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In the present paper, we use the holographic approach to describe the early-time acceleration and the
late-time acceleration eras of our Universe in a unified manner. Such “holographic unification” is found to
have a correspondence with various higher curvature cosmological models with or without matter fields.
The corresponding holographic cutoffs are determined in terms of the particle horizon and its derivatives, or
the future horizon and its derivatives. As a result, the holographic energy density we propose is able to
merge various cosmological epochs of the Universe from a holographic point of view. We find the
holographic correspondence of several FðRÞ gravity models, including axion-FðRÞ gravity models, of
several Gauss-Bonnet FðGÞ models and finally of FðTÞ models, and in each case we demonstrate that it is
possible to describe in a unified way inflation and late-time acceleration in the context of the same
holographic model.
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I. INTRODUCTION

The holographic principle originates from black hole
thermodynamics and string theory and establishes a con-
nection of the infrared cutoff of a quantum field theory,
which is related to the vacuum energy, with the largest
distance of this theory [1–4]. This consideration has been
applied extensively in cosmological considerations, in
particular, at the late-time era of the Universe, known
currently as holographic dark energy models [5–23] which
are also known to be in good agreement with observations
[24–31]. At this stage we would like to mention that the
most general holographic dark energy is given by the one
with Nojiri-Odintsov cutoff [6] and it is interesting that it
may be applied to covariant theories, too [32]. Apart from
the dark energy model, the holographic energy density is
also found to be useful to realize the early Universe

evolution like the inflationary evolution [33–38]. The first
study of whether the Higgs inflation respects the holographic
principle (within the effective field theoretical approach) was
done in [33]. As a result it was found that the original model
of Higgs inflation, where the Higgs field couples with the
Ricci scalar, does not respect the holographic bound;
however, a different Higgs inflationary model, where the
coupling of the Higgs field is taken with the Einstein tensor
rather than the Ricci scalar, can change the scenario; in
particular, this newmodel passes the holographic test [33]. In
the context of inflation, the holographic model has the
advantage that since the largest distance (or the cutoff of the
theory) of the early Universe is small, the holographic energy
density is naturally large to successfully trigger the infla-
tionary era. Moreover the application of the holographic
principle at the early Universe studies, has been extended to
the bouncing scenario by some of our authors in [39] where
it was shown that the holographic energy density violates the
null energy condition (a necessary condition for bounce
[40–44]), which in turn generates the bouncing behavior of
the Universe (see [45,46] for some more articles on holo-
graphic bounce).
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Despite a considerable application of the holographic
principle individually at the early and late time evolution of
the Universe, to date it has not been attempted to provide a
unified description of the inflationary era with the dark
energy epoch. In the present work, we are interested in
providing a unified framework of holographic inflation
with holographic dark energy, providing a unified descrip-
tion of inflation with the late time accelerating Universe in a
holographic context. There is too strong evidence that
eventually modified gravity theories have a prominent role
in describing the early and late-time acceleration eras of our
Universe. Some of the higher curvature models which are
well known to provide such a unified description of early
and late-time acceleration can be found in Refs. [47–65] in
the context of FðRÞ gravity, [66–78] in the fðR;GÞ gravity,
etc. Recently, the axion-FðRÞ gravity model was proposed
in [55,61], where the axion field mimics the dark matter
evolution and hence the model provides a description of
dark matter along with the unification of early and late-time
acceleration eras. Interestingly, in the present work, we
propose several holographic models which, similar to
these aforementioned higher curvature models, are able
to describe the inflationary and the dark energy epoch of the
Universe in an unified manner.
The plan of our paper is as follows: In Sec. II, we briefly

discuss the essential features of the holographic model and
the corresponding holographic cutoff. In the following
sections, we propose various holographic models from a
different perspective, which are able to unify the cosmo-
logical eras of the Universe. Finally the conclusions follow
in the end of the paper.

II. ESSENTIAL FEATURES OF
HOLOGRAPHIC MODEL

According to the holographic principle, the holographic
energy density is proportional to the inverse squared
infrared cutoff LIR, which could be related with the
causality given by the cosmological horizon,

ρhol ¼
3c2

κ2L2
IR
: ð1Þ

Here κ2 is the gravitational constant and c is a free
parameter. We now consider the Friedmann-Robertson-
Walker (FRW) metric with the flat spatial part,

ds2 ¼ −dt2 þ a2ðtÞ
X

i¼1;2;3

ðdxiÞ2; ð2Þ

where aðtÞ is the scale factor. Then the Friedmann equation
is given by

H2 ¼ κ2

3
ρ; ð3Þ

where ρ is the energy density of the generalized fluid
driving the expansion of the Universe. We now assume that
the energy density ρ is given by ρhol in (1). Then the
Friedmann equation (3) can be rewritten as follows;

H ¼ c
LIR

: ð4Þ

The infrared cutoff LIR is usually assumed to be the
particle horizon Lp or the future event horizon Lf, which
are given as

Lp ≡ a
Z

t

0

dt
a
; Lf ≡ a

Z
∞

t

dt
a
: ð5Þ

Inserting these into (4) we obtain

d
dt

�
c
aH

�
¼ m

a
: ð6Þ

The m ¼ 1 case corresponds to the particle horizon and
m ¼ −1 case to the future event horizon. In the second
case, if we choose c ¼ 1, we obtain the solution describing
the de Sitter spacetime,

a ¼ a0eH0t; ð7Þ

with a0, H0 being two integration constants. Moreover for
c ≠ 1, Eq. (6) (with m ¼ −1) has the solution aðtÞ ¼
a0½tð1 − cÞ þ b0c� −c1−c, thus we get the de Sitter solution only
for the case c ¼ 1. However in the following sections,
when we determine the holographic cut-offs in terms of the
particle or the future horizon, we will keep c as a free
parameter.
In [8], a general form of the cutoff was proposed,

LIR ¼ LIRðLp; _Lp; L̈p;…; Lf; _Lf;…; H; _H; � � �R;
RμνRμν; � � �Þ: ð8Þ

The above cutoff could be chosen to be equivalent to a
general covariant gravity model,

S ¼
Z

d4
ffiffiffiffiffiffi
−g

p
F

× ðR;RμνRμν; RμνρσRμνρσ;□R;□−1R;∇μR∇μR; � � �Þ:
ð9Þ

We will use the above expressions frequently in the
following sections.

III. HOLOGRAPHIC CORRESPONDENCE OF FðRÞ
GRAVITY WITHOUT/WITH MATTER FIELDS

In this section we establish the holographic correspon-
dence of FðRÞ gravity with arbitrary form of FðRÞ. By the
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term “holographic correspondence,” we mean there exists
an equivalent holographic cutoff (LIR) which, along with
the expressionH ¼ 1=LIR, can reproduce the cosmological
field equations for the corresponding FðRÞ gravity. We
will show that such correspondence is not just confined
to “vacuum FðRÞ models” but also holds true even for
nonvacuum FðRÞ models, i.e., the FðRÞ gravity along with
matter fields. We start with the action of a general FðRÞ
gravity [see [47–49] for general reviews on FðRÞ gravity]
in absence of matter fields,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
FðRÞ
2κ2

�
¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ fðRÞ�;

ð10Þ
whereFðRÞ is decomposed asFðRÞ¼RþfðRÞ in the second
line and 1=κ ¼ MP with MP being the four-dimensional
reduced Planckmass. The gravitational field equation for the
above action in the FRW spacetime is given by

3H2 ¼ −
fðRÞ
2

þ 3ðH2 þ _HÞf0ðRÞ − 3H
df0ðRÞ
dt

; ð11Þ

where H ¼ _a
a is the Hubble parameter of the Universe and

f0ðRÞ ¼ df
dR. Equation (11) is the temporal component of

Einstein’s field equation; however, the spatial component,
containing _H, can be derived from Eq. (11) and thus we
do not quote it here. Moreover, in the case of FðRÞ gravity,
the off-diagonal component of Einstein’s field equations
are trivial and do not give any new information for the
dynamics of the cosmological equations. Comparing
Eqs. (4) and (11), we can argue that the FðRÞ gravity
has a holographic correspondence where the equivalent
holographic cutoff is given by the following expression:

3c2

ðLIRÞ2
¼ −

fðRÞ
2

þ 3ðH2 þ _HÞf0ðRÞ

− 18HðḦ þ 4H _HÞf00ðRÞ; ð12Þ

where we express df0ðRÞ
dt ¼ _Rf00ðRÞ ¼ 6ðḦ þ 4H _HÞf00ðRÞ

(recall R ¼ 12H2 þ 6 _H in the FRW spacetime). As men-
tioned earlier, the holographic cutoff LIR, in general, is a
function of the particle horizon (Lp), the future horizon
(Lf), the scale factor, and their derivatives [see Eq. (8)].
Keeping this in mind, here in the context of FðRÞ gravity,
we determine the holographic cutoff in two different ways:
(1) LIR in terms of Lp and their derivatives, and (2) LIR in
terms of Lf and their derivatives. In order to determine the
LIR in terms of the particle horizon and their derivatives, we
start from the expression Lp ¼ a

R
t dt
aðtÞ as mentioned in

Eq. (5). Upon differentiating both sides of this expression,

one gets the Hubble parameter as HðLp; _LpÞ ¼
_Lp

Lp
− 1

Lp

which immediately leads to the Ricci scalar,

RðLpÞ ¼ 6

�
L̈p

Lp
þ

_L2
p

L2
p
−
3 _Lp

L2
p
þ 2

L2
p

�
: ð13Þ

Plugging the above expressions of the Hubble parameter
and the Ricci scalar into Eq. (12), one obtains the LIR ¼
LIRðLp; _Lp; L̈p; higher derivatives of LpÞ by the following
relation:

