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We derive general expressions and present several examples for the phoretic forces and torques
acting on a translationally moving and rotating convex tracer particle, usually a submicrosized
aerosol particle, assumed to be small compared to the mean free path of the surrounding
nonequilibrium gas. Point of departure is an expression of the stress tensor in terms of half-sphere
integrals to be evaluated with the inhomogeneous velocity distribution function of the surrounding
gas, more specifically, its approximation in terms of a finite number of moments. A worked out
example covers Grad’s 13 moment approximation in and out of the so-called hydrodynamic
approximation. We implement an accommodation coefficient characterizing the collision process in
order to derive the tracer particle’s complete equations of motion in a form which offers the
possibility for immediate numerical implementation, and the analytical exploration of the effect of
particle shape and size on phoretic drift velocity. Explicit expressions for axisymmetric, spherical,
cylindrical, and also cuboidal particles are presented, discussed, and successfully compared with the
rarely available, previously treated special cases, thus supporting the unifying approach presented in
this manuscript. © 2006 American Institute of Physics. �DOI: 10.1063/1.2217946�
I. INTRODUCTION

As demonstrated recently for spherical tracer �aerosol�
particles, phoretic forces caused by inhomogeneities in the
properties of the solvent, e.g., temperature, pressure, and ve-
locity field, give rise to combined thermo-, baro-, and
rheophoresis, respectively.1 Thermophoretic forces caused by
a temperature gradient induce dust structures, are of central
interest in the scavenging of aerosol particles in clouds,
when droplets and/or ice crystals grow or evaporate, during
the fall of hydrometeors,2,3 influence the velocity measure-
ments in particle image velocimetry measurements,4 and
have been discussed in the context of nonequilibrium
thermodynamics,1,5,6 and in terms of a kinetic description,7–10

leading to a stochastic differential equation for a tracer par-
ticle in a solvent.1,11 In contrast to thermophoretic forces,
barophoretic effects caused by pressure gradients,12,13 and
rheophoretic forces caused by velocity field gradients have
been considered less frequently and not yet elaborated in an
extensive, complete, or unifying fashion for nonspherical
tracers.

Most aerosol particles are not spherical,3,14–16 and it is
therefore of considerable interest to examine the effect of
particle shape on phoretic motion.17,18 In this article we will
present explicit expressions for the diverse phoretic forces on
dissolved ellipsoidal, cylindrical, and cuboidal tracer par-
ticles derived from forces on surface elements.1 These results
will be obtained via kinetic theory in a conceptually trans-
parent manner for particles of arbitrary convex shape, and for
arbitrary solvent velocity distribution functions by half-
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sphere integrations over solvent velocity distribution func-
tions before and after a collision with the tracer particle. The
simultaneous incorporation of thermo-, baro-, and
rheophoresis is complete in the sense that it accounts for
inhomogeneities in all of the independent field variables of a
nonisothermal hydrodynamic description of the solvent, but
our approach equally allows to study the “nonhydrody-
namic” regime. As thoroughly discussed earlier,13,19 there is
no simple way to account for inertia and diffusion within a
hydrodynamic framework, and a kinetic approach is neces-
sary. The calculations to be presented can be considered as
“bruteforce” approach, less elegant �but still including� those
presented earlier,10 but involve no approximations, and may
be performed, for complex shapes, with the help of a sym-
bolic programming language.20 Particles suspended in rar-
efied gases, e.g., aerosols, are often nonspherical.3 Neverthe-
less, calculation of phoretic effects for nonspherical particles
is scarce.10,21 In this article, we describe the new approach,
give specific results, and compare with earlier expressions
and experiments.

The resulting forces and torques can be used to write
down both the Langevin dynamics and the Fokker-Planck
equation �FPE� for the tracer particle, suitable for immediate
numerical implementation.1 The same reference embedded
the dynamics of the tracer particle into a wider description
that encompasses the continuum equations for the noniso-
thermal hydrodynamics of the solvent. Beyond-equilibrium
thermodynamics22 had been used to examine the phoretic
effects from a nonkinetic perspective. For a large class of
symmetric convex bodies such as polyhedra, the phoretic
forces �but not the torques� in the presence of a temperature

gradient have been calculated earlier in an elegant fashion by
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Fernández de la Mora.10 Due to the polyhedra’s discrete “na-
ture” the forces could be obtained without performing an
integral. Surface integrals, however, enter the torques and
also the forces for any continuously shaped tracer. Another
special case �thin disks and cylinders� had been treated in an
approximate fashion21 where again a temperature gradient
only is considered. Phoretic forces on ionic spherical par-
ticles were discussed,23 while Ref. 24 outlines how phoretic
forces could, in principle, be calculated using modified
Navier-Stokes equations. Some experimental data for non-
spherical �nonconvex� particle clusters subject to a tempera-
ture gradient are available.25

This manuscript is organized as follows. In Secs. II and
III we provide background and extend the results obtained
via kinetic theory1 to include angular motion. The approach
takes into account an accommodation coefficient � charac-
terizing the collision process �elastic versus diffusive, 0��
�1, introduced in Ref. 26�. Section III also summarizes the
model ingredients, while Sec. IV reformulates phoretic
forces and torques in a unifying fashion in terms of half-
sphere integrals, tracer geometry-dependent integrals, and
properties of the velocity distribution function of the gas. In
Sec. V and Appendix A we present an analytic proof which
solves the problem of evaluating half-sphere integrals of ar-
bitrary complexity. Based on these findings, which also pro-
vide a brute-force algorithm towards the computation of
phoretic accelerations for arbitrary shapes, we are in the po-
sition to formulate compact expressions for forces and
torques in terms of basic surface integrals and replacement
rules, cf. Sec. VI for the outline of the “procedure.” Section
VII presents explicit results for a distribution function ex-
panded in Sonine tensorial polynomials, which includes
Grad’s 13 moment expansion in the hydrodynamic approxi-
mation as a special case. We apply the general expressions to
tracer particles of various shapes in Sec. VIII and Appendix
B, and offer recipes on how to generalize results to more
complex situations albeit the calculations tend to become
tedious beyond the �comparably high compared to previous
works� level of description chosen here. Next, we show how
results simplify in the isotropic phase �Sec. IX�. We discuss
and eventually visualize the findings, and illustrate the link
between our results and experimental observations.

II. KINETIC THEORY REVISITED

The total force F and torque T acting on a convex tracer
particle with surface S can be calculated as surface integrals,

F = − �
S

� · ndS , �1a�

T = − �
S

r � � · ndS , �1b�

where r stands for the surface position vector, n is the
outward-pointing surface normal, and �=��r ,n� the kinetic
stress tensor which, for nonuniform gases, depends on the

position and orientation of the surface element as shown
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below. If one considers two extreme scenarios, �i� ideally
elastic collisions of the gas with the tracer particle and �ii�
diffusive collisions which immediately restore an equilib-
rium velocity �Mawellian� distribution function in the body-
fixed frame, one can introduce an accommodation coefficient
� with �� �0,1� which allows to cover these extremes and
all intermediate �realistic� situations in an approximate fash-
ion. The diffusively scattered particles obey a Maxwell ve-
locity distribution function with vanishing average velocity
with respect to the moving tracer particle. The temperature of
the entire tracer particle coincides with the temperature of
the undisturbed gas at its center of mass. The range of appli-
cability of this assumption has been extensively discussed.27

Further taking into account the uncrossability of the tracer
particle it has been shown earlier1,26 that the negative force
onto a surface element, under the above mentioned assump-
tions, becomes55

− � · n = p�4�1 − ��nn + 2�1� · Z1 − �p��Z0n , �2�

with isotropic pressure p and unity matrix 1. The quantities
Z0 and Z1 denote half-space integrals over dimensionless ve-
locities c̃ of gas particles, i.e., particular “moments” of the
dimensionless velocity distribution function fT

* in the tracer-
fixed frame,

Zk�n� � − n · �
n·c̃�0

��
k+1c̃�fT

*�c̃�d3c̃ , �3�

where ��nc̃� denotes the n-fold tensor product of c̃=��c
with ��ms / �2kBT�, mass ms of a gas particle, peculiar ve-
locity of the gas particle c, temperature T at location r of the
nonuniform, tracer-free gas, and �fT

*�c̃�d3c̃=1 defines the co-
efficient of proportionality between nondimensional fT

* and
dimensional fT velocity distribution functions which is usu-
ally normalized as �fT�c�d3c=ns with ns the particle number
density of gas particles.

We further mention that the distribution function of gas
particles just after colliding with the tracer particle at its
surface normal n is known as soon as Z0 and Z1 were
calculated.1,26

III. MODEL INGREDIENTS

In order to evaluate the above formulas, we need to
specify the model, i.e., �A� a velocity distribution function
characterized through so called � tensors described below
and �B� a shape of the tracer particle characterized through a
surface r�v1 ,v2� parametrized by v1 and v2.

