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Michael Bolotski André DeHon Thomas F. Knight, Jr.
misha@ai.mit.edu andre@ai.mit.edu tk@ai.mit.edu

(617) 253-8170 (617) 253-5868 (617) 253-7807
NE43-703 NE43-791 NE43-735

545 Technology Sq.
Cambridge, MA 02139
FAX: (617) 253-5060

Abstract

Field-Programmable Gate Arrays (FPGAs) and
Single-Instruction Multiple-Data (SIMD) processing
arrays share many architectural features. In both ar-
chitectures, an array of simple, fine-grained logic el-
ements is employed to provide high-speed, customiz-
able, bit-wise computation. In this paper, we present
a unified computational array model which encom-
passes both FPGAs and SIMD arrays. Within this
framework, we examine the differences and similari-
ties between these array structures and touch upon
techniques and lessons which can be transfered be-
tween the architectures. The unified model also ex-
poses promising prospects for hybrid array architec-
tures. We introduce the Dynamically Programmable
Gate Array (DPGA) which combines the best fea-
tures from FPGAs and SIMD arrays into a single
array architecture.

1 Introduction

FPGA-based custom computing engines
and massively parallel SIMD arrays
[GHK+91, Bol93, BRV93] have been demon-
strated to provide supercomputer-class performance
on some tasks at a tiny fraction of supercomputer
cost. Both of these architectures consist of arrays of
small yet numerous processing elements. This simi-
larity is the key to understanding their surprisingly
high performance: most of the silicon in the FPGA
and SIMD chips is actively operating on data bits.
SIMD machines achieve high utilization by massive
data parallelism. FPGA machines achieve high
utilization by task-specific hardware configuration
and pipelining. In both cases, several thousand bits
are transformed per cycle, compared to the 64 bits
of a typical microprocessor. In this paper we show

that the similarities extend considerably further,
and indeed that the two architectures can be viewed
under a common computing model.

Field-Programmable Gate Arrays (FPGAs) are
widely used today to implement general-purpose
logic. FPGAs are built from a moderately fine-
grained array of simple logic functions. An FPGA
array is customized by selecting the logical function
which each array element (AE) performs and the in-
terconnection pattern between AEs. Using multiple
stages of logic and primitive state elements, these
arrays are programmed to implement both sequen-
tial and combinational general-purpose logic. FP-
GAs are in wide use today for system customiza-
tion and glue logic, low-volume application-specific
designs, and IC prototyping. A variety of FPGAs
are commercially available from a number of vendors
(e.g. Xilinx [Xil91], Actel [Act90], Atmel [Fur93],
Lattice [Qui92]).

Single-Instruction Multiple-Data (SIMD) arrays
are employed to realize high throughput on many reg-
ular, computationally intensive data processing ap-
plications. An array of simple, fine-grained compu-
tational units make up most SIMD arrays. Typically,
the computational units are wired together through
local, nearest-neighbor communications. On each
clock cycle, an instruction is broadcast to all AEs,
and each AE performs the indicated computation on
its local data element. SIMD arrays are commonly
used for algorithms requiring regular, data-parallel
computations where identical operations must be
performed on a large set of data. Typical applica-
tions for SIMD arrays include low-level vision and im-
age processing, discrete particle simulation, database
searches, and genetic sequence matching. NASA’s
MPP [Pot85], Thinking Machines’ CM-2 [Hil85], and
MasPar’s MP-1 [Bla90] are early examples of large-
scale SIMD arrays. Increased silicon area along with
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advanced packaging trends allow production of very
high-performance, highly-integrated, SIMD arrays at
reasonable costs [BBLC93], [Lea91].

Viewed at an abstract level, these two array archi-
tectures are very similar. Both employ a moderately
fine-grained array of logic elements. Each logic ele-
ment performs a simple logic function on some state
and some inputs from the array and either updates
its own state to record the results of its computation
or shares the results with other elements in the ar-
ray. Despite the similarity, the design of FPGAs and
SIMD arrays has evolved along quite divergent paths.