3c2

ðLIRÞ2
¼ −

fðRðLpÞÞ
2

þ 3

�
L̈p

Lp
−

_Lp

L2
p
þ 1

L2
p

�
f0ðRðLpÞÞ

− 3

� _Lp

Lp
−

1

Lp

�
df0ðRðLpÞÞ

dt
: ð14Þ

Similarly, to determine the holographic cutoff as a function
of the future horizon (Lf) and their derivatives, we use
Lf ¼ a

R
∞
t

dt
aðtÞ. The derivative on both sides of this expres-

sion yields the Hubble parameter and consequently the
Ricci scalar as follows:

HðLf; _LfÞ ¼
_Lf

Lf
þ 1

Lf
; ð15Þ

and

RðLfÞ ¼ 6

�
L̈f

Lf
þ

_L2
f

L2
f

þ 3 _Lf

L2
f

þ 2

L2
f

�
; ð16Þ

respectively. Equations (15) and (16) along with
Eq. (12) immediately lead to LIR ¼ LIRðLf; _Lf; L̈f; higher
derivatives of LfÞ as

3c2

ðLIRÞ2
¼ −

fðRðLfÞÞ
2

þ 3

�
L̈f

Lf
þ

_Lf

L2
f

þ 1

L2
f

�
f0ðRðLfÞÞ

− 3

�
_Lf

Lf
þ 1

Lf

�
df0ðRðLfÞÞ

dt
: ð17Þ

Having established the holographic correspondence of the
vacuum FðRÞ model, now we consider the FðRÞ gravity
model in the presence of matter fields and the action is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

2κ2
½Rþ fðRÞ þ Lmat�; ð18Þ

where Lmat represents the matter field Lagrangian. The
gravitational and the matter field equations for the above
action in FRW spacetime are given by

3H2 ¼ −
fðRÞ
2

þ 3ðH2 þ _HÞf0ðRÞ − 3H
df0ðRÞ
dt

þ κ2ρmat;

_ρmat þ 3Hðρmat þ pmatÞ ¼ 0; ð19Þ
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with ρmat and pmat being the energy density and pressure
of the matter field, respectively. They are defined as
the temporal and spatial component of matter energy-
momentum tensor Tμν ¼ 2ffiffiffiffi−gp δLmat

δgμν , respectively. Com-

paring Eqs. (4) and (19), we can consider a holographic
origin of nonvacuum FðRÞ models where the equivalent
holographic cutoff is given by the same expression as
shown in Eq. (12). Consequently, the above gravitational
equation turns out to be

3H2 ¼ 3c2

ðLIRÞ2
þ κ2ρmat: ð20Þ

Thus Eq. (17) gives the equivalent holographic cutoff for
any arbitrary vacuum/nonvacuum FðRÞ gravity in terms of
the future horizon and their derivatives, while Eq. (14) does
the same, however, in terms of the particle horizon and their
derivatives. These clearly indicate that FðRÞ gravity has a
holographic origin which mimics the cosmological field
equations of the corresponding FðRÞ gravity. In the next
sections, we will determine the holographic cutoffs [by
using Eqs. (14) and (17)] for some explicit forms of FðRÞ
gravity, which are known to give a unified picture of
inflation and late time dark energy epoch.
At this stage it is worth mentioning that unlike in the two

aforementioned approaches (where LIR is determined in
terms of particle horizon or the future horizon), the holo-
graphic cutoffs for various FðRÞ models are determined in
another way and in particular, these are determined as an
integral, as shown in Refs. [34,35]. With such integral
forms, it is shown that the holographic correspondence for
vacuum and nonvacuum FðRÞmodels exists. In the spirit of
these previous works, here we will present integral forms of
holographic cutoffs for the considered forms of FðRÞ in the
next sections.

A. Holographic cutoff for FðRÞ inflationary models

Before moving to the unified scenario of inflation and
late-time accelerating epochs, we consider the FðRÞ infla-
tionary models and FðRÞ dark energy models separately and
will find the corresponding holographic cutoffs. The infla-
tionary FðRÞ holographic cutoffs are shown in this sub-
section, while the same for dark energy models are treated in
the next subsection. Some of the popular FðRÞ models
which are known to trigger a viable inflationary era, are
FðRÞ ¼ Rþ αR2, FðRÞ ¼ ebR [i.e., exponential FðRÞ grav-
ity] etc. Thus these specific forms of FðRÞ are considered

here, to determine the holographic cutoffs. Moreover it has
been shown earlier that FðRÞ models along with the second
rank antisymmetric Kalb-Ramond (KR) fields also give a
viable inflationary era [79,80]. In fact, the cubic curvature
vacuum FðRÞ gravity, i.e., FðRÞ ¼ Rþ βR3 model does not
produce a viable inflation; in particular, the theoretical
expectations of spectral index (ns) and tensor to scalar ratio
(r) do not match with the Planck 2018 constraints; however,
in the presence of the Kalb-Ramond field the cubic gravity
model becomes compatible with the Planck constraints (i.e.,
ns ¼ 0.9649� 0.0042 and r < 0.064) [79].
Thus the impact of the KR field on the inflationary

evolution is significant and will be clear from its cosmo-
logical evolution. The demonstration goes as follows: its
equation of state (EoS) parameter is unity, and the con-
servation equation of the KR field is given by _ρKR þ
6HρKR ¼ 0, solving which one obtains ρKR ∝ 1=a6; i.e.,
the energy density of the KR field decreases with faster
rate in comparison to pressureless matter and radiation.
(The negligible footprint of the KR field in the present
Universe can also be described from the higher dimensional
point of view [81] where the KR field is generally
considered to be a bulk field and our four-dimensional
visible Universe is a brane embedded within the higher
dimensional spacetime; further a nondynamical approach is
also presented in [82] to explain the imperceptible signa-
tures of the KR field in our Universe.) Thereby, it clearly
depicts that the present Universe may be free from the
direct signatures of the KR field; however, the KR field has
considerable effects during the early Universe (when the
scale factor is small compared to the present one). These
arguments reveal the importance of the Kalb-Ramond field
in inflationary models and thus, beside the vacuum FðRÞ
models, here we also determine the holographic cutoffs for
“FðRÞ þ KR” models.

1. Quadratic curvature gravity without/with KR field

Consider the action S ¼ 1
2κ2

R
d4x

ffiffiffiffiffiffi−gp ½Rþ αR2� (i.e.,
quadratic gravity without the KR field and α is a parameter
having mass dimension [−2]), for which the Friedmann
equation takes the following form:

H2 ¼ 6α½ _H2 − 2HḦ − 6 _HH2�: ð21Þ

The equivalent holographic cutoffs for fðRÞ ¼ αR2 in
terms of Lp and their derivatives can be obtained from
Eq. (14) and are given by

c2

ðLIRÞ2
¼ 6α

�
−
2L
…

p
_Lp

L2
p

þ 2L
…

p

L2
p
þ L̈2

p

L2
p
−
2L̈p

_L2
p

L3
p

þ 6L̈p
_Lp

L3
p

−
4L̈p

L3
p
þ 3 _L4

p

L4
p
−
12 _L3

p

L4
p

þ 15 _L2
p

L4
p

−
6 _Lp

L4
p

�
: ð22Þ

Similarly by plugging fðRÞ ¼ αR2 into Eq. (17), we get the holographic cu-off as a function of Lf and their derivatives as
follows:
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c2

ðLIRÞ2
¼ 6α

�
−
2L
…

f
_Lf

L2
f

−
2L
…

f

L2
f

þ L̈2
f

L2
f

−
2L̈f

_L2
f

L3
f

−
6L̈f

_Lf

L3
f

−
4L̈f

L3
f

þ 3 _L4
f

L4
f

þ 12 _L3
f

L4
f

þ 15 _L2
f

L4
f

þ 6 _Lf

L4
f

�
: ð23Þ

Therefore, the R2 inflationary models which are known to
be in good agreement with observations [83,84], have an
equivalent holographic model, thanks to the holographic
cutoffs obtained in Eqs. (22) and (23). However, in [34], a
different kind of holographic model has been proposed,
where the infrared cutoff takes the following form:

LIR

c
¼ −

1

6α _H2a6

Z
dta6 _H; ð24Þ

with α being the parameter of the model. Plugging this
expression back into the holographic Friedmann equation
H ¼ c

LIR
, we obtain the cosmological equations for FðRÞ ¼

Rþ αR2 gravity [see Eq. (21)]. Thus, apart from the cutoffs
determined earlier in terms of Lp or Lf, the holographic
energy density with the cutoff given in Eq. (24) is also able
to reproduce the Starobinsky R2 inflation.
The cutoffs in Eqs. (22) and (23) can provide an

equivalent holographic model even for a nonvacuum
quadratic gravity model where the Friedmann equation
takes the form 3H2 ¼ 3c2

ðLIRÞ2 þ κ2ρmat where ρmat is the

matter energy density. We consider the Kalb-Ramond field
as matter field (keeping the inflationary viability in mind)
and the action for the “Rþ αR2 þ KR” model is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
ðRþ αR2Þ − 1

12
HμνλHμνλ

�
;

where Hμνλ is the field strength tensor of the KR field
defined by Hμνλ ¼ ∂ ½μBνλ� where Bμν denotes the second
rank antisymmetric KR field. The above model generates a
viable inflationary scenario as explicitly shown in [79].
However the KR field indeed affects the Starobinsky
inflationary model by the following ways: being the EoS
parameter of the KR field is unity, the acceleration of the
early Universe gets reduced due to the presence of the KR
field in comparison to the case where the KR field is absent;
moreover from the observational side, the KR field is found
to enhance the tensor-to-scalar ratio with respect to the
Starobinsky inflationary model. The integral form of the
generalized infrared cutoff for the “Rþ αR2 þ KR” model
[35] is obtained as

LIR

c
¼ −

1

6α _H2a6

Z
dta6 _H

�
1 −

κ2ρ0
a6H2

�
; ð25Þ

where ρ0 is the energy density of the KR field at the horizon
crossing. Inserting the above expression into H ¼ c=LIR
after some simple algebra, we obtain the following differ-
ential equation:

H2 ¼ 6α½ _H2 − 2HḦ − 6 _HH2� þ κ2ρ0
a6

: ð26Þ

Equation (26) is actually a combination of two separate
equations,

FðRÞ
2

¼ 3ðH2 þ _HÞF0ðRÞ − 18ð4H2 _H þHḦÞF00ðRÞ
þ κ2ρKR; ð27Þ

and

dρKR
dt

þ 6HρKR ¼ 0; ð28Þ

respectively with FðRÞ ¼ Rþ αR2. It may be observed that
Eq. (28) is the conservation equation for the KR field
having EoS parameter unity. Thereby the cutoff in Eq. (25)
can reproduce the cosmological field equations for the
“Starobinsky þ KR” model. It may be mentioned that for
ρ0 ¼ 0, the expression in Eq. (25) becomes the same as in
Eq. (24), as expected. Therefore, the key equations which
represent the equivalent holographic energy density for the
R2 model without/with the KR field are given by Eqs. (22),
(23), (24), and (25), respectively.