(A) Velocity distribution function and its � tensors. Any
nonuniform distribution function of the tracer free gas f�c� or
equally f*�c̃� can be expanded into tensorial associated La-
guerre �Sonine� polynomials and thus

fT
*�c̃� = f*�c̃ + c̃T + ��̃T � r� �4�

can be parameterized by tensorial coefficients �
=��c̃T ,��̃T� which are constants with respect to c̃, but de-
pend on the peculiar velocity c̃T and peculiar angular veloc-

˜
ity ��T of the tracer particle �both quantities again reduced
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by ���. The � tensors are defined from the distribution func-
tion f*�c̃� of the undisturbed gas through the representation

fT
*�c̃� = �−3/2e−c̃2 	

m=0

M

	
i=0

	

	
n=0

1

c̃2i�m,i
n �m+n��

nr���
mc̃� . �5�

How to explicitly read off the �’s from any given �approxi-
mate� solution of the Boltzmann equation f�c� in the absence
of tracer particles is worked out in detail in Appendix C. All
information about the distribution function to be used in �3�
is thus contained in � and any possible distribution function
is uniquely specified through its �m,n

0 �c̃T� coefficients be-
cause of the relationship

�m,i
1 · r = ���̃T � r� · ��cT

�m,n
0 � , �6�

which follows from �4� and �5� alone if we neglect quadratic
and higher order terms in c̃T for the reason that the tracer
particle can be assumed to be heavy and thus slow compared
with a representative gas particle.1 In �5� the symbol �n

stands for an n-fold contraction. For example, if f*�c̃�
=�−3/2 exp�−c̃2� is the nondimensional equilibrium Maxwell
distribution, the reader should convince her-or himself that
�0,0

0 =1 and �1,0
0 =−2c̃T. From �6� then follows �1,0

1 =
−2��̃T�r and all other � coefficients vanish. Due to the
relationship �6� it is obvious, that one can consider ��̃T=0
and �5� with n=0 to derive all � tensors for given f*�c̃�. The
remainder of this manuscript we will present worked out
examples.

As we will see, starting from a non-Maxwellian, non-
uniform distribution function leads to phoretic motion where
the peculiar translational and rotational velocities are non-
zero and the tracer particle drifts in “direction” of moments
�usually temperature, pressure, flow, or other field gradients�
of the distribution function. The exact form of the forces and
torques will depend on the shape and orientation of the tracer
particle. It is essential to note that the velocity distribution
function of the carrier gas is not disturbed by the presence of
the tracer particle, which is a reasonable assumption for large
Knudsen numbers also adopted by others.26,28

(B) Geometry of tracer particle. To perform the surface
integral in �1� we need to define the convex geometry of the
tracer particle. For a convex body, all points on the line con-
necting two arbitrary points on its surface must be located
inside its body. Limiting the study to convex particles has
important ramifications for the following calculation.
Namely, solvent particles which have collided with the tracer
particle will experience subsequent collisions in the sur-
rounding gas. A more technical aspect is the fact that the
directions available for incoming and scattered particles is a
half sphere, which amounts to the calculations of the so-
called half-sphere integrals ubiquitous below. Any surface of
a convex tracer is defined by a position vector r=r�v1 ,v2�
parametrized by two variables v1 and v2, and their ranges �1

and �2. The surface normal n is then obtained from the sur-
face vector s���r /�v1�� ��r /�v2� by normalization, n
=s /s, s= 
s
, and one has to choose v1,2 in an order such that

n points outward the convex tracer particle, cf. Table III.
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IV. REFORMULATION IN TERMS OF GEOMETRY-
DEPENDENT INTEGRALS

Once the task has been stated through Eqs. �1�–�3�,
supplemented by fT

*�c�, i.e., � tensors, and a geometry
r�v1 ,v2� of the tracer particle, we rewrite it in a form which
separates contributions which can be calculated analytically,
and others, which require a remaining purely geometry-
dependent integral �to be denoted as G below�.

Introducing the abbreviation Y for a specific param-
etrized integral over the tracer particle’s surface,

Yk
x,y,z �� pZk�

x��
yn���

zr�dS , �7�

where the pressure p is under the integral and to be evaluated
at the tracer particle surface, we can rewrite �1�, i.e, forces F
and torques T, as follows:

F = A�0�, �8a�

T = �:A�1�, �8b�

with totally antisymmetric �Levi-Cività� tensor � of rank 3
and

A�z� �
2�1 − ��

��
Y1

1,2,z +
�

��
Y1

0,0,z −
�

2
Y0

0,1,z. �9�

Making use of �i� the half-unit-sphere integrals �tensors �m

of rank m
0� defined as

�m�n� � −
1

�
�

ĉ·n�0
��

mĉ��n · ĉ�d2ĉ , �10�

and evaluated analytically in Appendix A, �ii� the known
Gaussian integral

2�
0

	

e−c̃2
c̃ndc̃ = ���n + 1�/2� � ��n − 1�/2�!,

involving the gamma function �, and �iii� defining purely
geometry-dependent integrals G �Gm,n

x,y,z is a tensor of rank n
+m+y+z−2x� as

Gm,n
x,y,z �� ��

nr��m�x��
yn���

zr�dS , �11�

we can express Y and thus A and the forces and torques
purely in terms of �given� model parameters � and �remain-
ing� geometry-dependent integrals G, since we now have,
more explicitly,

Yk
x,y,z = 	

n,m,i
�1 + i +

m + k

2
�!�m,i

n �n+m�p0Gm+k,n
x,y,z

+ ��̃p� · Gm+k,n+1
x,y,z � , �12�
with
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�̃p = 
 1
��

� ���p� = �p −
1

2
p0 � ln T if multiplied with c̃T or ��̃T,

�p otherwise.
� �13�
We hereby also demonstrated how to incorporate pressure
gradients into the formalism, albeit the dominating contribu-
tion to the force proportional in the pressure gradient will not
involve a surface integral as will be seen below. In the ex-
pression for Yk

x,y,z, higher than first order spatial derivatives
are neglected. The triple sum over m, n, and i usually reduces
to a summation over very few terms, as we will see below,
and also k, z, and n can take only values 0 or 1, further x
�k, y�2, and the ranges for m and i depend on the chosen
model. Grad’s 13 moment approximation for example is cov-
ered by M =3, m�3, and i�1. The notation �13� arises be-
cause we had introduced—and now take care of—the veloc-
ity c̃T which we made dimensionless by using ���1/�T
which is not a constant on the tracer’s surface in the presence
of a temperature gradient. Technically, �13� means that we

can perform all calculations using �̃p=�p and have to re-
place in the final results for forces and torques any occur-
rence of a �scalar or tensorial� product c̃T� p by cT� ���p�,
or equivalently, c̃T� p by c̃T��p− �p0 /2�� ln T� �similarly for
��̃T�. As we will see below, this operation usually is rel-
evant just for a single term with m=1, i=n=0. To summa-
rize, forces and torques can be calculated in a “brute-force”
fashion through calculating the geometric G tensors. These
tensors, in turn, are simple sums of base-surface integrals to
be introduced below for which analytic expressions will be
often available.

V. HALF-SPHERE INTEGRALS

In order to evaluate the G tensors we need �i� the geom-
etryies of the tracer particle, r�v1 ,v2� and n�v1 ,v2�, in terms
of surface parameters v1,2 �including their support� and �ii� to
know how to evaluate the geometry-independent �’s in
terms of n. Concerning �i� we are free to choose a geometry
but analytic results were not available for arbitrary ones. We
will hence choose, for illustrative purposes, spherical, cylin-
drical, ellipsoidal, and cuboidal tracer particles for which G
tensors can be calculated, in principle, manually. Complex
geometries can be handled through a program20 which imple-
ments the strategy outline here. �ii� As shown in Appendix A
the �k tensors are linear combinations of mixed, symmetric
tensors of the kind ���m1���n−2mn��sym, where �¯�sym de-
notes the dyadic produced by the dots, made symmetric
in all indices, and subsequently normalized. For example,
���2e1���1n��sym= �e1e1n+e1ne1+ne1e1� /3. The analytical
result reads

�m = 	
p=0

int�m/2�

cm
p ���

p1���
m−2pn��sym, �14�
for arbitrary integers m
0, with coefficients
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cm
p �

m!
���1 + �m/2��!p!

�− 1�m−p

� 	
q=0

int�m/2� �− 1�qq!�q −
1

2
�!��m/2� − q�!