In this paper, we introduce a computational array
model encompassing both FPGAs and SIMD arrays.
By highlighting the tradeoffs made in the model to
arrive at FPGA or SIMD structures, we can better
appreciate optimizations made in the engineering of
high-performance computational arrays. Further, we
can transfer lessons learned between various array
architectures. Additionally, the unified model high-
lights potentially novel hybrid array architectures.
We examine one such hybrid, the Dynamically Pro-
grammable Gate Array (DPGA), and show that it
can subsume the role of traditional FPGAs or SIMD
arrays.

In Section 2 we introduce the uniform computa-
tional array model and show how FPGAs and SIMD
arrays relate to this model. In Section 3 we compare
the manner in which FPGA and SIMD arrays solve
problems by considering the mapping of computa-
tions from one architecture to the other. In Section 4
we introduce the DPGA hybrid architecture and de-
scribe its benefits and costs. In Sections 2 through 4,
we examine these arrays at a somewhat abstract
level, ignoring for the most part, technology-specific
optimizations during implementation. In Section 5
we discuss the ways in which computational arrays
are optimized based on computing style and available
technology. In Section 6 we review the key themes
explored in this paper.

2 Unified Computational Ar-
ray Model

A computational array is composed from a regular
lattice of AEs along with interconnection resources
linking AEs together. Abstractly, each AE performs
a simple computation on its inputs to produce one
or more output bits (See Figure 1). The inputs come
from local state or via communication channels from
other AEs. The outputs are either stored to local
state or are communicated to other AEs. An instruc-
tion is used to specify the computation performed by
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Figure 1: Computational Block for an Array Element
(AE)

each AE. Instructions are typically also used to spec-
ify communication and state manipulation, although
in this paper we focus primarily on the instruction
as specifying the operation of the logic unit. In this
simplified model, the transform from input values to
outputs is modeled as a lookup table addressed by
the input value (See Figure 2). We can model the
instruction as either the programming of the lookup
table or as additional inputs to the lookup table (See
Figure 2).

In the most general setting, we might wish to spec-
ify a different instruction for each AE on each com-
putational cycle. Unfortunately, if we design such
an array, the resources required for instruction dis-
tribution dominate the array geometry and the re-
quired instruction bandwidth is unmanageably large.
In practice, the manageable instruction bandwidth
limits the operation rate of the array. With a P -
element array where each element implements Nf

distinct functions, Equation 1 shows the relation be-
tween computational cycle time, tcycle, and instruc-
tion bandwidth, IBW .

IBW =
P · log2(Nf )

tcycle
(1)

For example, a 100 element array with 64-
function elements operating at 10 MHz, requires
100 log2(64)/100 ns = 6 Gbits/sec. If we are limited
to an instruction distribution bandwidth of 1 Gbit/s,
the clock cycle for the array must be limited to
100 log2(64)/109 = 600 ns.

FPGAs and SIMD arrays both weaken this gen-
eral computational model to avoid the requirement
for huge instruction bandwidth. By simplifying the
model, each type of array achieves a more pragmatic
balance of resource requirements. For certain classes
of applications these simplified models are adequate
and can be engineered to take full advantage of the
implementation technologies available.

FPGAs weaken the model by eliminating the in-
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Figure 2: Lookup Models for AE Computational Unit

struction (See Figure 3) and therefore not changing
each AE’s operation through time. Different AEs,
however, can be executing different operations. Dur-
ing a slow programming phase, each AE is configured
with its operation, which remain fixed during sub-
sequent normal operation. In SRAM-programmable
FPGAs (e.g. Xilinx LCA [Xil91], Atmel [Fur93]) this
programming phase normally occurs once each time
the system is powered on. In fuse or anti-fuse based
FPGAs (e.g. Actel [Act90] ) a device is programmed
exactly once during its lifetime.

