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Abstract. Several well-developed approaches to inductive learning now exist, but each has specific limitations 
that are hard to overcome. Multi-strategy learning attempts to tackle this problem by combining multiple methods 
in one algorithm. This article describes a unification of two widely-used empirical approaches: rule induction and 
instance-based learning. In the new algorithm, instances are treated as maximally specific rules, and classification is 
performed using a best-match strategy. Rules are learned by gradually generalizing instances until no improvement 
in apparent accuracy is obtained. Theoretical analysis shows this approach to be efficient. It is implemented in 
the RISE 3.1 system. In an extensive empirical study, RISE consistently achieves higher accuracies than state-of- 
the-art representatives of both its parent approaches (PEBLS and CN2), as well as a decision tree learner (C4.5). 
Lesion studies show that each of RISE's components is essential to this performance. Most significantly, in 14 
of the 30 domains studied, RISE is more accurate than the best of PEBLS and CN2, showing that a significant 
synergy can be obtained by combining multiple empirical methods. 
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1. The empirical multi-strategy learning problem 

Inductive learning is the explicit or implicit creation of general concept or class descriptions 

from examples. Many induction problems can be described as follows. A training set of 

preclassified examples is given, where each example (also called observation or case) is 

described by a vector of features or attribute values, and the goal is to form a description 

that can be used to classify previously unseen examples with high accuracy. (Examples 

can also be described in other languages, like first-order logic (Quinlan, 1990), and other 

goals are often also important, like comprehensibility of the description.) The last decade 

has witnessed renewed interest in this area, largely due to its relevance to the "knowledge 

acquisition bottleneck" problem: the costliest component in the creation and deployment of 

an expert system is the construction of the knowledge base, and if this construction can be 

partly automated by the use of induction techniques, the bottleneck will be greatly reduced. 

As a result, research in this field has blossomed, and several mature approaches to inductive 

learning are now available to the practitioner. These include induction of decision trees 

(Quinlan, 1986), rule induction (Michalski, 1983), instance-based learning (Aha, Kibler 

& Albert, 1991), Bayesian classification (Buntine, 1989), back-propagation (Rumelhart, 

Hinton & Williams, 1986), and genetic algorithms (Booker, Goldberg & Holland, 1989). 

Empirical comparison of these different approaches in a variety of application domains 

has shown that each performs best in some, but not all, domains. This has been termed the 

"selective superiority" problem (Brodley, 1995), and presents a dilemma to the knowledge 

engineer approaching a new task: which induction paradigm should be used? One solution 
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is to try each one in turn, and use cross-validation to choose the one that appears to perform 

best (Schaffer, 1994a). This is a long and tedious process, especially considering the large 

number of algorithms and systems now available, and the fact that each typically has options 

and parameters that themselves need to be fine-tuned by cross-validation or a similar method 

before the system can be said to be doing its "best." 

Another approach, known as multi-strategy learning (Michalski & Tecuci, 1994), attempts 

to combine two or more different paradigms in a single algorithm. Most research in this 

area has been concerned with combining empirical (i.e., purely inductive) approaches with 

analytical ones (e.g., Ourston & Mooney, 1994; Towell & Shavlik, 1994; Pazzani & Kibler, 

1992; see also Michalski & Tecuci, 1993). The expression "empirical multi-strategy learn- 

ing" will therefore be used to distinguish the case where all the components are empirical. 

Ideally, an empirical multi-strategy learning algorithm would always perform as well as 

the best of its "parents," obviating the need to try each one and simplifying the knowledge 

acquisition task. Even more ambitiously, there is hope that this combination of paradigms 

might produce synergistic effects (e.g., by allowing different types of frontiers in different 

areas of the example space), leading to levels of accuracy that neither atomic approach by 

itself would be able to achieve. Indeed, in many application domains the accuracy of even 

the best methods is far below 100%, and the question of whether it can be improved, and if 

so how, is an open and important one. 

Unfortunately, this approach has often been only moderately successful. The resulting 

algorithms are prone to be cumbersome, and often achieve accuracies that lie between 

those of their parents, instead of matching the highest. Here a theoretical question arises. 

It is well known that no induction algorithm can be the best in all possible domains; each 

algorithm contains an explicit or implicit bias (Mitchell, 1980) that leads it to prefer certain 

generalizations over others, and it will be successful only insofar as this bias matches the 

characteristics of the application domain. Further, recent results (Schaffer, 1994b) show 

that performance over the set of all possible domains is subject to a "conservation law": 

if one algorithm is better than another in some domains, then there are necessarily other 

domains in which this relationship is reversed. The average accuracy of an algorithm over 

all domains is a constant, independent of the algorithm. Should we conclude, then, that 

empirical multi-strategy learning is doomed to failure? 

Not necessarily. A distinction should be made between all the mathematically possible 

domains, which are simply a product of the representation languages used, and the domains 

that occur in the real world, and are therefore the ones of primary interest (Rao, Gordon & 

Spears, 1995). Without doubt there are many domains in the former set that are not in the 

latter, and average accuracy in the real-world domains can be increased at the expense of 

accuracy in the domains that never occur in practice. Indeed, achieving this is, in a nutshell, 

the goal of inductive learning research. It is still true that some algorithms will match 

certain classes of naturally-occurring domains better than other algorithms, and so achieve 

higher accuracy than them, and that this may be reversed in other real-world domains; but 

this does not preclude an improved algorithm from being as accurate as the best in each of 

the domain classes. 

Two induction paradigms that appear to have largely complementary strengths and weak- 

nesses are rule induction and instance-based learning (IBL). IBL algorithms are able to 
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induce complex frontiers from relatively few examples, and are naturally suited to numeric 

domains, but can be very sensitive to irrelevant attributes. Conversely, rule induction al- 

gorithms perform well at finding simple axis-parallel frontiers, are best suited to symbolic 

domains, and can often dispose easily of irrelevant attributes; but they can have difficulty 

with non-axis-parallel frontiers, and suffer from the fragmentation problem (i.e., the avail- 

able data dwindles as induction progresses) and the small disjuncts problem (i.e., rules 

covering few training examples have a high error rate (Holte, Acker & Porter, 1989)). 

(The two paradigms also share a number of characteristics, of course, most notably the 

assumption that the example space contains large continuous regions of constant class 

membership--the similarity hypothesis (Rendell, 1986).) 

Instances and rules also form the basis of two competing approaches to reasoning: case- 

based reasoning (Kolodner, 1993) and the rule-based reasoning more often found in expert 

systems. In recent years, case-based reasoning has gained popularity as an alternative to 

rule systems, but its proponents recognize that there is a wide spectrum from specific cases 

to the very general rules typically used (Riesbeck & Schank, 1989), and it deserves to be 

further explored. 

This article describes and evaluates the RISE algorithm, an approach to inductive learning 

that produces knowledge bases spanning this entire spectrum. It achieves this by intelli- 

gently searching for the best mixture of selected cases and increasingly abstract rules, 

based on the notion that instances are maximally specific rules, and that applying rules with 

a best-match strategy is essentially a more general form of nearest-neighbor classification. 

The article is structured as follows. The next two sections briefly review the characteristics 

of 1BL and rule induction most relevant to this work. The RISE algorithm will then be 

presented. Theoretical bounds for its time complexity will be derived, and an extensive 

empirical study comparing RISE with several current induction algorithms and investigating 

the sources of its power will be described. Finally, RISE will be placed in the context of 

related work and directions for future research will be pointed out. 

2. Instance-based learning 

Instance-based learning l (Cover & Hart, 1967; Duda & Hart, 1973; Aha et al., 1991 ; Cost & 

Salzberg, 1993; Aha, in press) is founded on a direct application of the similarity assumption. 

In the simplest case, learning is performed by storing all the observed examples. A new 

example (or "test case") is classified by finding the nearest stored example according to 

some similarity function, and assigning the latter's class to the former. The stored examples 

used to classify new cases are referred to as instances or exemplars. The performance of 

IBL depends critically on the similarity (or, conversely, distance) metric used. In numeric 

domains (i.e., domains where all the features are real-valued), city-block and Euclidean 

distance are natural candidates. The component distance ~(:ri, :~'j) between two values ~z'i 

and :rj of an attribute is then simply the absolute value of their difference; however, this can 

lead to attributes with a large spread of values having undue weight in the result, compared 

to attributes with smaller spreads. A commonly used approach (see, e.g., Salzberg, 1991) 

is to normalize the difference by its largest observed value: 
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(~(zi, z#) z~ - x j  = --- (1) 
Z m a  x - -  X m i  n 

If  there are a attributes, the distance between two instances E1 = @11, e12, . . . ,  ela, C1) 

and E2 = (e21, e22 , . . . ,  e2~, C2) can then be defined as: 

zx(E~, E~) : ~ ~'(~, ~,) 
i=1 

(2) 

with s = 1 yielding city-block distance and s = 2 the square of Euclidean distance. 

Symbolic attributes pose a more difficult problem. Most IBL systems (e.g., Aha et al., 

1991) use a simple overlap metric: 

= J" 0 i f i  = j  
5(x~,xj)  

1 otherwise (3) [ 

This measure is obviously less informative than its numeric counterpart, and, although it 

is appropriate in some cases, its use can lead to poor performance (Cost & Salzberg, 1993). 

