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Unifying machine learning and quantum chemistry
with a deep neural network for molecular
wavefunctions
K.T. Schütt 1, M. Gastegger1, A. Tkatchenko2*, K.-R. Müller1,3,4* & R.J. Maurer5*

Machine learning advances chemistry and materials science by enabling large-scale

exploration of chemical space based on quantum chemical calculations. While these mod-

els supply fast and accurate predictions of atomistic chemical properties, they do not

explicitly capture the electronic degrees of freedom of a molecule, which limits their

applicability for reactive chemistry and chemical analysis. Here we present a deep learning

framework for the prediction of the quantum mechanical wavefunction in a local basis of

atomic orbitals from which all other ground-state properties can be derived. This approach

retains full access to the electronic structure via the wavefunction at force-field-like efficiency

and captures quantum mechanics in an analytically differentiable representation. On several

examples, we demonstrate that this opens promising avenues to perform inverse design of

molecular structures for targeting electronic property optimisation and a clear path towards

increased synergy of machine learning and quantum chemistry.
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M
achine learning (ML) methods reach ever deeper into
quantum chemistry and materials simulation, deliver-
ing predictive models of interatomic potential energy

surfaces1–6, molecular forces7,8, electron densities9, density
functionals10, and molecular response properties such as polar-
isabilities11, and infrared spectra12. Large data sets of molecular
properties calculated from quantum chemistry or measured from
experiment are equally being used to construct predictive models
to explore the vast chemical compound space13–17 to find new
sustainable catalyst materials18, and to design new synthetic
pathways19. Recent research has explored the potential role of
machine learning in constructing approximate quantum chemical
methods20, as well as predicting MP2 and coupled cluster ener-
gies from Hartree–Fock orbitals21,22. There have also been
approaches that use neural networks as a basis representation of
the wavefunction23–25.

Most existing ML models have in common that they learn
from quantum chemistry to describe molecular properties as
scalar, vector, or tensor fields26,27. Figure 1a shows schematically
how quantum chemistry data of different electronic properties,
such as energies or dipole moments, is used to construct indivi-
dual ML models for the respective properties. This allows for the
efficient exploration of chemical space with respect to these
properties. Yet, these ML models do not explicitly capture the
electronic degrees of freedom in molecules that lie at the heart of
quantum chemistry. All chemical concepts and physical mole-
cular properties are determined by the electronic Schrödinger
equation and derive from the ground-state wavefunction. Thus,
an electronic structure ML model that directly predicts the
ground-state wavefunction (see Fig. 1b) would not only allow to
obtain all ground-state properties, but could open avenues
towards new approximate quantum chemistry methods based on
an interface between ML and quantum chemistry. Hegde and
Bowen28 have explored this idea using kernel ridge regression to
predict the band structure and ballistic transmission in a limited

study on straining single-species bulk systems with up to μfour
atomic orbitals. Another recent example of this scheme is the
prediction of coupled-cluster singles and doubles amplitudes
from MP2-derived properties by Townsend and Vogiatzis29.

In this work, we develop a deep learning framework that
provides an accurate ML model of molecular electronic structure
via a direct representation of the electronic Hamiltonian in a local
basis representation. The model provides a seamless interface
between quantum mechanics and ML by predicting the eigen-
value spectrum and molecular orbitals (MOs) of the Hamiltonian
for organic molecules close to ‘chemical accuracy’ (~0.04 eV).
This is achieved by training a flexible ML model to capture the
chemical environment of atoms in molecules and of pairs of
atoms. Thereby, it provides access to electronic properties that are
important for chemical interpretation of reactions such as charge
populations, bond orders, as well as dipole and quadrupole
moments without the need of specialised ML models for each
property. We demonstrate how our model retains the conceptual
strength of quantum chemistry by performing an ML-driven
molecular dynamics simulation of malondialdehyde showing the
evolution of the electronic structure during a proton transfer
while reducing the computational cost by 2–3 orders of magni-
tude. As we obtain a symmetry-adapted and analytically differ-
entiable representation of the electronic structure, we are able to
optimise electronic properties, such as the HOMO-LUMO gap, in
a step towards inverse design of molecular structures. Beyond
that, we show that the electronic structure predicted by our
approach may serve as input to further quantum chemical cal-
culations. For example, wavefunction restarts based on this ML
model provide a significant speed-up of the self-consistent field
procedure (SCF) due to a reduced number of iterations, without
loss of accuracy. The latter showcases that quantum chemistry
and machine learning can be used in tandem for future electronic
structure methods.

