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Abstract 9 

1. Social network analysis has achieved remarkable popularity in disease ecology, and is 10 

sometimes carried out without investigating spatial heterogeneity. Many investigations into 11 

sociality and disease may nevertheless be subject to cryptic spatial variation, so ignoring 12 

spatial processes can limit inference regarding disease dynamics. 13 

2. Disease analyses can gain breadth, power, and reliability from incorporating both spatial and 14 

social behavioural data. However, the tools for collecting and analysing these data 15 

simultaneously can be complex and unintuitive, and it is often unclear when spatial variation 16 

must be accounted for. These difficulties contribute to the scarcity of simultaneous spatial-17 

social network analyses in disease ecology thus far. 18 

3. Here, we detail scenarios in disease ecology that benefit from spatial-social analysis. We 19 

describe procedures for simultaneous collection of both spatial and social data, and we 20 

outline statistical approaches that can control for and estimate spatial-social covariance in 21 

disease ecology analyses. 22 

4. We hope disease researchers will expand social network analyses to more often include 23 

spatial components and questions. These measures will increase the scope of such analyses, 24 

allowing more accurate model estimates, better inference of transmission modes, 25 



susceptibility effects and contact scaling patterns, and ultimately more effective disease 26 

interventions. 27 

Introduction 28 

Spatial structuring is ubiquitous, and can influence all conceivable intrinsic and extrinsic factors 29 

in disease ecology. As such, not accounting for space can weaken analyses (Pawley & McArdle, 30 

2018; Pullan, Sturrock, Soares Magalhaes, Clements, & Brooker, 2012; Tobler, 1970). Although 31 

spatial effects can potentially touch any process, social interactions may be particularly 32 

vulnerable (Adams, Faust, & Lovasi, 2012). Consequently, the relationship between ecology-33 

driven spatial structure and fine-scale social interactions has shaped the study of animal societies 34 

for decades. The recognition that social systems are structured by the surrounding environment 35 

rather than comprising random arrangements of independent individuals (Crook, 1964; Crook & 36 

Gartlan, 1966) was followed by foundational theory stating that ecological factors influence the 37 

spatial distribution of individuals within populations, which in turn determines which individuals 38 

interact (Clutton-Brock, 1974; Crook, 1970). Recently, the relationship between spatial 39 

structuring and sociality has been addressed in the context of animal social networks (Krause, 40 

James, Franks, & Croft, 2015; Webber & Vander Wal, 2019); although relatively well-41 

understood in the context of animal behaviour itself, the role of the environment and spatial 42 

behaviour requires addressing more frequently in studies that investigate social correlates of 43 

disease. 44 

 45 

Spatial behaviour can influence social network analyses of wildlife disease through a few 46 

principal mechanisms, which we discuss in Section 3. Fundamentally, it is important to 47 

remember that the social environment exists within space, so whom an individual spatially 48 

overlaps with defines who they can socially interact with (Whitehead, 2008). Consequently, the 49 

spatial and social networks often reinforce, or represent, one another, and their correlation may 50 

require controlling for (3A), or can be leveraged for operational purposes (3B). Additionally, 51 

social network traits can covary with many spatial processes. For example, many pathogens 52 

transmit through the environment, so -in this cases- spatial behaviours define relevant ‘contact 53 

events’ rather than social ones, or social contact events may be spatially structured (3C). 54 



Likewise, host immunity and susceptibility are determined by environmentally varying gradients 55 

in climate and resource availability, which could counteract or artificiate social effects (3D). 56 

Finally, a common question in disease ecology concerns the scaling of contact events with 57 

population density, known as “density dependence”; in section 3E, we pose this question as a 58 

spatial-social question, and outline how spatial-social methods could be used to address the 59 

problem in future analyses.  60 

 61 

Ultimately, we summarise how spatial and social behaviour can influence infection (Figure 1), 62 

and present a conceptual framework of how to analyse them simultaneously (Figure 2). We start 63 

by defining both behaviours (Section 1) and discussing why their unified analysis is relatively 64 

rare in disease ecology (Section 2), and then outlining reasons to analyse both where possible 65 

(Section 3, described above). To help researchers with tackling spatial-social questions, we then 66 

outline methods by which space and sociality can be delineated at the data collection level 67 

(Section 4; Box 1), particularly focussing on methods that involve approximating social 68 

behaviour with parameterisations of spatial behaviours. We then give case studies for 69 

considering spatial-social systems (Box 2), and approaches for simultaneous spatial-social 70 

analysis (Section 5). Specifically, we discuss the distinction between controlling for space or 71 

sociality, and alternative spatial analysis methods that explicitly quantify both spatial and social 72 

processes. Finally, we outline important emerging frontiers and model systems in which the 73 

ongoing study of spatial and social behaviour is increasingly important and revealing (Section 6). 74 

In doing so, we provide an optimistic guide to conducting spatial-social analyses in the future, 75 

encouraging new and exciting investigations in the field of network disease ecology. 76 

1. How to define spatial and social behaviour 77 

We define “spatial behaviour” (or “space”) as any representation of an individual’s context 78 

within its surrounding environment (Pullan et al., 2012). This may comprise point locations in 79 

space (Albery, Becker, Kenyon, Nussey, & Pemberton, 2019), movement trajectories (Mourier, 80 

Lédée, & Jacoby, 2019), space use distributions (Stopher et al., 2012), or a description of 81 

surrounding environmental variables (Saito & Sonoda, 2017). Note that in the latter case, 82 

environmental variables are counted as a spatial measure, but by definition they must be taken 83 



relative to an organism’s spatial context. For example, if a researcher may be interested in the 84 

role of environmental temperature in driving between-individual variation in parasitism, they 85 

must first decide whether to use temperature readings from near each animal’s point locations, or 86 

averaged across each individual’s home range. Meanwhile, we define “social behaviour” broadly 87 

as any social association between individuals (Croft, James, & Krause, 2008). Dyadic social 88 

connections can be inferred from all nature of social associations, ranging from direct 89 

interactions involving physical contacts (e.g. grooming, mating, fighting), to implied associations 90 

such as co-occurrence in fission-fusion social groupings (e.g. pods of marine mammals, foraging 91 

flocks of birds) known as the gambit-of-the-group approach (Franks et al 2010). Crucially, just 92 

as incorporating multiple social behaviours and network metrics can help with hypothesis testing 93 

(Sosa, Sueur, & Puga‐Gonzalez, 2020), simultaneously investigating multiple spatial behaviours 94 

can be extremely helpful in revealing the underlying mechanisms in a wildlife system (Albery, 95 

Morris, et al., 2020). 96 

2. Why is space understudied in disease ecology social 97 

network analyses? 98 

Network disease ecology suffers from a lack of methodological workflows and tools for dealing 99 

with spatial-social confounding, contributing to our lack of understanding of the relative 100 

importance of spatial and social behaviours. Both are hard to investigate, and studies are rarely 101 

designed with both in mind, so assessing them simultaneously can be difficult. Many studies 102 

experience operational limitations in detecting spatial variation: for example, ecoimmunological 103 

sampling regimes often attempt to minimise spatial variation rather than investigating it directly, 104 

rarely use spatial analysis methods, and generally have few spatial replicates (Becker et al., 105 

2020), which may reduce their power to detect spatial variation (Becker et al., 2019). Fitting 106 

spatial models can require specialist knowledge which may contribute to the widespread 107 

impression that space is more difficult to analyse than social connectivity; however, this is no 108 

truer of spatial analysis than it is of social network analysis. Additionally, the field of social 109 

network ecology has historically employed network permutations that analytically control for the 110 

effect of spatial behaviour to ensure that spatial confounding is not responsible for an observed 111 

effect (Farine, 2013). On the contrary, rather than perceiving space simply as something “to 112 



control for”, it is far more productive to treat space as an exciting and useful component of a 113 

system’s biology that is worthy of explicitly quantifying in its own right (Albery et al., 2019; 114 