�q − p�!�2q�!�m − 2q�!
, �15�

where int�m /2�=m /2 and int�m /2�= �m−1� /2 for even and
odd m, respectively. � tensors of arbitrary rank are thus
available using basic combinatorial rules,20 some relevant
contraction rules are worked out in Tables I and II. Sample
values for coefficients and tensors are c0

0=1, c1
0=−2/3, c2

0

=1/4, c2
1=1/4, c3

0=0, c3
1=−2/5, and 
0=1, �1=− 2

3n, and
�2= 1

4 �nn+1�, respectively. The G tensors �11� are then
evaluated by replacing �dS by the double integral
��1

dv1��2
dv2s with s defined in Sec. III B. Sections IV and V

suffice to set up a code to compute results numerically, or
symbolically, but does not provide any insight about tenso-
rial symmetries affecting the physical mechanism.

VI. COMPACT NOTATION FOR GIVEN LEVEL OF
DESCRIPTION

The strategy presented in the foregoing section leads us
directly to generalize the compact notation proposed in Ref.
10 and 21. Instead of directly evaluating G for a chosen
application, we can use contraction rules for the half-sphere
integrals �summarized in Table I� still within the integrand to

TABLE I. Evaluated expressions for the tensors ��� p1���m−2pn��sym�x

��yn� of rank m−2x+y, which appear in connection with the G tensors �11�.
The integers m, p, x, and y are subject to constraints: m
0, 0� p�m /2,
0�x�m, and x�y. A Maxwell distributions involves m�2, Grad’s 13
moment expansion needs m�4, i.e., m�max rank���+1 in general. The
��� component of the �ini� and �1n� tensors read ���n� and ���n�, respec-
tively; ��0n�=1, ��1n�=n, ��2n�=nn, etc: the bold 1 symbol denotes the
unity matrix.

m p x ��� p1���m−2pn��sym�x��yn�

m 0 
0 ��m−2x+yn�
2 1 0 1��yn�


1 ��2−2x+yn�
3 1 0 1

3 �1��y+1n�+ ini��yn�+n1��yn��
1 1

3 �1��y−1n�+2��y+1n��

2 ��3−2x+yn�

4 1 0 �1nn�sym��yn�
1 1

6 �1��yn�+ ini��y−1n�+3��y+2n�+n1��y−1n��
2 1

6 �1��y−2n�+5��yn��

3 ��4−2x+yn�

4 2 0 �11�sym��yn�
1 1

3 �1��yn�+ ini��y−1n�+n1��y−1n��
2 1

3 �1��y−2n�+2��yn��

3 ��4−2x+yn�
cense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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simplify G and thus obtain compact expressions for forces
and torques in terms of more basic surface integrals. Such an
approach is possible if we had specified the distribution func-
tion of the surrounding gas, however, it is already sufficient
having specified the range of indices m , i of nonvanishing
�m,i

0 tensors for the problem at hand, cf. Sec. VIII and Table
II. Let us therefore discuss the compact notation before turn-
ing to an explicit representation for a distribution function of
the gas.

In order to outline our procedure—based on Secs. IV
and V—which allows to write down compact results for
forces and torques in terms of a few basic surface integrals
for even the most complex situations �arbitrary ��s�, it is
completely sufficient to consider a Maxwellian distribution
in the absence of angular motion only,

f*�c̃� = �−3/2e−�c̃ + c̃T�2
, �16�

which is, for cT�c of the form �5� with �0,0
0 =1 and �1,0

0

=−2c̃T leading to force contributions to be denoted as F�0�
and F�0, c̃T� �related to zeroth moment�, respectively. Insert-
ing these coefficients into �8� and �9� with �11� and �12�, and
�0,1,2 from Sec. V directly produces the following “com-

TABLE II. Evaluated expressions for the tensors �m�x��yn�
=	p=0

int�m/2�cm
p ��� p1���m−2pn��sym�x��yn� of rank m−2x+y, with the coeffi-

cients cm
p given in �15�. We make use of the results collected in Table I.

These tensors simplify the analysis of the G tensors �11� without actually
evaluating an integral. The integers m, x, and y are subject to constraints:
m
0, 0�x�m, and x�y. A Maxwell distributions involves m�2, Grad’s
13 moment expansion needs m�4, i.e., m�max rank���+1 in general.

m x �m�x��yn�

0 0 ��yn�
1 
0 − 2

3 ��y+1−2xn�
2 0 1

4 ���y+2n�+1��yn��
2 
1 1

2 ��y+2−2xn�
3 0 − 2

5 �1n�sym��yn�
3 1 − 2

15�1��y−1n�+2��y+1n��
3 
2 − 2

5 ��y+3−2xn�
4 0 − 1

24��y+4n�+ 1
4 �1nn�sym��yn�+ 1

8 �11�sym��yn�
4 1 1

4 �1n�sym��y−1n�+ 1
12��y+2n�

4 2 1
12�1��y−2n�+3��yn��

4 
3 1
3 ��y+4−2xn�

TABLE III. Surface vector r scanning the surface, s
= 
s
 for various gometries: sphere of radius R, uniaxia
of radius R and height to diameter ratio Q�, the tw
� �123,132,213,231,312,321� of a cuboid with edg
axialsymmetric particle aligned in e3 direction, cha
��±1�=0 and includes the uniaxial ellipsoid as a sp
system in which forces and torques are also
�cos v1e1±sin v1e2.

Geometry symbol r

Sphere � R�eiv1�1−v2
2+v2e3�

Cylindrical tube � R�eiv1 +Q�v2e3�
Flat end caps � ±R�e±iv1 +Q�e3�
Cuboid �

1
2�����L�e�+v1L�e�+v2L�e��

Cube �
1
2����L�e�+v1e�+v2e��

Axisymmetric � ��v2��eiv1�+Qv2e3
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pact” form for the total force F=F�0�+F�0, c̃T�+F�0,��̃T�
and torque T=T�0�+T�0, c̃T�+T�0,��̃T� exerted by the
uniform gas,

F�0� = − pA�n�S, �17a�

F�0, c̃T� = −
4pA
��

c̃T · ��

4
�1�S + �1 −

3

4
� +

�

8
���nn�S� ,

�17b�

where we use �througout this paper� the definitions

�B�S �
1

A
� BdS , �18a�

A �� dS . �18b�

Here S stands for the geometry of the tracer, we will use
symbols according to Table III when evaluating surface inte-
grals. It essentially follows from �12� that the remaining
force F�0,��̃T� and all torque contributions do not require,
concerning their compact notation �17�, any additional cal-
culation. This is so because we keep all averages �¯�S �sur-
face integrals� unevaluated which is an integral part of our
procedure at this stage; even those averages which seem to
vanish for obvious reasons. In particular, we must write �1�S

rather than 1, and we must keep �n�S rather than removing
this term. This procedure ensures that we can use the follow-
ing replacement rules, which hold not only for this particular
simple example, but are valid also in the most general cases
�including the more general case which follows in Sec. VII�,

F�•,��̃T� = F�•, c̃T� upon replacing

c̃T��B�S → ��̃T � �r�B�S, �19�

T�•� = �:�F�•�� upon replacing �B�S → �Br�S, �20�

where •, �, and B are placeholders for arbitrary arguments,
contractions, and integrands, respectively, the cross product
��� in �19� has priority against a tensorial ��� product, and
even the bracket around F�•� in �20� is important since it
indicates that contraction inside F�•� are performed before

e normal n=s /s with s���r /�v1�� ��r /�v2�, and s
soid with radius R and axis ratio Q, cyclindrical tube

at end caps ��� for the same cylinder, faces ���
gths L1,2,3, of a cube with edge length L, and of an
rized by a function ��v2� �it has no open ends if
case�. The base vectors e1,2,3 define the coordinate
pressed. We introduced the abbreviation e±iv1

n=s /s s= 
s
 v1� v2�

R2 �0,2�� �−1,1�
R �0,2�� �−1,1�
R2
v2
, �0,2�� �0,1�

�e�
1
2L�L� �−1,1� �−1,1�

�e�
1
2L2 �−1,1� �−1,1�

�Qeiv2 −��e3� ��Q2+��2 �0,2�� �−1,1�
urfac
l ellip
o fl
e len
racte
ecial

ex

r /R

eiv1

±e3

���

���

s−1�
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the double contraction with �. These rules are easily proven
using the expressions of Sec. IV. They particularly reflect the
way we eliminate the �m,i

1 tensors via �6�. To illustrate these
rules let us give two examples. �i� We have T�0�=� :F�0�
still subject to replacements �20�, and therefore, using �17a�,
T�0�=−pA� : �nr�S which vanishes for a sphere where �nr�S

is symmetric. �ii� Using the replacement rules �19� and �20�,
the torque T�0,��̃T� can be related to the expression for the
friction force F�0, c̃T�. In particular for a sphere, it follows
from �17b� that the relation F�0, c̃T�� c̃T brings about the
torque relation T�0,��̃T����̃T.