Results
Atomic representation of molecular electronic structure. In
quantum chemistry, the wavefunction associated with the elec-
tronic Hamiltonian Ĥ is typically expressed by anti-symmetrised
products of single-electron functions or molecular orbitals. These
are represented in a local atomic orbital basis of spherical atomic
functions ψm
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As a consequence, one can write the electronic Schrödinger
equation in matrix form

Hcm ¼ ϵmScm; ð1Þ

where the Hamiltonian matrix H may correspond to the Fock or
Kohn–Sham matrix, depending on the chosen level of theory30. In
both cases, the Hamiltonian and overlap matrices are defined as:

Hij ¼ ϕi
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Sij ¼ ϕijϕj
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The eigenvalues ϵm and electronic wavefunction coefficients cim
contain the same information as H and S where the electronic
eigenvalues are naturally invariant to rigid molecular rotations,
translations or permutation of equivalent atoms. Unfortunately, as
a function of atomic coordinates and changing molecular con-
figurations, eigenvalues and wavefunction coefficients are not well-
behaved or smooth. State degeneracies and electronic level
crossings provide a challenge to the direct prediction of eigenva-
lues and wavefunctions with ML techniques. We address this
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Fig. 1 Synergy of quantum chemistry and machine learning. a Forward

model: ML predicts chemical properties based on reference calculations. If

another property is required, an additional ML model has to be trained.

b Hybrid model: ML predicts the wavefunction. All ground state properties

can be calculated and no additional ML is required. The wavefunctions can

act as an interface between ML and QM
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problem with a deep learning architecture that directly describes
the Hamiltonian matrix in local atomic orbital representation.

SchNOrb deep learning framework. SchNOrb (SchNet for
Orbitals) presents a framework that captures the electronic
structure in a local representation of atomic orbitals that is
common in quantum chemistry. Figure 2a gives an overview of
the proposed architecture. SchNOrb extends the deep tensor
neural network SchNet31 to represent electronic wavefunctions.
The core idea is to construct symmetry-adapted pairwise features
Ω

l
ij to represent the block of the Hamiltonian matrix corre-

sponding to atoms i, j. They are written as a product of rota-
tionally invariant (λ= 0) and covariant (λ > 0) components ω

λ
ij

which ensures that – given a sufficiently large feature space – all
rotational symmetries up to angular momentum l can be repre-
sented:

Ω
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here, rij is the vector pointing from atom i to atom j, pλij 2 R
B are

rotationally invariant coefficients and Wλ
∈ R3×D are learnable

parameters projecting the features along D randomly chosen
directions. This allows to rotate the different factors of Ωl

ij 2 R
B�D

relative to each other and further increases the flexibility of the
model for D > 3. In case of λ= 0, the coefficients are independent
of the directions due to rotational invariance.

We obtain the coefficients pλij from an atomistic neural network,
as shown in Fig. 2a. Starting from atom type embeddings x0i ,
rotationally invariant representations of atomistic environments
xTi are computed by applying T consecutive interaction refine-
ments. These are by construction invariant with respect to
rotation, translation and permutations of atoms. This part of the
architecture is equivalent to the SchNet model for atomistic
predictions (see refs. 32,33). In addition, we construct representa-
tions of atom pairs i,j that will enable the prediction of the
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Fig. 2 Prediction of electronic properties with SchNOrb. a Illustration of the network architecture. The neural network architecture consists of three steps

(grey boxes) starting from initial representations of atom types and positions (top), continuing with the construction of representations of chemical

environments of atoms and atom pairs (middle) before using these to predict energy and Hamiltonian matrix respectively (bottom). The left path through

the network to the energy prediction E is rotationally invariant by design, while the right pass to the Hamiltonian matrix H allows for a maximum angular

momentum L of predicted orbitals by employing a multiplicative construction of the basis ωij using sequential interaction passes l= 0…2L. The onsite and

offsite blocks of the Hamiltonian matrix are treated separately. The prediction of overlap matrix S is performed analogously. b Illustration of the SchNet

interaction block32. c Illustration of SchNorb interaction block. The pairwise representation hlij of atoms i, j is constructed by a factorised tensor layer ftensor

from atomic representations as well as the interatomic distance. Using this, rotationally invariant interaction refinements vmi and basis coefficients plij are

computed. d Loewdin population analysis for uracil based on the density matrix calculated from the predicted Hamiltonian and overlap matrices. e Mean

abs. errors of lowest 20 orbitals (13 occupied+ 7 virtual) of ethanol for Hartree–Fock and DFT@PBE. f The predicted (solid black) and reference (dashed

grey) orbital energies of an ethanol molecule for DFT. Shown are the last four occupied and first four unoccupied orbitals, including HOMO and LUMO. The

associated predicted and reference molecular orbitals are compared for four selected energy levels
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coefficients pλij. This is achieved by 2L+ 1 SchNOrb interaction

blocks, which compute the coefficients pλij with a given angular
momentum λ with respect to the atomic environment of the
respective atom pair ij. This corresponds to adapting the atomic
orbital interaction based on the presence and position of atomic
orbitals in the vicinity of the atom pair. As shown in Fig. 2b, the
coefficient matrix depends on pair interactions mlppair of atoms i, j
as well as environment interactions mlpenv of atom pairs (i, m)
and (n, j) for neighbouring atoms m, n. These are crucial to enable
the model to capture the orientation of the atom pair within the
molecule for which pair-wise interactions of atomic environments
are not sufficient.