SIMD arrays weaken the model by distributing the
same instruction to every AE (See Figure 4). Each
AE is allowed to perform a different operation on each
computational cycle, but all the elements in the array
are required to perform the same operation during
any given cycle.

These two compromises weaken the model along
orthogonal dimensions. FPGAs compromise in the
rate of instruction dispatch to allow the instructions
to vary spatially through the array. SIMD arrays
compromise in the spatial variation of instructions
to allow a high rate of instruction dispatch.

  
  

 A
rr

a
y

 E
le

m
en

t
C

o
m

p
u

ta
ti

o
n

a
l 

U
n

it

In
p

u
ts

: 
 f

ro
m

 l
o

ca
l 

st
at

e 
o

r
  

fr
o

m
 o

th
er

 a
rr

ay
 e

le
m

en
ts

O
u

tp
u

ts
: 

 t
o

 l
o

ca
l 

st
at

e 
o

r
  

to
 o

th
er

 a
rr

ay
 e

le
m

en
ts

Static Instruction

(distinct for each array element
 effectively constant during operation)

Figure 3: Computational Unit for FPGA AE
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Figure 4: Computational Unit for SIMD AE

3 Computational Equivalence

We can view the compromises made in arriving at
FPGA or SIMD arrays as space-time tradeoffs. FP-
GAs allow us to spatially construct any logical op-
eration by composing an ensemble of AEs which im-
plements the operation spatially. SIMD arrays allow
us to temporally perform any logical operation by
sequencing through the operations required to per-
form the operation in time. We can see this tradeoff
further by considering how we can naively map an ar-
bitrary FPGA computation onto a SIMD array and
vice-versa.

SIMD Simulation on an FPGA Since we can
wire any sequential or combinational logic function
on an FPGA array, we can simulate a SIMD AE by
wiring up a group of FPGA AEs. Further, we can
compose FPGA-implemented, SIMD AEs to simulate
an arbitrary SIMD array. We can then run the same
SIMD computation which we would have run on the
SIMD array on the FPGA implementation.

Indeed, if the routing resources required to broad-
cast the same instruction to every simulated SIMD
AE are directly available in the FPGA architecture,
the implementation is extremely simple. In tradi-
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tional SRAM-based FPGAs, one cell can serve as the
SIMD AE computational element, one can serve as
the local memory, and two can serve as the config-
urable interconnect.

FPGA Simulation on a SIMD Array We can
simulate any non-asynchronous FPGA in time using
a SIMD array. To do so, we note that most SIMD ar-
rays provide a bit mask to disable a subset of the cells
for a particular operation. Conceptually, we map
each FPGA AE to a corresponding SIMD AE. For
each FPGA gate delay, we dispatch Nf instructions,
one for each different instruction the FPGA AE can
perform. If necessary, we then dispatch a series of
instructions to route output bits from producers to
consumers. With each dispatch, the SIMD AEs are
masked such that the only elements which perform a
given operation are those which correspond to FPGA
AEs which are programmed to perform the given op-
eration.

Comparison The FPGA implements the SIMD
array spatially, and simulation overhead appears as
a requirement for more gates and wiring resources.
The SIMD array implements the FPGA temporally,
and simulation overhead slows the computation rate.
Of course, simulation is not the best approach for
porting an algorithm from one architecture to the
other. Nonetheless, the constructions above establish
the feasibility of translating arbitrary computations
between the two kinds of arrays.

4 Hybrid Architecture

In this section we introduce a hybrid architecture
which allows instructions to vary both spatially and
temporally without requiring additional instruction
bandwidth.

As we saw in Figure 4, the lookup table modeling
each SIMD, computational AE is programmed identi-
cally on all AEs in the array. In Figure 3 we saw that
each FPGA AE lookup table is programmed differ-
ently to select a different instruction on each AE. In a
Dynamically Programmable Gate Array (DPGA) we
allow the lookup table in each AE to be programmed
differently. This allows each AE to perform a differ-
ent operation in response to each broadcast instruc-
tion (See Figure 5).