Replacement rules similar to �19� and �20� have been
employed by Rohatschek and Zulehner29 for a carrier gas
described by the �equilibrium� Maxwellian velocity distribu-
tion. Extension to situations where the carrier gas is out of
equilibrium �e.g., Grad’s 13 moment expansion� requires the
extended description presented in Sec. IV. Only then it be-
comes clear to which specific terms and shape dependent
surface integrals the rules �19� and �20� have to be applied.
Next, the applicability of the scheme is extended by gener-
alizing �17�.

VII. COMPACT RESULTS FOR GRAD’S 13 MOMENT
EXPANSION

As an important special case of the above results, we can
write down compact results for the case where the nonuni-
form gas is fully characterized by its first two tensorial mo-
ments, known as Grad’s 13 moment expansion �Appendix C
covers more general cases�. Here, the velocity distribution
function of the carrier gas, unperturbed by the tracer particle,
reads1,22,30

f*�c̃� = �−3/2e−c̃2
�1 + �	1

1� · 	1
1 + �	0

2�:	0
2� , �21�

with the nth rank tensorial, orthonormal coefficients 	k
n�c̃�,

in particular,

	1
1 =

2
�5

�5

2
− c̃2�c̃ , �22a�

	0
2 = �2�

2c̃
�

= �2�c̃c̃ −
c̃2

3
1� , �22b�

and corresponding moments �	k
n� of the distribution function

as explained in detail in Appendix C. By comparing f*�c̃
+ c̃T� from �21� with �4� and �5� and assuming c̃T� c̃ �see
also Appendix C� we see that M =3 and the dimensionless �
tensors read1 �0,0

0 =1−�5�	1
1� · c̃T, �0,1

0 = 2
�5

�	1
1� · c̃T, �1,0

0 =
−2c̃T−�5�	1

1�+23/2�	0
2� · c̃T, �1,1

0 = 2
�5

�	1
1�, �2,0

0 =�2�	0
2�

+ 14
�5

�	1
1�c̃T, �2,1

0 =− 4
�5

�	1
1�c̃T, and �3,0

0 =−23/2�	0
2�c̃T. Corre-

sponding �1 tensors are given by �6�. Using these tensors
along the lines indicated in the foregoing section the com-
plete listing of all �twelve� distinct compact contributions to
the total force and an equal number of contributions to the
total torque on a convex tracer particle immersed in the non-
uniform gas read, with accommodation coefficient �,
F�0� = − pA�n�S, �23a�

aded 02 May 2011 to 131.155.151.134. Redistribution subject to AIP li
F��	1
1�� =

pA

2�5��
�	1

1� · ���1�S + �4 − 3���nn�S� , �23b�

F��	0
2�� = �2pA�	0

2��2�� 3
4� − 1��nnn�S

− 3
4���1n�sym�S� , �23c�

F��̃p� = − A��p� · �rn�S, �23d�

F�0, c̃T� = −
4pA
��

c̃T · ��

4
�1�S + �1 −

3

4
� +

�

8
���nn�S� ,

�23e�

F��	1
1�, c̃T� = −

�

2

pA
�5

��	1
1� · �c̃T · �nnn�S�� , �23f�

F��	0
2�, c̃T� =

23/2pA
��

���	0
2� · c̃T� · ��

2
�1�S

+ �2 −
3

2
� +

�

4
���nn�S�

− ��	0
2�c̃T��3��1 −

5

4
���nnnn�S

+ 3�1 − � +
�

8
����1n�symn�S

+
3

2
���1nn�sym�S +

3

4
���11�sym�S�� , �23g�

F��̃p, c̃T� = − 2Ac̃T · � 2
��

�1 −
3

4
� +

�

8
���nnr�S

+
�

2��
�1r�S� · �̃p , �23h�

plus four contributions F�• ,��̃T� using the rule �19�. All the
12 contributions to the torque are covered by the replacement
rule �20�. In this manuscript, we choose to neglect force and
torque contributions nonlinear in the field gradients of the
carrier gas. The quantity pA is proportional to a transport
coefficient, as will be demonstrated in the examples below.
In view of �23� it is thus apparent that all forces and torques
are premultiplied with the transport coefficient, with the im-
portant exceptions being the terms proportional to the pres-

sure gradients, �p and �̃p. There is clearly a distinct origin
of the effects of a pressure gradient compared to the other
contributions.1

The compact result �23� supplemented with �19� and
�20� is our main result for arbitrary convex geometries, and
the surface integrals �¯�S should be evaluated, and terms
should be simplified after applying the replacement rules, but
not earlier! This result is a particularly useful “intermediate”
result because it clarifies the tensorial symmetries involved
and therefore often allows to reduce the evaluation of a force
contribution by calculating an integral with an integrand
which just contains a single term rather than a sum. In order

to avoid any confusion in interpreting the tensorial notation
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when applying the replacement rules �19� and �20�, we no-
tice that the � component of the force contributions exhibit
the forms F��•�= �C��S and F��• , c̃T�=c��B���S with compo-
nents B�� and C� which do not depend on c̃T. Therefore, �19�
and �20� yield F��• ,��̃T�=−�������T���r�B���S, T��•�
=�����C�r��S, T��• , c̃T�=�����c̃T���B��r��S, and T��• ,��̃T�
=−�����������T���r�B��r��S, where Einstein’s summation
applies. The results for the reduced levels of description,
�	1

1�= �	0
2�=0, can be read off from our result �23� by sim-

ply removing the corresponding terms.
For particles with three mutually perpendicular symme-

try planes, integrals containing an odd-fold �pure or mixed�
tensorial product of r’s and n’s vanish; thus exactly half of
all contributions, such as F�0�, F��	0

2��, and T�c̃T�, to men-
tion three of these 24 terms, vanish identically. We note that
the forces F��	1

1�� and F�0, c̃T� in �23� require calculation of
exactly the same surface integrals, as was noticed already,
e.g., in Ref. 10. Using rule �20� we see that same holds for
the torques T��	1

1�� and T�0, c̃T�. A similar statement holds
also for the forces F��	0

2�� and F��	1
1� , c̃T� containing

�nnn�S, and related torques which include a term of the form
�nnnr�S, respectively. These considerations further reduce
the number of independent terms to be computed. Still, the
number is large and we recently developed a code which
allows to evaluate �23� using a symbolic programming
language.20

The range of applicability of Grad’s distribution �21� has
been discussed,31–34 and specifically also in the vicinity of
boundaries.35 The equilibrium Maxwell distribution is a
trivial special case of �21�. In the hydrodynamic
approximation26,36,37 the moments �	k

n� receive physical in-
terpretation as follows:

�	1
1� =

2
�5

��q

p
= −

3�5

4

�

p��
� ln T , �24a�

�	0
2� =

1
�2

p
�

p
= − �2

��v
�

p
, �24b�

with heat flux q, temperature T, macroscopic flow field v of
the undisturbed solvent, hydrostatic pressure p, anisotropic
�friction� pressure tensor p

�
, solvent viscosity �, �

�ms / �2kBT�, Boltzmann’s constant kB, mass of a gas particle

ms, and the symbol . . .
�

denotes the symmetric traceless part
of a tensor of arbitrary rank.38,39 For a second rank tensor p
one has p

�
= 1

2 �p+pT�− p1 with p= 1
3Tr�p�. For an ideal gas

made of rigid spheres of diameter d, the viscosity is explic-
itly given as7,22,37 �= 5

16
�mskBT /� /d2 and p=nskBT with the

particle number density ns of the gas. Sometimes, the coef-
ficient �� 15

4 kB /ms is introduced to rewrite these relation-
ships.

The main result of this section clearly highlights which
surface integrals need to be computed to obtain the force and
torque on the tracer particle, depending on which physical
effects are accounted for. Most surface integrals in Eq. �23�
do not depend on r but only on n. In contrast, as soon as the

torque is calculated or effects of particle rotation and pres-
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sure gradients are accounted for the surface integrals acquire
additional dependencies on r, and become substantially more
difficult to compute �except for the case of a sphere�. It is
probably for that reason that theoretical calculations for these
effects were only scarcely found in literature.

VIII. APPLICATIONS

A. � sphere

All normalized surface integrals �¯�S in �23� for the
forces and related expressions for torques �now denoted as
�¯�� when treating a sphere� can be evaluated using the
following result, valid for a sphere of radius R:

���
�r���

xn��� = R����
x+�n��S

= R�1

2
�1 + �− 1�x+�

1 + x + �
��1�x+��/2�sym, �25�

for all � ,x
0, as demonstrated in Appendix B. The integral
thus vanishes, as for any axisymmetric particle, for odd �x
+��. Note that �10�sym=1, �11�sym=1, �12�sym= �11+ i1i
+ iiii� /3, etc. Equation �25� can be equivalently rewritten in a
recursive fashion using �1��=1, �n��=0,

�ny+2�� =
y + 1

y + 3
��ny+2��1�sym, �26�

for y
0. The only difficulty when inserting �25� into �23�
arises for terms of the form �1nn�sym or �r1nnr�sym as they
appear in F��	0

2�� �23f� or T��	0
2� ,��̃T�, for example. There

is some potential of further simplifying �23� using the fact
that �	0

2� is symmetric and traceless, as demonstrated in de-
tail in Appendix B.