The Hamiltonian matrix is obtained by treating on-site and
off-site blocks separately. Given a basis of atomic orbitals up to
angular momentum L, we require pair-wise environments with
angular momenta up to 2L to describe all Hamiltonian blocks

~Hij ¼

Hoff Ω
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The predicted Hamiltonian is obtained through symmetrisation
H ¼ 1

2 ð
~Hþ ~H

⊺

Þ. Hoff and Hon are modelled by neural networks
that are described in detail in the methods section. The overlap
matrix S can be obtained in the same manner. Based on this, the
orbital energies and coefficients can be calculated according to
Eq. (1). The computational cost of the diagonalisation is negligible
for the molecules and basis sets we study here (<1ms). For large
basis sets and molecules, when the diagonalisation starts to
dominate the computational cost, our method requires only a
single diagonalization instead of one per SCF step. In addition to
the Hamiltonian and overlap matrices, we predict the total energy
separately as a sum over atom-wise energy contributions, in analogy
with the conventional SchNet treatment32 to drive the molecular
dynamics simulations.

Learning electronic structure and derived properties. The
proposed SchNOrb architecture allows us to perform predictions
of total energies, Hamiltonian and overlap matrices in end-to-end
fashion using a combined regression loss. We train separate
neural networks for several data sets of water as well as ethanol,
malondialdehyde, and uracil from the MD17 dataset7. The
reference calculations were performed with Hartree-Fock (HF)
and density functional theory (DFT) with the PBE exchange
correlation functional34. The employed Gaussian atomic orbital
bases include angular momenta up to l= 2 (d-orbitals). We
augment the training data by adding rotated geometries and
correspondingly rotated Hamiltonian and overlap matrices to
learn the correct rotational symmetries (see Methods section).
Detailed model and training settings for each data set are listed in
Supplementary Table 1.

As Supplementary Table 2 shows, the total energies could be
predicted up to a mean absolute error below 2meV for the
molecules. The predictions show mean absolute errors below
8meV for the Hamiltonian and below 1 × 10−4 for the overlap
matrices. We examine how these errors propagate to orbital energy
and coefficients. Figure 2e shows mean absolute errors for energies
of the lowest 20 molecular orbitals for ethanol reference
calculations using DFT as well as HF. The errors for the DFT
reference data are consistently lower. Beyond that, the occupied
orbitals (1–13) are predicted with higher accuracy (<20meV) than
the virtual orbitals (~100meV). We conjecture that the larger error
for virtual orbitals arises from the fact that these are not strictly
defined by the underlying data from the HF and Kohn–Sham DFT

calculations. Virtual orbitals are only defined up to an arbitrary
unitary transformation. Their physical interpretation is limited
and, in HF and DFT theory, they do not enter in the description of
ground-state properties. For the remaining data sets, the average
errors of the occupied orbitals are <10meV for water and
malondialdehyde, as well as 48meV for uracil. This is shown in
detail in Supplementary Fig. 1. The orbital coefficients are
predicted with cosine similarities ≥90% (see Supplementary Fig. 2).
Figure 2f depicts the predicted and reference orbital energies for
the frontier MOs of ethanol (solid and dotted lines, respectively), as
well as the orbital shapes derived from the coefficients. Both
occupied and unoccupied energy levels are reproduced with high
accuracy, including the highest occupied (HOMO) and lowest
unoccupied orbitals (LUMO). This trend is also reflected in the
overall shape of the orbitals. Even the slightly higher deviations in
the orbital energies observed for the third and fourth unoccupied
orbital only result in minor deformations. The learned covariance
of molecular orbitals for rotations of a water molecule is shown in
Supplementary Fig. 3.

The ML model uses about 93 million parameters to predict a
large Hamiltonian matrix with >100 atomic orbitals. This size is
comparable to state-of-the-art neural networks for the generation of
similarly sized images35. Supplementary Table 6 shows the
computational costs of calculating the reference data, training the
network and predicting Hamiltonians. While training of SchNOrb
took about 80 h, performing the required DFT reference calculations
remains the bottleneck for obtaining a trained network, in particular
for larger molecules. Our approach to predicting Hamiltonian
matrices leads to accelerations of 2–3 orders of magnitude.