A more sophisticated alternative consists of considering two symbolic values to be similar 

if they make similar predictions (i.e., if they correlate similarly with the class feature). 

This was first proposed by Stanfill and Waltz (1986) as part of their value difference metric 

(VDM) for a memory-based reasoner. Here we will consider a simplified version of the 

VDM, which defines the distance between two symbolic values as: 

,~(x~, ~#) = SVDM(~,~j)  = ~ IF(Child - P(Chlxj)l ~ 
h=l 

(4) 

where c is the number of classes, Ch is the hth class, and q is a natural-valued parameter 

(q = 1, 2, 3, . . . ) .  The latter can be determined ad hoc or empirically. Notice that, in par- 

ticular, 6 (x~, x j )  is always 0 if i = j .  The total distance A (El ,  E2) is computed as before. 

Different variants of this metric have been successfully used in pronunciation, molecular 

biology and other tasks (Stanfill & Waltz, 1986; Cost & Salzberg, 1993; Biberman, 1994). 

IBL methods need to address the problem of sensitivity to irrelevant attributes. The contri- 

butions of these attributes to the global distance constitute noise as far as the classification 

task is concerned, and they can swamp out the relevant components. Many approaches 

have been proposed to deal with this problem (Aha, 1990; Salzberg, 1991; Kelly & Davis, 

1991; Wettschereck, 1994; Townsend-Weber & Kibler, 1994; Aha & Bankert, 1994). We 

have also found that use of the SVDM substantially attenuates this problem for symbolic 

attributes, as long as a large number of examples is available. This is due to the fact that 

by definition P(Chlx~) will be roughly the same for all values xi of an irrelevant attribute, 

leading to zero distance (i.e., equivalence) between them. 

Another issue in IBL methods is their sensitivity to noise. Incorrect instances are liable to 

create a region around them where new examples will also be misclassified. Several methods 

have been successfully introduced to deal with this problem. IB3 (Aha et al., 1991) retains 

only reliable instances, reliability being judged by the instance's classification performance 
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over a "probation period." Cameron-Jones (1992) uses instead a criterion based on the 

minimum description length principle to decide which instances to retain. PEBLS (Cost & 

Salzberg, 1993) assign weights to instances, making their apparent distance to new examples 

increase with their misclassification rate. 

Given two instances of different classes, the frontier between classes induced by them is 

a hyperplane perpendicular to the line connecting the two instances, and bisecting it. With 

multiple instances of each class, the frontier will be composed of a number of hyperplanar 

sections, and can thus become quite complex even when few instances are present (Aha 

et al., 1991). The introduction of weights further increases this complexity, turning the 

hyperplanes into hyperquadrics (Cost & Salzberg, 1993). 

Another extension to the basic IBL paradigm consists in using the k nearest neighbors 

for classification, instead of just the nearest one (Duda & Hart, 1973). The class assigned 

is then that of the majority of those k neighbors, or the class receiving the most votes, with 

a neighbor's vote decreasing with its distance from the test example. 

It is important to note that, even though the stored instances used in classification are 

syntactically identical to examples, their semantic content (i.e., their extension) is quite 

different. An example is a single point in the example space, whereas a stored instance 

represents the entire region that it wins over in the competition with other instances. 

3. Rule induction 

Rule induction algorithms (Michalski, 1983; Michalski, Mozetic, Hong & Lavrac, 1986; 

Clark & Niblett, 1989; Rivest, 1987) typically employ a set covering or "separate and 

conquer" approach to induction. This strategy derives its name from the fact that it forms 

a class definition by constructing a rule that covers many positive examples, and few or 

no negative ones, then "separating out" the newly covered examples and starting again on 

the remainder. It is summarized in pseudo-code in Table 1. Some definitions are in order. 

A rule is composed of a consequent and an antecedent part or body. The consequent is 

the predicted class. The body is a conjunction of antecedents, each antecedent being a 

condition involving a single attribute. For symbolic attributes, this condition is a simple 

equality test; in some systems, negation and disjunction of values are possible. For numeric 

attributes, the condition is typically inclusion in a one-sided interval. A rule is said to cover 

an example, and conversely the example is said to satia~, it, if all the conditions in the rule 

are true for the example. Given a class, its members in the training set are called positive 

examples, and the remainder are negative examples. 

The "best" rule in each covering cycle (see Table 1) may also be found by beam search 

(e.g., Clark & Niblett, 1989). In this case a list of the b best rule bodies found so far is 

maintained, instead of a single body. At each step, specialization of each of those bodies 

with each possible antecedent is attempted, and the best b bodies are selected to continue 

the search. At the end the best rule body overall is selected. 

The choice of evaluation heuristic H is of some importance to the algorithm's perfor- 

mance. Given a rule, H should increase with n@, the number of positive examples that 

satisfy the rule, and decrease with n o, the number of negative examples that satisfy it. The 
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Table 1. General structure of rule induction algorithms. 

Input: E S  is the training set. 

Procedure Rule_Induction (ES)  

Let R S  = @. 

For each class C 

Let ® = {E 6 E S  ] Class(E) = C}. 

Let @ = {E 6 E S  ] Class(E) # C}. 

Repeat 

Let R = Find_Best_Rule (C, @, @). 

Let @ = @- {E 6 ® I R covers E}. 

Let R S  = R S  U {R}. 

Until @ : @ or R = Nil. 

Return RS.  

Function Find_Best_Rule (C, @, @) 

Let Body : True. 

Let R be the rule: Body ~ C. 

Repeat 

For each possible antecedent A 

Let BA = Body A A. 

Let n¢~ = #({E 6 ® I E satisfies BA}).  

Let ne  : # ( { E  6 @ I E satisfies BA}).  

Let Body = Ba that maximizes some heuristic H(ne ,  he) .  

Until no antecedent causes a significant improvement in H ( ne ,  he).  

Return R, or Nil if Body = True. 

AQ series of algorithms (Michalski et al., 1986) uses apparent accuracy (i.e., the accuracy 

of the rule on the training set): 

H(ne, he) - ne (5) 
7z® + ~@ 

The CN2 system (Clark & Niblett, 1989) originally used the entropy of the rule (Quinlan, 

1986). However, the problem with both these measures is that they tend to favor overly 

specific rules: they attain their maximum value with a rule covering a single example. This 

can be overcome by use of the Laplace correction (Niblett, 1987): 

H ( n e ,  h e )  - n® + 1 (6) 
n® + 7~ e + c 

where c is the number of classes. This measure tends to the uncorrected accuracy when 

the rule has strong statistical support (i.e., when it covers many examples), but tends to 1 /c  

(i.e., "maximum ignorance") when it covers few. It is used in recent versions of CN2 (Clark 

& Boswell, 1991). 
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Classification of a new example is performed by matching each rule against it, and 

selecting those it satisfies. If there is only one such rule, its class is assigned to the example. 

If  there are none, the generally adopted solution is to use the so-called "default rule" (i.e., 

to assign the example to the class that occurs most frequently in the entire training set, 

or among those examples not covered by any rule). Finally, if more than one rule covers 

the example, then two strategies are possible. One is to order the rules into a "decision 

list," and select only the first rule that fires (Rivest, 1987). The other is to let the different 

rules vote, and select the class receiving the most votes. Recent versions of CN2 attach to 

each rule the number of examples of  each class that it covers, and use these numbers as 

votes at classification time (Clark & Boswell, 1991). Other voting schemes are possible 

(e.g., Michalski et al., 1986). The use of unordered rules has been found to generally 

produce higher accuracy (Clark & Boswell, 1991), and also has the advantage of greater 

comprehensibility, since in a decision list each rule body is implicitly conjoined with the 

negations of  all those that precede it. 

In rule induction algorithms that do not deal with noise, construction of a new rule 

stops only when all negative examples are excluded. In noise-tolerant ones, a measure 

of statistical significance may be used to halt growth (as in CN2), or a later post-pruning 

step may remove superfluous antecedents and/or rules (e.g., GROVE: Pagallo & Haussler, 

1990). Irrelevant attributes tend to produce no significant improvement in the evaluation 

heuristic, and thus be excluded. However, attributes that are relevant only in combination 

with other attributes may also be discarded. Also, the fact that only single-attribute tests 

are used in rules means that all decision boundaries are parallel to the coordinate axes (i.e., 

class definitions can only be unions of hyperrectangles), leading to inaccurate definitions 

when boundaries are non-axis-parallel and only a limited number of examples is available. 

Another shortcoming of the "separate and conquer" strategy is that it causes a dwindling 

number of examples to be available as induction progresses, both within each rule and for 

successive rules. This fragmentation effect may cause later rules, and later antecedents 

within each rule, to be induced with insufficient statistical support, leading to greater noise 

sensitivity and missing or incorrect rules/antecedents. This in turn aggravates the "small 

disjuncts problem," first observed by Holte et al. (1989): rules covering few training 

examples (five or less, say) tend to be highly error-prone, but removing them often increases 

the global error even further. 