2. Cubic curvature gravity without/with KR field

The cubic curvature model without the KR field has the
action S ¼ 1

2κ2

R
d4x

ffiffiffiffiffiffi−gp ½Rþ βR3� (β is a constant param-
eter with mass dimension [−4]) which, in the Friedmann
spacetime, leads to the following gravitational equation:

H2 ¼ 36α½2 _H3 − 6H _H Ḧ−15H2 _H2 þ 4H6

− 36H4 _H − 12H3Ḧ�: ð29Þ

Consequently, by plugging the explicit form of fðRÞ ¼ βR3

into Eqs. (14) and (17), we obtain LIR¼LIRðLp; _Lp;L̈p;
higherderivativesofLpÞ and LIR¼LIRðLf; _Lf;L̈f;higher
derivativesofLfÞ as follows:

c2

ðLIRÞ2
¼ 36α

L6
p
½2 − 3 _Lp þ _L2

p þ LpL̈p�

× ½2 − 27 _Lp þ 59 _L2
p − 45 _L3

p þ 11 _L4
p − 13LpL̈p

− Lp
_L2
pL̈p þ 2L2

pL̈2
p þ 6L2

pL
…

p

þ 18Lp
_LpL̈p − 6L2

p
_LpL

…

p�; ð30Þ

and

UNIFYING HOLOGRAPHIC INFLATION WITH HOLOGRAPHIC … PHYS. REV. D 102, 023540 (2020)

023540-5



c2

ðLIRÞ2
¼ 36α

L6
f

½2þ 3 _Lf þ _L2
f þ LfL̈f�½2þ 27 _Lf þ 59 _L2

f þ 45 _L3
f þ 11 _L4

f − 13LfL̈f

−Lf
_L2
fL̈f þ 2L2

fL̈
2
f − 6L2

fL
…

f − 18Lf
_LfL̈f − 6L2

f
_LfL

…

f�; ð31Þ
respectively. Moreover, the integral form of the holographic cutoff in the context of a vacuum cubic model is obtained as

LIR

c
¼ −

R
dta15=2 _H

36½2α _H3a15=2 − 4αH
R
dta15=2H _HðH3 − 9H _H − 3ḦÞ� : ð32Þ

We can easily see that by inserting the above expression
into the holographic Friedmann equation, we will finally
yield Eq. (29). Therefore, the holographic cutoffs deter-
mined in Eqs. (30), (31), and (32) are equivalent to
FðRÞ ¼ Rþ βR3 model. Thereby, the cosmology of R3

gravity can be realized from the holographic origin with
the specified infrared cutoffs just mentioned. It is well
known that FðRÞ ¼ Rþ αR3 does not give a viable
inflationary era, in particular, the theoretical values of
ns and r do not comply with the observable constraints

from Planck 2018. However, as mentioned earlier, in the
presence of the second rank antisymmetric Kalb-Ramond
field, the cubic gravity model becomes viable in respect
to Planck 2018 constraints. In particular for 0.03≲
κ2ρ0

ffiffiffi
β

p ≲ 0.3 (where ρ0 is the energy density of the
KR field at horizon crossing), the spectral index and the
tensor to scalar ratio become simultaneously compatible
with Planck 2018 constraints. In the Rþ βR3 þ KR
model, the Friedmann and the KR field equations are
given by

0 ¼ −H2 þ 36α½2 _H3 − 6H _H Ḧ−15H2 _H2 þ 4H6 − 36H4 _H − 12H3Ḧ� þ κ2ρKR;

0 ¼ dρKR
dt

þ 6HρKR: ð33Þ

As demonstrated in Sec. III, the holographic cutoffs for Rþ βR3 þ KR in terms of Lp or Lf (along with their derivatives)
are the same as those obtained in Eqs. (30) and (31), respectively. On the other hand, the integral form of the holographic
cutoff in the Rþ βR3 þ KR model is changed in comparison to Eq. (32) and is determined as

LIR

c
¼ −

R
dta15=2 _Hð1 − κ2h0

a6H2Þ
36½2α _H3a15=2 − 4αH

R
dta15=2H _HðH3 − 9H _H − 3ḦÞ� : ð34Þ

The above expression along withH ¼ c=LIR immediately leads to the cosmological field Eq. (33). Again one may note that
for ρ0 ¼ 0, the expression in Eq. (34) is reduced to Eq. (32), as expected. Thus as a whole, the cosmological imprints of the
cubic gravity model without/with the KR field can be reproduced by the holographic models having the cutoffs given in
Eqs. (30), (31), (32), and (34), respectively.

3. Exponential FðRÞ gravity without/with KR field

For exponential FðRÞ ¼ aebR (with a and b being constant parameters, both having mass dimension [−2]), the
corresponding holographic cutoff in terms of Lp is directly obtained from Eq. (14) as

c2

ðLIRÞ2
¼ ðabebPðLp; _Lp;L̈pÞ − 1Þ

�
1

L2
p
−

_Lp

L2
p
þ L̈p

Lp

�
þ 1

6
ðPðLp; _Lp; L̈pÞ − aebPðLp; _Lp;L̈pÞÞ

þ 6ab2ebPðLp; _Lp;L̈pÞ
�
_Lp

Lp
−

1

Lp

��
−4

_Lp

L3
p
þ 6

_L2
p

L3
p
− 2

_L3
p

L3
p
− 3

L̈p

L2
p
þ

_LpL̈p

L2
p

þ L
…

p

Lp

�
: ð35Þ

Similarly the cutoff in terms of the future horizon can be determined from Eq. (17) as

c2

ðLIRÞ2
¼ ðabebQðLf; _Lf;L̈fÞ − 1Þ

�
1

L2
f

þ
_Lf

L2
f

þ L̈f

Lf

�
þ 1

6
ðQðLf; _Lf; L̈fÞ − aebQðLf; _Lf;L̈fÞÞ

þ 6ab2ebQðLf; _Lf;L̈fÞ
�
_Lf

Lf
þ 1

Lf

��
−4

_Lf

L3
f

− 6
_L2
f

L3
f

− 2
_L3
f

L3
f

þ 3
L̈f

L2
f

þ
_LfL̈f

L2
f

þ L
…

f

Lf

�
; ð36Þ

NOJIRI, ODINTSOV, OIKONOMOU, and PAUL PHYS. REV. D 102, 023540 (2020)

023540-6



where the functions P and Q are

PðLp; _Lp; L̈pÞ ¼ 6

�
2

L2
p
−
3 _Lp

L2
p
þ

_L2
p

L2
p
þ L̈p

Lp

�
;

QðLf; _Lf; L̈fÞ ¼ 6

�
2

L2
f

þ 3 _Lf

L2
f

þ
_L2
f

L2
f

þ L̈f

Lf

�
;

respectively. Apart from these two kinds of holographic
cutoffs, an integral form of LIR in the context of exponential
FðRÞ gravity is obtained as follows:

LIR

c
¼

R
dta4ð1 − 6β _H2=H2Þ

6βa4 _H þH
R
dta4ð 1

6βH2 −
_H

H2Þ
: ð37Þ

The above expressions of LIR along with the holographic
equation H ¼ c=LIR lead to the following differential
equation for H:

H2 ¼ 6β½HḦ þ 4H2 _H� þ 1

6β
½1 − 6β _H�; ð38Þ

which can be rewritten in the form

FðRÞ
2

¼ 3ðH2 þ _HÞF0ðRÞ − 18ð4H2 _H þHḦÞF00ðRÞ;

with FðRÞ ∝ eβR. Therefore the holographic equation can
mimic the cosmological equations of exponential FðRÞ
gravity, thanks to the different kinds of holographic cutoffs
in Eqs. (35), (36), and (37).
The generalized holographic cutoffs shown in Eqs. (35)

and (36) are also valid for exponential FðRÞ gravity even
in the presence of the Kalb-Ramond field where the
Friedmann equation takes the following form:

3H2 ¼ 3c2

ðLIRÞ2
þ κ2ρKR:

However, in the presence of the KR field, the integral form
of LIR in the context of FðRÞ ¼ 1

κ2
ebR comes with the

following expression:

LIR

c
¼

R
dta4ð1 − 6β _H2=H2 − κ2ρ0

a6H2Þ
6βa4 _H þH

R
dta4ð 1

6βH2 −
_H

H2Þ
: ð39Þ

Equations (35), (36), (37), and (39) represent different types
of holographic cutoffs which, along withH ¼ c=LIR, realize
the cosmological scenario of the exponential FðRÞ gravity
without/with the KR field. Regarding the observable viabil-
ity, unlike to vacuum cubic curvature gravity, the vacuum
exponential FðRÞ model is known to be in good agreement
with Planck constraints. Moreover the exponential FðRÞ
model in the presence of the KR field also leads to a viable
inflationary scenario, in particular, for the parametric regime
0.005≲ κ2ρ0b≲ 0.1 (where ρ0 is the KR field energy
density at horizon crossing), the inflationary parameters like
the spectral index and tensor-to-scalar ratio are found to
comply with Planck 2018 constraints [35].