We are now in the position to generalize a result recently
derived1 for purely translational degrees of freedom to the
case of combined translational and rotational motions. With
the area A�=4�R2 and volume V�=A�R /3 of a sphere, and
the coefficient

�̃� �
4

3��
p0A�, �27�

with dimension of force �because c̃T is dimensionless�, we
obtain the following contributions to the total force F on a
sphere immersed in a nonequilibrium gas characterized by its
first two tensorial moments �	1

1� and �	0
2�;40

F���	1
1�� = �̃�

1

2�5
�	1

1� , �28a�

F���̃p� = − V� � p , �28b�

F��0, c̃T� = − �̃��1 +
�

��c̃T, �28c�

8
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F���	0
2�, c̃T� = − �̃�

�2

5
�	0

2� · c̃T, �28d�

F���̃p,��̃T� = − V�

�R
��

� ���p� � ��T. �28e�

Correspondingly, using the replacement rules and some fur-
ther calculations with the help of �23� and �26�, we obtain the
total torque T on a sphere as a sum of the three terms,

T��0,��̃T� = − ��̃�

R2

2
��̃T, �29a�

T���	0
2�,��̃T� = ��̃�� R2

10�2
�	0

2� · ��̃T� , �29b�

T���̃p, c̃T� = − V�

�R
��

� ���p� � c̃T. �29c�

All other force and torque contributions listed in �23� vanish
due to symmetry.

The expression �28� for the force simplifies to known
results upon neglecting angular motion, velocity, or pressure
gradients.1,10,11,16,23,26,28,41,42 When comparing with expres-
sions available in the literature, one may replace �	1

1� and
�	0

2� in the above equations by their hydrodynamic expres-

sions �24�. In �28e� and �29b� we inserted �̃p following �13�.
Comparison of predicted forces and experimental data by
Friedlander43 for spherical particles yields �=0.497.

For the case of pure shear flow, if the tracer particle is
moving in the direction of the flow lines, the force
F���	0

2� , c̃T� tends to deflect the particle in the direction c̃T

� ���v�. This is opposite to the result of Saffman,44,45

which is valid for dense highly viscous solvents and, particu-
larly different from our treatment, stick boundary conditions
at the particle surface are employed. We mention in that con-
text that opposite signs have also been found for the Magnus
effect for rotating particles immersed either in a dilute gas or
in a continuum stream.46,47 The term �V��p is also worthy
a note. It can be shown that, irrespective of the shape of the
convex tracer particle of volume V, the term linear in field
gradients always reads −V� p, termed “barodiffusion
force”19,48 which just follows from a balance of drag and
inertia.13 Even in the absence of pressure gradients the torque
on a sphere does not vanish. Notice that the torque on a
sphere vanishes for the case of purely elastic collisions,
�=0.

B. � Cube

For the case of a cubic tracer particle with square faces
and edge length L, we can use a special case of the more
general cuboidal shape treated in Appendix B to obtain the
following normalized surface integrals:

"x=0,2,4,..���
xn��� =

1

3	
3

��
xei� , �30a�
i=1
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"x=1,3,5,..�r��
xn��� =

L

6 	
i=1

3

��
x+1ei� , �30b�

"x=0,2,4,..�rr��
xn��� =

5L2

36 	
i=1

3

��
x+2ei� . �30c�

Inserting �30� into �23� with �19� and �20�, restricting ourself
to �	0

2�=0, yields

�̃� �
4

3��
pA�, �31a�

F���	1
1�� =

�̃�

2�5
�	1

1� , �31b�

F���̃p� = − V� � p , �31c�

F��0, c̃T� = − �̃��1 +
��

8
�c̃T, �31d�

F���̃p,��̃T� = − �V�

5

6��
L��̃T � �̃p , �31e�

T��0,��̃T� = − ��̃�

5

48
L2��̃T, �31f�

T���̃p, c̃T� = − 2Ac̃T · � 2
��

�1 −
3

4
� +

�

8
���nnrr��

+
�

2��
�rr��� · �̃p , �31g�

with A�=6L2 and V�=L3, and all other force and torque
contributions are equal to zero. The unevaluated surface in-
tegrals in �31g� are given by �30�. These results compare
well with the one for the sphere, mainly due to �30� where
the identity e1e1+e2e2+e3e3=1 can be employed. The ex-
pression for the drag force F��0, c̃T� is identical to the one
derived by Dahneke.16

C. ¸ cylindrical tube

We denote the orientation of the cylindrical tracer of
radius R and height to diameter ratio Q by e3, cf. Fig. 1. We
denote the length-to-radius ratio as Q� =h / �2R�. The surface
area is A� =2�R2�1+2Q��=A�

�Q� +
1
2

�, volume V� =�R2h
=2�R3Q�. For symmetry reasons the forces �and also
torques� onto a cylinder with symmetry axis e3 are invariant
with respect to an exchange of e1 and e2 �as for the uniaxial
ellipsoid�, and we make use of the projector P� �e3e3 and of

the expressions for the friction coefficient �̃� and the cylinder
volume V�,

�̃� � 8��pQ�R2 =
2�A�/A�� − 1

pA�, �32�
��
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V� = 2�Q�R3, �33�

to arrive, for �	0
2�=0, at

F���	1
1�� = �̃�

4 − �

8�5
��1

1� − �̃�

4 − 3�

8�5
P� · ��1

1� , �34a�

F���p� = − V� � p + V�P� · �p , �34b�

F��0, c̃T� = − �̃��1 +
� − 2

8
��c̃T

+ �̃��1 −
6 − �

8
��P� · c̃T, �34c�

F���̃p,��̃T� = V�

�R
��

�̃p � ��̃T

− V�

R

6��
A−�P� · �̃p� � ��̃T, �34d�

T��0,��̃T� = − �̃�

R2

24
�A+��̃T − A−P� · ��̃T� , �34e�

T���̃p, c̃T� = − V�

�R
��

��̃p � c̃T�

− V�

R

6��
A−��P� · �̃p� � c̃T� , �34f�

where the abbreviation A±�8Q�
2+���−2�Q�

2±6� has been
used. This is the result for a cylindrical tube without end caps
when disregarding the second moment, �	0

2�=0. Results in

FIG. 1. Definition of quantities specifying the geometry of tracer particles.
Top: cuboidal and cubic. Middle: axisymmetric with axis ratio Q /R and
spherical. Bottom: cylindrical with flat end caps and length to diameter ratio
Q�. Surface parametrizations are given in Table III.
the presence of a velocity gradient can be obtained from �23�
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via algebraic manipulations.20 Our result for the force con-
tributions F��0, c̃T� �34a�—and therefore also F���	1

1��
�34b�—exactly reduces to the one implicitly obtained

earlier.10 In �34�, �̃p throughout abbreviates �−1/2� ��1/2p�
as explained in �13�. The hydrodynamic approximation �24�
can be employed to rewrite �34� in terms of temperature,
temperature gradients, heat flux, etc. The end caps �symbol
�� are treated separately in the subsequent section �i� to
facilitate the extension of the results to cylindrical particles
with spherical end caps and �ii� to see, how the more general
results for arbitrary axisymmetric particles to be discussed
below simplify to the results for the simplest axisymmetric
shape. The total force onto a cylindrical tracer with flat end
caps is obtained by summation of the � and � contributions.