4. The RISE algorithm 

We now describe an approach to induction that attempts to overcome some of the limita- 

tions of IBL and rule induction outlined above by unifying the two. This methodology is 

implemented in the RISE 3.1 system (Rule Induction from a S_et of Exemplars; earlier ver- 

sions are described in (Domingos, 1994) and (Domingos, 1995a)). One of its basic features 

is that rules and instances are treated uniformly; no distinction is made between the two. 

Another characteristic that distinguishes it from previous empirical multi-strategy learning 

systems is that it does not consist of a global procedure calling the individual algorithms as 

subprocedures, but rather a single, simple algorithm that can be viewed as both IBL and rule 

induction, according to its behavior. For these reasons, we speak of  a "unification" of the 
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two approaches, rather than using the somewhat weaker term "combination." Obviously, 

this should not be taken to imply that the form of unification proposed here is the only 

possible one. 

4.1. Representation and definitions 

A rule in RISE is composed of a consequent that is the predicted class, and an antecedent part 

that is a conjunction of conditions, as before. Each condition involves only one attribute; 

for symbolic attributes it is an equality test (e.g., xl  = c~), and for numeric attributes it 

is membership in an interval closed on both sides (e.g., 3 < x2 _< 7). In each rule there 

is at most one condition involving each attribute, and there may be none. An instance is 

simply a rule in which the consequent is the instance's class, there is exactly one condition 

per attribute, and all the intervals are degenerate (e.g., 4 _< x2 <_ 4, i.e., x2 = 4). In the 

remainder of this article, the word "rule" is used to refer indiscriminately to exemplars and 

to rules of the more general type. 

RISE classifies a new example by assigning it the class of the nearest rule in the knowl- 

edge base. The distance between a rule and an example is defined as follows. Let 

E = (e 1, e 2, -. •, e a, CE) be an example with value e i for the ith attribute and class CE. Let 

R = (A1, A2 . . . .  , Aa, CR) be a rule with class CR and condition At on the ith attribute. 

If there is no condition on i, At = True, otherwise A~ is et = ri if i is symbolic and Ai is 

rt,zo~,- <_ et <_ ri.~pp~ if i is numeric. The distance A(R,  E)  between R and E is then 
defined as: 

zx(R, E)  = 

t = l  

(7) 

where s is a natural-valued parameter (s = 1, 2, 3 , . . . ) ,  and the component distance ~5(i) 

for the ith attribute is: 

0 

~(i) = S V D M ( r i ,  et) 

if At = True 

if i is symbolic and At ¢ True 

if i is numeric and A~ ¢ True 

(8) 

where in turn S V D M ( r i ,  et) is the simplified value difference metric as defined in Equa- 

tion 4, and: 

I 0 ei --~i.upper 

ri,lou~e,.--ei 
ei:rr,(ta. --el,rain 

if ~'i,lower ~ ei ~ ri,upper 
if  ei ~ ri,upper 

i f  ei  ~ ri,lower 

(9) 

ei,raax and e,,,,~t,~ being respectively the maximum and minimum values for the attribute 

found in the training set. This definition of  ~5,~m (i) is also used in EACH (Salzberg, 1991). 

The distance from a missing numeric value to any other is defined as 0. If a symbolic 

attribute's value is missing, it is assigned the special value "?". This is treated as a legitimate 
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symbolic value, and its SVDM to all other values of the attribute is computed and used. In 

the context of VDM-type metrics, this is a sensible policy: a missing value is taken to be 

roughly equivalent to a given possible value if it behaves similarly to it, and distinct from 

that value if it does not, 

The question arises of how to choose the winning rule when several are equally near. This 

is of more importance in RISE than in IBL, because it can frequently occur that several rules 

cover the example (i.e., are at distance 0 from it). This corresponds to the multiple-match 

case in rule induction systems. RISE selects the rule with the highest Laplace accuracy. 

This means that neither very general nor very specific rules are unduly favored; rather, 

preference goes to rules with high apparent accuracy as well as strong statistical support. 

In the event the accuracies are the same, RISE chooses the most frequent class among those 

represented, and if there is still a draw, the winner is chosen at random. Other policies were 

also tried, and a comparative evaluation is described in (Domingos, 1995b). 

A rule is said to cover an example if all its conditions are true for the example; a rule 

is said to win an example if it is the nearest rule to the example according to the distance 

metric and conflict resolution policy just described. A rule can cover an example and not 

win it. The extension of a rule is constituted by all the points in the example space that it 

wins, whether or not it covers them, and therefore depends not only on the rule itself but on 

all the other rules. 

The accuracy Acc(RS,  ES)  of a rule set R S  on a set of examples E S  is defined as 

the fraction of  those examples that it correctly classifies. A rule set classifies an example 

correctly when the nearest rule to the example has the same class as it. Whenever the example 

set E S  is simply the whole training set this will be left implicit (i.e., the accuracy will be 

denoted by Acc(R,S)). There is no need to use the Laplace correction when comparing the 

accuracy of different rule sets on a training set, because the denominator of the accuracy 

(i.e., the number of examples matched) is exactly the same for all rule sets (being the size 

of the training set). 

4.2. Control structure 

Unlike conventional rule induction algorithms, RISE does not construct one rule at a time. 

but instead induces all rules in parallel. In addition, heuristic evaluation is not performed 

for each rule separately, but for the whole rule set at once. Changes to an individual rule are 

evaluated in terms of their effect on the global accuracy of the rule set. This "conquering 

without separating" strategy differs markedly from the earlier "separate and conquer" one; 

the aim is to attenuate the fragmentation problem as much as possible. Another major 

difference is that RISE's direction of search is specific-to-general. Rules are generalized 

by dropping conditions on symbolic attributes, and broadening intervals for numeric ones. 

This is not done one attribute at a time, but rather by a clustering-like approach: each rule 

repeatedly finds the nearest example of  its class that it does not yet cover, and attempts to 

minimally generalize itself to cover it (see Table 2). If the effect of this on global accuracy 

is positive, the change is retained. This process stops when no further change causes any 

improvement. The initial rule set is the training set itself (i.e., each instance is a candidate 

rule). In the worst case no generalizations are accepted, and the final rule set is still the 
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Table 2. Generalization of a rule to cover an example. 

Inputs: R = (A1, Az . . . .  , Aa, CR) is a rule, E = (el, e2 , . . . ,  ea, CE) is an example. 

A~ is either True, e~ = r~, or r~,~o~,~,. < e~ < ri,upper. 

Function Most_Specific_Generalization (R, E) 

For each attribute i, 

If A~ = True then Do nothing. 

Else if i is symbolic and e~ ¢ ri then A~ = True. 

Else if i is numeric and ei > ri,upper then ri,~ppe r ~ e i .  

Else i f / i s  numeric and e~ < ri,lower then r~,to~,e,- = ei. 

Table 3. The RISE algorithm. 

Input: E S  is the training set. 

Procedure RISE (ES) 

Let R S  be ES.  

Compute Acc( RS).  

Repeat 

For each rule R in RS,  

Find the nearest example E to R not already covered by it, and of R's class. 

Let R' = Most_Specific_Generalization(R, E). 

Let RS'  = R S  with R replaced by R'. 

If Acc(RS' )  >_ Acc(RS)  

Then Replace R S  by RS' ,  

If R' is identical to another rule in RS, 

Then delete R' from RS. 

Until no increase in Acc(RS)  is obtained. 

Return RS.  

training set, leading to a pure instance-based algorithm. More generally, the final rule set 

may contain some ungeneralized exemplars as well as more abstract rules. In the course 

of generalization two rules may become identical, in whicti case they are merged. Table 3 

summarizes this process in pseudo-code. In each cycle the new rule set is adopted even if 

its apparent accuracy is the same as the old one's. This is a direct application of Occam's 

Razor: when two theories appear to perform identically, prefer the simpler one. 

Table 2 shows in pseudo-code how a rule is minimally generalized to cover an example 

previously outside its scope. In a nutshell, all conditions on symbolic attributes that are not 

satisfied by the example are dropped, and all intervals are extended to include the example 

attribute's value at the border, if necessary. This is indeed the most specific generalization 

that will work, given the representation language used (e.g., internal disjunction is not 

permitted). Missing values are treated in a fashion consistent with the definition of distance 

above: a missing numeric value is considered to match any other value, and a missing 
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symbolic value in the example or in the rule (but not both) causes the corresponding condition 

to be dropped. 

Accuracy is measured using a leave-one-out methodology: when attempting to classify an 

example, the corresponding rule is left out, unless it already covers other examples as well. 

This method would not be efficient if the accuracy of the entire rule set had to be computed 

from scratch every time an individual change is considered. This would involve repeatedly 

matching all rules (or all but one) against all examples, leading to a clearly unacceptable 

time cost. Fortunately, at each step only the change in accuracy AAcc(RS) needs to be 

considered. Each example memorizes the distance to the nearest rule (i.e., the rule that 

wins it) and that rule's identification. The memory cost of this is O(1) per example, and is 

therefore negligible. With this information, all that is necessary when a rule is generalized 

is to match that single rule against all examples, and check if it wins any that it did not 

before. Its effect on these is then ascertained. If a previously misclassified example is now 

correctly classified, the numerator of Acc(RS) is incremented; if the reverse takes place, it 

is decremented. Otherwise there is no change. If the sum of increments and decrements is 

greater than or equal to 0, the new rule is adopted, and the relevant structures are updated; 

otherwise it is rejected. 