B. Holographic cutoff for FðRÞ dark energy models

As an FðRÞ dark energy model, we consider,

fðRÞ ¼ f0Rm; ð40Þ
with constants f0 and m [51]. We consider the exponent m
to be less than unity for which the term f0Rm dominates
over the Einstein-Hilbert and the matter term(s) in the low
curvature regime, as in the case of the late-time Universe.
As a consequence, the Hubble rate H ≡ _a=a behaves as

H ∼
− ðm−1Þð2m−1Þ

m−2
t

; ð41Þ

with an effective EoS parameter,

weff ¼ −
ð6m2 − 7m − 1Þ
3ðm − 1Þð2m − 1Þ : ð42Þ

The above expression indicates that for m < −0.97, the
theoretical expectations of the EoS parameter satisfies
the observations coming from SNIa results (−1.57 <
weff < −0.66). On other hand, for m < −0.47, the EoS
parameter in Eq. (42) satisfies the baryon accoustic
oscillations (BAO) results (−2.19 < weff < −0.42).
Thereby for m < −0.97, the theoretical values of weff is
consistent with both the SNIa and BAO results and thus
we stick with m < −0.97, for which, our consideration that
the term Rm dominates over the Einstein-Hilbert term in the
low curvature regime is also valid. Thus fðRÞ ¼ f0Rm with
m < −0.97 can act as a dark energy model in the context of
FðRÞ gravity. Using Eqs. (14) and (17), we determine the
equivalent holographic cutoff for this model as

3c2

ðLFðRÞ
IR Þ2

¼ f0

�
−
1

2

�
6

�
L̈p

Lp
þ

_L2
p

L2
p
−
3 _Lp

L2
p
þ 2

L2
p

��m

þ 3m

�
L̈p

Lp
−

_Lp

L2
p
þ 1

L2
p

��
6

�
L̈p

Lp
þ

_L2
p

L2
p
−
3 _Lp

L2
p
þ 2

L2
p

��m−1

−18m
�
_Lp

Lp
−

1

Lp

��
L
…

p

Lp
þ

_LpL̈p

L2
p

−
2 _L3

p

L3
p
−
3L̈p

L2
p
þ 6 _L2

p

L3
p
−
4 _Lp

L3
p

��
6

�
L̈p

Lp
þ

_L2
p

L2
p
−
3 _Lp

L2
p
þ 2

L2
p

��m−1�
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¼ f0

�
−
1

2

�
6

�
L̈f

Lf
þ

_L2
f

L2
f

þ 3 _Lf

L2
f

þ 2

L2
f

��m

þ 3m

�
L̈f

Lf
þ

_Lf

L2
f

þ 1

L2
f

��
6

�
L̈f

Lf
þ

_L2
f

L2
f

þ 3 _Lf

L2
f

þ 2

L2
f

��m−1

−18m
�
_Lf

Lf
þ 1

Lf

��
L
…

f

Lf
þ

_LfL̈f

L2
f

−
2 _L3

f

L3
f

þ 3L̈f

L2
f

−
6 _L2

f

L3
f

−
4 _Lf

L3
f

��
6

�
L̈f

Lf
þ

_L2
f

L2
f

þ 3 _Lf

L2
f

þ 2

L2
f

��m−1�
: ð43Þ

The first expression in the right-hand side of Eq. (43) represents the LIR in terms of Lp and its derivatives while the second
expression gives LIR ¼ LIRðLf; _Lf; L̈f; higher derivatives of LfÞ. Therefore the model (40) can also be reproduced from
the holographic energy density having the LIR determined in Eq. (43). Clearly such holographic energy density is able to
drive the dark energy epoch of our Universe. As a more realistic dark energy F(R) model, we may consider the exponential
F(R) gravity which is known to provide a viable dark energy model as described in [85,86]. In particular, we consider

FlðRÞ ¼ R − 2Λð1 − e−
βR
2ΛÞ ð44Þ

with β and Λ being two model parameters having the mass dimensions [0] and [þ2] respectively. Due to the Supernovae Ia
(Sne-Ia) [87], BAO [88], cosmic microwave background (CMB)‘ [89], and H(z) [90] datasets, the parameters β and Λ are
well constrained, in particular, the F(R) model (44) is best fitted with Sne-Iaþ BAOþ HðzÞ þ CMB data for the parametric
regimes given by β ¼ 3.98þ∞

−2.46 and Λ ¼ 1.2 × 10−84 GeV2 [85]. The equivalent holographic cutoffs (in terms of the
particle and future horizon) for the above exponential F(R) model is determined as

3c2

ðLFðRÞ
IR Þ2

¼ Λ
�
1 − exp

�
−
3β

Λ

�
L̈p

Lp
þ

_L2
p

L2
p
−
3 _Lp

L2
p
þ 2

L2
p

���
1 −

3β

Λ

�
L̈p

Lp
−

_Lp

L2
p
þ 1

L2
p

�

−
9β2

Λ2

� _Lp

Lp
−

1

Lp

��
L
…

p

Lp
þ

_LpL̈p

L2
p

−
2 _Lp

3

L3
p

−
3L̈p

L2
p
þ 6 _Lp

2

L3
p

−
4 _Lp

L3
p

���

¼ Λ
�
1 − exp

�
−
3β

Λ

�
L̈f

Lf
þ

_L2
f

L2
f

þ 3 _Lf

L2
f

þ 2

L2
f

���
1 −

3β

Λ

�
L̈f

Lf
þ

_Lf

L2
f

þ 1

L2
f

�

−
9β2

Λ2

� _Lf

Lf
þ 1

Lf

��
L
…

f

Lf
þ

_LfL̈f

L2
f

−
2 _L3

f

L3
f

þ 3L̈f

L2
f

−
6 _L2

f

L3
f

−
4 _Lf

L3
f

���
: ð45Þ

Because the FðRÞ gravity model (44) generates the accel-
erating expansion of the late universe, the holographic
model also plays the role of the dark energy.

C. Unification of holographic inflation
with holographic dark energy

In view of the previous sections, we are motivated to
construct a model unifying the inflationary era in terms of
the Starobinsky R2 inflation (which is known to lead to
inflationary observables in a very good agreement with
observations [91]), with the accelerating expansion of the
late Universe by using the future event horizon Lf in (5). An
example is given by

LIR

c
¼ a1þn

ðal0Þn þ an

Z
∞

t

dt
a

−
ðae0Þm

6α _H2a6ððae0Þm þ amÞ
Z

t
dta6 _H: ð46Þ

Here n, m, al0, and a
e
0 are positive constants and we choose

al0 to be smaller than the scale factor in the present Universe

and ae0 to be larger than the scale factor in the Universe
after inflation. We also assume al0 ≫ ae0. Then in the late
Universe, where a ≫ al0, the first term dominates and
behaves as the future horizon,

LIR

c
∼ a

Z
∞

t

dt
a
; ð47Þ

which along with the holographic Friedmann equation
H ¼ c

LIR
generates the accelerating expansion of the pre-

sent Universe. On the other hand, in the early Universe,
where a ≪ ae0, the second term dominates and behaves as
in (24),

LIR

c
∼ −

1

6α _H2a6

Z
t
dta6 _H; ð48Þ

which generates the Starobinsky inflation. Thereby the
cutoff proposed in Eq. (46) can provide a unified scenario
of inflation and late time acceleration of the Universe from
a holographic point of view.
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1. Minimally coupled axion-FðRÞ gravity model

A more realistic and a recent model which unifies
various cosmological epochs of the Universe is the
axion-FðRÞ gravity model described in [61] and first
proposed in [55]. The action of the model is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p

×

�
1

2κ2
ðRþ fðRÞÞ − 1

2
∂μϕ∂μϕ − VðϕÞ þ Lmat

�
;

ð49Þ

where ϕ is the axion scalar field endowed within the
potential VðϕÞ. The axion field acts as a dark matter
component of the Universe, which, during the inflationary
era, was frozen at its primordial vacuum expectation value.
Lmat is the matter Lagrangian; however, in [61], the authors
assumed the only perfect fluid to be present is the radiation
fluid, which in fact comes as a viable consideration for
the purpose of unification. Here it deserves mentioning
that the model (49) does not describe the interaction
between the ordinary/dark matter and the dark energy.
However, in the next subsection in the model (62), the
axion field i.e., the dark matter component, is considered to
be nonminimally coupled with the curvature. The form of
fðRÞ of action (49) is taken as

fðRÞ ¼ R2

M2
− γRδ; ð50Þ

with δ being a positive number in the interval 0 < δ < 1.
Moreover the parameter M is chosen as M ¼ 1.5 ×
10−5ðN

50
Þ−1 for early-time phenomenological reasons [61]

where N is the e-foldings number. The first Friedmann
equation of the action (49) is