Figure 6 shows one way to view the DPGA AE.
We think of the broadcast instruction as a context
identifier (CID). The local instruction store in each
computational element selects the executed instruc-
tion by table lookup using the CID as an address.
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Each AE holds a distinct instruction store, and hence
different AEs execute distinct operations at the same
time.

We can also think of the DPGA as an FPGA with
multiple contexts. All the instructions programmed
into a particular CID location in the AE’s instruction
stores can be thought of as one array-wide configura-
tion. When we change the CID, we change contexts
and instantly reconfigure the entire array.

In Figures 5 and 6, we only show how the CID se-
lects the operation performed by the computational
unit of each AE. In practice, the routing resources in-
terconnecting AEs and the addresses of local stored
data are also configured by the instructions. The
CID must select the instructions which configure the
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interconnection and addressing as well as the compu-
tation.

The DPGA retains all the facilities of both FPGA
and SIMD arrays. If we wish to perform traditional
SIMD operations, we simply program the same in-
structions into all the instruction stores. If we wish
to perform traditional FPGA operations, we contin-
ually broadcast the same CID.

For maximum flexibility, the DPGA instruction
data is writable by some combination of the instruc-
tion stream and local AE state. This allows the array
to rapidly update context programming as necessary.
If we think of the instruction store as a context cache,
the writable instruction store allows high speed cache
replacement. In cases where the sequence of distinct
instructions is larger than the instruction store, we
include code in the instruction stream to reload the
instruction store.

4.1 Benefits

This hybrid architecture increases flexibility for both
implementation and application of computational ar-
rays. We can immediately identify several benefits
which the DPGA architecture has over either SIMD
arrays or FPGAs.

4.1.1 Implementation

The width of the CID field is unrelated to length of
the stored instruction, but is typically much shorter.
Since instruction distribution bandwidth is a major
design constraint in high performance SIMD arrays,
this reduction can be very important. For example,
a complex FPGA cell might provide five input logic
functions. Distributing a truth table for such a func-
tion requires 32 instruction bits; a CID as small as 8
bits might suffice for most applications, reducing the
required instruction bandwidth by a factor of four.

A single DPGA array type can be engineered and
produced to satisfy applications which have tradi-
tionally been served by either FPGAs or SIMD ar-
rays. By combining the market base of these two
array types, DPGAs can become commodity prod-
ucts, allowing cost effective implementation of novel
data-parallel processors as well as more effective re-
placements for FPGA structures.

4.1.2 Applications

Multiple-Stream SIMD Array Processing
Viewing the DPGA from a traditional SIMD view,
we have added the ability to simultaneously perform
different operations. This is useful in cases where the

pieces of the data in the array must be operated on
differently or there is insufficient data parallelism to
occupy the entire array performing the same compu-
tation on an operation cycle.

Boundary conditions are a common case where
non-uniform data handling is required. In the DPGA
model, boundary cells are programmed to perform a
different set of operations from interior array cells
during some computation. One particularly com-
pelling example of such boundary processing is the
use of a DPGA array for bit-parallel arithmetic op-
erations, where the most- and least- significant bits of
each parallel data word usually require special han-
dling.

Configuration Cache and Time-Slice Compu-
tation Viewing the DPGA as a traditional FPGA,
we have added a configuration cache and the abil-
ity to perform zero-latency reconfiguration between
cached configurations. With the hybrid configura-
tion, we can perform computations in time-slices and
achieve much more efficient utilization of AEs. In
conventional FPGAs, most AEs are exercised at their
full operational speed for only a small portion of the
clock cycle. That is, each AE is part of some path
between sequential elements which are clocked at the
component’s system clock rate. Assuming there are
n AEs in the critical path between sequential ele-
ments for a computation and each AE can operate
in time top, the system clock cycles is at least n · top.
A given AE only performs its function during 1

n of
the cycle and spends the rest of the time holding
its value. By pipelining and time-slicing the compu-
tation, we can arrange for each AE to perform its
computation at the correct time to produce the de-
sired result without increasing the overall latency of
computation. Each of the AEs is now available on
the remaining (n − 1) time slices to perform other
operations. Consequently, we can schedule other op-
erations on each AE during these unused cycles. We
can effectively interleave computations and thereby
extract higher throughput from an array of a given
size.