D. Ÿ flat end caps

The two flat end caps for the cylindrical tube are param-
etrized in Table III. The result for the two end caps �together�
reads

F���	1
1�� = �̃�

�

8�5Q�

�	1
1� + �̃�

4 − 3�

8�5Q�

P� · �	1
1� , �35a�

F���̃p� = − V�P� · �p , �35b�

F��0, c̃T� = −
�̃�

Q�
��

4
1 + �1 − ��3

4
−

�

8
��P�� · c̃T, �35c�

F���̃p,��̃T� =
V�R

��Q�

��

4
�̃p � ��̃T

−
��1 − 4Q�

2�
4

�P� · �̃p� � ��̃T

+ �1 − ��3

4
−

�

8
��P� · ��̃p � ��̃T�� ,

�35d�

T��0,��̃T� = −
�̃�R2

4Q�
��1 − ��1 −

�

8
− Q�

2���1 − P�� · ��̃T

+
�

2
��̃T� , �35e�

T���̃p, c̃T� = −
V�R

��Q�

��1 − ��1

2
−

�

8
�����1 − P�� · �̃p� � c̃T

− P� · ��̃p � c̃T�� + �Q�
2�P� · �̃p� � c̃T

+
�

4
P� · ��̃p � c̃T�� , �35f�

where Q� ��1−P��. All other force and torque contributions
not specified in �34� and �35� vanish due to symmetry, cf.
Appendix B for details. The result for the drag force, �34c�
plus �35c�, agrees with the expression found by Dahneke.16

In the limit Q�→	, the drag force and the thermophoretic

force, �34a� plus �35a�, both agree with the expressions de-
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rived by García-Ybarra and Rosner21 for a cylinder with
spherical caps.49 We point out that the drag force gets loga-
rithmic corrections in the Knudsen number if at least one of
the dimensions of the cylinder is larger than the mean free
path in the carrier gas.50 However, this a higher order effect
not of interest in the “free molecular flow” limit studied here.
It is noteworthy that the torque on the tracer particle also
vanishes for �=0.

Results for long rods �Q�→	� and thin disks �Q�→0�
obtained from the cylinder results �34� plus �35� converge to
the ones for a rodlike and flat oblate ellipsoid, respectively,
with half axis R. In the limit of flat disks, the dominant
contributions are zeroth order in Q�. In contrast, for thin rods,
the leading terms in the force and torque are cubic in Q�.
Some illustrations of the forces are given in Figs. 2 and 3.
For an artificial ensemble of randomly oriented cylinders

FIG. 2. Absolute value of the “friction” force F�0, c̃T� �34� and �35�, made

dimensionless by �̃�c̃T /Q� for flat disks �Q�→0� �solid lines�, and by �̃�c̃T for
long rods �Q�→	� �dashed lines�, respectively. The enclosed angle between
the particles symmetry axis e3 and tracer velocity c̃T �c̃T�
c̃T
� is denoted by
�. Results are shown vs � for a range of accommodation coefficients equi-
distantly spaced between �=0 �ideally elastic collision� �=1 �ideally diffu-
sive collision�.

FIG. 3. Absolute value of the “thermophoretic” force F��	1
1�� �34� and �35�

made dimensionless by �̃�
�	1
1�
 / �2�5Q�� for flat disks �Q�→0� �solid lines�,

and by �̃�
�	1
1�
 / �2�5� for long rods �Q�→	� �dashed lines�, respectively.

The enclosed angle between the particles symmetry axis e3 and �	1
1� is

denoted by �. The strength 
�	1
1�
, in the hydrodynamic approximation, is
proportional to the strength of the temperature gradient, cf. �24�.
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with Q� =1 one recovers, on average, all the expressions de-
rived for the spherical tracer particle, cf. Sec. IX.

E. � axisymmetric particle

An axisymmetric, convex particle, directed along the e3

direction is parameterized by a radial function ��v2�, where
v2� �−1,1�, cf. Table III for its exact parametrization and the
surface element s�v2�. Its surface area reads

A� = 2�� s�v2�dv2 = 2�� ��v2��Q2 + ���v2�2dv2.

�36�

Axisymmetric particles include the cylindrical tube, sphere,
and uniaxial ellipsoid as special cases. The surface is closed
if ��−1�=��1�=0 and � smooth. Convexity of the particle is
ensured if ���0. In this section we derive expressions for all
surface integrals appearing in our expression for forces and
torques �23�, but we will not insert them in order to keep the
manuscript short.

First, we notice from Table III that r and n can be writ-
ten as r=Xre

iv1 +Yre3,n=Xneiv1 +Yne3, with v2-dependent
functions Xr=��v2�, Yr=Qv2, Xn=Q /�Q2+��2, Yn

=�� /�Q2+��2, and thus

���
n•��� =

A�

2A
	
k=0

n
n!

k!�n − k�!� 2

A�
�

0

2�

���
ke�iv1��dv1��

����
n−ke3��sym�

−1

1

X•
kY•

n−ks�v2�dv2 �37�

for •� �r ,n�. In Eqs. �37�, �38� and also �39a� the � symbol
means “continue reading” and does not denote a cross prod-
uct. While the last integral in �37� purely depends on the
shape ��v2� of the tracer, the first integral between curly
brackets �equals ���kn��� with A� =4�Q� has been already
evaluated in connection with the cylindrical tracer �B6� for
which n=eiv1. Thus �37� vanishes for odd n �and k is even
too�, and simplifies to

���
n•��� =

A�

2A
	
k=0

n
n!

k!�n − k�!
����

kn���

���
�n−k�/2P���sym�

−1

1

X•
kY•

n−ksdv2, �38�

where P� �e3e3 and ���2n��� =
1
2 �1−P��, for example. We do

not wish to elaborate on evaluating this expression further,
but rather want to show how to apply it to obtain contribu-
tions to forces and torques which involve, for example,
�nn�� and �nr��. Accordingly, evaluating �38� for n=2 and

•=n gives
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�nn�� =
A�

2A�

	
k=0,2

2

k!�2 − k�!
����

kn���

���
�2−k�/2P���sym�

−1

1

Xn
kYn

n−ksdv2 �39a�

=
4�Q

2A�

�P��
−1

1

Xn
0Yn

2sdv2 +
1

2
�1 − P���

−1

1

Xn
2Yn

0sdv2�
=

4�Q

2A�

�P��
−1

1 ��2�

�Q2 + ��2
dv2

+
Q2

2
�1 − P���

−1

1 �

�Q2 + ��2
dv2� , �39b�

with A from �36�. This result agrees with the calculations of
Rotatschek and Zulehner29 and Fernández de la Mora.10

We kept the term Yn
0 in �39a� because Yn=0 and Yn

0 =1
for a cylindrical tube. For all other cases, we resubstituted Xn
and Yn according to their above definitions to obtain �39b�.
Correspondingly, from �39a� we immediately obtain, simply
replacing n by r,

�rr�� =
4�Q

2A �Q2P��
−1

1

v2
2sdv2 +

1

2
�1 − P���

−1

1

�2sdv2� ,

�40�

again, with s=��Q2+��2. Finally, using the same approach,
we have

�rn�� =
4�Q

2A �P��
−1

1

YnYrsdv2

+
1

2
�1 − P���

−1

1

XnXrsdv2�
=

4�Q2

2A �P��
−1

1

v2���dv2 +
1

2
�1 − P���

−1

1

�2dv2� ,

�41�

such that it should be transparent how to obtain all surface
integrals appearing in our result for forces and torques, cf.
Sec. VII. The above results valid for axisymmetric particles
certainly reduce to the ones already stated for cylindrical
tubes and spheres, when choosing ��v2�=R with constant R
�a cylindrical tube�, for which Xr=R, Yr=Qv2, Xn=1, Yn=0,
and �=�1−v2

2 �for a sphere�, see also Table III and
Appendix B.

IX. ISOTROPIC PHASE

In order to simplify the general expressions to the case
where an ensemble of axisymmetric particles is oriented iso-
tropically �i.e., randomly�, we employ the useful identities

�P��iso = 1
31 , �42a�

�P�P��iso = 1
5 �11�sym = 1

15�11 + i1i + iiii� . �42b�

These isotropic averages can be derived from more general

expressions valid for the uniaxial phase, Eq. �4.2–3� in Ref.
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51 or Eq. �10.38� in Ref. 38, for vanishing order parameters.
We used the notation 1= ii to write the symmetric part in
vector rather than component notation. In the isotropic phase
the force contributions for a cylinder become

F�
iso =

�̃�

6�5
�2 +

1

Q�
��	1

1� −
�̃�

3
�1 +

�

8
���2 +

1

Q�
�c̃T

+ ¯ , �43a�

etc., these expressions show strong similarities with the re-

sults for a sphere. After identifying the force coefficient �̃�

with �̃� the isotropic averages �43� are identical to the cor-
responding expressions �28� for a spherical tracer particle for
Q�→1. By virtue of �42a� alone, the same statement holds
for the torque. For Q��1 the force still differs from the one
for spheres, reflecting the net effect of shape on the phoretic
motion.