3H2 ¼ −
fðRÞ
2

þ 3ðH2 þ _HÞf0ðRÞ − 3H
df0ðRÞ
dt

þ κ2
�
ρr þ

1

2
_ϕ2 þ VðϕÞ

�
; ð51Þ

with ρr being the energy density for the radiation (recall
Lmat consists only of radiation, as mentioned earlier) and
the scalar field is considered to be spatially homogeneous.
As described in [61], the model (49) successfully unifies

various epochs of our Universe. The demonstration goes as
follows: during the early epoch when the curvature is large,
the term R2 dominates over Rδ as 0 < δ < 1. Also in the
early stage of the Universe, the axion field was frozen in its
vacuum expectation value and for mϕ ∼Oð10−14Þ eV, the
axion field only contributes a very small cosmological

constant (compared to the other terms) in the equation
of motion. The axion mass in the present model [i.e.,
∼Oð10−14Þ eV] respects the latest Planck data of the
dark matter density given by Ωah2 ¼ 0.12� 0.001. This
result is in agreement with [92] where it was shown that the
dark matter density (i.e., Ωah2 ¼ 0.12� 0.001) requires
the axion mass range as 10−24 eV ≤ mϕ ≤ 10−12 eV. for
1014 GeV≲ ϕi ≲ 1017 GeV, where ϕi is the vacuum
expectation value obtained by the axion field. Further
the “string anthropic boundary” is where Ωah2 ¼ 0.12
leads to mϕ ≃ 10−19 eV for ϕi ¼ 1016 eV [92]. Here we
would like to mention that in the present paper we discuss
the axionlike particles (where the Peccei Quinn symmetry
is not broken during inflation), not the QCD axion in which
case the mass bound of the axion lies within 10−5 eV≲
mϕ ≲ 10−2 eV [93]. Thus the mass range relevant for
axion dark matter is wide, as demonstrated in various
earlier literature. For the present higher curvature axion
model, the axion mass comes as mϕ ∼Oð10−14Þ eV with
ϕi ∼Oð1015Þ GeV. Coming back to Eq. (51), it is evident
that the Ricci scalar related terms dominate the inflationary
evolution, and specifically the R2, hence the model is
reduced to the R2 model, which yields a viable inflationary
phenomenology compatible with the observational data
coming from Planck 2018. With the expansion of the
Universe, the Hubble parameter decreases and when
H ≲mϕ, the axion starts to oscillate. Assuming a slowly
varying oscillation for the axion, it can be shown that the
axion energy density scales as ρϕ ∼ a−3, thus the axion
mimics the dark matter fluid with an average EoS param-
eter wϕ ≃ 0. At late time of the Universe, the Rδ term in the
fðRÞ dominates and controls the dynamics. After demon-
strating the contribution of each term, the full Friedmann
equation is solved numerically for a wide range of redshift
(z), in particular for z ¼ ½0; 10�. Following the numerical
solution, various parameters, namely the deceleration para-

meter q ¼ −1 − _H
H2, the jerk parameter j ¼ Ḧ

H3 − 3q − 2, the

parameter s ¼ ðj−1Þ
3ðq−1=2Þ, and the parameterOmðzÞ ¼

HðzÞ
H2
0

−1

ð1þzÞ3−1
have been estimated. As a result the axion-FðRÞ gravity
model is found to produce results very similar to the
ΛCDM model, in some cases almost identical for small
redshifts, and in all cases compatible results with the latest
Planck constraints on the cosmological parameters.
In order to map the axion-FðRÞ gravity model with the

holographic one, we put the form of fðRÞ ¼ R2

M2 − γRδ into
Eq. (14) and upon some simple algebra, we get the
corresponding holographic cutoff in terms of Lp and its
derivatives as follows:
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c2

ðLIRÞ2
¼ 6

�
1

Lp
−

_Lp

Lp

��
2

M2
þ ð6ΩðLpÞÞδ−2γδð1 − δÞ

��
−4

_Lp

L3
p
þ 6

_L2
p

L3
p
− 2

_L3
p

L3
p
− 3

L̈p

L2
p
þ

_LpL̈p

L2
p

þ L
…

p

Lp

�

þ 6ΩðLpÞ

�
1

L2
p
−

_Lp

L2
p
þ L̈p

Lp

��
2

M2
− ð6ΩðLpÞÞδ−2γδ

�
− 6ΩðLpÞ

�
2

M2
− ð6ΩðLpÞÞδ−2γ

�
; ð52Þ

with ΩðLpÞ ¼ 2
L2
p
− 3

_Lp

L2
p
þ _L2

p

L2
p
þ L̈p

Lp
. Similarly the cutoff in terms of the Lf and its derivatives is obtained from Eq. (17) as

follows:

c2

ðLIRÞ2
¼ 6

�
−

1

Lf
−

_Lf

Lf

��
2

M2
þ ð6ΩðLfÞÞδ−2γδð1 − δÞ

��
−4

_Lf

L3
f

− 6
_L2
f

L3
f

− 2
_L3
f

L3
f

þ 3
L̈f

L2
f

þ
_LfL̈f

L2
f

þ L
…

f

Lf

�

þ 6ΩðLfÞ

�
1

L2
f

þ
_Lf

L2
f

þ L̈f

Lf

��
2

M2
− ð6ΩðLfÞÞδ−2γδ

�
− 6ΩðLfÞ

�
2

M2
− ð6ΩðLfÞÞδ−2γ

�
; ð53Þ

where ΩðLfÞ ¼ 2
L2
p
þ 3

_Lf

L2
f
þ _L2

f

L2
f
þ L̈f

Lf
. With the cutoffs determined in the above two expressions, the axion-FðRÞ model (49)

can be equivalently mapped to a holographic model where the Friedmann equation is of the form

3H2 ¼ 3c2

ðLIRÞ2
þ κ2

�
ρr þ

1

2
_ϕ2 þ VðϕÞ

�
: ð54Þ

The cutoffs determined in Eqs. (52) and (53) can be decomposed as

1

ðLIRÞ2
¼ 1

ðLð1Þ
IR Þ2

þ 1

ðLð2Þ
IR Þ2

;

or the above expression can be rewritten as

ρhol ¼ ρð1Þhol þ ρð2Þhol; ð55Þ

where ρðiÞholð¼ 3c2

κ2ðLðiÞ
IR Þ

2Þ is the holographic energy density with the cutoff LðiÞ
IR . Furthermore ρð1Þhol and ρð2Þhol are given by

ρð1Þhol ¼
3c2

κ2ðLð1Þ
IR Þ2

¼ 3

κ2

�
12

M2

�
1
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_Lp

Lp
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p
þ
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p
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…

p
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�
1
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p
−

_Lp
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p
þ L̈p

Lp

�
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12
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ΩðLpÞ

�

¼ 3

κ2

�
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1
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−
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Lf
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þ
_LfL̈f
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f
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M2
ΩðLfÞ

�
1

L2
f

þ
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Lf

�
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ΩðLfÞ

�
;

ð56Þ
and

ρð2Þhol ¼
3c2

κ2ðLð2Þ
IR Þ2

¼ 3
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−

1

Lf
−

_Lf

Lf

��
−4

_Lf

L3
f

− 6
_L2
f

L3
f

− 2
_L3
f

L3
f

þ 3
L̈f

L2
f

þ
_LfL̈f

L2
f

þ L
…

f

Lf

�

− ð6ΩðLfÞÞδ−1γδ
�
1

L2
f

þ
_Lf

L2
f

þ L̈f

Lf

�
þ γð6ΩðLfÞÞδ−1

�
; ð57Þ
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respectively. With such decomposition of LIR, the holo-
graphic Friedmann Eq. (54) can be rewritten as

3H2 ¼ κ2ðρð1Þhol þ ρð2ÞholÞ þ κ2
�
ρr þ

1

2
_ϕ2 þ VðϕÞ

�
: ð58Þ

Clearly ρð1Þhol corresponds to the R2 term and thus dominates

over the ρð2Þhol and ρr term in the early epoch of the Universe.
Moreover, the axion field was frozen during the infla-
tionary era and thereby, we can safely neglect ρϕ from
Eq. (58). Hence, in the early Universe when the curvature is
large, Eq. (58) behaves as

3H2 ≃ κ2ρð1Þhol; ð59Þ

which successfully produces an inflationary scenario. As
the Universe expands, the Hubble parameter decreases and
from H ≪ mϕ, the axion field starts to oscillate and thus

contributes its effect to the dynamics, along with the term
ρr. Moreover, in the low curvature regime, as in the case of

the present Universe, the energy density ρð2Þhol dominates
over the other terms of Eq. (58). In view of these arguments,
after the inflationary scenario, Eq. (58) becomes

3H2 ≃ κ2ρð2Þhol þ κ2
�
ρr þ

1

2
_ϕ2 þ VðϕÞ

�
; ð60Þ

where ρr and ρϕ denote the radiation and matter dominated

epochs, respectively, while ρð2Þhol denotes the holographic
dark energy density at late times. Therefore, Eq. (58) is able
to unify various cosmological epochs of our Universe from
a holographic point of view.
Before closing this section, we would like to mention

that apart from the two aforementioned forms of LIR [i.e., in
Eqs. (52) and (53)], an integral form of LIR for the axion-
FðRÞ model is also calculated and given by

LIR

c
¼ −

1

6α _H2a6

Z
dta6 _H

�
1 − γ6δ−1ð2H2 þ _HÞδ−2

�
2H2ð2 − δÞ þ

_H2

H2
ð1 − δÞ − Ḧ

H
δð1 − δÞ þ _Hð4 − 7δþ 4δ2Þ

�

−
κ2

H2
ðρr þ ρϕÞ

�
: ð61Þ

Inserting the above expression of the cutoff into H ¼ c
LIR
,

one can reproduce the first Friedmann Eq. (51) for
fðRÞ ¼ R2

M2 − γRδ. Therefore, the cutoff in Eq. (61) also
provides a corresponding holographic model for the axion-
FðRÞ action (49).