In practice, each pipeline register introduces some
timing overhead. If we call treg the overhead of the
pipeline register due to setup and hold times on the
register, then the entire computation would really re-
quire n·(top+treg). If top � treg, then the overhead is
small and often worth paying to increase throughput.
If treg is larger, it often still makes sense to pipeline
but at a larger granularity. In general, we can divide
the n-element critical path into m-element segments
and only place pipeline boundaries between the seg-
ments. Here we slow the computation down as shown
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in Equation 2.

∆tlatency =
( n

m

)
treg (2)

At the same time, we allow an additional throughput
as shown in Equation 3.

Pipelined
Throughput

=
( n

m
− 1

) Original
Throughput

(3)

Of course, traditional FPGAs can use their own reg-
isters to pipeline computations and increase through-
put. The multiple loaded contexts allow each DPGA
AE to be reused to perform different functions during
each time slice.

Virtual Cells and Embedded Systems In anal-
ogy to the Virtual Processor concept used in the
SIMD Connection Machine [Hil85] to map a large
computation onto a small number of processors, we
can also treat the DPGA as having many Virtual
Cells per physical AE. At a given point in time one
function is active at each AE. Using the CID, we can
switch the personality of each AE amongst the vir-
tual cells it is emulating. This allows a small DPGA
array to efficiently emulate a larger FPGA array.

The virtual cells approach can also be viewed as a
technique for reducing the system part count. Rather
than collect enough FPGA components to spatially
implement all the functions required at any point in
time, we employ a single DPGA with an external
memory or ROM chip to store additional contexts. A
controller inside the DPGA sequences through con-
texts, swapping them from external memory when
necessary. The DPGA can then switch between con-
figurations sequentially to perform the complete en-
semble of required functions.

The logical extension of this integration process is
to implement the DPGA in a high-density DRAM
process and therefore integrate the programmable
logic with a memory store. The combined chip is
able to perform almost any logic operation, with a
slowdown increasing with operation complexity.

Efficient Logic Emulation FPGAs are in com-
mon use today for logic emulation. Most emulation
systems directly map gates in the emulated system to
gates in the FPGA. This uses the FPGA AEs ineffi-
ciently for the reasons identified above. The hybrid
AEs can be used more efficiently by scheduling mul-
tiple gates in the emulated system to a single gate
on the FPGA and using time-slice computation as
above. The CID also provides the opportunity to
perform Event-Driven Simulation. Like software ori-
ented event-driven simulation, we can take advantage

of the fact that some subsets of the system change
infrequently. Using the virtual cells model, we can
“swap” in a region of logic and emulate the region
only when its value changes.

Processor Assistance FPGAs also promise to be
useful as tightly coupled co-processors for conven-
tional microprocessors. The FPGA can be config-
ured to perform some application-specific calcula-
tions more quickly than the processor [Sil93]. With
the internal configuration cache, the DPGA array
can switch between operations rapidly. This has two
benefits. First, the array can support multiple con-
figurations for a single computation thread. Second,
configuration contexts allow DPGA co-processors to
support multiple threads. This capability will be-
come more important for fine-grained, multithreaded
microprocessors which support fast context switching
(e.g. April [ALKK90], *T [NPA92]).

4.2 Costs

From both the FPGA and SIMD array standpoint,
the primary additional cost for the DPGA array is
the area for the instruction store lookup table (See
Figure 6). The instruction store can be implemented
with a single-port, SRAM-style memory array which
can be implemented very compactly in a full-custom
design. For example, 70% of each Abacus AE [Bol93]
comprises roughly 80 bits of SRAM memory. The
Abacus AE requires 16 instruction bits to specify the
operation performed by the ALU on each cycle. We
could add another 80-bit SRAM to serve as a 5-entry
context cache. If we distribute a fully decoded CID
to avoid the area overhead of a decoder at each in-
struction store, we reduce the instruction distribution
bandwidth from 16 bits per cycle to 5 bits per cycle
while increasing the AE cell area by 70%. The area
cost may not even be an issue if the number of AEs
on a chip is limited by the number of pins available.

