i¼1
�ψiiD=aψi þ gϕ � �ψMψ þ ð∂μϕÞ2 � uϕ2 � λϕ4; ð9Þ

ϕ represents bosonic fields, which can either be a scalar field or a
vector field depending on the type of generated mass �ψMψ.

The singlet mass is a quantum Hall mass term �ψψ, which
breaks time reversal and parity symmetry. If spontaneously
generated, it will lead to a chiral spin liquid, a gapped phase with
topological order but gapless edge states and semion excitations.
In this scenario, the Chern Simons term suppresses monopole
proliferation.

The second scenario is when chiral symmetry is broken by the
spontaneous generation of one of the 15 chiral mass terms, which
are conveniently labeled in terms of Mi0 ¼ �ψσ i 	 1ψ; M0j ¼
�ψ1	 τjψ and Mij ¼ �ψσ i 	 τjψ. Different from the quantum Hall

(singlet) mass �ψψ, the chiral mass does not lead to a
Chern–Simons term. Therefore, we are left with a pure U(1)
gauge theory, which may have a further instability to monopole
proliferation and confinement. A key input is to identify which
monopole is selected following the chiral symmetry breaking by
one of the 15 mass terms. Operationally, this selection arises since
the mass term splits the zero mode degeneracy in the monopole.
For example, consider a ‘quantum spin Hall’ mass term
M30 ¼ �ψσ3 	 1ψ, that associates Sz spin density with magnetic
flux. A magnetic monopole then has both the spin-down zero

modes filled, corresponds to Sy1 þ iSy2, which, when inserted into

Eq. (6) yields ε
αβ
τ ½σz � 1�ss′ f yα;sf

y
β;s′
My

bare, consistent with their

filling down spin modes. A general relation between the mass
terms and monopoles can be obtained by doing a SO(6) rotation
on the familiar case of quantum spin Hall mass. (The mass terms
are in the adjoint representation of SO(6) and the monopoles are
the SO(6) vectors.) We find that in general, a mass term ±�ψTabψ
will lead to proliferation of the monopole ðn̂a ± in̂bÞ �Φ, where
Tab is the SO(6) generator that rotates in the plane spanned by
the two orthogonal unit vectors fn̂a; n̂bg. Specifically,

1. The mass term ±Mc0 will proliferate the Sa ± iSb monopole,
where (a, b, c) is an even permutation of (1, 2, 3); this leads to
non-collinear magnetic order that fully breaks SO(3)spin, see
the subsections treating the triangular and kagome lattices
below, and Supplementary Note 5.

2. The mass term ±M0c will proliferate the Va ± iVb monopole,
where (a, b, c) is an even permutation equivalent of (1, 2, 3);
this leads to valence bond solid (VBS) type order that breaks
lattice symmetries, as we discuss in the remainder of this
section.

3. The mass term ±Mab will proliferate the Sa � iVb monopole,
resulting in mixed order with collinear spin order along σa

direction and VBS order, see Supplementary Note 5, with the
exception of pure Neel order for massMa2,Ma3 on square and
honeycomb lattices, respectively, see the following subsection.

Bipartite lattices. We now discuss in more detail the con-
sequence of a trivial monopole on the bipartite lattices, where
chiral symmetry breaking alone may determine the ordered
states, in contrast to the triangular and kagome cases where the
monopole proliferation (confinement) leads to additional sym-
metry breaking.

We first highlight the existence of a trivial monopole in the
DSL on bipartite lattices shown in Table 1. A trivial monopole, by
our definition, stays invariant (or goes to its conjugate) under
translations, rotations, reflections, and time-reversal symmetry.
(Note that time-reversal reverses the monopole charge, so by
invariant we mean Φ! Φ

y instead of Φ! �Φy).
The presence of the trivial monopole in the Lagrangian will

presumably drive the theory to strong coupling. The emergent
symmetry is broken from SOð6Þ ´Uð1Þ=Z2 to SO(5) by this
trivial monopole. The remaining SO(5) still possess a symmetry
anomaly44, so the theory cannot flow to a trivially gapped
symmetric state. A natural assumption is that in the absence of
further fine tuning, this will lead to chiral symmetry breaking. But
the 15 adjoint masses no longer stand on equal footing: There is a
term allowed in Lagrangian coupling fermion bilinears and
monopoles that is invariant under SOð6Þ ´Uð1Þtop=Z2 and other

discrete symmetries.