X. CONCLUSIONS

In this manuscript we derived explicit expressions for
both the forces and torques onto moving and rotating convex
tracer particles for given velocity distribution function of the
unperturbed, nonuniform rarefied gas. To derive the unifying
expressions, we inserted the half-sphere integrals �A5� with
�15� and the � tensors, �C8� with �C5� into forces and
torques �1� with �11� and �12�. We then obtained compact
results valid for arbitrary convex tracer particles in terms of
basic surface integrals, summarized in Sec. VII which in-
clude Grad’s 13th moment approximation as a special case.
Concerning geometries, we have then evaluated geometry-
dependent integrals for the case of both axisymmetric and
nonaxisymmetric particles. The corresponding forces and
torques have been stated and discussed. They enter the equa-
tions of motion for tracer particles immersed in a nonequi-
librium gas. We further showed how to modify the forces and
torques for the case where a higher order expansion needs to
be considered. And we reduced the problem of the calcula-
tion of forces and torques for arbitrarily shaped convex trac-
ers to the calculation of normalized surface integral tensors
�23� or G tensors �11�, in general, a task which we are going
to automatize based on the results of this manuscript to treat
complex situations.20 However, depending on the particle
shape, a number of symmetry properties usually simplify this
problem, as demonstrated here. Aerosol particles do not only
experience the forces and torques as described in this manu-
script. In addition, there are Brownian forces related to the
calculated friction force by way of the fluctuation-dissipation
theorem. Furthermore, there may be additional potential
forces �e.g., gravitational, and buoyancy�. These can be
handled via a standard Brownian dynamics simulation or
Fokker-Planck equation approach.1,38,52–54 Only a few special
cases of the results obtained here were spread in the litera-
ture. The presented unifying description allows us to extend
the calculations to arbitrary convex shapes dissolved in an
arbitrary nonuniform gas �beyond Grad’s 13 moment ap-

proximation� conveniently.
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APPENDIX A: HALF-SPHERE INTEGRALS

In order to perform the integration over half the unit
sphere �Eq. �10��, we choose a parametrization of the unit
vector y as follows: y=	iyiei=�1−z2�cos � e1+sin � e2�
+zn, where e1 ·n=e2 ·n=0 and n is the symmetry axis of the
half sphere. Then �10� is rewritten as

�m = −
1

�
�

0

2� �
−1

0

��
my�zdzd� . �A1�

We insert y into �A1� and use binomial coefficients to arrive
at

�m = −
1

�
	
k=0

m

	
l=0

k �
0

2� �
−1

0

y1
l y2

k−lzm−k+1

�
���

le1���
k−le2���

m−kn��sym

l!�m − k�!�k − l�!/m!
dzd� , �A2�

where �A�sym denotes a symmetrization of the tensor A in all
its indices, including subsequent normalization. For example,
���2e1���1n��sym= �e1e1n+e1ne1+ne1e1� /3. Making use of
the identity e1e1+e2e2+nn=1 allows us to rewrite �A2� as

�m = −
1

�
	
q=0

int�m/2�
���

q�1 − nn����
m−2qn��sym

�2q�!�m − 2q�!/m!

��
0

2� �
−1

0

y1
2qzm−2q+1dzd� , �A3�

where int �m /2� denotes the integer part of m /2. The integral
can be evaluated explicitly as follows:

1

�
�

0

2� �
−1

0

y1
2qzm−2q+1dzd� =

�− 1�m+1�q − 1
2�!��m/2� − q�!

�1 + �m/2��!��
,

�A4�

where x! is evaluated with the gamma function as x!=��x
+1�. Finally, �m is a linear combination of mixed, symmet-
ric tensors of the kind ���k1���m−2kn��sym and we can intro-
duce numerical coefficients given in �15� of Sec. V of this
manuscript in order to write down our explicit result for the
�n tensors of arbitrary rank m
0 as

�m = 	
p=0

int�m/2�

cm
p ���

p1���
m−2pn��sym, �A5�

which proves �14�.

APPENDIX B: BASIC SURFACE INTEGRALS
VIA SYMMETRY CONSIDERATIONS

As we have shown in Sec. VII, alculating forces and

torques for arbitrary distribution functions �of tensorial order
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M� effectively requires, for any given shape of the tracer, not
more than the evaluation of the following basic surface inte-
grals:

���
nr���

xn���
zr��S �

1

A
� ��

nr���
xn���

zr�dS , �B1�

for n� �0,1�, x� �0,1 ,2 , . . ,M +1�, and z� �0,1� and for
n=2, x� �0,1 ,2 ,3�, and z� �0,1� which results from �12�,
�11�, and �7� together with the assumption c̃T�c. Of course,
by just changing indices, it is then sufficient to calculate the
following integrals:

���
�r���

xn��S �
1

A
� ��

�r���
xn�dS , �B2�

with �� �0,1 ,2 ,3� and x� �0,1 ,2 , . . ,M +1� covering all
cases �B1�. In the following we will evaluate the integrals
�B1� or equivalently �B2� for some geometries �the axisym-
metric particle is treated in Sec. VIII E�. With these expres-
sions at hand, the forces and torques are available through
�23� which contain the still unevaluated integrals. To us it
seems that this approach provides the most compact and
transparent presentation of explicit results, while at the same
time facilitating the generalization to other geometries.

In order to get a flair on how to make use of this appen-
dix, let us show why the following contributions to the
torque vanish: �i� T��	0

2�� for a sphere, �ii� T�0� for a cylin-
der, and �iii� T��	1

1� , c̃T� for a cube. Case �i�: according to
�23� with �20� we have T��	0

2��=c1� : ��	0
2� : �nnnr�S�

+c2� : ��	0
2� : ��1n�symr�S with constant coefficients c1,2, to be

evaluated for a sphere. Here, �nnnr��� �nnnn�� �due to Eq.
�B3�� which is symmetric in the last two indices, � :A van-
ishes if A is symmetric, and thus the term with c1 vanishes.
Similarly, �	0

2� : ��1n�symr��� �	0
2� : ��1nn+ inin+niin���

simplifies to 2�	0
2� �which is again symmetric� because �	0

2�
is also traceless by definition, ��	0

2� :1=0�, and �nn��1 �due
to Eq. �B4��. Case �ii�: we derived T�0��� : �nr�S for arbi-
trary geometries. For a cylinder, r=c1n+c2v2e3 holds �cf.
Table III�, thus T�0��� : �nv2��e3 since nn is symmetric and
does not contribute. Finally, because n, for a cylinder, is
independent of v2 and v2� �−1,1� �torque with respect of
center of mass for a homogeneous cylinder�, the surface in-
tegral vanishes. Case �iii�: we have T���1

1� , c̃T�
�� : ��	1

1� · �c̃T · �nnnr�S��, in general. For a cube, �nnnr��

�	i=1
3 Li��4ei� �using Eq. �B20�� is symmetric in the last two

indices �to be double contracted with the antisymmetric ��
and thus vanishes.

1. � sphere of radius R

The surface of a sphere of radius R is parametrized by
r=Rn, normal vector n= �cos v1e1+sin v1e2��1−v2

2+v2e3

with v1� �0,2��, v2� �−1,1�, and surface element s=R2, cf.
Table III. Accordingly, surface area A=�dS=4�R2. Since

���
�r���

xn��� = R����
x+�n��� �B3�

holds, the task is reduced towards calculating the symmetric
tensor ���xn���. For a sphere this tensor is certainly isotro-

y y/2
pic, i.e., ��� n���� �1 �sym, and �thus� vanishes for odd y
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=x+�. We hence need to calculate the coefficient of propor-
tionality, or equivalently, a single component of the tensor.
We choose the “simplest” component, which is �n3

y��, with
n3�n ·e3=v2, and obtain

�n3
y�� = �v2

x�� =
1

A
� v2

ysdv1dv2

=
1

2
� v2

ydv2 =
1

2
�1 + �− 1�y

1 + y
� ,

which provides the solution to the task �B2� for the sphere as
follows:

���
�r���

xn��� = R�1

2
�1 + �− 1�x+�

1 + x + �
��1�x+��/2�sym. �B4�

Note that �10�sym=1, �11�sym=1, �12�sym= �11+ i1i+ iiii� /3,
etc. Equation �B4� can be equivalently rewritten in a recur-
sive fashion using �1��=1, �n��=0, �ny+2��= �y+1��y
+3�−1��ny+2��1�sym for y
0.