As SchNOrb learns the electronic structure of molecular
systems, all chemical properties that are defined as quantum
mechanical operators on the wavefunctions can be computed
from the ML prediction without the need to train a separate
model. We investigate this feature by directly calculating
electronic dipole and quadrupole moments from the orbital
coefficients predicted by SchNOrb, as well as the HF total
energies for the ethanol molecule. The corresponding mean
absolute errors are reported in Supplementary Tables 4 and 5.
The calculation of energies and forces from the coefficients
requires the evaluation of the core Hamiltonian (HF) or exchange
correlation terms (DFT), for which we currently resort to the
ORCA code. To avoid this computational overhead and obtain
highly accurate predictions for molecular dynamics simulations
with mean absolute error below 1meV, we predict energies and
forces directly as a sum of atomic contributions31. Regarding the
electrostatic moments, excellent agreement with the electronic
structure reference is observed for the majority of molecules
(<0.054 D for dipoles and <0.058 D Å for quadrupoles). The only
deviation from this trend is observed for uracil, where a loss
function minimising only the errors of Hamiltonian and overlap
matrices is too limited. The dipole moment depends strongly on
the molecular electron density derived from the orbital
coefficients, which are never learned directly.

Beyond that, we have studied the prediction accuracy for
ethanol when using the larger def2-tzvp basis set which includes
f-orbitals (l= 3). While the predictions of the Hamiltonian and
overlap matrices remain remarkably accurate with 8.3 meV and
10−6, respectively, the derived properties exhibit large errors, e.g.,
an MAE of 0.4775 eV for the orbital energies. For large numbers
of orbitals, errors in the Hamiltonian can accumulate due to the
diagonalisation. This problem could be solved by improving the
neural network architecture to further reduce the prediction error
or introducing a density dependent term into the loss function,
which will be explored in future investigations.

In this case, a similar accuracy as the other methods could in
principle be reached upon the addition of more reference data
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points. The above results demonstrate the utility of combining a
learned Hamiltonian with quantum operators. This makes it
possible to access a wide range of chemical properties without the
need for explicitly developing specialised neural network
architectures.

Chemical insights from electronic deep learning. Recently, a lot
of research has focused on explaining predictions of ML mod-
els36–38 aiming both at the validation of the model39,40 as well as
the extraction of scientific insight17,31,41. However, these methods
explain ML predictions either in terms of the input space, atom
types and positions in this case, or latent features such as local
chemical potentials31,42. In quantum chemistry however, it is
more common to analyse electronic properties in terms of the
MOs and properties derived from the electronic wavefunction,
which are direct output quantities of the SchNOrb architecture.

Molecular orbitals encode the distribution of electrons in a
molecule, thus offering direct insights into its underlying
electronic structure. They form the basis for a wealth of chemical
bonding analysis schemes, bridging the gap between quantum
mechanics and abstract chemical concepts, such as bond orders
and atomic partial charges30. These quantities are invaluable tools
in understanding and interpreting chemical processes based on
molecular reactivity and chemical bonding strength. As SchNOrb
yields the MOs, we are able to apply population analysis to our
ML predictions. Figure 2d shows Loewdin partial atomic charges
and bond orders for the uracil molecule. Loewdin charges provide
a chemically intuitive measure for the electron distribution and
can e.g., aid in identifying potential nucleophilic or electrophilic
reaction sites in a molecule. The negatively charged carbonyl
oxygens in uracil, for example, are involved in forming RNA base
pairs. The corresponding bond orders provide information on the
connectivity and types of bonds between atoms. In the case of
uracil, the two double bonds of the carbonyl groups are easily

recognisable (bond order 2.12 and 2.14, respectively). However, it
is also possible to identify electron delocalisation effects in the
pyrimidine ring, where the carbon double bond donates electron
density to its neighbours. A population analysis for malondialde-
hyde, as well as population prediction errors for all molecules can
be found in Supplementary Fig. 4 and Supplementary Table 3.

The SchNOrb architecture enables an accurate prediction of
the electronic structure across molecular configuration space,
which provides for rich chemical interpretation during molecular
reaction dynamics. Figure 3a shows an excerpt of a molecular
dynamics simulation of malondialdehyde that was driven by
atomic forces predicted using SchNOrb. It depicts the proton
transfer together with the relevant MOs and the electronic
density. Supplementary Video 1 shows a side-by-side comparison
between the predicted and reference HOMO-2 orbital during this
excerpt of the trajectory. The density paints an intuitive picture of
the reaction as it migrates along with the hydrogen. This
exchange of electron density during proton transfer is also
reflected in the orbitals. Their dynamical rearrangement indicates
an alternation between single and double bonds. The latter effect
is hard to recognise based on the density alone and demonstrates
the wealth of information encoded in the molecular
wavefunctions.