Lmass�mon ¼ � P

i¼1;2;3
ϵijk½Mi0ðiSyjSkÞ þM0iðiVyjVkÞ�

þ P

i;j¼1;2;3
MijðiSyiV j þ h:c:Þ

ð10Þ

Once the trivial monopole V j condenses, the equation above

picks out the terms involving VðyÞj which then becomes more

relevant than other mass terms—hence the masses M0i(i ≠ j),
Maj(a= 1, 2, 3) are more likely to be generated in chiral
symmetry breaking. These five mass terms form a vector under
the SO(5) flavor symmetry that remains unbroken by the V j
condensation, while the remaining (less relevant) 10 mass terms
transform as a rank-2 symmetric traceless tensor.

For example, on the square lattice, there is a symmetry trivial

monopole iV2 � iVy2¼ 2 ImV2. Its proliferation will lead to the
spontaneous generation of a mass term Mi 2 f�ψτ2 	
σ iψ; �ψτ1=3ψg per discussion above, yielding spontaneous sym-
metry breaking. Indeed, the chiral symmetry breaking states are
the familiar Neel or columnar VBS states. First, we note that the
mass terms �ψσ i 	 τ2ψ have the same symmetries as the familiar
Neel order along the σi direction, while mass terms �ψτ1;3ψ have
the same symmetry transformation properties as the columnar
VBS order parameter (Supplementary Table 1 for mass
transformation). According to our previous discussion, the
generation of a mass term will further lead to monopole
proliferation. This however does not further break symmetry.
From Eq. (10) it is clear that in the presence of the trivial
monopole V j, the coupling between SO(5)-vector mass terms and

the five nontrivial monopoles becomes effectively linear (since
hV ji≠ 0), which makes the two sets of operators essentially

identical from symmetry point of view. Therefore monopoles will
not further break any symmetry after an SO(5)-vector mass
condensate is established. For example, on the square lattice the
mass term �ψτ2σ3ψ will lead to the monopole condensation
hImðV2 þ iS3Þi≠ 0, which does not break further symmetries.
Similarly on honeycomb lattice, the five masses f�ψτ3σ iψ; �ψτ1=2ψg
leads to proliferation of monopoles V3 þ iSi;V2=1 þ iV3, respec-
tively, which result in Neel/Kekule VBS. These orders also align
with the corresponding masses (Supplementary Table 1 for mass
transformation).
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Potentially, on tuning the balance between Neel and VBS
orders, a deconfined critical point may be accessed4,14,44 (the
transition may also be first order, depending on the exact long
distance fate of the theory). The possible emergent SO(5)
symmetry54 at the Neel-VBS transition is nothing but the
unbroken flavor symmetry of QED3. It is important to note that
the SO(5) emergent symmetry of the deconfined critical point is
only a subgroup of the ~U(4) symmetry of the DSL.

Previously, there has been debate regarding the ground state
associate with the staggered flux spin liquid state on the square
lattice. Based on the monopole quantum numbers reported here
(and in ref. 38) and the discussion above, we conclude that it
describes an ordered state. Although the precise nature of the
order is determined by microscopic interactions, it is certainly
compatible with the commonly observed colinear Neel order.

If rotation symmetry is broken (e.g., from square to rectangle
lattices), monopole momenta are not enforced to be quantized
(see Supplementary Note 1) by algebraic relations and generally
we expect all elementary monopoles are forbidden by symmetry.
The stability of DSL on square and honeycomb lattices is hence
enhanced.

Triangular lattice. On the triangular lattice, we find the sym-
metry transformation properties detailed in Table 2. We remark
that the momenta of monopoles receive a contribution from the
nontrivial Berry phase in U(1)top for translations.

As we have noted, magnetic monopoles correspond to local
operators, and their symmetry transformation allows us to
interpret them as order parameters, which, if condensed, break
symmetry in particular ways.