5. Time complexity of RISE 

It is possible to derive an upper bound for the time complexity of the algorithm just de- 

scribed, showing that its worst-case efficiency is comparable to that of other rule induction 

algorithms. Let e represent the number of  examples in the training set, a the number of 

attributes used to describe each, vs (v,~) the average number of observed values per sym- 

bolic (numeric) attribute, r the number of rules, and c the number of classes into which 

the examples fall. Assume for now that all attributes are nominal. The initialization phase 

of the algorithm consists of  three operations. The first is copying the examples to the 

rules, and takes O(ea) time. The second is compiling a table of SVDM distances, taking 

O(ea + ac,~c) (ea to run through all the examples, for each one noting the correspondence 

between each attribute's value and the class, and av[cv to sum the results for all classes, for 

each pair of values of  each attribute). The third operation is finding each example 's  closest 

rule and computing the initial accuracy of the rule set, which involves matching all rules 

against all examples, and so takes O(e2a) time. The total time necessary for initialization 

is therefore O(e2a + av~c). 
The heart of the algorithm consists of four steps: finding a rule's nearest example, gen- 

eralizing the rule to cover it, comparing the altered rule to all examples to see if any are 

newly won, and (if the change is adopted) comparing the rule to all other rules to check for 

duplications. These operations consume respectively O(ea), O(a), O(ea) and O ( r a )  time, 

for a total of O(ea + ra). Since each "repeat" cycle (see Table 3) consists of doing this 

for all 'r rules, each such cycle takes at worst O[r(ea + ra)l time. In RISE each example 

produces at most one rule; therefore r < e, and this time is at worst O(e2a). 
How many "repeat" cycles can the algorithm perform in the worst case? Two answers are 

possible, depending on how the stopping criterion is interpreted. If it is applied individually 

(i.e., generalization of a given rule stops as soon as covering the nearest example produces 
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no improvement), then the "repeat" cycle is performed at worst O(a) times, since each 

cycle must remove at least one condition, and a rule contains at most a conditions, this 

being true for each rule. On the other hand, if the stopping criterion is applied globally 

(i.e., generalization of a given rule stops only when no change to any rule produces an 

improvement), the "repeat" cycle can in theory be performed up to O(ea) times, because 

in the worst case only one condition of one rule will be dropped in each entire cycle, each 

time causing some currently-unprofitable change in another rule to become profitable in 

the next round, However, this is extremely unlikely. The two policies were empirically 

compared (see Domingos, 1995b), showing no appreciable difference between the two in 

accuracy or time. Multiplying the values'above by the cost of a single cycle yields a total 

time complexity of O(e2a 2) o r  O(e3a 2) respectively. Since e > %, and assuming that 

a >_ c, which is generally the case, the smaller of these values dominates the complexity of 

the initialization phase, and both therefore constitute upper bounds on the time complexity 

of the whole algorithm in their respective situations. 

The time complexity of CN2 and AQ-style algorithms is O(be2a2), where b is the beam 

size, an integer-valued internal parameter of the algorithm (Clark & Niblett, 1989). 2 The 

worst-case complexity of growing a decision tree is O(ea 2) when only symbolic attributes 

are present (Utgoff, 1989a), but becomes quadratic or worse in e with numeric ones, mainly 

due to the need for repeated sorting operations (Catlett, 1991). The final pruning stage used 

in C4.5 and several rule induction systems may also in general be worse than quadratic in 

e (Cohen, 1995). Thus RISE's worst-case time complexity is comparable to that of other 

rule and decision tree learners. Average-case time is also likely to be substantially smaller 

than the worst case, because some of the assumptions above are overly pessimistic (e.g., in 

general r will seldom remain equal to e, but will instead shrink rapidly; attributes will be 

dropped several at a time, and not all will be removed; increasing e may not increase the 

number of "repeat" cycles, even with a global stopping criterion; etc.). 

The introduction of numeric values simply increases the values above by a factor of v , ,  

since the single-step removal of a condition may now be replaced by at most O (vT~) steps of 

expanding the corresponding interval. Again, in practice only a small number of steps may 

actually be required. However, in the case of real-valued attributes for which arbitrarily 

fine distinctions are possible, and therefore as many different values as there are training 

examples may occur, this can lead to some inefficiency. This problem is only potentially 

significant in large datasets, since the number of observed values of an attribute is bounded 

from above by the number of training examples. To obviate it, in datasets with more than 

3000 examples the generalization of a rule to cover an example (Table 2) is adapted as 

follows. When extending an interval to include an example value above it (or below), the 

interval's upper (lower) limit is not set to the example's value, but to that value plus (minus) 

a delta which is set by default to 5% of the maximum range the value was observed to vary 

over. In addition to potentially reducing the running time of the algorithm, this policy can 

have a positive effect on its accuracy, by avoiding overfitting. This was indeed observed in 

the empirical study described below. 

RISE has been optimized with respect to running time in two additional ways: pruning 

and windowing. Pruning is performed by sometimes cutting short the computation of the 

distance between a rule and an example; this is akin to reducing search by means of branch- 
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and-bound techniques. This is possible in two situations (see Table 3). When a rule searches 

for its nearest example, it can discard a candidate as soon as its distance becomes larger 

than the shortest one found so far. Similarly, when a tentatively-generalized rule searches 

for the examples it now wins, its distance to each example needs to be computed only until 

it becomes larger than the current winning rule's one. This form of pruning has no effect on 

the algorithm's output, and in general will also not change its worst-case time complexity, 

but can significantly reduce its average running time. 

In datasets with more than 3000 examples, windowing is used (Catlett, 1991; Quinlan, 

1993a). This proceeds as follows. Initially, only 2-v/e examples randomly extracted from the 

training set are used for learning. If the remaining training examples are correctly classified 

by the resulting rule set, this set is output. Otherwise, the misclassified examples are added 

to the initial example set, and this process repeats until it produces no improvement in 

accuracy, or up to a prespecified number of times (5 by default). In the best case, only 

O(v/e ) examples are used, and the algorithm becomes linear in the training set size. In 

the worst case, the window grows to include the entire training set, and the process is 

more costly than learning directly on that set. Thus windowing may or may not decrease 

running time. Its effect on accuracy can also be positive or negative. A more detailed 

discussion of these issues in the context of decision tree induction can be found in (Catlett, 

1991) and (Quinlan, 1993a). In the empirical study described below, windowing improved 

RISE's running time in all the datasets where it was used (those with more than 3000 

examples), sometimes by a large factor, while improving accuracy in all but one (where 

it had no significant effect). Windowing thus appears to be substantially more useful in 

RISE than in decision tree induction. This may be due to several factors, including RISE's 

lower sensitivity to the global proportions of different classes, and its higher resistance to 

the fragmentation problem, which enables it to correctly approximate class frontiers using 

fewer examples. 

6. Empirical study 

An extensive empirical study was carried out with the twin goals of comparing RISE's 

performance to that of previous approaches, and determining the role of its main components 

in that performance. The remainder of this section describes the characteristics and reports 

the results of this study. 

6.1. Experimental design 

RISE was compared with a representative of each of its parent approaches: PEBLS for 

IBL (Cost & Salzberg, 1993), and CN2 for rule induction (Clark & Niblett, 1989). PEBLS 

is a state-of-the art system, as opposed to the skeleton nearest-neighbor implementations 

typically used in empirical comparisons. PEBLS 2.1 's inability to deal with missing values 

was overcome by grafting onto it an approach similar to the one selected for RISE (see 

Section 4). A recent version of CN2 (6.1) was used, one incorporating Laplace accuracy 

and unordered rules (Clark & Boswell, 1991). To gauge its position in the overall spectrum 
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of induction methods, RISE was also compared with a system that learns rule sets by 

way of decision trees, C4.5/C4.5RULES (Quinlan, 1993a). The default classifier (always 

choosing the most frequent class) was also included in the study to provide a baseline. 

Back-propagation (Rumelhart et al., 1986), although a widely-used learning algorithm, 

was left out because its need for extensive fine-tuning and very long running times would 

make a large-scale study of this type difficult to carry out. 

Thirty datasets were used in the study. An attempt was made to include every available 

domain that has been widely used in inductive learning studies, and beyond that to provide 

a wide sampling of: symbolic, numeric and mixed datasets; small, medium and large 

datasets; datasets of varying difficulty, as expressed in the highest accuracy previously 

achieved; and datasets from a wide range of application areas. All datasets were drawn 

from the UCI repository (Murphy & Aha, 1995), and are obtainable by anonymous ftp 

from ics.uci.edu, subdirectory pub/machine-learning-databases. Table 4 lists the datasets 

used, and summarizes some of their main characteristics) Datasets included in the listing 

of empirical results in (Holte, 1993) are referred to by the same codes. 