Figure 3b depicts the forces the different MOs exert onto the
hydrogen atom exchanged during the proton transfer. All forces
are projected onto the reaction coordinate, where positive values
correspond to a force driving the proton towards the product
state. In the initial configuration I, most forces lead to attraction
of the hydrogen atom to the right oxygen. In the intermediate
configuration II, orbital rearrangement results in a situation
where the majority of orbital force contributions on the hydrogen
atom become minimal, representing mostly non-bonding char-
acter between oxygens and hydrogen. One exception is MO 13,
depicted in the inset of Fig. 3b. Due to a minor deviation from a
symmetric O–H–O arrangement, the orbital represents a one-
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sided O–H bond, exerting forces that promote the reaction. The
intrinsic fluctuations during the proton transfer molecular
dynamics are captured by the MOs as can be seen in Fig. 3c.
This shows the distribution of orbital energies encountered
during the reaction. As would be expected, both HOMO-2 and
HOMO-3 (inset, orange and blue respectively), which strongly
participate in the proton transfer, show significantly broadened
peaks due to strong energy variations in the dynamics. This
example nicely shows the chemically intuitive interpretation that
can be obtained by the electronic structure prediction of
SchNOrb.

Deep learning-enhanced quantum chemistry. An essential
paradigm of chemistry is that the molecular structure defines
chemical properties. Inverse chemical design turns this paradigm
on its head by enabling property-driven chemical structure
exploration. The SchNOrb framework constitutes a suitable tool
to enable inverse chemical design due to its analytic representa-
tion of electronic structure in terms of the atomic positions. We
can therefore obtain analytic derivatives with respect to the
atomic positions, which provide the ability to optimise electronic
properties. Figure 4a shows the minimisation and maximisation
of the HOMO-LUMO gap ϵgap of malondialdehyde as an
example. We perform gradient descent and ascent from a ran-
domly selected configuration rref until convergence at rmin and
rmax, respectively. We are able to identify structures which
minimise and maximise the gap from its initial 3.15 to 2.68 eV at
rmin and 3.59 eV at rmax. While in this proof of concept these
changes were predominantly caused by local deformations in the
carbon–carbon bonds indicated in Fig. 4a, they present an
encouraging prospect how electronic surrogate models such as
SchNOrb can contribute to computational chemical design using
more sophisticated optimisation methods, such as alchemical
derivatives43 or reinforcement learning44.

ML applications for electronic structure methods have usually
been one-directional, i.e., ML models are trained to predict the
outputs of calculations. On the other hand, models in the spirit of

Fig. 1b, such as SchNOrb, offer the prospect of providing a deeper
integration with quantum chemistry methods by substituting
parts of the electronic structure calculation. SchNOrb directly
predicts wavefunctions based on quantum chemistry data, which
in turn, can serve as input for further quantum chemical
calculations. For example, in the context of HF or DFT
calculations, the relevant equations are solved via a self-
consistent field approach (SCF) that determines a set of MOs.
The convergence with respect to SCF iteration steps largely
determines the computational speed of an electronic structure
calculation and strongly depends on the quality of the initialisa-
tion for the wavefunction. The coefficients predicted by SchNOrb
can serve as such an initialisation of SCF calculations. To this end,
we generated wavefunction files for the ORCA quantum
chemistry package45 from the predicted SchNOrb coefficients,
which were then used to initialise SCF calculations. Figure 4b
depicts the SCF convergence for three sets of computations on the
uracil molecule: using the standard initialisation techniques of
quantum chemistry codes, and the SchNorb coefficients with or
without a second order solver. Nominally, only small improve-
ments are observed using SchNorb coefficients in combination
with a conventional SCF solver. This is due to the various
strategies employed in electronic structure codes in order to
provide a numerically robust SCF procedure. By performing SCF
calculations with a second order solver, which would not
converge using a less accurate starting point than our SchNorb
MO coefficients, the efficiency of our combined ML and second
order SCF approach becomes apparent. Convergence is obtained
in only a fraction of the original iterations, reducing the number
of cycles by ~77%. Similarly, Supplementary Fig. 5 shows the
reduction of SCF iteration by ~73% for malondialdehyde.
However, since second-order optimisation steps are more costly,
it is more time-efficient to perform conventional SOSCF which
reduces the convergence time by 13% and 16% for uracil and
malondialdehyde, respectively.