For magnetic orders, for example, the spin triplet monopoles
S1;2;3 are the order parameter of the 120° non-collinear magnetic
order. If the monopoles condense, we will have a spin ordering
pattern

hSri ¼ Sðn1 cos ðQ � rÞ þ n2 sin ðQ � rÞÞ ð11Þ

with n1 ¼ ðRe½S1�;Re½S2�;Re½S3�Þ and n2 ¼ ðIm½S1�; Im½S2�;
Im½S3�Þ. Q= (2π/3, −2π/3) is the momentum of monopoles.
To establish that this order is the 120° non-collinear magnetic
order, we need to further show that monopoles condense in a
channel that satisfies n1 ⋅ n2 = 0. Recall that there are two steps to
generate an order. First, a fermion mass is spontaneously
generated through chiral symmetry breaking. Next, the mass
term will pick one monopole to condense. This two-step
mechanism guarantees n1 ⋅ n2= 0. For instance, the mass �ψσ3ψ
will have the monopoles condensing in the channel

hS1 þ iS2i≠ 0, hS1 � iS2i ¼ 0, and hS3i ¼ 0, which satisfies
the constraint n1⋅n2= 0. This eventually yields the 120° magnetic
order with the magnetic moments lying in the SxSy plane, with the
specific chirality shown in Fig. 2d.

The general principle for determining the VBS order induced
by a specific chiral symmetry breaking scenario involves the
following single rule: match only the preserved symmetries. By
this we exclude symmetries under which the mass/monopoles
obtain a nontrivial phase (i.e., only when they stay strictly
invariant do the symmetries count as being preserved). When a
valley-Hall mass M0i leads to the condensation of spin singlet
monopoles V j þ iVk giving rise to VBS order, typically, the order

parameter is a polynomial of the condensed monopole and the
valley Hall mass. This polynomial retains only the common
preserved symmetries of V i and the mass, but not any nontrivial
transformation (or phases) (e.g., under original translations);
hence so does the VBS order. For example, consider translations.
It suffices for the VBS pattern to have a new (and usually
enlarged) unit cell commensurate with both the fermion bilinear
and the condensed monopole, i.e., nontrivial phases under
translations on the original lattice do not further constrain the
VBS order. This is different for the case of spin order associated
with the Si’s. There the nontrivial Berry phase ei2π/3 associated
with lattice translations implies that lattice translations combined
with some 2π/3 spin rotations (along the axis defined by the
quantum spin Hall mass) are kept unbroken. Another unbroken
symmetry associated with the magnetic order is the combination
of time-reversal and a spin π-rotation along the axis defined by
the quantum spin Hall mass—this symmetry implies that the
magnetic order is co-planar. In fact these unbroken symmetries
essentially fix the form of the 120° order.

Following this logic, the new Bravais lattice for VBS on
triangular lattice is set by the momenta of Φ1/2/3 and �ψτiψ. So
from Fig. 2a, the reduced Brillouin zone has an area which is 1

12 of
the original one resulting from the Berry phase attached to the
monopoles, corresponding exactly to the

ffiffiffiffiffi

12
p

´

ffiffiffiffiffi

12
p

VBS order
with a 12-site unit cell. A generic combination of �ψτiψ induces
monopole condensation that breaks all spatial symmetries except
for translations commensurate with the new unit cell. Following
the previous discussion, there are no further symmetry
constraints on the VBS order pattern inside the enlarged unit
cell. In the following, we display some typical patterns that could
descend from the DSL. Shown in Fig. 2b is a generic pattern used
in ref. 55 as a ground state candidate for a quantum dimer model
on triangular lattice, with maximal flippable plaquettes. The
plaquette VBS shown in Fig. 2c has an additional C3 symmetry

VBS BZ

a b c d

Fig. 2 Triangular lattice VBS and magnetic orders. a The reduced brioulin zone (BZ) stipulated by the momenta of V1;2;3; �ψτ1;2;3ψ which has an area 1/12 of

the original one. The red/blue dots mark momenta of V i’s and �ψτ1;2;3ψ, respectively. b One particular VBS pattern inside a 12-site unit cell used in previous

numerics for quantum dimer models which can result from any generic �ψτ iψ and subsequent monopole proliferation, so long as they break all but the

enlarged VBS Bravais lattice translations. Red/black bonds denote positive/vanishing valence bond weight. c A more symmetric VBS, invariant under C3

around the blue dot. d The 120° magnetic order induced by mass �ψσ3ψðM30Þ
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and results from a particular mass M01+M02−M03 with the

corresponding Vy1 þ Vy2ei
π
3 þ Vy3ei

2π
3 proliferation, both of which

stay invariant under C3 around the marked triangle center
(equivalently T1C

2
6) according to Table 2.