Indirection through the instruction store lookup
array need not impact the AE cycle time. We can
add a pipeline register between the program store
output and the array computational element. This
pipelining allows the array computational element to
run just as fast as it did in the SIMD or FPGA ar-
ray. The addition of a pipeline stage adds another
latency stage to instruction distribution. This has
no net loss when compared to the FPGA case where
no instruction distribution occurs. The additional
cycle of latency due to this pipeline stage is small
compared to the typical latency in the instruction
distribution path for a SIMD array. In a modern
high-speed (> 100 MHz) SIMD array, there are at
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least three pipeline stages in the instruction delivery
phase. Further, there are at least three stages in the
return conditional information path. For efficient op-
eration, SIMD arrays generally run long instruction
sequences without interruption so that pipeline depth
is not a significant issue.

4.3 Previous SIMD Approaches to
Local Configuration

The need for local configuration in SIMD arrays is
demonstrated in part by some small steps which
SIMD architectures have taken towards local config-
uration. Several architectures allow local state bits
to modify the transmitted instruction, the transmit-
ted address, or the local network connections. This
local modification is referred to as operational , ad-
dress, and connection autonomy where autonomy in-
dicates that processors have the ability to not per-
form identical operations [ML89]. The translation
process is typically very simple: operational auton-
omy is achieved by potentially inverting the ALU
output; addressing autonomy by modifying a few low
order bits of the address [BDHR88]; connection au-
tonomy by configuring a network crossbar at each AE
site [ML89].

All of these techniques can be viewed as resource-
limited implementations of the DPGA architecture.
Each can be derived by starting with a small num-
ber of contexts and observing that the instructions
in each context are almost identical except for a few
bits. Factoring out the common bits in hardware
leads immediately to the ad hoc implementations de-
scribed above. Thus, the DPGA model subsumes the
local configuration mechanisms in SIMD machines.

5 Array Specialization and Op-
timizations

In this section we show that the different computing
styles used by the FPGA and SIMD architectures
drive important architectural trade-offs. We also
show that these trade-offs have led to architectural
extremes which are often not optimal given avail-
able technologies. We show examples where improve-
ments result when we match architecture to the avail-
able technology. In many cases, technology-oriented
optimizations move us away from the architectural
extremes, increasing the similarity between the re-
sulting SIMD and FPGA arrays.

5.1 Architectural Implications of
Computing Style

Most implementations of the two architectures com-
pute in two distinct styles: FPGAs unroll their com-
putations in space, while SIMD machines unroll their
computation in time. This unrolling can be de-
scribed as bit-parallel and bit-serial computations,
respectively. Bit-serial techniques exhibit compara-
tively high latency, but are very efficient in terms of
throughput and silicon area; bit-parallel techniques
produce results quickly but require considerable sil-
icon and routing resources. Because most FPGAs
were used to construct controller circuits in which
the operation latency was crucial, they were opti-
mized for bit-parallel operation. SIMD AEs were op-
timized for high throughput, and therefore for bit-
serial operation. Upon examination of the two com-
puting styles, the architectural differences required
to support them become obvious. The three key ar-
eas for comparison are interconnect resources, local
state, and clocking strategy.

Bit-parallel operation requires significant intercon-
nection resources to compose complex logical func-
tions of simultaneously existing bits, and the the in-
terconnect pattern need not change through time.
Local state is largely unnecessary since intermediate
result bits are stored on the wires. Comparatively
slow clocking is required to allow computation to rip-
ple through several combinational units in a single
cycle.