Pawley & McArdle, 2018). 115 

 116 

Limitations likewise apply to the collection of spatially explicit social data. Because social 117 

behaviour can be hard to observe or infer, some social network analyses use spatiotemporal 118 

proximity to approximate social interactions (Farine, 2015; Gilbertson, White, & Craft, 2020; 119 

Wanelik, 2019). This method is used frequently enough that tools have been developed to 120 

calculate social associations directly from spatiotemporal data (e.g. the spatsoc R package; 121 

Robitaille, Webber, & Vander Wal, 2019). This heuristic may introduce spatial-social 122 

confounding in some systems, and it is not necessarily true that social contacts will correlate 123 

perfectly (or even that well) with space, so using one to approximate the other may or may not be 124 

valid (Castles et al., 2014; Gilbertson et al., 2020; but see Farine, 2015). The definitions for these 125 

behaviours are especially important in disease ecology because the field revolves around 126 

pathogens that are spread by contact events arising from them. For example, if a study of directly 127 

transmitted pathogens assumes that spatial collocations represent social contacts when in fact 128 

they do not, the study may be fundamentally unable to draw accurate conclusions about 129 

transmission (Section 3C). It is therefore vital that spatial and social behaviours be defined 130 

correctly and delineated from each other for disease network analyses to function as intended 131 

(Leu, Sah, Krzyszczyk, Jacoby, & Mann, 2020; Manlove et al., 2018; Richardson & 132 

Gorochowski, 2015; Sih, Spiegel, Godfrey, Leu, & Bull, 2018). 133 

 134 

Encouragingly, there has been considerable recent progress identifying the importance of 135 

separating space and sociality in network studies of animal behaviour (Mourier & Jacoby, 2019; 136 

Silk, Finn, Porter, & Pinter-Wollman, 2018; Webber & Vander Wal, 2018; see Case Studies). 137 

This push is likewise true in disease ecology, as demonstrated by increasing calls for 138 

incorporation of spatial effects in network analyses, particularly where indirectly transmitted 139 

pathogens are concerned (Sih et al., 2018; Silk et al., 2019; White, Forester, & Craft, 2017). 140 

Moreover, there is increasing conceptual and methodological overlap among the fields of 141 

movement ecology, network science, and disease ecology (Dougherty, Seidel, Carlson, Spiegel, 142 

https://www.zotero.org/google-docs/?5mjsls
https://www.zotero.org/google-docs/?5mjsls
https://www.zotero.org/google-docs/?5mjsls


& Getz, 2018; Jacoby & Freeman, 2016). As such, the time is ripe for increased synthesis of 143 

spatial and social network methodology in disease ecology studies where possible.  144 

 145 

  146 

 147 

Figure 1: Principal causal pathways among the environment, spatial behaviour, sociality, and 148 

disease. 1 (blue lines): Environmental variation in climatic factors affects the transmission 149 

efficiency of indirectly transmitted parasites. 2 (pink lines): The environment drives spatial 150 

variation in specific social behaviours such as fighting and mating, driving spatial variation in 151 

the diseases that are spread by these types of social interactions. 3 (purple lines): Landscape 152 

structure and resource distribution determines movement patterns, which themselves determine 153 

the social network. Movement patterns determine exposure to indirectly transmitted parasites. 154 

The social network determines exposure to directly transmitted parasites, as well as determining 155 

susceptibility through changes in resource acquisition and stress. Spatial behaviour and social 156 

behaviour can interact. 4 (red lines): The distribution of resources in the environment affects 157 

allocation to immunity, creating spatial variation in susceptibility to parasites. 158 

3. Benefits of spatial-social network analysis 159 

Incorporating spatial components into social network analyses can provide important insights 160 

into the mechanistic underpinnings of a disease system, as well as potentially offering 161 



operational benefits. Below we consider several of these advantages. Fundamentally, we argue 162 

that spatial-social analysis is important because it is challenging to predict where spatial and 163 

social behaviours interact, and potentially compete, in influencing disease dynamics. Although 164 

spatial-social correlations are common (e.g. Firth & Sheldon, 2016; Mourier & Jacoby, 2019; 165 

O’Brien, Webber, & Vander Wal, 2018), these relationships vary considerably across systems, 166 

and can be context-dependent (e.g. O’Brien et al., 2018). Unfortunately, little consensus is 167 

available on which systems and environments are most likely to exhibit spatial-social 168 

correlations due to the rarity of cross-system synthesis. Although recent studies have integrated 169 

social networks across a range of animals to make strong comparative conclusions (Sah, Mann, 170 

& Bansal, 2018), spatial-social relationships have evaded the same scrutiny. Additionally, fine-171 

scale spatial analyses of wildlife disease are themselves rare and similarly lacking in cross-172 

system comparisons. As such, it is difficult to predict a priori which systems and sampling 173 

regimes will exhibit the most spatial-social confounding. This uncertainty alone is a strong 174 

reason to incorporate spatial analyses into social network studies of wildlife disease.  175 

 176 

There likely exist certain systems for which spatial-social analysis is unnecessary, and social 177 

network analysis alone is sufficient. However, although it is tempting, we opt not to speculate on 178 

these systems for the following reasons: first, the lack of cross-system syntheses means there is 179 

currently little empirical evidence which would allow actual assessment, so most such 180 

recommendations would be mostly conjecture. Second, the numerous advantages cover so many 181 

factors that there are few systems that would not benefit in at least one way by conducting a 182 

spatial-social analysis (even if this demonstrated the relative unimportance of space). In the 183 

future, greater application of spatial (or spatial-social) analyses of wildlife disease, and 184 

increasing application of simulations aimed to answer these questions (e.g. Gilbertson et al., 185 

2020), may help to clarify these issues for a wider range of studies, providing more prescriptive 186 

guidelines. 187 

A. Controlling for habitat selection and spatial-social feedbacks 188 

The landscape defines the distribution of resources and potential movement paths, which shapes 189 

the structure of the social network through habitat selection (Figure 1; (Albery, Morris, et al., 190 

2020; He, Maldonado-chaparro, & Farine, 2019; Webber & Vander Wal, 2018). Reciprocally, 191 



the social environment forms an important component of survival, competition, and dispersal in 192 

a heterogeneous environment (Armansin et al., 2019). As such, at fine scales, animals may make 193 

space use decisions based on their associates’, weighed against environmental cues (Firth & 194 

Sheldon, 2016; Peignier et al., 2019). Given this strong mutual causality, it can be difficult to say 195 

whether any behaviour represents solely spatial or social processes.  196 

 197 

Empirical attempts to delineate spatial and social behaviour are complicated when considering 198 

interactions with disease. Both spatial and social behaviour determine an individual’s exposure 199 

and susceptibility to infection, and yet behaviour, being highly plastic, can also change in 200 

response to infection (Ezenwa, Archie, et al., 2016). For example, sickness behaviours often 201 

induce sluggishness and a reduction in social activity (Lopes, 2014; Lopes, Block, & König, 202 

2016). It is often mechanistically unclear whether this reduced sociality is an active process, 203 

serving e.g. to avoid infecting close relatives or conspecifics, or whether energy-saving 204 

reductions in movement merely result in a reduction in sociality by extension (Lopes, Block, 205 

Pontiggia, Lindholm, & König, 2018). In addition, parasites commonly affect animals’ 206 

movement decisions, e.g. through parasite avoidance behaviours, so the spatial distribution of 207 

diseases in the environment can determine animals’ distributions through a “landscape of 208 

disgust” in the same way that predators define a “landscape of fear” (Albery, Newman, et al., 209 