Kagome lattice. On the kagome lattice, the situation is very
similar to the triangular lattice, where the Berry phase of Dirac
sea for C6 rotation is 2π

3 by numerical calculation (Supplementary
Note 3), which is consistent with the translationally invariant (‘q
= 0’) 120° magnetic order under six-fold rotation. The results are
summarized in Table 2.

Masses M0i result in VBS order. Generally, since the momenta
of masses and monopoles are located at points like (0, π) in the
brillouin zone (leftmost panel of Fig. 3, the VBS pattern has an
enlarged unit cell four times as big as the original one.

As before, we construct VBS order parameters from chiral
symmetry breaking by looking at only the symmetries strictly
preserved by both the mass and the condensed monopole. Shown
in Fig. 3 are examples which reproduce previously found VBS
patterns on the kagome lattice28,56,57. Specifically, Fig. 3(c) results

from mass M02 with hVy1 þ iVy3i ¼ e�i
π
4 , which preserves Ry but

breaks C6 according to Table 3; the bond patterns have the same
symmetry group (translations and Ry) as that found in a recent
DMRG study proximate the spin liquid phase (panel c of Fig. 2 in
ref. 56). Further, Fig. 3(a) (b) result from a C6 invariant mass M01

+M02−M03 and the associated monopole

hΦykagi ¼ hV
y
1e
�i2π3 þ Vy2 � Vy3ei

2π
3 i ¼ 1; i, respectively. They are

C6 invariant, while (1) preserves Ry and (2) breaks Ry, owing to

Φ
y
kag ! Φkag under Ry, leading to the preservation of Ry if

hΦykagi ¼ 1 in 1. Figure 3(a) reproduces Fig. 4 in ref. 24 or Fig. 5 in

ref. 28, where the 12 bonds around a unit cell are enhanced (or
weakened an in our convention). Moreover symmetries of Figs.
17 and 18 in ref. 28 both align with the real part of V i’s. We
remark that the specific expectation values of monopoles
discussed above sit at the extremum of Eq. (8) and hence these
more symmetric patterns optimize the Landau-potential given by
the two-fold monopole on kagome lattice.

Discussion
Our calculation of symmetry quantum numbers of monopole
excitations in the QED3 Dirac spin liquid theory on different 2D
lattices indicates that the DSL on triangular and kagome lattices
may be a stable phase. This would represent a remarkable state of
matter, with enhanced symmetries including a ~U(4) symmetry

combining spin rotation and discrete spatial symmetries, as well
as invariance under conformal (including scaling) transforma-
tions. We emphasize that the low-energy excitations of the DSL
includes both fermionic spinons and the magnetic monopole
continuum. These two types of excitations have different char-
acteristic signatures in the spectral function, originating from the
different scaling dimensions of the operators. They are also
typically located at different high symmetry points of the Bril-
louin zone. The low-energy spin-triplet excitation arising from
pairs of spinons are located near the M points of the brillouin
zone for both the triangular and kagome lattice. In contrast, the
spin-triplet monopole excitations appear at the K points for the
triangular lattice, and at the Γ point for the kagome lattice. One
should note that there is always a spin-triplet mode at zero
momentum on any lattice due to the conservation of total spin.
However this mode has scaling dimension Δ= 2, and is expected
to be less singular than the monopole modes described here.
These readily measurable characteristics should help in the
empirical search for these phases.

Comparing with numerical studies, the kagome Heisenberg
antiferromagnet (KHA) was recently argued to be consistent with
a Dirac spin liquid28,58,59. Indeed, on increasing the next neigh-
bor coupling J2 > 0, a 120° (the so called q= 0) ordered phase is
observed on exiting the spin liquid. Furthermore, a diamond VBS
pattern (Fig. 3(d)) was found to be proximate the spin liquid of
KHA56, consistent with our identification of proximate orders. A
third piece of evidence is that a chiral spin liquid (CSL) is
observed by increasing the J2 and J3 interactions60–62, or by
adding a small spin chirality term JχSi ⋅ (Sj × Sk)63. This CSL can
be understood as the DSL with a singlet mass m�ψψ.