2. ¸ cylindrical tube of radius R and height h=2RQ¸

Here, r /R=cos v1e1+sin v1e2+Q�v2e3 with v1� �0,2��
and v2� �−1,1�, thus n=cos v1e1+sin v1e2, s=R, A
=4�R2Q�, V=�R2h=2�R3Q�, and height to diameter ratio
Q�. Again, we take into account a basic symmetry consider-
ation to evaluate �B2� and trace integrals with ��0 or z
�0 back to integrals of lower rank, in the light of the rep-
resentation r=R�n+v2Q�e3�. All integrals can be rewritten in
terms of 1 and p� �e3e3 since p� =1−e1e2−e2e2. These con-
siderations lead, for x=2 and x=4, for example, to the ansatz

���
2n��� = c11 + c2P� , �B5�

���
4n��� = d1�11�sym + d2�1P��sym + d3�P�P��sym, �B6�

where the coefficients are manually calculated, cf. previous
section, via

c1 = �n1
2�� = �cos2 v1�� = 1

2 ,

c2 = �n3
2�� − c1 = − c1,

d1 = �n1
4�� = �cos4 v1�� = 3

8 ,

d2 = �n3
2n1

3�� − d1 = �c1 + c2�c1 − d1 = − d1,

d3 = �n3
4�� − d1 − d2 = − d1 − d2 = 0, �B7�

and so on for x
6. Further, we have, for the cylindrical
tube, using r=R�n+v2Q�e3�,

�r��
xn��� = R���

x+1n��� , �B8�

because �v2��xn��� = �v2����xn��� =0,

�rr��
xn��� = R2��n + v2Q�e3��n + v2Q�e3���

xn���

= R2����
x+2n��� +

Q�
2

3
P����

xn���� , �B9�

2 1
where the denominator stems from �v2�� = 3 and, analogously,

aded 02 May 2011 to 131.155.151.134. Redistribution subject to AIP li
�rr��
xn�r�� = R3��

x+3n� +
R3Q�

2

3
�P����

x+1n���

+ e3���
x+1n���e3 + �ne3��

xn���e3� . �B10�

We have thus traced back all integrals �B2� to the the integral
���xn��� for which a closed form solution can be written
down as a series in terms of integrals of the form
����n1���mP���sym��. Because it will be often sufficient for
practical purposes, we presented the alternate recursive ap-
proach �B6� with �B7�.

3. Ÿ flat end caps for cylinder of radius R and height
h=2RQ¸

The two end caps are parametrized by r /R
= �v2 cos v1e1+v2 sin v1e2±Q�e3, v1� �0,2�� and v2� �
−1,1�, yielding n= ±e3 and s=R2
v2
. To make use of the
results we prefer using the area A=4�R2Q� of the cylinder
when normalizing the integrals. Thus

���
xn��� =

1

A
�1 + �− 1�x���

xe3� � R2
v2
dv2dv1

=
�1 + �− 1�x�

2Q�

��
xe3� =

1

Q�

��
x/2P�� , �B11�

�r��
xn��� = 0 , �B12�

�rr��
xn��� =

R4

A
���1 − P�� + 4�Q�

2P����
x/2P�� , �B13�

�rrr��
xn��� = 0 , �B14�

where it is understood that ��x/2p�� vanishes if x is odd.

4. � cuboid of size L1,2,3

A cuboid oriented along the e1,2,3 axes has six faces
which we shall denote as F=123, F=132, F=213, F=231,
F=312, and F=321 to simplify the analysis. Doing so, face
F=��� of the cuboid is parametrized by

r�F� = �����L�

2
e� + v1

L�

2
e� + v2

L�

2
e�� , �B15�

where a summation convention is not used, ���� are the com-
ponents of the Levi-Civita tensor, and v1� �−1,1� and v2

� �−1,1�. From �B15� we immediately derive the normal
vector n�F�=����e� and surface element s�F�=L�L� /4 for face
F. The area and volume of a cuboid are A=�dS=2�L1L2

+L1L3+L2L3� and V=L1L2L3, respectively. Unlike for the
sphere, for which r�n, we cannot simplify the task �B2� in a
fashion corresponding to the case of a sphere. We have to go
through a more tedious calculation. For the single face F
=��� we have �dS�F�=�s�F�dv1dv2=4s�F�=L�L�, and we
have to sum over

���
xn���

�F� =
1

A
����

x ��
xe�� � dS�F� =

1

A
����

x ��
xe��L�L�,

�B16�
x
where ���� denotes the xth power of the number ����, and
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�r��
xn���

�F� =
1

A
����

1+x � �L�

2
e� + v1

L�

2
e� + v2

L�

2
e��

���
xe��dS�F� =

V

2A
����

1+x ��
1+xe�� , �B17�

etc. for all faces �notice: � in �B17� is not a cross product� to
arrive at "x=1,3,5,..���xn���=0, because �B16� is symmetric
in �� and

���
xn��� = 	

�,�,�=1

3

���
xn���

�F�

=
2

A
���

xe1�L2L3 + ��
xe2�L3L1 + ��

xe3�L1L2� ,

�B18�

for even x
0. More generally, we find

���
�r���

xn��� = 0 if � + x is odd. �B19�

Further, while skipping intermediate steps, we arrive at

�r��
xn��� =

V

A
	
i=1

3

��
1+xei� , �B20�

for odd x
1, and

�rr��
xn��� =

1

12	
i=1

3

Li
2��

x+2ei�

+
V

3A
	
i=1

3

Li��
x+2ei� , �B21�

for even x
0, where e4�e1 and e5�e2 have been intro-
duced to simplify notation and finally, Eqs. �B18�–�B21� are
the solutions to all tasks posed by �B2� except the one for
�r2��xn�r�� which we refrain from writing down, albeit con-
ceptually as “simple” to obtain as the stated results.

APPENDIX C: ORTHONORMAL EXPANSION AND �
TENSORS

Any velocity distribution function f�c� can be expanded
in terms of orthonormal �scalar product defined by f0�, di-
mensionless moments 	k

n�c� as follows:

f�c� = f0�c��1 + 	
n,k

	

�	k
n��n	k

n� , �C1�

where f0�c� denotes the isotropic part of the distribution
function, and the average is defined as

�	k
n� = ns

−1� f�c�	k
nd3c , �C2�

with particle number density ns for convenience, because c
will have dimension of velocity and the spatially averaged f
should be dimensionless. The isotropy of f0 requires that 	’s
are linear in the irreducible tensors made of c’s. For the case
that f0�e−c̃2

, more precisely, f0�c�=ns�� /��3/2e−c̃2
with c̃

=��c and c̃= 
c̃
, the orthonormal polynomials are the asso-
n
ciated Laguerre �or Sonine� functions Lk defined as
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Lk
m�x� = 	

i=0

k
�k + m�!

i!�k − i�!�m + i�!
�− x�i, �C3�

i.e., L0
m=1, L1

3/2�x�= 5
2 −x, and we have

	k
n = lk

nLk
n+1/2�c̃2��

nc̃
�

, lk
n � ���

2

k!�1 + 2n�!!
�k + n + �1/2��!n!

�1/2

.

�C4�

The normalization coefficients arise from the orthogonality
features of the Laguerre functions, �0

	e−xxmLk
m�x�Lk�

m �x�dx
=�k,k��k+m�! /k!, and the one for irreducible tensors,

�S1
�nc̃
�

�mc̃
�

d2ĉ=4��n,mn! / �2n+1�!!��n�, where ��n� is a

projector with the feature38 ��n���nĉ�= �nc̃
�

. The symbol ĉ
denotes the unit vector c /c. The lowest order “moments”
therefore are given by �22�. We should mention that the re-
quirements �c�=0 and ms /2�c2�= 3

2kBT immediately yield
�	1

0�=0 and �	0
1�=0. The remaining two lowest order mo-

ments are then �	1
1� and �	0

2�. Assuming a�c, thus neglect-
ing terms of order �a /c��1, we have

f�c + a� = f0�c + a� 	
n,k=0

	

�	k
n��n	k

n�c + a�

�
a�c

f0�c��1 − 2c̃ · ã�	
n,k

lk
nLk

n+�1/2��c̃2 + 2c̃ · ã�

��nã��
n−1c̃�
�

+ �
nc̃
�

��n�	k
n�

= f0�c��	
n,k

lk
nLk

n+�1/2��c̃2��nã��
n−1c̃�
�

+ 3�1 −
2

3
c̃ · ã��

nc̃
���n�	k

n�

+ 2c̃ · ã	
n,k

lk
n	

i=0

k
�k + n + �1/2��!

�i − 1�!�k − i�!�n + i + �1/2��!

��− c̃2�i
�

nc̃
�

�n�	k
n�� , �C5�

where we used the notation ã= �c̃ /c�a and the following re-
sult:

Lk
m�c̃2 + 2ã · c̃� �

a�c

	
i=0

k
�k + m�!

i!�k − i�!�m + i�!
�− c̃2�i�1 + 2iã · c̃�

= Lk
m�c̃2� + 2	

i=0

k
�k + m�!

�i − 1�!�k − i�!�m + i�!

��− c̃2�iã · c̃ . �C6�

We can further make use of38

c̃ · ã�
nc̃
�

= ã · �
n+1c̃
�

+
n

2n + 1
ã · ��n��n−1

�
n−1c̃
�

, �C7�

and similar relationships to directly read off the coefficients

� defined through
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Downlo
f�c + a� = f0�c�	
n,i

c̃2i�n,i�a��n��
nc̃� �C8�

by comparing �C5� with �C8�. Notice that for the case n
�1 which covers Grad’s 13th moment approximation, one

can remove the anisotropic . . .
�

symbols in �C5�.
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