In the first phase of the study, the first 15 datasets in Table 4 (from breast cancer to 

wine) were used to fine-tune the algorithms, choosing by 10-fold cross-validation the most 

accurate version of each. Since a complete factor analysis would be too expensive, the 

relevant parameters were instead varied one at a time, starting with the ones thought to be 

most critical, and selecting the best value for each parameter before going on to the next one. 

When no clear differences were present, the default was retained. For RISE this process 

is described in more detail in (Domingos, 1995b), and resulted in the system described in 

the previous sections, with q = 1 (Equation 4), s = 2 (Equation 7), and global stopping 

(Section 5). In PEBLS, the number of intervals for each numeric attribute has to be set by the 

user, and it is recommended that it be kept small for best results. The policy was adopted of 

using the number of observed values up to a maximum of m, and the optimum m found was 

15. All other parameters retained their default values. In CN2, the only non-default choice 

produced was that of accuracy instead of Laplace accuracy for the evaluation function. 4 In 

C4.5, a major question is whether to output trees or rules. C4.5RULES produced slightly 

better results, and was the version chosen. It also has the advantage of being the one most 

directly comparable to RISE. The non-default choices made were: use windowing (growing 

10 trees, the default), require a minimum of 4 examples (instead of 2) in two branches of a 

test, and use a confidence level of 37.5% for rule pruning (instead of 25%). 

The fine-tuned algorithms were then tested on the remaining 15 datasets in Table 4 (from 

audiology to zoology). Note that this procedure is somewhat unfavorable to RISE, since 

some of these domains were previously used in the development of the other algorithms, as 

reported in the references above. Each dataset was randomly divided 50 times into a training 

set containing two-thirds of the examples, and a testing set containing the remainder. All of 

the algorithms were trained on each of the 50 training sets and tested on the corresponding 

testing set. The results reported are averages of these 50 runs. For the sake of completeness, 

the algorithms were also rerun in these conditions on the 15 tuning datasets. 
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Table 4. Datasets used in the empirical study. The columns are, in order: name 
of the domain; 2-letter code used to refer to it in subsequent tables; number of 

examples; number of attributes; number of numeric attributes; number of classes; 
percentage of missing values; and whether or not the dataset includes inconsistent 
examples (i.e., identical examples with different classes). 

Domain Code Exs. Arts.  Num. Classes Missing Incons. 

Breast cancer BC 286 9 4 2 0.3 Yes 
Credit screening CE 690 15 6 2 0.6 No 
Chess endgames CH 3196 36 0 2 0.0 No 
Pima diabetes DI 768 8 8 2 0.0 No 
Hepatitis HE 155 19 6 2 5.7 No 
Iris IR 150 4 4 3 0.0 No 
Labor negotiations LA 57 16 8 2 35.7 No 
Lung cancer LC 32 56 0 3 0.3 No 
Liver disease LD 345 6 6 2 0.0 No 
Contact lenses LE 24 4 0 3 0.0 No 
Lymphography LY 148 18 3 4 0.0 No 
Primary tumor PT 339 17 0 21 3.9 Yes 
Soybean SO 47 35 0 4 0.0 No 
Voting records VO 435 16 0 2 5.6 No 
Wine W1 178 13 13 3 0.0 No 

Audiology AD 200 69 0 24 2. l No 
Annealing AN 798 38 9 5 64.9 No 
Echocardiogram EC 131 7 6 2 4.4 Yes 
Glass GL 214 9 9 6 0.0 No 
Heart disease HD 303 13 6 2 0.2 No 
Horse colic HO 300 22 7 2 24.3 Yes 
Thyroid disease HY 3163 25 7 2 6.7 Yes 
LED LI 100 7 0 l0 0.0 Yes 
Mushroom MU 8124 22 0 2 1.4 No 
Post-operative PO 90 8 8 3 0.4 Yes 
DNA promoters PR 106 57 0 2 0.0 No 
Solar flare SF 323 12 3 6 0.0 Yes 
Sonar SN 208 60 60 2 0.0 No 
Splice junctions SP 3190 60 0 3 0.0 Yes 
Zoology ZO 101 16 I 7 0.0 No 

6.2. Accuracy comparisons 

The average accuracies  and sample  s tandard deviat ions  obta ined are presented  in Table 5. 

Superscr ip ts  indicate conf idence  levels for the d i f ference  be tween  RISE and the cor respond-  

ing algori thm, using a one-tai led paired t test. The first ha l f  o f  the table shows results on 

tuning datasets,  and the second half  shows  results on test datasets.  

A l though  many results in individual datasets  are in teres t ing in themselves ,  these tables 

are more  easily unders tood if their results are summar i zed  in a few global measures  of  

compara t ive  per formance .  Five such measures  and their values are presented  in Table 6. 

They can be descr ibed  and interpreted as fol lows.  
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Table 5. Empirical results: average accuracies and standard deviations. Superscripts denote 
confidence levels: 1 is 99.5%, 2 is 99%, 3 is 97.5%, 4 is 95%, 5 is 90%, and 6 is below 90%. 

Domain RISE Default PEBLS CN2 C4.5 

BC 67 .74-4 .5  68.5:t :6.86 64.94-4.01 65.94-4 .71 67.92:5.16 
CE 83.3±2.4 56.74-3.71 81.64-2.01 82.3+2.21 84.52:2.51 
CH 98.22:0.6 52.3±1.81 96.84-0.71 98 .72 :0 .71  99.2±0.21 
DI 70.42:2.5 65.4±2.41 70 .92:2 .66  73.64-2 .41 73.1±2.51 
HE 78 .34-5 .7  79.12:3.66 80 .32:5 .13  80 .92:3 .61  81.0±5.32 
IR 94.0+2.8 26.34-3.81 93 .22:3 .54  90.8±4.41 93.54-2.86 
LA 87.22:7.8 66.1±10.21 91.12:5.11 82 .82:7 .61  81.4±6.11 
LC 44.74-16.4 24.72:15.51 42.02:15.26 32.74-13.61 44.5-,-14.16 
LD 62.42:4.6 57.82:3.21 61 .22:4 .25  66 .84-4 .71  65.1+4.51 
LE 77.22:12.8 60.84-13.11 72.52:12.61 67.84-12.4 a 63.72:18.41 
LY 78.7±5.9 55.52:6.91 81.7±5.41 80 .22 :5 .55  76.62:5.73 
PT 40.34-4.8 24.34-3.41 31.4±4.11 41.4±5.35 38.9±4.94 
SO 100.0±0.0 25.92:16.21 100.02:0.06 97.3±4.91 97.44-3.11 
VO 95.22:1.5 60.72:3.01 94.6±1.33 95.5±1.55 95.42:1.56 
WI 96.92:2.0 36.94-8.61 96.5:1:2.15 90.5±5.51 93.04-4.21 

AD 77.0~5.3 20.8±3.61 75.8±5.25 63.0±6.61 66.9+6.01 
AN 97.4±0.9 76.2:t:2.2 t 98.8:t_0.81 92.9±2.11 93.4+1.71 
EC 64.6i7.0 68.1-t:6.91 63.0±5.4 ~ 67.94-6 .01 65.0±6.4 G 
GL 70.6:1:5.8 31.4±5.01 66.7±6.21 55.0-t-6.91 66.4+7.41 
HD 79.7:t:3.8 55.1t3.81 78.8:t_3.85 78.5+3.95 77.3+3.51 
HO 82.6±3.9 64.12:3.81 76.1±4.01 82.24-3 .66 81.0-t-3.82 
HY 97.52:0.4 95.32:0.51 97.32:0 .51 98 .32 :0 .51  99.2=1:0.2 x 
L1 59.92:7.2 7 .3 :h3 .21  53.02:7 .01 57.52:7.72 57.1+8.12 

MU 100.02:0.2 51.84-0.91 100.0±0.06 100.04-0.06 100.0±0.06 
PO 64.1±7.0 71.02:6.21 58.32:7 .91 59 .42 :7 .71  67.3±9.73 
PR 86 .84-5 .2  42.1±5.31 90.6±5.21 72.0±8.91 80.62:8.51 
SF 71.62:3.7 25.44-4.11 68.2±3.51 70.7±3.44 71.54-3.76 
SN 77.92:9.3 51.04-7.01 75.0±5.63 63".04-5.51 69.64-8.01 
SP 93.14-1.6 52.22:1.71 94.32:0 .61 90.9±1.01 93.22:1.16 
ZO 93.9=t:3.7 40.5:t=6.31 94.9±4.23 92.4±5.53 91.23:5.11 
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Table 6. Summary of accuracy results. 

Test datasets All datasets 

Measure RISE PEBLS CN2 C4.5 RISE PEBLS CN2 C4.5 

No. wins 10-4 12-2 10-4 20-8 20-9 18-11 
No. signif, wins 7-4 10-2 9-2 I4-7 18-6 15-7 
Wilcoxon test 96.0 99.6 98.0 98.0 99.6 98.0 
Average 81. I 79.4 76.2 78.6 79.7 78.3 76.4 77.8 
Score 46.5 34.5 27.5 33.5 86.0 65.0 63.5 72.5 

Number of  wins. The first and most obvious test is simply to count the number of 

datasets where RISE achieved higher accuracy than the second algorithm, count those 

where its accuracy was lower, and compare the two (draws are not counted either way). 