Bit-serial operation has the opposite requirements.
Only a simple logical function, usually on the order
of a one-bit adder, need be performed at each step.
Some local state is required to store the intermediate
results. Little wiring is required since the compo-
sition occurs in time, not in space. In some sense,
memory cells replace the wires of a bit-parallel de-
sign for both storage and communication. Finally,
fast clocking is desirable since many simple steps are
required for any significant computation.

It is instructive to note that when an implemen-
tation of each architecture adopts the opposite com-
puting style, it begins to resemble the opposite archi-
tecture. For example, the Abacus machine, a SIMD
architecture designed for bit-parallel operation, has
a four-input/two-output logical unit, two wires, and
only 64 state bits in each AE [Bol93]. In the opposite
direction, the Concurrent Logic FPGA AE, targeted
specifically for computing rather than implementing
random logic, has reduced routing resources, a sim-
ple logical unit, and is intended to be clocked at high
rates [Fur93].

In the remainder of this section, we discuss these
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three differences in further detail. We note how the
available technology influences implementations. In
many cases, technology encourages implementations
of these arrays which are not as disparate as the ar-
chitectural ideals.

5.2 Interconnection Style

The main difference in interconnection between the
SIMD and FPGA architectures is that the first dy-
namically routes multiple logical signals over a single
wire, while the second statically assigns a dedicated
wire to each signal. In the following two examples,
the adoption of the opposite communication style has
improved performance.

Virtual Wires Since FPGAs are notoriously short
of input/output pins, a common problem with FPGA
implementations is the difficulty of partitioning a de-
sign among multiple FPGA components. As a result
of a limited number of I/O pins, only a small frac-
tion of the AEs in each FPGA component is gener-
ally usable. A recent technique called virtual wires
[BTA93], has been used to overcome this limitation
by sending different signals through the same pin at
different points in time. This is another name for
time-multiplexing I/O pins, an approach employed
by SIMD computers for many years. The improve-
ment due to this technique is possible because the
I/O bandwidth was underutilized when each I/O
pin was statically assigned to a single logical signal.
Time-multiplexing allows the array to use the ad-
ditional available bandwidth to better balance inter-
nal silicon utilization with cross-chip signalling band-
width.

Static routing, as practiced in the SIMD commu-
nity, may well be applicable to better utilization of
internal routing resources. Chip area allocated to
programmable interconnect may be reduced if the
wires can be used more efficiently by high-speed,
time-multiplexed operation.

Multiple Networks All SIMD array architectures
to date have used a grid with a single wire between
AEs, while FPGA AEs typically have access to at
least four wires. The performance of SIMD machines,
especially of the software bit-parallel [Bol93] vari-
ety, can be increased by adding extra intra-chip grid
wires.

Multiple wires are possible in many SIMD imple-
mentations because local routing channels to route
additional signals between AEs take up little or no
additional area in the SIMD array. The additional
channels can be used to increase the communication

bandwidth between AEs and therefore increase com-
putational efficiency.

Specifically, multiple wires reduce the overhead of
dynamically reconfiguring the SIMD network. For
example, in a bit-parallel computation the result of a
data word comparison must be broadcast to each AE
operating on a bit of the data word, so that the entire
group can be disabled or enabled as a unit. But in
a magnitude comparison, the result bits travel from
LSB to MSB. Upon completion, the bit stored in the
MSB must be broadcast, which involves turning the
network around. This turning around step can take
almost as long as the actual comparison. With two
network wires, the overhead is eliminated completely.

5.3 Clocking Strategy

Modern SIMD architectures are designed with a very
high clock rate to compensate for the simple logic
operation in each cycle. In contrast, FPGA arrays
are clocked comparatively slowly, to allow propa-
gation through several stages of combinational ele-
ments. We now describe why FPGA arrays should
be clocked much faster than SIMD arrays.