It should be noted, that this combined approach does not
introduce any approximations into the electronic structure
method itself and yields exactly the same results as the full
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gap prediction using SchNOrb (left and right, respectively). For the optimised configurations, the difference of the orbitals are shown in green (increase)

and violet (decrease). The dominant geometrical change is indicated by the black arrows. b The predicted MO coefficients for the uracil configurations

from the test set are used as a wavefunction guess to obtain accurate solutions from DFT at a reduced number of self-consistent-field (SCF) iterations. This

reduces the required SCF iterations by an average of 77% using a Newton solver. In terms of runtime, it is more efficient to use SOSCF, even though this

saves only 15% of iterations for uracil
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computation. Another example of integration of the SchNOrb
deep learning framework with quantum chemistry, as shown in
Fig. 1b, is the use of predicted wavefunctions and MO energies
based on Hartree–Fock as starting point for post-Hartree–Fock
correlation methods such as Møller–Plesset perturbation theory
(MP2). Supplementary Table 5 presents the mean absolute error
of an MP2 calculation for ethanol based on wavefunctions
predicted from SchNOrb. The associated prediction error for the
test set is 83 meV. Compared to the overall HF and MP2 energy,
the relative error of SchNOrb amounts to 0.01% and 0.06%,
respectively. For the MP2 correlation energy, we observe a
deviation of 17%, the reason of which is inclusion of virtual
orbitals in the calculation of the MP2 integrals. However, even in
this case, the total error only amounts to a deviation of 93 meV.

Discussion
The SchNOrb framework provides an analytical expression for
the electronic wavefunctions in a local atomic orbital repre-
sentation as a function of molecular composition and atom
positions. While previous approaches have predicted Hamilto-
nians of single-species bulk materials in a small basis set for
limited geometric deformations28, SchNorb has been shown to
enable the accurate predictions of molecular Hamiltonians in a
basis of >100 atomic orbitals up to angular momentum l= 2 for a
much larger configuration space obtained from molecular
dynamics simulations. As a consequence, the model provides
access to atomic derivatives of wavefunctions, which include
molecular orbital energy derivatives, Hamiltonian derivatives,
which can be used to approximate nonadiabatic couplings46, as
well as higher order derivatives that describe the electron-nuclear
response of the molecule. Thus, the SchNOrb framework pre-
serves the benefits of interatomic potentials while enabling access
to the electronic structure as predicted by quantum chemistry
methods.

SchNOrb opens up completely new applications to ML-
enhanced molecular simulation. This includes the construction
of interatomic potentials with electronic properties that can
facilitate efficient photochemical simulations during surface
hopping trajectory dynamics or Ehrenfest-type mean-field
simulations, but also enables the development of new ML-
enhanced approaches to inverse molecular design via electronic
property optimisation.

The SchNOrb neural network architecture demonstrates that
an accurate prediction of electronic structure is feasible. However,
with increasing number of atomic orbitals, the diagonalisation of
the Hamiltonian leads to the accumulation of prediction errors
and becomes the bottleneck of the prediction. Thus, for larger
molecules and basis sets, the accuracy of SchNOrb will have to be
further improved. More research on the architecture is also
required in order to reduce the required amount of training data
and parameters, e.g., by adding more prior knowledge to the
model. An import step into this direction is to encode the full
rotational symmetries of the basis into the architecture, replacing
the current data augmentation scheme. Alternatively, on the basis
of the SchNOrb framework, intelligent preprocessing of quantum
chemistry data in the form of effective Hamiltonians or optimised
minimal basis representations47 can be developed in the future.
Such preprocessing will also pave the way towards the prediction
of the electronic structure based on post-HF correlated wave-
function methods and post-DFT quasiparticle methods.

This work serves as a first proof of principle that direct ML
models of electronic structure based on quantum chemistry can
be constructed and used to enhance further quantum chemistry
calculations. We have presented an immediate consequence of
this by reducing the number of DFT-SCF iterations with

wavefunctions predicted via SchNOrb. The presented model
delivers derived electronic properties that can be formulated as
quantum mechanical expectation values. This provides an
important step towards a full integration of ML and quantum
chemistry into the scientific discovery cycle.

Methods
Reference data. Reference configurations were sampled at random from the
MD17 dataset7 for each molecule. The number of selected configurations per
molecule is given in Supplementary Table 1. All reference calculations were carried
out with the ORCA quantum chemistry code45 using the def2-SVP basis set48.
Integration grid levels of 4 and 5 were employed during SCF iterations and the final
computation of properties, respectively. Unless stated otherwise, the default ORCA
SCF procedure was used, which is based on the Pulay method49. For the remaining
cases, the Newton–Raphson procedure implemented in ORCA was employed as a
second order SCF solver. SCF convergence criteria were set to VeryTight. DFT
calculations were carried out using the PBE functional34. For ethanol, additional
HF computations were performed.