It should however be noted that gapped spin liquids have also
been proposed as the ground state in this parameter regime56,64–66.
In Herbertsmithite, a material realization of the KHA, a spin liquid
ground state is reported. Although low-energy excitations are
observed, an analysis that includes disorder points to a spin liquid
with a small spin gap of ~J/2067,68. Nevertheless, a comparison of
the low-energy spectral weight in kagome materials with the pre-
dictions of the DSL would be a useful exercise. In the left column
of Fig. 4 we list the momentum and the reflection eigenvalue of 15
fermion adjoint masses (with identical scaling dimension) and
1 singlet mass, as well as the momenta of monopoles and the
angular momentum of V i’s.

For the S= 1/2 triangular lattice antiferromagnet, numerical
diagonalization and density matrix renormalization group
(DMRG) studies have revealed a spin-disordered state on adding a
small second neighbor coupling 0.07 < J2/J1 < 0.1569. Variational
Monte Carlo calculations have concluded that the Dirac spin

VBS BZ

Valley hall mass momentaa b c d

Fig. 3 Kagome lattice VBS. a The momenta of M0i and V i’s on kagome lattice yielding the reduced Brillouin zone for VBS pattern with an area a quarter of

the original one. Panel b–d are examples of high-symmetry VBS patterns on kagome lattice resulting from chiral symmetry breaking and monopole

proliferation. The solid/dotted red bonds denotes positive/negative VBS weight with width indicating strength. Weight vanishes on black bonds. Patterns

b and c result both from condensation of mass M01+M02−M03, but with the corresponding monopole Φ
y
kag ¼ V

y
1e
�i2π

3 þ Vy2 � V
y
3e

i2π
3 condensing to

hΦykagi ¼ 1; i, respectively. Pattern d results from mass M02 with hVy1 þ iVy3i ¼ e�i
π
4, which preserves Ry but breaks C6. Pattern b is symmetry equivalent to

the Hastings VBS of ref. 24, and Pattern d is symmetry equivalent to the VBS found by DMRG proximate to the spin liquid phase in ref. 56 (panel c of Fig. 2)
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liquid33 is a very competitive ground state. A further piece of
evidence is obtained on adding an explicit but small spin chirality
interaction Jχ which is found to immediately lead to a CSL70,71 in
this range of parameters. This is consistent with perturbing the
Dirac spin liquid with an explicit mass term m�ψψ, which is
immediately generated on breaking time reversal and parity sym-
metry, leading to a chiral spin liquid. Outside this parameter range,
the CSL is also obtained, but only on adding a finite value of Jχ.

Given the relatively small values of J2 involved, even the
nearest-neighbor Heisenberg model should display aspects of spin
liquid physics at intermediate scales which can be studied in
future experiments and numerics. There are relatively few
experimental candidates for the triangular lattice S= 1/2 mate-
rials that are undistorted. Two recently studied candidates are

Ba3Co Sb2O9 and Ba8CoNb6O24. The latter compound fails to
order even at the lowest temperatures measured ~J/2572, and is a
promising spin liquid candidate. Although the former compound
orders at low temperatures, its excitation spectrum73 is hard to
account for within spin wave theory. We note that at a qualitative
level, the discrepancies from spin wave theory are connected to
low-energy spectral weight at the M points, which are recovered
within the QED3 theory, where they arise from fermion bilinears.
It has been pointed out that additional terms beyond the Hei-
senberg interaction may be present in these materials74, which
help stabilize a spin liquid state. The transition metal dichalco-
genide 1T-TaS2 has also been proposed as a quantum spin liquid
where the spin degrees of freedom reside on clusters that form a
triangular lattice75. The possibility of realizing the Dirac spin

Triangular lattice:

fermion bilinears

Kagome lattice:

fermion bilinears
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Fig. 4 Symmetry quantum numbers of dominant operators of the DSL on kagome and triangular lattices Fermion bilinears and monopoles lead to

measurable characteristic signatures in numerics and scattering experiments. These include the 1+ 15 fermion bilinears and the six monopoles. In addition

to translation quantum numbers (crystal momenta), rotation and reflection eigenvalues (where applicable) are also shown (reflection eigenvalues for

bilinears at Γ point refer to all three reflection operators marked in the figure; note for triangular bilinears, reflection used is different from that in Table 2 or