2020; Weinstein, Buck, & Young, 2018). This phenomenon could produce complex covarying 210 

patterns: for example, if habitat selection and life history traits covary with immunity and 211 

parasite avoidance (Hutchings, Judge, Gordon, Athanasiadou, & Kyriazakis, 2006), the emergent 212 

social network could demonstrate artefactual clustering in susceptibility. 213 

 214 

Nevertheless, extricating the roles of spatial and social behaviour in driving disease is not a futile 215 

endeavour. Behaviours can be classified on a continuum from “more spatial” (e.g. map locations) 216 

to “more social” (e.g. partner choice), and examining and comparing their influence on parasite 217 

burden will similarly reveal whether the drivers of parasitism are more likely to be spatial or 218 

social. Although some study systems may be poorly suited to spatial-social analysis due to 219 

observation difficulties, in most cases fitting both spatial and social behaviours in a model and 220 

comparing their effects will likely strengthen inference beyond study designs incorporating only 221 

one of the two (see Analysis section). 222 



B. Simplifying measurement approaches 223 

In some circumstances, well-understood spatial-social confounding may be leveraged for 224 

operational benefits: for example, streamlining data collection and disease surveillance in wild 225 

animal populations with sparse data. Collecting copious GPS data is easier than ever (Kays, 226 

Crofoot, Jetz, & Wikelski, 2015) and can be carried out remotely, while social phenomena can 227 

be much harder to observe directly (see Box 1). Where spatial data are easier to collect than 228 

social interactions, verifying that the two correlate may allow the use of spatial data to 229 

approximate social contacts, or social networks and contact events are commonly approximated 230 

using parameterised movement data (see below, Box 2 and Section 4). For example, a study of 231 

African domestic dog populations used GPS tracking and proximity loggers to demonstrate that 232 

individual home range size correlated well with network centrality, which in turn influenced 233 

individual propensity to spark simulated rabies epidemics (Wilson-Aggarwal et al., 2019). 234 

Similar logic could apply to any system in which ranging behaviour covaries predictably with 235 

sociality; however, strong spatial-social correlations are not ubiquitous. Given this uncertainty, 236 

we stress that this approach should only be taken cautiously and when accompanied by rigorous 237 

validation procedures. In any case, empirical measures of sociality and spatial behaviour will 238 

often be imperfect proxies for the interactions that researchers hope to quantify (Farine, 2015). 239 

Attempting to incorporate both space and sociality in concert may buffer for this necessity. 240 

C. Identifying pathogen transmission mode 241 

While recent work has considered how the spread of information, or behaviours, may depend on 242 

the fine-scale transmission mode between individuals (Firth 2020 TREE), similar considerations 243 

also apply to parasite transmission. Indeed, unknown parasite transmission mode is a common 244 

reason for conducting spatial-social analyses. Contact events can arise from a variety of 245 

spatial/social processes, so the relative importance of spatial and social behaviour depends 246 

heavily on the pathogen’s transmission mode. Therefore, where transmission mechanisms are 247 

unknown, incorporating both spatial and social behaviour helps identify the pathogen’s 248 

transmission mode, because the behaviour that most closely approximates contact events will 249 

best describe variation in infection (Craft, 2015; White et al., 2017). Intuitively, environmental 250 

variables will only weakly influence individuals’ exposure to directly transmitted pathogens, and 251 



transmission probability will most accurately be represented by social proximity. As such, if 252 

space is found to be unimportant relative to sociality, researchers can conclude that direct 253 

transmission is likely. For example, in sleepy lizards (Tiliqua rugosa), social proximity was a 254 

better predictor of Salmonella transmission than was spatial proximity, indicating a relatively 255 

direct mechanism (Bull, Godfrey, & Gordon, 2012). Conversely, simultaneous use of proximity 256 

loggers and GPS tracking revealed that badgers and cattle rarely contact each other directly 257 

(despite substantial range overlap), indicating that bovine tuberculosis (Mycobacterium bovis) is 258 

likely transmitted through the environment (Woodroffe, Donnelly, Ham, Jackson, & Moyes, 259 

2016). An important distinction should be made between pathogens that are transmitted through 260 

specific social interactions (e.g., sexually transmitted infections) and those that merely require 261 

spatiotemporal coincidence (e.g., aerosol-transmitted viruses). It is possible that both spatial and 262 

social behaviours will have detectable, non-interchangeable effects on transmission patterns for 263 

the latter group of pathogens, so that both behaviours are needed to gain a full picture of disease 264 

dynamics.  265 

 266 

Ignoring transmission mode when examining correlates of spatial/social behaviour can produce a 267 

confusing picture of a system’s ecology. For example, a study in Japanese macaques (Macaca 268 

fuscata) found that centrality in the grooming network was positively correlated with infection 269 

with indirectly transmitted nematodes, which seems mechanistically unlikely (MacIntosh et al., 270 

2012). It is possible that the nematodes’ transmission mode is poorly understood, exhibiting a 271 

more direct, social component, but it is also possible that the grooming network was spatially 272 

structured, so that social network centrality reflected environmental processes rather than 273 

sociality itself (MacIntosh et al., 2012). Importantly, because the environment may determine 274 

aspects of individual behaviour decisions, some geographic areas may be hotspots for contact 275 

events (Albery, Morris, et al., 2020) or for certain risky behaviours, even where the pathogen is 276 

directly transmitted. For example, if certain areas lend themselves to fighting or mating grounds 277 

for Tasmanian devils (Sarcophilus harrisii), this would create enduring spatial variation in the 278 

prevalence of Tasmanian devil facial tumour disease despite strictly direct transmission (Figure 279 

1; Hamede, Bashford, McCallum, & Jones, 2009). Therefore, known transmission mode is not 280 

sufficient to predict whether or not space is worth investigating in a given host-parasite system, 281 

and researchers will benefit from measuring both. 282 



D. Investigating susceptibility effects 283 

Social network analyses commonly focus on the role of social contact events in driving parasite 284 

exposure. However, it is important to bear in mind that parasite burden is also a function of 285 

susceptibility, that the spatial and social environments can impact host immunity directly, and 286 

that these effects may not align (Albery et al., 2019; Becker et al., 2018, 2019). As such, space 287 

and sociality should be quantified simultaneously if there is any expectation that they will affect 288 

both susceptibility and exposure. Resource supplementation provides an ideal example: 289 

increased food should provide more resources for allocation to immunity, reducing 290 

susceptibility, yet supplementation commonly leads to aggregation on feeding sites, increasing 291 

exposure rates as a result (Becker, Streicker, & Altizer, 2015). Consequently, supplementation 292 

could either increase or decrease parasitism, or neither, depending on the balance of these 293 

processes. Interestingly, the social environment can also alter susceptibility through stress-294 

induced immunosuppression, potentially counteracting environmental effects on susceptibility or 295 

transmission (Ezenwa, Ghai, McKay, & Williams, 2016; Hawley, Etienne, Ezenwa, & Jolles, 296 

2011). Examining both spatial and social behaviour simultaneously may help to extricate 297 

sociality-driven changes in susceptibility when examining environmentally transmitted 298 

pathogens. One of the foremost advantages of measuring immunity in conjunction with 299 

parasitism lies in distinguishing susceptibility- and exposure-driven processes (Bradley & 300 

Jackson, 2008). We suggest that studying immunity alongside space, sociality, and parasitism 301 

will similarly bolster the strength of inference in determining transmission mechanisms while 302 

accounting for susceptibility effects in network disease ecology. 303 

E. Quantifying density dependence 304 

Epidemiological models often make fundamental assumptions about the scaling between 305 

population density, contact events, and disease (i.e., “density-dependence”), and the validity of 306 

these assumptions can profoundly alter models’ ability to predict disease dynamics (Antonovics, 307 