Molecular dynamics simulations for malondialdehyde were carried out with
SchNetPack50. The equations of motions were integrated using a timestep of 0.5 fs.
Simulation temperatures were kept at 300 K with a Langevin thermostat51

employing a time constant of 100 fs. Trajectories were propagated for a total of
50 ps, of which the first 10 ps were discarded.

Details on the neural network architecture. In the following we describe the
neural network depicted in Fig. 2 in detail. We use shifted softplus activation
functions

sspðxÞ ¼ ln
1
2
ex þ

1
2

� �

ð7Þ

throughout the architecture. Linear layers are written as

linearðxÞ ¼ W⊺x þ b ð8Þ

with input x 2 Rnin , weights W 2 Rnin ´ nout and bias b 2 Rnout . Fully-connected
neural networks with one hidden layer are written as

mlpðxÞ ¼ W
⊺

2 ssp W
⊺

1 x þ b1ð Þ þ b2 ð9Þ

with weights W1 2 R
nin ´ nhidden and W2 2 R

nhidden ´ nout and biases b1, b2 accordingly.
Model parameters are shared within layers across atoms and interactions, but never
across layers. We omit layer indices for clarity.

The representations of atomic environments are constructed with the neural
network structure as in SchNet. In the following, we summarise this first part of the
model. For further details, please refer to Schütt et al.32. First, each atom is assigned
an initial element-specific embedding

x0i ¼ aZi
2 RB; ð10Þ

where Zi is the nuclear charge and B is the number of atom-wise features. In this
work, we use B= 1000 for all models. The representations are refined using SchNet
interaction layers (Fig. 2b). The main component is a continuous-filter
convolutional layer (cfconv)

cfconvððx1; r1Þ; ¼ ; ðxn; rnÞÞ ¼
X

j≠i

xj �WfilterðrijÞ

" #

i¼1¼ n

ð11Þ

which takes a spatial filter Wfilter : R! R
B

WfilterðrijÞ ¼ mlpðgðrijÞÞ f cutoff ðrijÞ ð12Þ

with

gðrijÞ ¼ expð�γðrij � kΔμÞ2Þ
h i

0�k�rc=Δμ
ð13Þ

f cutoff ðrijÞ ¼
0:5 ´ 1þ cos πr

rc

� �h i

r < rc

0 r ≥ rc

 

; ð14Þ

where rc is the cutoff radius and Δμ is the grid spacing of the radial basis function
expansion of interatomic distance rij. While this adds spatial information to the
environment representations for each feature separately, the crosstalk between
features is performed atom-wise by fully-connected layers (linear and mlpatom in
Fig. 2b) to obtain the refinements vti , where t is the current interaction iteration.
The refined atom representations are then

xti ¼ xt�1
i þ vti : ð15Þ

These representations of atomic environments are employed by SchNet to predict
chemical properties via atom-wise contributions. However, in order to extend this
scheme to the prediction of the Hamiltonian, we need to construct representations
of pair-wise environments in a second interaction phase.
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The Hamiltonian matrix is of the form

H ¼

H11 � � � H1j � � � H1n

.

.

.
.
.

.
.
.
.

.

.

.

Hi1 � � � Hij � � � Hin

.

.

.
.
.
.

.
.

.
.
.
.

Hn1 � � � Hnj � � � Hnn

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

ð16Þ

where a matrix block Hij 2 R
nao;i ´ nao;j depends on the atoms i, j within their

chemical environment as well as on the choice of nao,i and nao,j atomic orbitals,
respectively. Therefore, SchNOrb builds representations of these embedded atom
pairs based on the previously constructed representations of atomic environments.
This is achieved through the SchNOrb interaction module (see Fig. 2c).

First, a raw representation of atom pairs is obtained using a factorised tensor
layer31,52:

hλij ¼ ftensorðxλi ; x
λ
j ; rijÞ ð17Þ

¼ sspðlinear2½linear1ðx
λ
i Þ � linear1ðx

λ
j Þ �WfilterðrijÞ�Þ:

The layers linear1 : R
B 7!RB map the atom representations to the factors, while the

filter-generating network Wfilter : R! R
B is defined analogously to Eq. (12) and

directly maps to the factor space. In analogy to how the SchNet interactions are
used to build atomic environments, SchNOrb interactions are applied several
times, where each instance further refines the atomic environments of the atom
pairs with additive corrections

xTþλ
i ¼ xTþλ�1

i þ vTþλ
i ð18Þ

vTþλ
i ¼ mlpatom

X

j≠i

hlij

 !