Fig. 1). The spin triplet monopoles on the kagome lattice have angular monentum l= 2 under C6. For triangular lattice monopoles, reflection eigenvalues

apply to both spin singlet and triplet monopoles. The fermion bilinears and monopoles have different scaling dimensions as shown in the figure with the

current best estimates indicating δ1 > δ2 > δ3
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Fig. 5 Numerical results of momentum of the monopoles. a We wrap the system on a L × L torus, and uniformly spread 2π/L2 flux in each unit cell. b, c To

extract the lattice momentum, we calculate hψjGT1
� T1jψi ¼ ρeik1 , and find k1= 2π/3 on the triangular lattice and k1= π on the square lattice. ρ is close to 1

for a large system size, which indicates that the translation symmetry is approximately preserved
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liquid state on the triangular lattice should give additional
impetus to physical realizations of S= 1/2 triangular lattice
magnets for example, in ultracold atomic lattices and in twisted
bilayers of transition metal dichalcogenides which remain to be
experimentally realized76.

In Fig. 4 we show the momenta and other spatial symmetry
quantum numbers of the 15 fermion bilinears (adjoint masses
with identical scaling dimension) and 1 singlet mass, and those of
the six monopoles. These should help guide the search for Dirac
spin liquids in X-ray (sensitive to the spin singlet excitations) and
neutron (which probe both singlet and triplet excitations) scat-
tering experiments.

In addition to a potentially stable spin liquid phase, which
would represent a remarkable new state of matter, the DSL
provides a unified picture to describe competing orders which
have already been observed either in experiments or in numerical
calculations, on different lattices. These range from the colinear
Neel states on bipartite lattices to the 120° degree ordered states
on the triangular and kagome lattices, and to spin singlet valence
bond crystal states. It is hoped that such a unified picture of two-
dimensional magnetism will deepen our understanding of some
of the most interesting correlated electronic materials.

Methods
Numerical calculation of the monopole Berry phase. We adopt the following
approach to calculate the monopole quantum numbers. For concreteness, consider
the π flux theory on an L × L square lattice on the torus and uniformly spread the
monopole flux of 2πq, so that each plaquette contains an additional flux of 2πq/L2.
We numerically verify that the energy spectrum has a finite size gap with exactly 4q
zero modes. This is consistent with the theoretical expectation and justifies con-
structing monopole operators on a torus. We now need to decide which zero
modes to fill before proceeding with the monopole quantum number calculation.
Let us now specialize to the case of a single monopole, i.e. q= 1. Note, the fol-
lowing calculation will extract both the contribution from the zero modes, as well
as the more elusive Dirac sea contribution (see Supplementary Note 2 for precise
Berry phase definition). Since the latter is common to all flavors of monopoles, it
suffices to consider just the monopole which corresponds to filling the whole Dirac
sea plus the two spin-up zero modes, while leaving the two spin down zero modes
empty. This monopole preserves the largest set of lattice symmetries and corre-

sponds to the monopole operator Φy4 � iΦ
y
5 . We then numerically calculate its

lattice quantum numbers by evaluating 〈ψ|GR ⋅ R|ψ〉, where GR is a gauge trans-
formation that keeps the Hamiltonian invariant after the lattice symmetry trans-
formation R.

These quantum numbers are not all independent: they should satisfy the
algebraic relations of the space group and time-reversal symmetry T 28,36,38. This
greatly reduces the number of U(1)top phase factors to determine, and moreover it
constrains the quantum numbers of monopoles to a discrete set of allowed
solutions. For example, the momentum of the monopole in the kagome Dirac spin
liquid must be 0 coming from the symmetry relation

T1C6T2 ¼ T2C6: ð12Þ
Since monopole charge does not change under rotation or translation in this

case, we can assign the Berry phase θC, θ1/2 with C6, T1/2, respectively. Furthermore,
from the fermion PSG which control fermion zero mode transformation
(Supplementary Note 1), one knows the spin triplet monopoles Si ’s stay invariant
up to Berry phases under these symmetries and hence transform as

C6;T1=2 : Si ! eiθC=1=2Si ð13Þ
combining with Eq. (12) immediately yields θ1= 0. Similarly one gets vanishing
Berry phase for all translations. An intuitive way to see this is that the Si ’s
momentum should stay invariant under C6 and the only C6 invariant point in
Kagome Brillouin zone is the Γ point.This is not the case on triangular lattice where
Berry phase for translation is ±2π/3. The key point is that on the triangular lattice,
the PSG for C6 involves charge conjugation to compensate for the exchange of
triangles with 0,π gauge flux, and hence monopoles go to anti-monopoles. The
nontrivial phase factor of the kagome Dirac spin liquid is associated with the C6

rotation about the plaquette center28 and we use the aforementioned numerical
scheme to directly read off this rotation quantum number. We list the possible
Berry phases compatible with algebraic relations of symmetry group on four
lattices in Supplementary Note 1 and below is the numerically found Berry phase
which indeed falls among one of the possible choices constrained by algebraic
relations.