2017; Hopkins, Fleming-Davies, Belden, & Wojdak, 2020). This question is fundamentally a 308 

spatial-social one: how do interactions increase when you add more individuals to the same 309 

space? For example, adding more individuals in a given space will generally result in an in-step 310 

increase in aerosol inhalation, producing increased contact events for droplet-transmitted 311 



pathogens; however, such increased host density will not necessarily result in a proportional 312 

increase in copulation events, so sexually transmitted infections (STI’s) are unlikely to scale in 313 

this way. As such, STI’s are generally considered “frequency-dependent”. In reality, all 314 

pathogens exist somewhere on a continuum between the two, and identifying where they are 315 

placed is an important research priority (Hopkins et al., 2020).  316 

 317 

Despite its relative rarity in disease ecology, spatial-social analysis could be incredibly revealing 318 

when it comes to empirically identifying pathogens’ density dependence and the scaling of 319 

contact events. In the absence of disease data, spatial-social analyses could reveal whether 320 

increased population density results in a greater frequency of interactions or associations, and 321 

this information could be incorporated into epidemiological models. Alternatively, researchers 322 

could incorporate both spatial population density and social network metrics at the individual 323 

level to identify which best describes disease burden, informing how density and interaction 324 

frequency compare (e.g. (Albery, Newman, et al., 2020). Unfortunately, as yet most 325 

investigations into density-dependence are conducted post hoc, and there is no framework for a 326 

priori prediction of density dynamics in novel host-pathogen systems. This fact may hamstring 327 

efforts to develop epidemiological models and interventions, particularly in the case of novel 328 

pathogen emergence, and increasing use of spatial-social approaches could address this gap. 329 



 330 

 331 

Figure 2: Proposed workflow for collecting, encoding, and analysing spatial data alongside social 332 

network data. Section 1: Data collection. Purple, blue, and red arrows represent study design options A, 333 

B, and C respectively; see “Collecting spatial behaviour with social data”. Section 2: Encoding methods. 334 

Ways to encode spatial behaviour, as either a node-level or dyadic trait. These include: Centroids (point 335 

locations) taken from N>=1 observations of individuals. Individual territories have been assigned using 336 

Voronoi tessellation (black lines). Point locations can also be used to create home ranges or distance 337 



matrices, or fitted as an autocorrelation function in a statistical model examining node-level traits. Home 338 

ranges (grey circles) can be calculated from multiple sightings or derived from movement patterns or 339 

kernels, and then coded as a square similarity matrix of range overlaps, to be used in edge-level analyses 340 

or as variance components in node-level animal models. Pairwise distances (lines) can be taken between 341 

point locations and coded as a square similarity matrix, to be used similarly to home range overlap. Line 342 

thickness and opacity are inversely proportional to distance. Section 3: Analysis methods. Statistical 343 

approaches to analyse spatial-social disease processes and some example questions that each can answer. 344 

GLM = Generalised Linear Model; GAM = Generalised Additive Model; Animal Models = a model with 345 

a dyadic variance component included; ERGMs = Exponential Randomised Graph Models; MRQAP = 346 

Multiple Regression Quadratic Assignment Procedure; GDM = Generalised Dissimilarity Models; MM 347 

random effects = Multi-Membership random effects. 348 

 349 

 350 

Box 1: Methods for collecting spatial and social data simultaneously 351 

Spatial data can take Lagrangian or Euclidean forms, each representing a different way of 352 

perceiving movement across the landscape (Nathan et al., 2008; Smouse et al., 2010). 353 

Lagrangian data collection (GPS, censusing, and motion tracking) involves the researcher 354 

conceptually moving through space, following individuals and summarising their movements. 355 

Euclidean data collection (trapping regimes and proximity loggers) uses static sampling locations 356 

which collect data on animals moving around them. Lagrangian data are richer and offer greater 357 

opportunities for parameterisation; however, Euclidean data collection locations are generally 358 

placed by the researcher, so they can be economically distributed in space to cover large areas 359 

with minimal effort and/or to accompany visits to locations of biological relevance or 360 

experimental manipulation sites (e.g. Firth & Sheldon, 2015). The optimal choice of methods 361 

will depend on operational constraints imposed by the study system of interest, e.g. with regards 362 

to the size of the animal, the area over which it ranges, and the pathogen and biological process 363 

of interest. Here, we outline several methods of spatial-social data collection, including a brief 364 

summary of each approach, how they can be used to quantify spatial behaviour and social 365 

behaviour, and provide selected illustrative examples from the literature. 366 

 367 

GPS: animals are marked and tracked over relatively large distances using satellites.  368 



Spatial: summarise individuals’ movements across the landscape.  369 

Social: parameterise activity patterns to identify groups or interactions. 370 

Examples: cattle (Woodroffe et al., 2016); cheetahs (Broekhuis, Madsen, Keiwua, & 371 

Macdonald, 2019); feral dogs (Wilson-Aggarwal et al., 2019). 372 

 373 

Motion tracking cameras: when the study organism is in a contained space, a large proportion 374 

of the population is observed using motion-tracking technology.  375 

Spatial/Social: same as GPS, above. 376 

Examples: carpenter ants (Modlmeier et al., 2019); Lasius niger ants (Stroeymeyt et al., 2018). 377 

 378 

Census routes: researchers follow a predetermined or random route around a study area and 379 

record individual animals’ behaviour.  380 

Spatial: record locations of individuals or groups.  381 

Social: record group memberships or interactions between individuals. 382 

Examples: dolphins (Frère et al., 2010; Lusseau et al., 2006); red deer (Stopher et al., 2012). 383 

 384 

Spatial proximity loggers: loggers are placed on individuals and in specific environmental 385 

locations to identify contact events. 386 

Spatial: use individuals’ environmental contact locations to create models of spatial behaviour. 387 

Social: use individuals’ contact events to create proximity/interaction/social networks. 388 

Examples: Mastomys rodents (Berkvens, Olivares, Mercelis, Kirkpatrick, & Weyn, 2019); great 389 

tits (Firth & Sheldon, 2016); European badgers (Woodroffe et al., 2016); reef sharks (Jacoby, 390 

Papastamatiou, & Freeman, 2016).  391 

 392 

Trapping locations: animals are captured for sampling or camera traps used to identify 393 

individuals.  394 

Spatial: record individuals’ trapping locations, summarising across repeated trapping events. 395 

Social: record individuals trapped in the same group or within a given spatiotemporal window. 396 

Examples: vole trapping (Davis et al., 2015; Wanelik, 2019); hyena camera traps (Stratford, 397 

Stratford, & Périquet, 2019). 398 

 399 

https://www.zotero.org/google-docs/?4r5xcf
https://www.zotero.org/google-docs/?rRqi4r
https://www.zotero.org/google-docs/?jag73j
https://www.zotero.org/google-docs/?S8VB51
https://www.zotero.org/google-docs/?4dXM1d


Box 2: Frameworks for delineating and analysing spatial and social 400 

behaviour 401 

Given the well-understood nature of spatial-social behaviours, there are a great many studies that 402 

examine their covariance, and several frameworks have been developed to help untangling and 403 

analysing them. Here, we describe some case studies that provide such frameworks to guide 404 

researchers carrying out spatial-social analyses of disease processes. 405 

 406 

A tripartite network scaffolding for spatiotemporal contact patterns 407 

Manlove et al. (2018) developed a tripartite network which allows characterisation of contact 408 

events using three classes of node: space, time, and individuals. Using multiple real-world 409 

examples, they demonstrated that this network can be collapsed to form spatial and social 410 

networks that are commonly employed in disease ecology. Moreover, the tripartite network was 411 

valid for multiple different social systems. Although general and highly flexible, the approach 412 

necessitates discretising movement data into spatial nodes, which risks losing information, and 413 

the derived contacts are most applicable for directly transmitted parasites (Manlove et al., 2018). 414 