ð19Þ

as well as constructs pair-wise features:

pλij ¼ p
λ;pair
ij þ

X

m≠i

p
λ;env
mj þ

X

n≠j

p
λ;env
in ð20Þ

p
λ;pair
ij ¼ mlppairðh

λ
ijÞ ð21Þ

p
λ;env
ij ¼ mlpenvðh

λ
ijÞ ð22Þ

where mlppair models the direct interactions of atoms i, j while mlpenv models the
interactions of the pair with neighbouring atoms. As described above, the atom pair
coefficients are used to form a basis set

ω
λ
ij ¼

p0ij � 1D for λ ¼ 0

pλij �
rij

rijk k

� �

W for λ> 0

8

>

<

>

:

where λ corresponds to the angular momentum channel and W∈R3×D are
learnable parameters to project along D directions. For all results in this work, we
used D= 4. For interactions between s-orbitals, we consider the special case λ= 0
where the features along all directions are equal due to rotational invariance. At
this point, ω0

ij is rotationally invariant and ω
λ>0
ij is covariant. On this basis, we

obtain features with higher angular momenta using:

Ω
l
ij ¼

Y

l

λ¼0

ω
λ
ij with 0 � l � 2L;

where features Ωl
ij possess angular momentum l. The SchNOrb representations of

atom pairs embedded in their chemical environment, that were constructed from
the previously constructed SchNet atom-wise features, will serve in a next step to
predict the corresponding blocks of the ground-state Hamiltonian.

Finally, we assemble the Hamiltonian and overlap matrices to be predicted.
Each atom pair block is predicted from the corresponding features Ωl

ij :

~Hij ¼

Hoff Ω
l
ij

h i

0�l�2Lþ1

� �

for i≠ j

Hon Ω
l
im

	 


m≠i
0�l�2Lþ1

� �

for i ¼ j

8

>

>

>

<

>

>

>

:

;

where we restrict the network to linear layers in order to conserve the angular
momenta:

Hoff ð�Þ ¼
X

l

linearloff Ω
l
ij

� �

½:nao;i; :nao;j�

Honð�Þ ¼
X

j;l

linearlon Ω
l
ij

� �

½:nao;i; :nao;i�

with linearoff ; linearon : R
2Lþ1 ´D ! R

nao;max ´nao;max , i.e., mapping to the maximal
number of atomic orbitals in the data. Then, a mask is applied to the matrix block
to yield only ~Hij 2 R

nao;i ´ nao;j . Finally, we symmetrise the prediced Hamiltonian:

H ¼
1
2
ð~Hþ ~H

⊺

Þ ð23Þ

The overlap matrix is obtained similarly with blocks

Soff �ð Þ ¼ linearS;onðΩijÞ½:nao;i; :nao;j�

Sii ¼ SZi
:

The prediction of the total energy is obtained analogously to SchNet as a sum over
atom-wise energy contributions:

E ¼
X

i

mlpEðxiÞ:

Data augmentation. While SchNOrb constructs features Ωl
ij and Ω

l
ii with angular

momenta such that the Hamiltonian matrix can be represented as a linear com-
bination of those, it does not encode the full rotational symmetry a priori. How-
ever, this can be learned by SchNOrb assuming the training data reflects enough
rotations of a molecule. To save computing power, we reduce the amount of
reference calculations by randomly rotating configurations before each training
epoch using Wigner D rotation matrices53. Given a randomly sampled rotor R, the
applied transformations are

~ri ¼ Dð1ÞðRÞri ð24Þ

~Fi ¼ Dð1ÞðRÞFi ð25Þ

~Hμν ¼ DðlμÞðRÞHμνD
ðl
ν
ÞðRÞ ð26Þ

~Sμν ¼ DðlμÞðRÞSμνD
ðl
ν
ÞðRÞ ð27Þ

for atom positions ri, atomic forces Fi, Hamiltonian matrix H, and overlap S.

Neural network training. For the training, we used a combined loss to train on
energies E, atomic forces F, Hamiltonian H and overlap matrices S simultaneously:

‘ ð~H; ~S; ~EÞ; ðH; S; E; FÞ
	 


¼ H� ~H








2

F
þ S� ~S








2

F
þ ρ E � ~E








2

þ
1� ρ

natoms

X

natoms

i¼0

Fi � �
∂~E

∂ri

� �















2

ð28Þ

where the variables marked with a tilde refer to the corresponding predictions and
ρ determines the trade-off between total energies and forces. The neural networks
were trained with stochastic gradient descent using the ADAM optimiser54. We
reduced the learning rate using a decay factor of 0.8 after tpatience epochs without
improvement of the validation loss. The training is stopped at lr ≤ 5 × 10−6. The
mini-batch sizes, patience and data set sizes are listed in Supplementary Table 1.
Afterwards, the model with lowest validation error is selected for testing.

Data availability
All datasets used in this work have been made available on http://www.quantum-
machine.org/datasets.

Code availability
All code developed in this work will be made available upon request.
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