The first line of Table 6 shows this: for example, RISE performed better than PEBLS in 

10 test datasets, and worse in 4 (there was 1 draw). As can be seen, RISE outperformed 

every other algorithm in this respect by a ratio of roughly 2 to 1. 

Number of significant wins. The previous measure is clearly imperfect, for some of 

the differences can be very small and of no real significance. A good alternative is 

then to count only those datasets where the difference was significant at a confidence 

level of 95% or higher (see Table 5). This yields roughly similar ratios, with all values 

somewhat reduced as might be expected, confirming the previous observation that RISE 

performs substantially better than every other algorithm. 

Wilcoxon test. The goal of machine learning is not in general to produce algorithms 

targeted to one specific domain, but rather to produce algorithms that are accurate 

across broad classes of domains. In trying to answer the question "Is RISE a more 

accurate system?" it is then useful to look at the 15 (or 30) domains used in this 

study as a sample of size 15 (or 30) taken from the set of  real-world domains, consider 

the accuracy difference in each domain as a sample of a random variable, and test the 

hypothesis of whether this difference is in general positive. The Wilcoxon signed-ranks 

test is a procedure that addresses this issue (DeGroot, 1986). It takes into account the 

signs of the observed differences, and their ranking (i.e., the largest difference counts 

more than the second largest one and so forth, but it does not matter by how much). 

In each case, the results support the hypothesis that RISE is a more accurate algorithm 

with a confidence in excess of 95%. It is therefore highly unlikely that RISE performed 

better than the other algorithms by chance. If the domains used constitute a good sample 

of the set of real-world domains to which these algorithms will be applied, we can then 

conclude with high confidence that RISE is the most accurate one. 

Average. The average performance across all domains is a measure of debatable sig- 

nificance, but it has often been used (e.g., Quinlan, 1993b; Clark & Boswell, 1991) 

and provides additional perspective. Again RISE does visibly better than every other 

algorithm. It is also interesting to note that, although IBL (PEBLS) and rule induction 
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(CN2) often differ by large margins in specific domains, globally these differences tend 

to cancel each other out. This is also true when comparing C4.5 with PEBLS. 

Score. The score is a measure that compares all 5 algorithms simultaneously (default 

included), looking not only at which one is the most accurate one, but also taking into 

consideration that being the second is better than being the worst, etc. Specifically, for 

each domain the most accurate algorithm receives 4 points, the second 3, the third 2, 

the fourth 1 and the worst 0. RISE obtains the largest score by a wide margin. 

The same general pattern typically emerges if the results are broken down by dataset size 

(small, medium and large, i.e., e < 100, 100 < e < 1000, and e _> 1000), dataset type 

(symbolic, numeric and mixed), difficulty (easier and harder, as measured by the highest 

accuracy being above or below 75%, the global average), and area (medical diagnosis, 

engineering, social science, life sciences and miscellaneous). Confidence levels are of 

course reduced due to the smaller sample size, and there is sometimes no clear pattern 

when the number of datasets is very small, but RISE's excellent results clearly hold across 

the board. 

A very significant observation is that in 14 datasets RISE's accuracy exceeds the highest 

of CN2's and PEBLS's (i.e., RISE not only matches the results of the best of its parent 

approaches, but is able to improve on them). In 9 of those datasets this is true with a 

confidence level of 95% or higher, using a one-tailed paired t test (see Table 5). This 

shows that a Significant synergy can be obtained by combining multiple empirical learning 

approaches. 

6.3. Further study 

The empirical results just described lead to the conclusion that RISE represents a significant 

advance in the state-of-the-art in empirical learning. However, we would also like to know 

what factors RISE's higher accuracy should be attributed to. To answer this, lesion studies 

were conducted, and additional aspects of the algorithm's performance were measured. 

The results are reported in Table 7. Superscripts indicate confidence levels for the accuracy 

differences between systems, again using a one-tailed paired t test. The first four columns 

compare the full system's accuracy with that obtained using lesioned versions, and are 

summarized in Table 8. The last four columns all refer to the full RISE system, and show, 

respectively: the percentage of test cases that were not matched by any rule, but had a 

single closest rule, or for which all equally close rules were of the same class (No/One); the 

percentage not matched by any rule, and for which there were equally close rules of more 

than one class (No/Multi); the percentage matched by only one rule, or rules of only one 

class (One); and the percentage matched by rules of more than one class (Multi). These 

observations aid in interpreting the lesion study results. 

The first specific question addressed was whether there is any gain in the rule induction 

process (i.e., whether RISE constitutes an improvement over pure instance-based learning). 

The "IBL" column in Table 7 reports the accuracies obtained by the initial, ungeneralized 

instance set, and shows that generalization often produces significant gains in accuracy, 
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Table 7. Empirical results: lesion studies and performance monitoring. Superscripts 

denote confidence levels: 1 is 99.5%, 2 is 99%. 3 is 97.5%, 4 is 95%, 5 is 90%, and 6 

is below 90%. 

Accuracy of subsystem Match type frequency 

Domain RISE IBL Rules No tie-b. No/One No/Multi One Multi 

BC 67.7 65.11 69.04 68.71 33.4 1.5 59.1 6.0 

CE 83.3 81.31 66.91 83.26 51.9 0.0 46.9 1.1 

CH 98.2 91.91 91.91 98.01 27.6 0.1 71.4 0,9 

DI 70.4 70.36 66.21 70.51 70.9 0.1 27.4 1.6 

HE 78.3 78.46 79.65 78.5 ̀5 55.3 0.1 43.1 1.5 

IR 94.0 94.73 71.01 94.06 45.9 0.0 54.0 0,2 

LA 87.2 90.81 73.71 87.16 51.8 0.2 46.6 1.4 

LC 44.7 42.06 26.51 44.25 88.2 0.4 9.1 2,4 

LD 62.4 60.94 62.16 62.36 72.7 0.2 24.0 3.0 

LE 77.2 72.51 64.81 75.83 13.2 1.5 83.0 2.2 

LY 78.7 82.01 70.11 78.23 42.9 0.4 53.9 2.8 
PT 40.3 34.31 33.51 37.01 34.2 4.1 41.6 20.1 

SO 100.0 100.06 85.11 100.06 16.9 0.0 83.1 0.0 
VO 95.2 94.63 83.71 94.21 7.4 0.1 90.3 2.1 

WI 96.9 95.11 51.51 96.96 78.1 0.0 21.9 0.0 

AD 77.0 75.85 55.11 76.21 53,6 1.6 43.0 1.8 

AN 97.4 97.74 77.71 97.21 24,1 0.0 75.6 0.2 

EC 64.6 59.21 65.76 64.56 70,1 0.1 26.8 3.0 

GL 70.6 68.32 47.31 70.42 71.5 0.0 27.2 1.3 

HD 79.7 77.81 64.71 79.76 63.1 0.0 34.8 2.l 

HO 82.6 76.61 79.01 81.71 39.7 0.2 55.4 4.6 

HY 97.5 94.14 84.81 97.56 40.7 0.1 58.3 0.9 
LI 59.9 55.9 l 52.71 49.71 14.7 4.5 47.3 33.5 

MU 100.0 97.56 100.06 99.81 7.3 0.0 92.5 0.2 

PO 64.1 59.11 70.91 65,91 36.5 12.2 44,7 6.6 

PR 86.8 90.61 68.41 85,94 59.7 0.0 35.8 4.5 

SF 71.6 71.16 65.5 t 68.11 16.7 2.9 59.9 20.4 

SN 77.9 83.81 52.91 77.96 95.6 0.0 4.3 0.1 

SP 93.1 87.81 75.91 92.11 67.4 0.0 29.9 2.7 

ZO 93.9 94.54 81.01 93.74 17.5 0.0 81.9 0.5 

Table 8. Summary of lesion study results, 

Measure 

Test datasets All datasets 

RISE IBL Rules No t.-b. RISE IBL Rules No t.-b. 

No. wins 

No. signif, wins 

Wilcoxon test 
Average 

11-4 12-2 l i d  21-8 25-4 20-4 

8-4 12-1 10-1 16-7 24-2 15-3 

97.0 99.8 99.0 99.5 99.9 99.8 
81.1 79.3 69.4 80.0 79.7 78.1 67.9 79.0 
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while seldom having a negative effect. Not surprisingly, the results are similar to those of 

RISE vs. PEBLS. 

The converse question is whether the instance-based component is really necessary. Sim- 

ply assigning examples not covered by any rule to a default class, as done in most rule 

induction systems, might be sufficient, The "Rules" column in Table 7 shows the results 

obtained using this policy, and confirms the importance of "nearest-rule" classification in 

RISE. The sum of the "No" columns in the right half of Table 7 is the percentage of test cases 

assigned to the default class. This is often very high, the more so because RISE tends to 

produce rules that are more specific than those output by general-to-specific inducers. The 

use of nearest-rule is thus essential. Note that the results reported in the "Rules" column are 

for applying the default rule during both learning and classification; applying it exclusively 

during classification produced only a slight improvement. 