An important expansion of the framework will be to incorporate spatiotemporal variation and lag 415 

times (Richardson & Gorochowski, 2015; see Timescale Section). 416 

 417 

Connecting habitat selection and socio-spatial behaviour with eco-evolutionary 418 

consequences. 419 

Webber & Vander Wal (2018) outline a comprehensive eco-evolutionary framework for spatial-420 

social behavioural integration. Specifically, they link individual-level habitat selection 421 

behaviours with spatial movements, and then outline how this spatial behaviour results in the 422 

development of social networks. They discuss how the resulting framework can be used to 423 

examine fitness consequences and ecological dynamics, using animal models, among other 424 

approaches (see analysis section). Their incorporation of spatial-social behaviours into 425 

quantitative genetic models offers a useful framework for identifying individual-level fitness 426 

consequences (and their genetic determinants) while accounting for environmental confounders 427 

and density dependence. Their paper offers an interesting scaffold for the investigation of 428 



divergent effects of density-driven susceptibility and exposure effects, and the implied costs and 429 

benefits of sociality for disease (Ezenwa, Ghai, et al., 2016). 430 

 431 

Networks of networks in reef shark movement ecology 432 

Mourier & Jacoby (2019) used reef sharks as a case study to construct a movement ecology-433 

based framework for spatial-social analysis. In this approach, individuals’ movement trajectories 434 

are represented as networks, where each node of the network is a Euclidean sampling location, 435 

and edges are represented by the individual’s movements between these locations. The adjacency 436 

matrices from these networks are then nested in a super-adjacency matrix for further analysis, 437 

forming a “network of networks”. This framework benefits from the fine data resolution it 438 

allows, avoiding collapsing individuals’ movements into summary statistics such as point 439 

locations or space use distributions (Figure 2, Section 2). The authors used this approach to 440 

demonstrate high covariance between sharks’ spatial and social centrality (Mourier et al., 2019). 441 

Like the tripartite model above, this framework is designed for Euclidean sampling locations 442 

fixed in space, and has not yet been adapted for Lagrangian data; as such, Lagrangian systems 443 

may need to (artificially) discretise their spatial data to take a similar approach. 444 

 445 

Competing multiple spatial and social metrics to deconstruct density dependence in 446 

a group-living carnivore 447 

(Albery, Newman, et al., 2020) examined parasite burdens in European badgers (Meles meles) to 448 

investigate socio-spatial drivers. They fitted a series of models with either social metrics (group 449 

size and co-trapping networks) or spatial population density, revealing that areas with high 450 

population density unexpectedly had lower parasite burdens. Because purely social metrics 451 

meanwhile had no detectable effects, cooperative grooming was unlikely to be the cause of the 452 

negative density dependence. A series of subsequent analyses revealed that spatial avoidance of 453 

parasite transmission was most likely responsible.  454 

 455 



4. Collecting spatial behaviour with social data 456 

If spatial-social analysis is to be carried out, researchers must first collect both data types. Three 457 

main study design options can incorporate both spatial and social data collection (Figure 2, 458 

Section 1): A) collect both spatial and social data separately, and encode them as different 459 

networks; B) collect only spatial data, using spatiotemporal parameters to estimate contact 460 

events; or C) collect only spatial data, using these to approximate social contacts without further 461 

parameterising – e.g., where spatial proximity is expected to directly represent social proximity. 462 

Although the latter is occasionally the only available option for quantifying social behaviour in a 463 

given system, we discourage this method for the reasons outlined above. 464 

What spatial measures are available? 465 

Data collection methods for social networks can take many forms, and have been well-reviewed 466 

elsewhere (Craft, 2015; Krause et al., 2015; White et al., 2017). Many such methods do not 467 

necessarily involve an explicit spatial component, yet they can often be extended to do so with 468 

little difficulty. In Box 1, we provide a non-exhaustive list of methods that can be used to collect 469 

both spatial and social behaviours simultaneously. Once data have been collected, there are 470 

several possible options for encoding spatial behaviour for use in network analyses (Figure 2, 471 

Section 2). It is important to consider whether a given spatial measure represents location effects 472 

(i.e., where an individual is on a variable landscape) or space sharing effects (i.e., the similarity 473 

or proportional overlap of two individuals’ spatial environments; Albery, Morris, et al., 2020; 474 

Pullan et al., 2012). The two may correlate - e.g., individuals living closer together will share 475 

more of their home ranges - but these different types of spatial behaviour can operate differently, 476 

potentially offering different insights, and may have additive benefits for inference when 477 

considered simultaneously (Albery, Morris, et al., 2020). The relative advantages of the spatial 478 

measures used may depend on the system itself: for example, home range overlap will be 479 

uninformative for parasitism when species are territorial or at such low density that their home 480 

ranges rarely overlap. Pairwise distances and home range overlap matrices can be conceptualised 481 

as a spatial network, if this helps with statistical analysis (Figure 2, Section 2; see analysis 482 

section; Mourier et al., 2019).  483 



Pairing and delineating spatial and social behaviour  484 

To carry out spatial-social analysis, researchers will need to distinguish social behaviours from 485 

spatial activity/occurrence either methodologically or statistically (Figure 2; Box 1). 486 

Methodologically distinguishing the two involves either combining two data collection methods, 487 

each designed to pick up different behaviours, or using multiple types of observations collected 488 

by researchers (Figure 2, option A). For example, GPS can provide good wide-resolution spatial 489 

data while proximity loggers are used simultaneously to build networks of close-range 490 

interactions among individuals (Ossi et al., 2016). Alternatively, researchers conducting 491 

behavioural censuses can collect social data by identifying associating or interacting individuals, 492 

while also recording spatial locations. The associations/interactions produce a social association 493 

network, while the point locations or derived home range estimates provide spatial information. 494 

 495 

Distinguishing spatial and social behaviours statistically (post-data collection) involves 496 

parameterising high-resolution (Lagrangian) behavioural data (Figure 2, option B). For example, 497 

GPS-tracking wide-ranging territorial species such as cheetahs (Acinonyx jubatus) provides 498 

movement data from which contact events can be reasonably inferred purely because individuals 499 

rarely come into close proximity of each other (Broekhuis et al., 2019). Meanwhile, the home 500 

ranges of the individuals can be independently derived from GPS patterns, and controlled for 501 

separately (Seidel, Dougherty, Carlson, & Getz, 2018). Alternatively, study organisms such as 502 

ants can be recorded to track the movements of each individual, with contact events identified 503 

within this spatial behaviour (e.g. Stroeymeyt et al., 2018). Both of these methods involve 504 

selecting defensible criteria for contact events, based on stereotyped behaviours, approach 505 

patterns/trajectories (Schlägel et al., 2019), or spatiotemporal proximity (Robitaille et al., 2019). 506 

Sophisticated algorithms such as Gaussian mixture models can be used to infer grouping events 507 

(Firth et al., 2017; Psorakis et al., 2015) or interactions (Jacoby et al., 2016), avoiding the 508 

necessity of defining arbitrary criteria. Encouragingly, even complex, asymmetrical interactions 509 

can be identified using only parameterised movement patterns (Jacoby et al., 2016; Schlägel et 510 

al., 2019), potentially helping disease ecology researchers to infer specific contact events 511 

contributing to transmission.  512 

 513 



Many studies have examined spatial-social behaviours and their covariance without necessarily 514 

tying them to disease ecology; this includes study systems such as great tits (Firth & Sheldon, 515 

2016); elk (O’Brien et al., 2018); sharks (Mourier et al., 2019); and many more. Because of the 516 

longstanding interest in their simultaneous analysis, several helpful frameworks have been 517 

developed; we describe some in Box 2. 518 

5. Spatial-social analysis methods in disease ecology 519 

Having measured both spatial and social behaviour, statistical approaches must incorporate both 520 

data types to compare their effects and/or to ensure they are accounted for when investigating 521 

disease dynamics. Controlling for space is a long-standing consideration in ecology (Tobler, 522 

1970), so there is no shortage of methods for dealing with spatial structuring. The challenge, 523 

then, is incorporating these data into the node-and-edge structure of social network data 524 

(Manlove et al., 2018; Mourier et al., 2019; Silk, Croft, Delahay, Hodgson, Boots, et al., 2017), 525 

or vice versa (Andris, 2016; Mourier et al., 2019). Modelling approaches should take two main 526 

forms: investigating the relationship between space and social network structure, and 527 

investigating the extent to which space and/or sociality explains variation in disease (or vice 528 

versa). These analyses may take several formats: network-level, dyadic, or node-level (Figure 2, 529 