2. Nonminimally coupled axion-FðRÞ gravity model

As an extension, we consider a second axion-FðRÞ
gravity model where the axion scalar field is nonminimally
coupled with the curvature, unlike to the previous model
(49) where the axion is minimally coupled with the gravity.
The action of the second axion-FðRÞmodel is the following
[55]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
ðRþ fðR;ϕÞÞ − 1

2
∂μϕ∂μϕ − VðϕÞ

�
;

ð62Þ

where fðR;ϕÞ takes the form

fðR;ϕÞ ¼ R2

M2
þ hðϕÞRδ; ð63Þ

where δ is a dimensionless parameter with values in the
interval 0 < δ < 1. It is evident that the axion field couples
with the curvature with the coupling function hðϕÞ. In the

spatially flat FRW spacetime, the first Friedmann equation
of the action (62) becomes

3H2 ¼ −
fðR;ϕÞ

2
þ 3ðH2 þ _HÞ ∂f∂R − 3H

d
dt

�∂f
∂R

�

þ 1

2
_ϕ2 þ VðϕÞ; ð64Þ

with the consideration that the axion field is homogeneous
in space. Similar to the previous model, the present model
(62) is also able to unify various cosmological epochs of
our Universe like inflation, dark matter epoch, and dark
energy epoch as described in [55]. During the early epoch,
the axion field in the action (62) was frozen at its vacuum
expectation value (vev) and due to the consideration
VðϕÞ ≫ 1

κ2
hðϕÞRδ, the axion field merely contributes a

cosmological constant (due to the presence of its potential)
to the equation of motion. Again for mϕ ∼Oð10−12Þ eV,
the cosmological constant coming from the axion vev can
be neglected compared to the R2 term which is a naturally
dominant term in the large curvature regime, as in the early
Universe. Moreover due to 0 < δ < 1, the Rδ term is
subdominant in comparison to the quadratic term and thus
the dynamics of the early Universe is controlled by the R2

term which is known to produce a viable inflationary era
compatible with Planck constraints. As the Universe
expands, the Hubble parameter decreases and from
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H ∼mϕ, the axion begins its dynamical evolution.
Assuming slowly varying oscillating dynamics for the
axion, it can be shown that the energy density of the same
evolves as ρϕ ∼ a−3. Thus the axion field mimics the
behavior of the dark matter of the Universe. Finally during
the low curvature regime, i.e., in the present Universe, the
term hðϕÞRδ starts to dominate and provides a dark energy
model. These arguments clearly indicate that the qualitative
nature of the models (49) and (62) are more or less the
same. However it is worth mentioning that the model (62)
predicts the existence of a stiff matter era for the axion field
at a primordial preinflationary era, in which case the energy

density scales as ρϕ ∼ a−6, which is not predicted by the
model (49). Actually the prediction of a stiff matter era
from the model (62) arises due to the reason that the
aforementioned condition VðϕÞ ≫ 1

κ2
hðϕÞRδ should hold

true during or after the inflationary era. Therefore, in the
preinflationary epoch, one could have VðϕÞ ∼ 1

κ2
hðϕÞRδ

which in turn makes ρϕ ∼ a−6 through the conservation
equation of the axion field.
Plugging the form of fðRÞ ¼ R2

M2 þ hðϕÞRδ into Eq. (14),
we get the equivalent holographic cutoff in terms of the
particle horizon (Lp) and its derivatives as

c2

ðLIRÞ2
¼ 6

�
1

Lp
−

_Lp

Lp

��
2

M2
− ð6ΩðLpÞÞδ−2hðϕðaÞÞδð1 − δÞ

��
−4

_Lp

L3
p
þ 6

_L2
p

L3
p
− 2

_L3
p

L3
p
− 3

L̈p

L2
p
þ

_LpL̈p

L2
p

þ L
…

p

Lp

�

þ 6ΩðLpÞ

�
1

L2
p
−

_Lp

L2
p
þ L̈p

Lp

��
2

M2
þ ð6ΩðLpÞÞδ−2hðϕðaÞÞδ

�
− 6ΩðLpÞ

�
2

M2
þ ð6ΩðLpÞÞδ−2hðϕðaÞÞ

�
; ð65Þ

where ΩðLpÞ is given after Eq. (52) and ϕ ¼ ϕðaÞ can be determined from the conservation equation of the axion field. The
holographic cutoff for the model (62) in terms of the Lf and its derivatives is obtained from Eq. (17) as follows:

c2

ðLIRÞ2
¼ 6

�
−

1

Lf
−

_Lf

Lf

��
2

M2
− ð6ΩðLfÞÞδ−2hðϕðaÞÞδð1 − δÞ

��
−4

_Lf

L3
f

− 6
_L2
f

L3
f

− 2
_L3
f

L3
f

þ 3
L̈f

L2
f

þ
_LfL̈f

L2
f

þ L
…

f

Lf

�

þ 6ΩðLfÞ

�
1

L2
f

þ
_Lf

L2
f

þ L̈f

Lf

��
2

M2
þ ð6ΩðLfÞÞδ−2hðϕðaÞÞδ

�
− 6ΩðLfÞ

�
2

M2
þ ð6ΩðLfÞÞδ−2hðϕðaÞÞ

�
; ð66Þ

for ΩðLfÞ, see the expression just after Eq. (53). Clearly the
axion-FðRÞ model (62) is equivalent to the holographic
model with the cutoffs determined in the above two
expressions. The corresponding holographic Friedmann
equation takes the form:

3H2 ¼ 3c2

ðLIRÞ2
þ κ2

�
1

2
_ϕ2 þ VðϕÞ

�
: ð67Þ

The cutoffs determined in Eqs. (65) and (66) are decom-
posed as

1

ðLIRÞ2
¼ 1

ðLð1Þ
IR Þ2

þ 1

ðLð2Þ
IR Þ2

;

and the above expression can be rewritten as

ρhol ¼ ρð1Þhol þ ρð2Þhol; ð68Þ

where, in the spirit of Eq. (1), ρðiÞhol ¼ 3c2

κ2ðLðiÞ
IR Þ

2. Furthermore

ρð1Þhol and ρð2Þhol are given by

ρð1Þhol ¼
3c2

κ2ðLð1Þ
IR Þ2

¼ 3

κ2

�
12

M2

�
1

Lp
−

_Lp

Lp

��
−4

_Lp

L3
p
þ 6

_L2
p

L3
p
− 2

_L3
p

L3
p
− 3

L̈p

L2
p
þ

_LpL̈p

L2
p

þ L
…

p

Lp

�
þ 12

M2
ΩðLpÞ

�
1

L2
p
−

_Lp

L2
p
þ L̈p

Lp

�
−

12

M2
ΩðLpÞ

�

¼ 3

κ2

�
12

M2

�
−

1

Lf
−

_Lf

Lf

��
−4

_Lf

L3
f

− 6
_L2
f

L3
f

− 2
_L3
f

L3
f

þ 3
L̈f

L2
f

þ
_LfL̈f

L2
f

þ L
…

f

Lf

�
þ 12

M2
ΩðLfÞ

�
1

L2
f

þ
_Lf

L2
f

þ L̈f

Lf

�
−

12

M2
ΩðLfÞ

�
;

ð69Þ

and
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ρð2Þhol ¼
3c2

κ2ðLð2Þ
IR Þ2

¼ 3

κ2

�
−6ð6ΩðLpÞÞδ−2hðϕðaÞÞδð1 − δÞ

�
1

Lp
−

_Lp

Lp

��
−4

_Lp

L3
p
þ 6

_L2
p

L3
p
− 2

_L3
p

L3
p
− 3

L̈p

L2
p
þ

_LpL̈p

L2
p

þ L
…

p

Lp

�

þ ð6ΩðLpÞÞδ−1hðϕðaÞÞδ
�
1

L2
p
−

_Lp

L2
p
þ L̈p

Lp

�
− hðϕðaÞÞð6ΩðLpÞÞδ−1

�

¼ 3

κ2

�
−3ð6ΩðLf ÞÞδ−2hðϕðaÞÞδð1 − δÞ

�
−

1

Lf
−

_Lf

Lf

��
−4

_Lf

L3
f

− 6
_L2
f

L3
f

− 2
_L3
f

L3
f

þ 3
L̈f

L2
f

þ
_LfL̈f

L2
f

þ L
…

f

Lf

�

þ ð6ΩðLfÞÞδ−1hðϕðaÞÞδ
�
1

L2
f

þ
_Lf

L2
f

þ L̈f

Lf

�
− hðϕðaÞÞð6ΩðLfÞÞδ−1

�
; ð70Þ

respectively. With such decomposition of LIR, Eq. (67) can
be rewritten as

3H2 ¼ κ2ðρð1Þhol þ ρð2ÞholÞ þ κ2
�
1

2
_ϕ2 þ VðϕÞ

�
: ð71Þ

As earlier, ρð1Þhol corresponds to the R2 term and due to the
arguments demonstrated just after Eq. (64), the holographic
Eq. (71) behaves during the early Universe as

3H2 ≃ κ2ρð1Þhol; ð72Þ

which describes an inflationary scenario with good agree-
ment in terms of the Planck observations. On other hand,
after the inflationary scenario, the axion field starts to

contribute and also in the present Universe the hðϕÞRδ term
dominates over the quadratic curvature. As a result, after
inflation, Eq. (71) becomes

3H2 ≃ κ2ρð2Þhol þ κ2
�
1

2
_ϕ2 þ VðϕÞ

�
; ð73Þ

where ρϕ denotes the matter dominated epoch, while ρð2Þhol
stands for the holographic dark energy density during late
time of the Universe. Therefore, Eq. (71) is able to unify
various cosmological epochs of our Universe like inflation,
dark matter, and dark energy epochs respectively, from a
holographic point of view.
Similar to an earlier case, here we also determine the

integral form of LIR for the nonminimally coupled axion-
FðRÞ model, which is

LIR

c
¼ −

1

6α _H2a6

Z
dta6 _H

�
1þ hðϕðaÞÞ6δ−1ð2H2 þ _HÞδ−2

×
�
2H2ð2 − δÞ þ

_H2

H2
ð1 − δÞ − Ḧ

H
δð1 − δÞ þ _Hð4 − 7δþ 4δ2Þ

�
−

κ2

H2
ðρr þ ρϕÞ

�
: ð74Þ

Inserting the above expression of the cutoff into H ¼ c
LIR
,

one can reproduce Eq. (64) for fðR;ϕÞ ¼ R2

M2 þ hðϕÞRδ.
Therefore, the axion-FðRÞ model (62) can also be mapped
to a holographic model with the cutoff determined in
Eq. (74).