Another important component of RISE whose utility needs to be determined is the conflict 

resolution policy, which in RISE consists of letting the tied rule with the highest Laplace 

accuracy win. This was compared with simply letting the most frequent class win ("No 

tie-b." column in Table 7). The sum of the "Multi" columns in the right half of Table 7 

is the percentage of cases where tie-breaking is necessary. This is typically small, and 

the increase in accuracy afforded by RISE's conflict resolution strategy is correspondingly 

small (0.7% on average, for all datasets). However, this increase is consistently produced, 

as evinced by the fact that RISE is more accurate than its lesioned version with a 99.8% 

confidence by the Wilcoxon test. 

Taken together, the lesion studies show that each of RISE's components is essential to 

its performance, and that it is their combination in one system that is responsible for the 

excellent results obtained by RISE vis-dt-vis other approaches. 

The question now becomes one of why RISE's combined approach is superior to the 

individual ones, and under what other conditions the combined approach will lead to su- 

perior performance. This was studied by conducting experiments in artificial domains. 

Space limitations preclude full reporting of these studies here, but the main results can be 

summarized as follows (see Domingos, 1995c, and Domingos, in press, for a more detailed 

treatment). 

Compared to IBL systems, RISE draws strength from its ability to perform context- 

sensitive feature selection. Conventional feature selection methods, and VDM-style metrics, 

are only able to weed out features that are globally irrelevant. RISE, like rule and decision 

tree learners, can retain different sets of features in different parts of the example space. 

Experiments correlating accuracy with a measure of context dependency of feature relevance 

showed the advantage of RISE's feature selection strategy increasing with this dependency. 

RISE's bias will be inappropriate when this dependency is absent, and can hurt performance 

if the datasets are also small and noisy. An additional hypothesis to explain RISE's advantage 

vs. "pure" IBL is that, because of its ability to simplify frontiers in the example space through 

abstraction, it can detect simple frontiers more easily when they exist. 

A number of IBL algorithms, including PEBLS, discretize numeric features and then 

apply a VDM-style metric to the resulting descriptions. This improves their ability to cope 

with irrelevant features, since the VDM for two values of an irrelevant feature will tend 

to be zero while Euclidean distance may be arbitrarily large. However, it also loses one 
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of IBL's main advantages: its ability to form non-axis-parallel frontiers in instance space. 

Ting (1994) found that this approach improved accuracy in a number of domains, which 

can be attributed to the first effect having prevailed. In other domains the opposite was 

observed. RISE overcomes this trade-off: it is still able to form non-axis-parallel frontiers 

through its use of Euclidean distance, and at the same time it is able to overcome irrelevant 

features by generalizing or entirely dropping them. 

Compared to "divide and conquer" or "separate and conquer" systems like C4.5 and 

CN2, RISE's higher accuracies can be hypothesized to be due to the following factors. 

RISE is able to form complex non-axis-parallel frontiers, and is thus at an advantage when 

these are appropriate. Its "conquering without separating" induction strategy makes it less 

sensitive to the fragmentation problem, and its specific-to-general search direction allows it 

to identify small exception regions that will go undetected (or be more poorly identified) by 

general-to-specific learners. A study designed to exhibit conditions where each bias would 

be superior by correlating accuracy with concept specificity confirmed RISE's advantage 

when concepts are highly specific, but failed to produce the opposite result for general 

concepts, with both noise-free and noisy datasets. The question of what exact conditions 

will favor algorithms like C4.5 and CN2 over RISE thus remains a topic for further research. 

6.4. Space and time comparisons 

Besides accuracy, two variables of interest are output size and running time. These are 

listed in Table 9. Output size is measured by counting one unit for each antecedent of a 

rule, plus one for the consequent. The size for PEBLS is simply that of the the training set 

(i.e., e(a + 1), in the notation of Section 5). Running times were obtained on a Sun 670 

machine, with all algorithms implemented in C and similarly compiled. All values shown 

are averages of 50 runs. 

With respect to output size, RISE occupies an intermediate position between the IBL 

and rule induction representatives. It obtains large savings compared to PEBLS, and these 

increase with training set size (see, e.g., the MU dataset). We can thus expect RISE to be at a 

significant advantage relative to unedited IBL methods in applications where a large number 

of examples is available, and the target concept is comparatively simple. On the other hand, 

RISE's output is still generally much larger than CN2's. The number of rules produced 

(not shown) is typically similar, but RISE's rules tend to be substantially more specific; this 

is consistent with the search direction and best-match policy it uses. An important fact is 

that, if rules that do not win any training examples are discarded, the resulting decrease 

in RISE's accuracy is minimal (0.05% on average) and has practically no effect on the 

comparison with CN2, but the output size is reduced by 50% or more, and the average 

number of rules becomes smaller than CN2's in every domain except VO (where it is about 

the same). Thus, when simplicity of the output is a goal, RISE can often come quite close 

to CN2 without compromising accuracy. However, the simplest results are always those 

obtained by C4.5RULES. (The pruned tree sizes (not shown) are comparable to those of 

CN2's and RISE's pruned rule sets.) 

With respect to running time, RISE is slower than PEBLS on most datasets. This is to 

be expected, since RISE essentially does everything that PEBLS does, and more. More 
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Table 9. Empirical results: output size and running time (in minutes and seconds). 

Output size Running time 

Domain RISE PEBLS CN2 C4.5 RISE PEBLS CN2 C4.5 

BC 1045.4 1910 410.2 17.5 0:15.11 0:03.16 0:22.86 1:31.41 
CE 4110.9 7392 679.4 51.0 4:31.25 0:16.11 2:05.30 2:53.67 
CH 3063.8 79217 843.1 96.2 10:39.67 11:59.41 6:41.85 4:00.51 
DI 3048.8 4626 802.0 69.3 4:15.37 0 :12~30  2:13.93 4:02.76 
HE 1231.9 2060 112.8 20.5 0:10.93 0:02.32 0:07.42 0:08.24 
1R 382.9 500 63.2 9.9 0:05.42 0:01.74 0:03.01 0:02.09 
LA 305.7 646 42.3 10.0 0:01.30 0:01.60 0:02.42 0:01.96 
LC 403.3 1197 39.6 7.8 0:00.69 0:01.70 0:04.64 0:02.07 
LD 1156.8 1617 436.1 63.6 1:31.02 0:02.82 0:28.21 1:06.12 
LE 16.7 80 25.5 6.1 0:00.13 0:01.78 0:00.55 0:01.31 
LY 756.4 1881 131.7 25.4 0:04.88 0:02.21 0:07.77 0:06.07 
PT 2076.7 4086 653.6 61.1 0:14.38 0:06.07 1:58.39 1:55.04 
SO 106.2 1116 18.8 9.9 0:00.50 0:01.64 0:01.46 0:01.74 
VO 541.0 4947 113.2 15.9 0:27.71 0:07.07 0:06.47 0:03.41 
WI 896.3 1666 87.6 14.3 0:15.31 0:02.77 0:10.30 0:11.18 

AD 4165.8 9380 236.4 40.7 0:11.20 0:07.14 1:10.47 0:24.18 
AN 13527.3 20826 420.4 62.0 4:26.07 1:46.58 4:34.74 2:46.27 
EC 550.2 696 137.7 19.7 0:04.84 0:02.70 0:07.16 0:13.05 
GL 696.2 1430 245.8 47.0 0:11.03 0:02.75 0:28.22 1:41.71 
HD 1460.5 2842 320.8 42.9 0:26.35 0:03.71 0:24.85 1:53.25 
HO 2111.6 4623 268.6 19.4 1:39.64 0:05.77 1 :42 .63  0:24.29 
HY 7465.9 55094 430.7 1 4 . 5  14:45.96 8:36.18 11:53.69 1:54.54 
L1 217.3 536 125.8 40.3 0:00.60 0:01.68 0:02.42 0:02.89 

MU 398.1 125189 176.8 38.6 10:07.22 45:37.28 4:16.37 18:29.79 
PO 470.3 540 132.9 4.5 0:01.49 0:01.46 0:05.28 0:02.53 
PR 1198.6 4118 82.5 16.0 0:07.85 0:02.94 0:15.03 0:06.28 
SF 1316.2 2808 326.3 35.2 0:08.97 0:04.19 0:20.03 0:28.49 
SN 3756.4 8479 224.0 33.9 2:35.81 0:09.76 2:39.08 5:15.54 
SP 8350.7 130357 1360.5  211.3 51:28.15 19:25.15 32:15.24 24:20.94 
ZO 196.2 1139 41.3 20.0 0:01.I1 0:01.76 0:02.03 0:02.16 

surpr i s ing  is the fact  that  R I S E  is still fas ter  than P E B L S  on e ight  datasets ,  i nc lud ing  

several  pure ly  symbo l i c  ones.  Th i s  suggests  tha t  P E B L S ' s  i m p l e m e n t a t i o n  could  be fur ther  

opt imized .  R I S E  is typical ly  fas ter  than CN2,  but  this  advan tage  tends  to be concen t r a t ed  

in the smal le r  datasets ,  ra is ing  the poss ib i l i ty  that  CN2  will be  at a cons ide rab le  advan t age  

in larger  datasets  than those  used  here,  p rov ided  the  concep t  descr ip t ion  is still suff ic ient ly  

s imple  ( if  not,  C N 2 ' s  t ime will  grow to the wors t -case  b o u n d  d i scussed  in Sect ion  5, 

equ iva len t  to RISE ' s ) .  R ISE  is also typica l ly  fas ter  than C4.5 in this  compar i son ,  bu t  this  

is due  to the fact  that  the w i n d o w i n g  opt ion  is be ing  used in C4.5;  even  t h o u g h  each  tree is 

typical ly  g rown  faster  wi th  w indowing ,  this  gain tends  to be  s w a m p e d  by the fact  tha t  10 

trees are be ing  grown.  