Section 3). The list of network methods we provide is by no means exhaustive, but represents an 530 

indicative selection of methods that can be used for spatial-social analysis (Silk, Croft, Delahay, 531 

Hodgson, Boots, et al., 2017). For each method, we reference packages or tutorials that can help 532 

to carry out the analyses; however, these examples are similarly non-comprehensive, and 533 

researchers may seek out and use alternative software in many cases. 534 

Considering spatial confounding with network permutations 535 

In network ecology, spatial structuring is commonly controlled for by permuting the observed 536 

data in a way that maintains the spatial activity of individuals but randomises their social 537 

behaviour. These permutations can either be done at the level of the datastream (e.g. randomly 538 

swapping individuals’ memberships within social groups, but only allowing swaps within the 539 

same locations; Farine et al., 2015) or at the network-level (e.g. randomly re-assigning the social 540 

network positions of individuals observed in the same place as one another; Firth & Sheldon, 541 



2016). Following the creation of the null networks, any given statistic of interest can then be 542 

calculated from them, and the distribution of this statistic expected under spatial structure alone 543 

can be generated (Whitehead, 2008). If the same statistic in the observed social network is 544 

statistically different from this value, it demonstrates a significant effect above any spatial 545 

structuring. This methodology has proven useful for differentiating spatial and social processes, 546 

notably in great tits, where individuals’ social associations during winter foraging determine 547 

subsequent spatial decisions during breeding (Firth & Sheldon, 2016), even more so than 548 

expected given winter ranges. Such null network models can be constructed using e.g. the 549 

`asnipe` package (Farine, 2013). In a similar sense, “spatially embedded” network models can be 550 

used to investigate whether spatial effects can explain social structuring (Daraganova et al., 551 

2012), or spatial measures can be used in concert with contact patterns to derive spatially 552 

controlled dyadic traits (Davis et al., 2015), e.g. using the residuals of correlations between 553 

spatial and social measures (Whitehead & James, 2015).  554 

 555 

Just as ‘null social networks’ can be created through permuting social behaviour, researchers can 556 

create null spatial models (Figure 2) by permuting individuals’ spatial activity within the 557 

observed dataset while keeping other elements constant. Such methods may aid in comparing the 558 

emergent social network to the observed data to investigate whether individuals are actively 559 

interacting with (or avoiding) each other, potentially providing insights for disease (Perony, 560 

Tessone, König, & Schweitzer, 2012; Richardson & Gorochowski, 2015; Spiegel, Leu, Sih, & 561 

Bull, 2016; Woodroffe et al., 2016). 562 

 563 

Similarly, permutation can be carried out at any level of the data processing to allow specific null 564 

hypothesis testing, whereby particular aspects of the data are controlled for while other aspects 565 

are allowed to be randomised. For instance, a permutation may swap the observations within the 566 

raw data, or the edges between the nodes in the derived network, or the nodes themselves 567 

(Whitehead 2008). In this way, each test comes with its own null hypothesis, and conclusions 568 

should be drawn in relation to this hypothesis. For instance, previous studies have noted that 569 

permuting the node-level characteristics may be more suited for examining null hypotheses 570 

surrounding specific behaviours (Firth et al. 2018) as permuting the raw data under standard 571 

datastream permutations only allows for assessing null hypotheses which assume that many 572 



aspects of sociality (such as individual variation in social propensity) are random processes (and 573 

thus hold different levels of variation than observed in the real system).    <Josh add some 574 

sentences about the different levels that permutations can occur at (SS says “node, dyadic and 575 

global levels”)>. 576 

 577 

Furthermore, despite the well-understood nature of network permutations and their widespread 578 

use in network ecology, their utility mainly lies in gauging the evidence for the contributions of 579 

spatial or social behaviour, rather than accurately gaining estimates of the contribution of both 580 

behaviours to a given (disease) phenotype in the form of an effect size (Franks et al 2020 MEE). 581 

This is crucial, because (as discussed above) there are many situations in which quantifying 582 

spatial effects and directly comparing them with sociality effects is an important component of a 583 

study design – for example, where a study aims to identify transmission mechanisms, density 584 

dependence, or susceptibility effects (see Section 3). For all such analyses, researchers will likely 585 

benefit from approaches that can provide interpretable effect estimates of some sort for both 586 

spatial and social behaviours. Similarly, there are specific spatial questions that require 587 

alternative spatial analyses: for example, researchers may want to quantify the two-dimensional 588 

landscape of network structure, which requires specialised analytical constructs other than 589 

standard permutations (Albery, Morris, et al., 2020). All approaches we outline below will 590 

provide one or more such pieces of information, allowing greater analytical flexibility, and 591 

facilitating a wider range of spatial-social questions. However, it is also noted that each of them 592 

can be combined with data permutation tests if deemed useful or necessary, where the tests 593 

below can be rerun on different permutations of the observed dataset. Such an approach may, for 594 

instance, be useful for initial tests of assurance in these different kinds of tests (e.g. for 595 

examining whether the reported test statistics differ from those generated using randomised 596 

datasets), for comparing the abilities of different methods, or for drawing general predictions 597 

about the dynamics of particular diseases (and our estimates of them) under different 598 

reconfigurations of the observed social network (e.g. as done for COVID19 in a real-world 599 

human social network - Firth et al. 2020). 600 



Edge-level analyses 601 

Disease analyses commonly aim to investigate how network structure affects pathogen 602 

transmission or, reciprocally, how infections alter the network’s topology (Craft, 2015; Sah et al., 603 

2018; White et al., 2017). In many cases, multiple spatial and social networks may be necessary 604 

to provide clarity on the processes at work: for example, does infection alter the frequency of 605 

contact events directly, or does it alter individuals’ movements in space, with knock-on effects 606 

on the contact network? 607 

Dyadic models 608 

Social, spatial, and disease data commonly comprise pairwise traits between individuals (e.g. 609 

distance matrices or pathogen sharing; see Figure 2, Section 2) many of which resist being coded 610 

as node-level traits. Analyses that investigate relationships among these data are problematic 611 

because similarity matrices are fraught with non-independence: most notably, each row/column 612 

represents a replicated individual. Not correcting for this non-independence will inflate the 613 

significance of the effects detected, potentially biasing inference. There are a number of 614 

specialised ways to deal with non-independence when correlating dyadic data. For example, 615 

Mantel tests and Multiple Regression Quadratic Assignment Procedures (MRQAP) produce 616 

conservative correlation coefficient estimates and p-values through matrix permutations (e.g. 617 

VanderWaal, Atwill, Isbell, & McCowan, 2014), and can be carried out using the `asnipe` 618 

package (Farine, 2013). Generalised Dissimilarity Models (GDMs) are designed specifically to 619 

analyse dyadic data while accounting for non-independence and non-linearities in the data, e.g. 620 

when quantifying the relative importance of spatial and social proximity in driving viral 621 

transmission in lions (Fountain-Jones et al., 2017). The R package `gdm` will implement them 622 

(Manion et al., 2018). Finally, multi-membership random effects can be employed to accurately 623 

quantify the importance of node-level traits relative to pairwise interactions (Rushmore et al., 624 

2013), and can be carried out using the packages `MCMCglmm` (Hadfield, 2010) and `mgcv` 625 

(Wood, 2011). 626 

https://www.zotero.org/google-docs/?nfxNhU


ERGMs and Latent Space models 627 

Representing a more complex variation on the theme of dyadic analyses, Latent Space Models 628 

(LSMs) and Exponential Random Graph Models (ERGMs) are versatile tools that model edge-629 

level traits as response variables, incorporating both edge- and node-level traits as explanatory 630 

variables (Sewell & Chen, 2015; Silk, Croft, Delahay, Hodgson, Weber, et al., 2017; see Silk & 631 

Fisher, 2017 for a guide). These variables could include both dyadic spatial/social proximity 632 

metrics and individual parasitism, allowing testing of spatial/social components of transmission. 633 