IV. HOLOGRAPHIC CORRESPONDENCE
OF f ðGÞ GRAVITY

We now establish the holographic correspondence and
consequently determine the holographic cutoff for fðGÞ
gravity whose action is given by [see [47,66] for different
aspects of fðGÞ gravity]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
Rþ fðGÞ þ Lmat

�
; ð75Þ

where G ¼ R2 − 4RμνRμν þ RμναβRμναβ is the Gauss-
Bonnet invariant which, in the FRW spacetime, takes the
form as

G ¼ 24H2½H2 þ _H�: ð76Þ
With this expression of G, the first Friedmann equation can
be written as

0¼−
3

κ2
H2−fðGÞþGf0ðGÞ−24 _Gf00ðGÞH3þρmat: ð77Þ
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It is interesting to note that for fðGÞ ¼ G, Eq. (77) reduces
to the standard Friedmann equation for Einstein gravity.
This is expected because the Gauss-Bonnet term in 3þ 1
dimensional spacetime becomes a topological surface term
and therefore vanishes identically. However the functional
form other than fðGÞ ¼ G indeed contributes in the
equation of motion as reflected from the above equation.
Comparing Eq. (77) with the holographic Friedmann
equation H2 ¼ 1

ðLIRÞ2, we can immediately conclude that

fðGÞ gravity (without/with matter fields) has an equivalent
holographic correspondence with the holographic cutoff
given by

3c2

ðLIRÞ2
¼ κ2½−fðGÞ þ Gf0ðGÞ − 24 _Gf00ðGÞH3�; ð78Þ

and as a consequence, Eq. (77) is rewritten as 3H2 ¼
3

ðLIRÞ2 þ κ2ρmat. Thereby, any arbitrary fðGÞ gravity can be

mapped to an equivalent holographic model with the cutoff
given by Eq. (78). In a similar way as in FðRÞ gravity, here
we also determine LIR in two different ways—namely in
terms of the particle horizon (Lp) and its derivatives or in
terms of the future horizon (Lf ) and its derivatives. Recall
that the Hubble parameter in terms of Lp or Lf can be

expressed as HðLp; _LpÞ ¼
_Lp

Lp
− 1

Lp
or HðLf; _LfÞ ¼

_Lf

Lf
þ 1

Lf

respectively. These considerations lead to the Gauss-
Bonnet invariant as

GðLpÞ ¼ 24

� _Lp

Lp
−

1

Lp

�2�L̈p

Lp
−

_Lp

L2
p
þ 1

L2
p

�
; ð79Þ

GðLfÞ ¼ 24

� _Lf

Lf
þ 1

Lf

�2�L̈f

Lf
þ

_Lf

L2
f

þ 1

L2
f

�
: ð80Þ

Using the above expressions, the holographic cutoff in
terms of Lp and its derivatives can be determined as

3c2

ðLIRÞ2
¼ fðGðLpÞÞ − GðLpÞf0ðGðLpÞÞ

þ 24
dGðLpÞ

dt
f00ðGðLpÞÞ

� _Lp

Lp
−

1

Lp

�3

: ð81Þ

Similarly, LIR ¼ LIRðLf; _Lf; L̈f; higher derivatives of LfÞ
takes the following form:

3c2

ðLIRÞ2
¼ fðGðLfÞÞ − GðLfÞf0ðGðLfÞÞ

þ 24
dGðLfÞ

dt
f00ðGðLfÞÞ

�
_Lf

Lf
þ 1

Lf

�3

: ð82Þ

Equations (81) and (82) are the key equations that will
determine the equivalent holographic cutoff for any arbi-
trary fðGÞ gravity. As an example, we may consider a
simple model like

fðGÞ ¼ f0Gm; ð83Þ

where f0 and m are dimensionless parameters [78].
Plugging back this explicit form of fðGÞ into Eq. (81),
we get

c2

ðLIRÞ2
¼ f0ð1 −mÞ

3ð1 − _Lp þ LpL̈pÞ2
�
24ð1 − _LpÞ2ð1 − _Lp þ LpL̈pÞ

L4
p

�m
½1 − 4m _L3

p þ ð2 − 3mÞLpL̈p

þ _L2
pð1þ 8mþ 3mLpL̈pÞ þ L2

pðð1 − 2mÞL̈2
p þmL

…

pÞ − _Lpð2þ 4mþ 2LpL̈p þmL2
pL
…

pÞ�: ð84Þ

Moreover Eq. (82) leads to the holographic cutoff for fðGÞ ¼ f0Gm in terms of the future horizon as

c2

ðLIRÞ2
¼ f0ð1 −mÞ

3ð1þ _Lf þ LfL̈fÞ2
�
24ð1þ _LfÞ2ð1þ _Lf þ LfL̈fÞ

L4
p

�m
½1þ 4m _L3

f þ ð2 − 3mÞLfL̈f

þ _L2
fð1þ 8mþ 3mLfL̈fÞ þ L2

fðð1 − 2mÞL̈2
f −mL

…

fÞ þ _Lfð2þ 4mþ 2LfL̈f −mL2
fL
…

fÞ�: ð85Þ

Clearly the above two holographic cutoffs can mimic the
cosmological field equations and thus we established the
holographic correspondence for the fðGÞ ¼ f0Gm model.
It may be observed from Eq. (83) that for m > 1=2, the

term fðGÞ ∼ Gm dominates over the Einstein and the matter
term(s) in the large curvature regime, while for m < 1=2,
the Gauss-Bonnet function fðGÞ becomes the dominating
one in the low curvature regime. Here we consider a case in

which the contributions from the Einstein and matter terms
can be neglected compared to fðGÞ ∼ Gm. In such situation,
the scale factor evolves as aðtÞ ¼ a0th0 where the exponent
h0 is given by h0 ¼ 1–4m. Such evolution of the scale
factor immediately leads to the effective EoS parameter as

weff ¼ −1þ 2

3h0
¼ −1þ 2

3ð1 − 4mÞ ; ð86Þ
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where in the last line, we used the expression for h0.
Therefore, if m > 0, the Universe is accelerating
(weff < −1=3), and if m > 1=4, the Universe is in a
phantom phase (weff < −1). Hence, depending on the
parameter m, the model fðGÞ ¼ f0Gm can act as infla-
tionary or as late-time accelerating model. However, this
model does not give a unified scenario of inflation and late
time dark energy epoch of our Universe. Keeping this in
mind, we will consider a different form of fðGÞ, in the next
subsection, that is able to describe inflation and the late-
time acceleration of the Universe in a unified manner.

A. Unification of holographic inflation
with holographic dark energy

In the spirit of the power law model and the above
discussions, we consider the following model [47]:

fðGÞ ¼ f1Gβ1 þ f2Gβ2 ; ð87Þ

where the exponents are assumed to take values in the
intervals,

β1 >
1

2
;

1

4
< β2 <

1

2
: ð88Þ

Thus in the large curvature regime, as in the early Universe,
the first term dominates compared to the second term and
the Einstein term, which in turn leads to the effective EoS

parameter as wð1Þ
eff ¼ −1þ 2

3ð1−4β1Þ [using Eq. (86)]. Due to

β1 > 1=2,

−
5

3
< wð1Þ

eff < −1: ð89Þ

On the other hand, when the curvature is small, as is the
case in the late Universe, the second term in (87) dominates
compared with the first term and the Einstein term and
yields

wð1Þ
eff ¼ −1þ 2

3ð1 − 4β2Þ
< −

5

3
: ð90Þ

Therefore, the theoretical framework (87) produces a model
that describes the unified scenario of inflation and dark
energy epochs of our Universe. By inserting the explicit
form of fðGÞ ¼ f1Gβ1 þ f2Gβ2 into Eq. (81), we get the
holographic cutoff in terms of Lp and its derivatives as

c2

ðLIRÞ2
¼ f1

3

�
24ð1 − _LpÞ2ð1 − _Lp þ LpL̈pÞ

L4
p

�β1�
1 − β1 − β1ð1 − β1Þ

XðLp; _Lp; L̈p; L
…

pÞ
ð1 − _Lp þ LpL̈pÞ2

�

þ f2
3

�
24ð1 − _LpÞ2ð1 − _Lp þ LpL̈pÞ

L4
p

�β2�
1 − β2 − β2ð1 − β2Þ

XðLp; _Lp; L̈p; L
…

pÞ
ð1 − _Lp þ LpL̈pÞ2

�
: ð91Þ

Equation (82) leads to the LIR as a function of the future horizon and its derivatives as

c2

ðLIRÞ2
¼ f1

3

�
24ð1þ _LfÞ2ð1þ _Lf þ LfL̈fÞ

L4
f

�β1�
1 − β1 − β1ð1 − β1Þ

ϒðLf; _Lf; L̈f; L
…

fÞ
ð1þ _Lf þ LfL̈fÞ2

�

þ f2
3

�
24ð1þ _LfÞ2ð1þ _Lf þ LfL̈fÞ

L4
f

�β2�
1 − β2 − β2ð1 − β2Þ

ϒðLf; _Lf; L̈f; L
…

fÞ
ð1þ _Lf þ LpL̈pÞ2

�
; ð92Þ

where the functions X and ϒ are given by

XðLp; _Lp; L̈p; L
…

pÞ ¼ 4 _Lp − 8 _L2
p þ 4 _L3

p − 3Lp
_L2
pL̈p þ L2

p
_LpL

…

p þ Lpð3L̈p þ 2LpL̈2
p − LpL

…

pÞ;
and

ϒðLf; _Lf; L̈f; L
…

fÞ ¼ −4 _Lf − 8 _L2
f − 4 _L3

f − 3Lf
_L2
fL̈f þ L2

f
_LfL

…

f þ Lfð3L̈f þ 2LfL̈2
f þ LfL

…

fÞ; ð93Þ

respectively. The cutoffs determined in Eq. (91) or Eq. (92) along with the expression H2 ¼ 1
ðLIRÞ2 can reconstruct the

cosmological field equations and thus provide an equivalent holographic scenario for the considered fðGÞ model (87). The
cutoffs determined in Eqs. (91) and (92) can be decomposed as