In the current technology trend, on-chip clock
speed is increasing much faster than off-chip com-
munication bandwidth. This presents a problem for
SIMD arrays. For example, the internal cycle time
of a SIMD AE implemented in a 0.8 micron CMOS
process can be as low as 5 nanoseconds. Delivery of
a wide, 50-bit instruction at 200 MHz to each SIMD
chip is a challenging design problem. We see that
the factor limiting cycle time is the instruction band-
width and that ultimately, SIMD AE complexity will
have to increase in order to match internal cycle time
to available bandwidth.

FPGA architectures do not suffer from these band-
width limitations since they do not require instruc-
tions, and can therefore only benefit from switching
to high-speed clocked, pipelined operation. Exter-
nal system design complexity need not increase, as
the fast clock can remain purely internal, with chip
interfaces operating at low speed. The fast internal
clock can be generated with a phase-locked loop from
a slow external clock [HCC+93]. Also, a clocked sys-
tem allows the use of low-power, clocked logic families
such as dynamic logic.

5.4 Local State

As discussed earlier, SIMD machines require consid-
erable local state to store intermediate results, while
FPGAs store these results on the wires connecting
combinational blocks. The problem with a large

8



Characteristic FPGA SIMD

Wires/direction 4-8 1
Routing Static Dynamic
Logical unit Logical function 1-bit adder

of 4-8 inputs
Clock Slow Fast
Arithmetic Bit-parallel Bit-serial
Local state 1-2 bits 64-256 bits

amount of state is the need to address it. For ex-
ample, most SIMD AEs have at least 64 local state
bits, requiring 6 bits to specify each read and write
address. This is significantly more bits than the 8
required to fully specify a 3-input ALU operation.
Clearly, the need to address local state can dominate
the instruction bandwidth requirements of SIMD ar-
chitectures.

FPGA AEs do not have this problem, as their local
state typically consists of a single register, which is
addressed implicitly by connecting it to the logical
unit. In practice, some FPGA cells can be used as
a small memory, but we do not consider this part of
an AE, as many AEs must be connected together to
implement an address generator.

This dissimilarity is another aspect of the static
versus dynamic allocation encountered in the inter-
connect control. When FPGAs need to access a state
bit, they statically allocate a wire from the memory
cell to the appropriate logic block; SIMD machines
must pay the overhead of dynamic access on every cy-
cle, even if the same address is being used for many
cycles in a row. Once this observation is made, sev-
eral techniques for reducing the overhead of dynamic
addressing can be evaluated with respect to a partic-
ular technology. These techniques include implicitly
addressed accumulators, register windows, and regis-
ter renaming.

6 Conclusions

Starting from a common computational array model,
we examined the similarities and differences between
FPGA and SIMD arrays. While both are com-
posed from arrays of fine-grained computational ele-
ments, they differ substantially in how they compute.
SIMD arrays are employed for high-throughput com-
putations using bit-serial computing techniques. To
match this function, SIMD arrays are optimized to
vary computation in time while performing the same
operation on all array elements at each time step.
FPGAs are employed for low-latency computation
using bit parallel computing techniques. Optimized

for bit-parallel computations, FPGAs are configured
statically, and perform computation spatially.

We introduced a hybrid computational array ar-
chitecture, the DPGA, and showed that it can pro-
vide better performance than either. The DPGA al-
lows computation to vary both spatially and tem-
porally. Using a local instruction store, the DPGA
performs spatially varying computation requiring no
additional bandwidth. The DPGA mixes both bit-
parallel and bit-serial computations in a single array
structure. We suggested examples where this addi-
tional flexibility allows higher performance or lower
part count than pure FPGA or SIMD alternatives.

Finally, we explored the influence of bit-serial and
bit-parallel computing styles on the details of array
implementation. We saw that these two comput-
ing paradigms push array organization towards op-
posite extremes of clocking, routing, and state man-
agement. We further saw that these extremes are
often less than optimal when one considers the tech-
nology available for array implementation. Hybrid
approaches often extract the highest performance in
a given technology. Based on these observations, we
believe there is room for significant cross-fertilization
of ideas between the FPGA and SIMD communities.
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