Both classes of models can be conceptualised as network-specific adaptations of GLMs, but they 634 

differ in the ways they model network structure, and in the process of model fitting (Silk, Croft, 635 

Delahay, Hodgson, Weber, et al., 2017; Silk & Fisher, 2017). Importantly, ERGMs may be 636 

poorly suited to association-based networks unless sampling biases are absent or well-accounted 637 

for (Silk, Croft, Delahay, Hodgson, Weber, et al., 2017; Silk & Fisher, 2017). LSMs and ERGMs 638 

can be constructed using `latentnet` (Shortreed, Handcock, & Hoff, 2006) and `ergm` (Hunter, 639 

Handcock, Butts, Goodreau, & Morris, 2008), respectively. 640 

Node-level analyses 641 

Network analyses may use node-level traits derived from the social network as response or 642 

explanatory variables in statistical models. Below, we outline some ways to control for spatial 643 

autocorrelation in network analyses of disease. These models can investigate spatial structuring 644 

of social network-derived traits, or estimate spatial processes alongside links between social 645 

behaviour and disease. 646 

Spatial autocorrelation variance components 647 

Hierarchical statistical models (i.e., Generalised Linear Mixed Models, or GLMMs) can control 648 

for spatial autocorrelation with variance components (random effects), using individuals’ point 649 

locations to estimate and control for spatial covariance. The analytical workflow for spatial 650 

autocorrelation models involves adding the autocorrelation term and comparing it to the base 651 

model to investigate whether it changes model fit, accounts for substantial variance, and/or alters 652 

fixed effect estimates. In so doing, the spatial effect will account for spatial variation in social 653 

behaviour whether sociality is a response or explanatory variable, presenting a good hold-all for 654 



spatial-social disease analyses. Autocorrelation functions include row/column effects (Stopher et 655 

al., 2012), wherein individual X and Y coordinates (e.g. latitude/longitude) are fitted as 656 

discretised integer values connected by autoregressive processes. Such formulations can be 657 

computationally intensive, but modern methods such as the stochastic partial differentiation 658 

equation (SPDE) in the Integrated Nested Laplace Approximation (INLA) approach are fast, 659 

flexible, and increasing in popularity (Lindgren, Rue, & Lindstrom, 2011; see 660 

https://ourcodingclub.github.io/2018/12/04/inla.html for a tutorial). Similar flexible spatial 661 

effects can be fitted in Generalised Additive (Mixed) Models (GAMMs), by fitting a tensor 662 

smoothing function to individuals’ continuous X and Y coordinates. See 663 

https://noamross.github.io/gams-in-r-course/ for a tutorial. Available R packages include `mgcv` 664 

(Wood, 2011) and `INLA` (Lindgren & Rue, 2015). 665 

Fitting dyadic associations in node-level analyses 666 

Dyadic variance components offer a useful alternative to point-location-based autocorrelation 667 

functions, particularly because they allow easy mixing of node-level and dyadic traits in familiar 668 

statistical models. Quantitative genetic analyses commonly fit a square matrix of genetic 669 

relatedness in the variance component of an “animal model” to estimate genetic heritability in 670 

the response variable (Kruuk, 2004). Because these models allow the fitting of multiple such 671 

matrices, the models have been supplemented with home range overlap matrices (Stopher et al., 672 

2012). This approach allows extrication of environmental and genetic sources of variation, and 673 

can be extended to use social association matrices (Frere et al., 2010; Thomson, Winney, Salles, 674 

& Pujol, 2018) to differentiate spatial and social contributions to a given phenotype. For 675 

example, do individuals that associate more often have more similar pathogen intensities? Does 676 

this result hold when space sharing is accounted for (Webber & Vander Wal, 2018)? These 677 

models can be carried out in linear modelling packages including `MCMCglmm` (Hadfield, 678 

2010), `ASReml` (Gilmour, Gogel, Cullis, & Thompson, 2009), and `INLA` (Holand, 679 

Steinsland, Martino, & Jensen, 2013). 680 

Considering analytical timescales   681 

The selection of an appropriate timescale is often a necessity of spatial-social analyses, and many 682 

available frameworks for spatial-social analysis struggle with incorporating temporal 683 

https://ourcodingclub.github.io/2018/12/04/inla.html
https://noamross.github.io/gams-in-r-course/


dependence. The choice of analytical timescale can have dramatic effects on a study’s 684 

conclusions: for example, Springer, Kappeler, & Nunn (2017) simulated environmental and 685 

direct transmission of gastrointestinal parasites in a lemur population, finding that dynamic 686 

networks resulted in larger outbreaks than static equivalents. The options for spatial timescale are 687 

numerous: a study could use nest or burrow locations to study distributions of vector-borne 688 

parasites (Wood et al., 2007) or to investigate whether distance and infection correlate (Bull et 689 

al., 2012), or researchers could link chronic parasite infections with an individual’s average 690 

location over a predetermined timescale – e.g., the previous year (Albery et al., 2019). Landscape 691 

structure and climatic conditions can interact with time-dependent habitat selection behaviours, 692 

creating spatiotemporal coincidence of individuals and thereby encouraging social associations. 693 

Within each study system, researchers need to establish which time periods should be used to 694 

summarise an individual’s spatial movements and social interactions, and how these behaviours 695 

apply to pathogens of varying infectious periods and development times.  696 

 697 

Crucially, associations through spatial behaviour can transcend time: that is, individuals can have 698 

meaningfully overlapping home ranges even if they were never alive at the same time (Jacoby & 699 

Freeman, 2016). In contrast, social contact requires spatiotemporal coincidence (Manlove et al., 700 

2018; Whitehead, 2008). Spatial behaviours’ time-independence could be a positive or a 701 

negative, depending on the question to hand, and researchers must consider the timescale of the 702 

pathogen. For example, space use combined with a temporal delay may be the best way to 703 

describe transmission of certain parasites, but not others (Gilbertson et al., 2020; Manlove et al., 704 

2018; Richardson & Gorochowski, 2015). Furthermore, if local environmental variation is stable 705 

over long time periods and influences disease risk, spatial associations may predict disease 706 

similarity even in the absence of any possible social contacts (i.e. across non-temporally-707 

overlapping generations). This knowledge could inform which behaviours could be important 708 

when modelling transmission dynamics – and, conversely, comparing the importance of 709 

(temporally lagged) spatial and social behaviours could illuminate the transmission modes or 710 

epidemiological dynamics of a given pathogen (e.g. Albery, Newman, et al., 2020; Springer et 711 

al., 2017; see Section 3C). 712 

 713 



The repeatability of behaviour (sometimes conceptualised as “personality”) is an important, 714 

rapidly developing area of research (Dingemanse & Dochtermann, 2013; Moirón, Laskowski, & 715 

Niemelä, 2019) which is also often considered for movement behaviours (Jacoby & Freeman, 716 

2016; Webber et al., 2020; Webber & Vander Wal, 2018) or social behaviours (Aplin et al. 2015; 717 

Firth et al. 2017; Krause et al. 2017). If behaviour is highly repeatable across time, e.g. where 718 

individuals inhabit similar home ranges from year to year (Stopher et al., 2012), timescale 719 

problems may be somewhat avoidable. This will also depend on the pathogen of interest: 720 

environmental parasites may have more constant spatial hotspots driven by consistent climatic 721 

factors, so that lifetime home ranges capture substantial variation in parasitism; meanwhile, 722 

directly transmitted parasites may exhibit waves of transmission across the population, such that 723 

spatial hotspots are more ephemeral and a restricted analytical timescale is vital. Fortunately, 724 

many of the analytical frameworks we describe are able to incorporate temporal structures: for 725 

example, INLA can fit fluctuating spatiotemporal fields across years and seasons (Albery et al., 726 

2019), and temporal ERGMs (tERGMs) can handle changing network structures through time 727 