1

ðLIRÞ2
¼ 1

ðLð1Þ
IR Þ2

þ 1

ðLð2Þ
IR Þ2

;
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or the above expression can be rewritten as

ρhol ¼ ρð1Þhol þ ρð2Þhol; ð94Þ

where ρðiÞhol ¼ 3c2

κ2ðLðiÞ
IR Þ

2. Furthermore ρð1Þhol and ρð2Þhol are given by

ρð1Þhol ¼
f1
κ2

�
24ð1 − _LpÞ2ð1 − _Lp þ LpL̈pÞ

L4
p

�β1�
1 − β1 − β1ð1 − β1Þ

XðLp; _Lp; L̈p; L
…

pÞ
ð1 − _Lp þ LpL̈pÞ2

�

¼ f1
κ2

�
24ð1þ _LfÞ2ð1þ _Lf þ LfL̈fÞ

L4
f

�β1�
1 − β1 − β1ð1 − β1Þ

ϒðLf; _Lf; L̈f; L
…

fÞ
ð1þ _Lf þ LfL̈fÞ2

�
; ð95Þ

and

ρð2Þhol ¼
f2
κ2

�
24ð1 − _LpÞ2ð1 − _Lp þ LpL̈pÞ

L4
p

�β2�
1 − β2 − β2ð1 − β2Þ

XðLp; _Lp; L̈p; L
…

pÞ
ð1 − _Lp þ LpL̈pÞ2

�

¼ f2
κ2

�
24ð1þ _LfÞ2ð1þ _Lf þ LfL̈fÞ

L4
f

�β2�
1 − β2 − β2ð1 − β2Þ

ϒðLf; _Lf; L̈f; L
…

fÞ
ð1þ _Lf þ LpL̈pÞ2

�
; ð96Þ

respectively. With such decomposition, the holographic
Friedmann equation turns out to be

3H2 ¼ κ2ðρð1Þhol þ ρð2ÞholÞ: ð97Þ

Clearly ρð1Þhol corresponds to f1Gβ1 and thus dominates over

ρð2Þhol in the large curvature regime, while in the low

curvature regime ρð2Þhol is the dominant compared to the
other one. Therefore, during the early Universe when the

curvature is large, Eq. (97) can be approximated as 3H2 ≃
κ2ρð1Þhol which produces an inflationary scenario. On other
hand due to low curvature in the present Universe, Eq. (97)

goes as 3H2 ≃ κ2ρð2Þhol which provides a holographic dark
energy model during late time. Thereby the holographic
Friedmann Eq. (97) [see Eqs. (95) and (96) for the

expressions of ρðiÞhol] is able to describe inflation and dark
energy epochs of the Universe in a unified way.

V. HOLOGRAPHIC CORRESPONDENCE
OF FðTÞ GRAVITY

We extend our discussion of holographic correspondence
to the generalized teleparallel cosmology, i.e., FðTÞ cos-
mology [94,95]. The teleparallel gravity (TEGR) is
described by the Weitzenbock connection which is deter-
mined by two dynamical variables, namely the tetrads and
the spin connection. Moreover unlike the connection in
Einstein’s general relativity, the Weitzenbock connection
comes as a curvature-free quantity. Recall, in the current
work, we consider the spatially flat FRW metric, i.e.,

ds2 ¼ −dt2 þ a2ðtÞ½dx2 þ dy2 þ dz2�; ð98Þ

with aðtÞ being the scale factor of the Universe. Generally
the tetrad for this metric is considered as

eaμ ¼ diagð1; aðtÞ; aðtÞ; aðtÞÞ: ð99Þ

This form of the FRW metric is very advantageous because
its spin connection vanishes [95], and so no extra con-
tribution is needed in the FðTÞ field equations. For the
aforementioned tetrad in Eq. (99), the torsion scalar turns
out to be T ¼ −6H2, with H being the Hubble parameter.
Following the same reasoning as FðRÞ gravity, the action

of TEGR can be generalized to FðTÞ gravity, in particular

S ¼ 1

2κ2

Z
d4xjejFðTÞ; ð100Þ

where e ¼ det eaμ (we use e ¼ det eaμ in italics and e for
Napier’s constant e ¼ 2.718281828 � � �) and FðTÞ is an
analytic function of T. Variation of the action with respect
to the tetrad in the FRW spacetime yields the following
equation:

H2 ¼ −
ðFðTÞ − TÞ

6
− 2H2

dF
dT

: ð101Þ

The above differential equation can be mapped to the
holographic Friedmann equation H ¼ 1

LIR
, with the holo-

graphic cutoff being
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c2

ðLIRÞ2
¼ −

ðFðTÞ − TÞ
6

− 2H2
dF
dT

: ð102Þ

As similar to earlier gravity theories, here we also deter-
mine the cutoff in terms of the particle horizon and the
future horizon. For this purpose, what we need is the
following expression:

TðLpÞ ¼ −6
�
_Lp

Lp
−

1

Lp

�2
; TðLfÞ ¼ −6

�
_Lf

Lf
þ 1

Lf

�2
:

The above expressions along with Eq. (102) immediately
lead to the LIR ¼ LIRðLp; _Lp; L̈p; higher derivatives of LpÞ
and LIR ¼ LIRðLf; _Lf; L̈f; higher derivatives of LfÞ as
follows:

c2

ðLIRÞ2
¼ −

ðFðTðLpÞÞ − TðLpÞÞ
6

− 2

�
_Lp

Lp
−

1

Lp

�2dF
dT

				
T¼TðLpÞ

;

ð103Þ
and

c2

ðLIRÞ2
¼ −

ðFðTðLfÞÞ − TðLfÞÞ
6

− 2

�
_Lf

Lf
þ 1

Lf

�2dF
dT

				
T¼TðLf Þ

;

ð104Þ
respectively. The holographic cutoffs determined in
Eqs. (103) and (104) constitute the cosmological field
equations and thus can provide an equivalent holographic
model for any arbitrary FðTÞ gravity model. As an
example, we may consider [94]

FðTÞ ¼ T − αð−TÞp; ð105Þ
with α being a model parameter having mass dimension
½2 − 2p� and p is a dimensionless quantity. Earlier it was
shown that the FðTÞ model in Eq. (105) (along with
suitable initial conditions) allow the Universe to evolve
from an initial phase of radiation domination to a cosmic
acceleration at late times for p ≠ 1 [94]. With the help of
Eqs. (103) and (104), we determine two different forms of
holographic cutoff for the model (105) as

c2

ðLIRÞ2
¼ 6p−1αð1þ 2pÞ

�
_Lp

Lp
−

1

Lp

�2p

− 2

�
_Lp

Lp
−

1

Lp

�2

¼ 6p−1αð1þ 2pÞ
�
_Lf

Lf
þ 1

Lf

�2p

− 2

�
_Lf

Lf
þ 1

Lf

�2

:

ð106Þ
The first line in the above equation gives the cutoff in terms
of the particle horizon and its derivatives, while the second
line gives the same however in terms of Lf and its
derivatives. Clearly the holographic energy density with

the LIR of Eq. (106) reproduces the cosmological field
equations for the model (105) and hence drives the late-
time accelerating epoch of our Universe.

VI. CONCLUSION

In this paper, we applied the holographic principle to
describe the early and late-time acceleration epochs of
our Universe in a unified manner. Although holographic
energy density has been well studied at late times and
recently it has also been applied in inflation studies, giving
rise to holographic dark energy and inflationary realization
respectively; however, to date it has not been incorporated
to unify various cosmological epochs of the Universe. Such
“holographic unification” is demonstrated in the present
paper, in the context of FðRÞ and fðGÞ gravity theory
without/with matter fields, where the corresponding holo-
graphic cutoffs (LIR) are determined in terms of the particle
horizon and its derivatives or the future horizon and its
derivatives. For this purpose, we first prove the holographic
correspondence for general FðRÞ or fðGÞ theory and then
consider several specific forms of FðRÞ or fðGÞ (which are
known to be viable models as per the unification of
inflation where the dark energy epoch is concerned) to
show the “holographic unification” explicitly. One of the
models considered here is the axion-FðRÞ gravity in the
presence of radiation fluid, where the corresponding holo-
graphic energy density that we propose is found to unify
inflation with the radiation, dark matter, and dark energy
epochs of the Universe in a holographic context.
Moreover in the context of FðRÞ gravity, apart from the

two aforementioned ways (where LIR is determined in
terms of particle horizon or the future horizon), we also
establish the holographic cutoff in a different way, in
particular, by an integral form which along with H ¼
1=LIR mimics the cosmological dynamics of the corre-
sponding model. The integral form of LIR has been
discussed in earlier literature; however, these studies were
focused on inflationary models. Here we extended the
determination of the integral form of LIR to the unified
description of our Universe.
In summary, the holographic principle (where the cutoffs

are in terms of the particle horizon, or in terms of the future
horizon or in an integral form) proves to be very useful to
unify the cosmological eras of the Universe. However, our
understanding for the choice of fundamental viable cutoff
still remains to be lacking. The comparison of such cutoffs
for realistic description of the universe evolution in a
unified manner may help in better understanding the
holographic principle.
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