We conc lude  that,  for da tase ts  of  very large size, and/or  w h e n  comprehens ib i l i t y  is 

pa ramoun t ,  a sys tem like C4.5 will still be  the first choice .  If, on  the o ther  hand,  ac- 
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curacy is the dominant goal, the results of previous subsections indicate that RISE may be 

a more appropriate algorithm to use. 

7. Related work 

The RISE approach should be seen in the context of previous work in inductive learning 

and related areas. 

Thc AQI5 system employed best-match classification (Michalski et al, 1986; a more 

recent version is AQ17-HCI (Wnek & Michalski, 1994)). It differed from RISE in that it 

was a general-to-specific, separate-and-conquer system that learned purely logical rules, and 

only introduced the best-match policy in a post-processing step, with the goal of removing 

rules from the set without adversely affecting accuracy. It also used a different distance 

measure. Its approach is carried further in the FCLS system (Zhang, 1990), which combines 

rules with exemplars in an attempt to alleviate the small disjuncts problem. Unlike RISE, 

FCLS employs different representations for rules and exemplars, and it uses the separate- 

and-conquer strategy of its AQ ancestors. 

RISE addresses the fragmentation problem in rule induction by employing a "conquering 

without separating" induction strategy. Other approaches to this problem include construct- 

ing new attributes (Pagallo & Haussler, 1990) and converting decision trees to decision 

graphs (Oliveira & Sangiovanni-Vincentelli, 1995; Kohavi & Li, 1995). 

Viewed as an instance-based learner, RISE performs context-sensitive feature selection, 

which can be seen as an extreme form of context-sensitive feature weighting. A number 

of methods of this type have been proposed in the literature (Aha & Goldstone, 1992; 

Atkeson, Moore & Schaal, in press). Non-metric, context-sensitive distance measures for 

IBL are discussed in (Biberman, 1994). Another important aspect of RISE is its policy 

for combining numeric and symbolic attributes, using SVDM for the former and Euclidean 

distance lor the latter. Alternative approaches have been explored by Ting (1994) and Mohri 
and Tanaka (1994). 

MCS (Brodley, 1995) has the most similar aims to RISE's, but uses an entirely different 

approach (applying meta-knowledge to detect when one algorithm should be used instead of 

another), and combines instead decision trees with IBL and linear discriminant functions. 

Golding and Rosenbloom (1991) designed a system that gainfully combined case-based 

and rule-based reasoning, but it did not learn, it matched rules exactly, and it used differ- 

ent representations and match procedures for cases and rules, instead of RISE's unified 

approach. Quinlan (1993b) has successfully combined IBL with trees and other methods, 

but for the purpose of regression as opposed to classification, performing this combination 

only at performance time, and in a way that depends critically on the predicted value being 

continuous. Several induction algorithms proposed in the literature can be seen as em- 

pirical multi-strategy learners, but combining different paradigms from RISE's: decision 

trees and rules (Quinlan, 1987), decision trees and perceptrons (Utgoff, 1989b), rules and 

Bayesian classification (Smyth, Goodman & Higgins, 1990), back-propagation and genetic 

algorithms (Belew, McInerney & Schraudolph, 1992), instances and prototypes (Scott & 

Sage, 1992), decision trees and kernel density estimation (Smyth, Gray & Fayyad, 1995), 
etc. 
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In form, the most similar system to RISE in the literature is EACH (Salzberg, 1991), 

which generalizes instances to hyperrectangles, and classifies each test example according 

to its nearest hyperrectangle. It differs from RISE in many ways: it is applicable only 

in purely numerical domains, is an incremental algorithm, never drops attributes, uses 

different heuristics and search strategies, always prefers the most specific hyperrectangle, 

etc. Recently Wettschereck and Dietterich (1995) carried out a detailed comparison of 

EACH and k-nearest-neighbor (kNN), and designed an algorithm that combines the two 

(Wettschereck, 1994), but does not achieve greater accuracy than kNN alone. They found 

EACH to be less accurate than kNN in most of the domains studied, and the chief cause 

of this to be EACH's use of overlapping rectangles. Since RISE and EACH use similar 

representations in the case of numeric attributes, this warrants closer examination. 

Two issues are involved in Wettschereck and Dietterich's study, and they should be clearly 

distinguished. One is whether using one nearest neighbor is preferable to using several. 

This has been studied for many years in the nearest neighbor literature (e.g., Cover & Hart, 

1967). Another issue, of more interest here, is whether or not generalization of instances 

to hyperrectangles is beneficial. Unfortunately, the study does not decouple the two issues, 

and it is not possible to determine which of the two factors (or both) is responsible for 

the observed differences in performance. EACH (and RISE) can be extended to use the 

k nearest rules for classification; doing so and comparing the resulting approaches with 

kNN is a worthy topic for future research. Here we will discuss our results on the issue of 

whether or not to generalize instances to rules, in the context of using the single nearest 

rule for classification. 

In the cross-validation studies reported above, RISE's tie-breaking policy based on 

Laplace accuracy was compared with one selecting the most specific rule as in EACH, 

and found to be clearly superior. This can be understood as follows. In regions of overlap, 

EACH arbitrarily assigns all examples to the class of the most specific hyperrectangle. In 

contrast, RISE's learning strategy approximates the optimal decision rule of placing the 

boundary between two classes at the point where the density of examples from one over- 

takes that of the other (Duda & Hart, 1973). This is because a rule is started from each 

example, and its generalization halts when it would include more examples of other classes 

than of the example's one. The use of Laplace accuracy then implies that, given similar- 

sized samples, each rule prevails in regions where the density of examples of its class is 

greater. RISE's batch-learning approach also avoids the problems that EACH's incremen- 

tal learning one was observed to suffer from. As reported above, RISE outperformed two 

one-nearest-neighbor algorithms (PEBLS and RISE's own IBL component) in a large-scale 

empirical study. All these facts support the conclusion that generalizing instances to rules 

can indeed produce substantial improvements in accuracy, if done in an appropriate manner. 

8. Conclusions and future research 

A major direction for future research is extending the current RISE framework to include 

analytical as well as empirical learning. This will allow us to perform theory revision and 

interleaved automatic/manual construction of knowledge bases, as well as pure induction. 

The first step towards this goal is the introduction of specialization operators, in addition to 
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the current generalization procedure. The use of general-to-specific search in a "conquering 

without separating" mode will also allow closer comparison of the latter with the currently 

prevalent "separate and conquer" strategy. Other directions for research include: studying 

in greater detail the behavior of RISE with windowing, and determining its applicability to 

large databases; extending it to use the k nearest rules to classify a new example; exper- 

imenting with methods for generalizing a symbolic antecedent that stop short of deleting 

it (e.g., through the introduction of internal disjunctions); experimenting with alternative 

methods for processing missing values; and performing an average-case analysis of the 

algorithm. Finally, we plan to make available a user-friendly version of RISE. 

In conclusion, the research reported here attempted to bring together the best features 

of rule induction and instance-based learning in a single algorithm. Extensive empirical 

evaluation has shown this attempt to be remarkably successful. A simplification of the 

knowledge engineer's task is now possible, since she can use a single algorithm (RISE) 

instead of an IBL and a rule induction one, with reasonable confidence that accuracy will 

not be reduced, and may in fact be improved. 
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Notes 

1. This phrase will be used in this article to refer to a family of learning approaches that also includes, or is also 

known as, exemplar-based, memory-based, case-based, experience-based, kernel-based, nearest-neighbor, 
local, and lazy learning. 

2. The computations in this reference are only for the basic step of the algorithms, which is embedded in loops 
that may run O(ea)  in the worst case, leading to the bound shown. 

3. BC: Ljubljana dataset; CH: king-rook-vs-king-pawn dataset; EC: class is 2nd feature, features 1 and 10-13 

deleted, example with unknown class deleted; HD: Cleveland dataset, last feature deleted to yield a two-class 

problem; HO: class is 24th feature, features 3 and 25-28 deleted; LI: 100 examples, seed = 1, 10% noise: PO: 

pseudo-discmtized values reconverted to numeric; SF: 1st feature used as class: SO: small dataset. 

4. Clark & Boswell (1991) observed Laplace accuracy to outperform entropy in the context of CN2. but conducted 

no comparison of Laplace accuracy with uncorrected accuracy. 
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