(Silk, Croft, Delahay, Hodgson, Weber, et al., 2017). Thus, even the enduring problem of 728 

timescale selection is solvable when interactions between environment, movement, sociality, and 729 

parasitism are understood and analysed properly. 730 

6. Synthesis and future directions 731 

We have so far provided a guide to carrying out spatial-social network analysis in disease 732 

ecology, from conception through to analysis. In this section, we discuss ideal empirical systems 733 

for addressing spatial-social questions, and we detail potential benefits emerging from the 734 

unification of spatial and social analysis. 735 

Model systems 736 

Meta-analysis is a promising option for large-scale investigation of spatial-social influences in 737 

disease ecology. The number of published social network analyses has increased exponentially in 738 

recent years (Webber & Vander Wal, 2019), and repositories of network data are becoming 739 

available as a result (Sah, Méndez, & Bansal, 2019). These resources can help to compensate for 740 

the lack of cross-system synthesis in this field so far. By analysing contact data alongside spatial 741 



behaviour across the published literature, we can ask broadly informative questions such as: how 742 

many social network analyses include spatial data? How often are space and sociality highly 743 

correlated? How might this impact studies’ findings? Such analyses may identify general 744 

indicators of when and where to be concerned about space for social network analyses (and even 745 

for disease ecology studies in general), as well as potentially testing the criteria laid out in this 746 

review. Furthermore, even if pathogen data are not available for the large majority of spatial-747 

social network datasets, empirically parameterised simulations of disease spread within a meta-748 

analytical framework (e.g. Sah et al., 2018) could be a useful tool for gaining a general 749 

understanding of how spatial and social drivers of disease can be untangled, and which kinds of 750 

systems and network structures best allow this separation.  751 

 752 

Many empirical systems lend themselves to spatial-social analysis. Fundamentally, any system 753 

with extricable/tractable social and spatial behaviour could be used for such analyses, and 754 

fission-fusion social systems may be especially well-suited for this reason: censuses and GPS 755 

records can regularly identify individuals’ group memberships separately alongside their spatial 756 

locations, allowing untangling of spatial-social associations (Box 1). Such systems include many 757 

well-studied animals, such as dolphins (Lusseau et al., 2006), great tits (Firth & Sheldon, 2016), 758 

and deer (Stopher et al., 2012). Ants likewise represent a promising model system for this 759 

reason: using motion-tracking cameras, spatial behaviour can be tracked and then social contacts 760 

extricated (Modlmeier et al., 2019; Stroeymeyt et al., 2018): for example, trophallaxis or 761 

physical touch events can be used to create a contact network, while space use distributions or 762 

movement trajectories are used to characterise their spatial behaviour. Although the two will 763 

correlate, there is likely to be considerable testable variation: that is, of the ants that overlap in 764 

space with one another, only a subset of dyads will give or receive trophallaxis to each other 765 

(Modlmeier et al., 2019). Ants’ social networks respond predictably to spatial changes 766 

(Modlmeier et al., 2019) and pathogen presence (Stroeymeyt et al., 2018), with group-level 767 

trends emerging from predictable individual-level behaviours, lending them well to high-768 

resolution movement models. 769 

 770 

Knowledge of a wide range of different pathogens is a further advantage for a potential study 771 

system, particularly because this may allow testing of the spatial-social continuum that we 772 



outlined in the pathogen transmission section above. Rodents are some of the best-studied model 773 

systems for disease ecology, yet because rodents are generally too small for battery-powered 774 

high-resolution GPS tracking, the tools available for studying their spatial behaviour at high 775 

resolution in the wild are limited. To fill this gap, the development of lightweight bluetooth 776 

technology has facilitated the use of highly sensitive proximity loggers in wild Mastomys mice 777 

(Berkvens, Olivares, Mercelis, Kirkpatrick, & Weyn, 2019). Using environmentally placed 778 

loggers with wide ranges and extended battery lives, it is possible to collect regular spatial 779 

locations alongside social contact data, providing an exciting model system with which to 780 

investigate space and sociality simultaneously (Berkvens et al., 2019). This methodology could 781 

be combined with the considerable literature on trapping-based contact networks in field voles 782 

(Davis et al., 2015; Wanelik, 2019) and other rodents (e.g. Grear et al., 2009). Notably, sleepy 783 

lizards (Tiliqua rugosa) have recently been proposed as an ideal system for the integration of 784 

social and spatial analyses, particularly focussing on ectoparasite transmission, and with many 785 

exciting future opportunities for joint spatial-social analyses (Sih et al., 2018). As such, the list of 786 

potential systems is phylogenetically diverse and extremely promising, with many opportunities 787 

for further specialisation under this umbrella. 788 

Connecting environmental, animal, and human health with spatial-social 789 

analyses 790 

Unlike human systems where linking real-world disease dynamics to real-world social contact 791 

networks is exceptionally rare despite much interest (Firth et al. 2020), there is a great number of 792 

real-world social contact network monitoring efforts from natural animal systems (Sah et al. 793 

2017; Sah et al. 2019) meaning these hold unique potential to contribute to understanding 794 

broader societal issues relating to disease spread and health. Specifically, aside from 795 

strengthening inference and improving model accuracy, the potential practical benefits of unified 796 

spatial-social analysis for disease ecology are numerous. Integration will improve our ability to 797 

investigate transmission mechanisms and density dependence, while conveying operational 798 

benefits (Section 3). Furthermore, better empirical understanding will inform the relevant 799 

spatiotemporal scales of transmission dynamics, providing parameters for scalable models of 800 

spatial movement that implicitly or explicitly account for social contact-driven transmission 801 



events within them (White, Forester, & Craft, 2018). Building on rapidly developing interest in 802 

disease-behaviour-network feedbacks ( Section 3A), spatial-social analyses could integrate 803 

existing models of spatial-social feedback (e.g. Firth & Sheldon, 2016) with those that identify 804 

reciprocal changes in network topology in response to disease transmission (e.g. Stroeymeyt et 805 

al., 2018).  806 

 807 

All such endeavours will help to predict how altered behaviour will affect disease transmission 808 

(and vice versa) in the wake of large-scale community perturbations. This includes short-term 809 

events (e.g. zoonotic outbreaks or catastrophic events), long-term trends (e.g. climate change-810 

induced alterations to global transport systems), or behavioural animal health interventions (e.g. 811 

translocations), all of which will alter contact patterns separately from spatial movements. For 812 

example, individual variability in raccoon ranging behaviour can reduce the effectiveness of 813 

rabies vaccination interventions (McClure, Gilbert, Chipman, Rees, & Pepin, 2020).  814 

Understanding how landscape structure alters raccoons’ spatial behaviour, and therefore disease 815 

spread, will help to anticipate geographic variation in intervention success. As another example, 816 

it is well established that culling British badgers (Meles meles) is an ineffective method of 817 

control for bovine tuberculosis (Mycobacterium bovis). The culling-associated disruption of local 818 

population structure provokes badgers to disperse, moving further than they otherwise would and 819 

making more social contacts in the process (Carter et al., 2007; Ham, Donnelly, Astley, Jackson, 820 

& Woodroffe, 2019; Tuyttens et al., 2000). As such, this perturbation of the social network 821 

induces a spatial movement, which is expected to result in a subsequent rearrangement of the 822 

social contact network. These changes in network structure may facilitate M. bovis spread across 823 

the countryside, directly contravening the intended control efforts by infecting cattle in 824 

surrounding areas (Donnelly et al., 2007). This example is hard to conceptualise without 825 

considering the social and spatial networks in tandem, as well as considering the landscape itself. 826 

Under rapid ongoing global change, a proper understanding of the links between the 827 

environment, animal movement, and social behaviour will be crucial for understanding how 828 

disruptions and natural disasters such as fires, floods, and hurricanes will impact wildlife disease 829 

(Silk et al., 2019). Studies have already connected ongoing ecological tragedies such as fire with 830 

animal movement and one health consequences (Bonilla-Aldana et al., 2019), and spatial-social 831 

analysis is set to be an invaluable tool for anticipating and combatting their effects. 832 
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