On the triangular lattice, the lattice momentum of the monopole Φ
y
4 is

constrained, by point group symmetries, to be one of 0, ±2π/3. We determine its
precise value here by evaluating hψjGT1;2

� T1;2jψi, i.e. combining translation T1,2

with the appropriate gauge transformation GT1;2
to leave the mean field ansatz

invariant. Again, we consider filling the Dirac sea and the two spin up zero modes
as our ground state |ψ〉. Unfortunately, one cannot resort to reading off the relevant
quantum numbers since the Hamiltonian on a torus with the added flux is not
translation invariant. To see this, note that the phase factors of Wilson loops

e
H

C
a�dl

, along two adjacent columns (rows) will always differ by 2π/L (there are L
unit cells between them). Such translation symmetry breaking will be invisible in
the thermodynamic limit, since the phase difference of adjacent Wilson loops
2π/L→ 0 as L increases. We expect that translation symmetry to be recovered for
large enough system sizes. Indeed, this is what we observe in Fig. 4, which shows
our numerical results for hψjGT1

� T1jψi ¼ ρeik1 . For a large L, the momentum k1 is

perfectly quantized to 2π/3. Moreover, the amplitude ρ approaches unity,
indicating the restoration of translation symmetry. As a comparison, we also
calculate the monopole’s momentum on the square lattice, and we get k1= π. We
choose a Landau gauge on square lattice, i.e.

Ai;iþx̂ ¼ Byi;

Ai;iþŷ ¼
0 yi ≠ Ly � 1

BLyxi yi ¼ Ly � 1

(

ð14Þ

where i labels square lattice site with coordinate (xi, yi) on a system of size Lx × Ly
and B= 2π/(LxLy) is the uniform field strengthl. Upon translation along x direction
by one unit T1, only Ai;iþŷ at y= Ly−1 changes and can not be compensated by a

gauge transform. The change 2π/Lx, however goes to 0 in the thermodynamic limit.
Hence in this case one does not need to do the gauge transform in numerics GT1

and can directly compute the wavefunction overlap. Similar gauge choice on
triangular lattice also gives a trivial GT1

. Therefore, the momentum of the

monopole Φ
y
4 on the π flux square lattice is (π, π), on the triangular lattice it is

quantized to (−2π/3, 2π/3) and C6 equivalents (the gauge on triangular lattice is
similar). We also numerically verify that under translations on honeycomb and
kagome lattices, monopoles has zero Berry phase dictated by algebraic relations.
For triangular lattice, since reflection involves charge conjugation, monopole
charge does not change and numerically we find the Berry phase under reflection
to be 0.

We note that our result for the square lattice is consistent with an earlier
calculation38 which used a cylinder geometry to select from the discrete set of
possibilities fallowed by crystal symmetries. The cylinder geometry is particularly
convenient since translation symmetry in one direction can be preserved even in
the presence of flux. Unfortunately, we caution that for other lattices, the cylinder
geometry gives an incorrect answer (i.e. π even for the triangular lattice where the
only consistent momenta are 0, ±2π/3). We believe this problem potentially arises
from the presence of edge states, which can be circumvented by adopting the torus
geometry as we have done here.

Finally, we remark that our numerical method cannot determine the precise
transformation of the time-reversal symmetry T and reflections. This, however,
can be calculated analytically as we will describe elsewhere49, which also confirm
the results here for other symmetries. It turns out that for all the Dirac spin liquid
states we consider, the spin-singlet monopoles are even under time-reversal

Φ
y
1;2;3 ! Φ1;2;3 , while the spin triplet monopoles are odd under the time-reversal

Φ
y
4;5;6 ! �Φ4;5;6 . It contrast, ref.

28 conjectured that all monopoles in the kagome

Dirac spin liquid are odd under T .

Data availability
The data that support the findings of this study are available from the corresponding
authors upon request.
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