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Abstract

We propose a novel geolocation prediction

model using a complex neural network.

Our model unifies text, metadata, and user

network representations with an attention

mechanism to overcome previous ensem-

ble approaches. In an evaluation using two

open datasets, the proposed model exhib-

ited a maximum 3.8% increase in accuracy

and a maximum of 6.6% increase in ac-

curacy@161 against previous models. We

further analyzed several intermediate lay-

ers of our model, which revealed that their

states capture some statistical characteris-

tics of the datasets.

1 Introduction

Social media sites have become a popular source

of information to analyze current opinions of nu-

merous people. Many researchers have worked

to realize various automated analytical methods

for social media because manual analysis of such

vast amounts of data is difficult. Geolocation

prediction is one such analytical method that has

been studied widely to predict a user location

or a document location. Location information

is crucially important information for analyses

such as disaster analysis (Sakaki et al., 2010), dis-

ease analysis (Culotta, 2010), and political anal-

ysis (Tumasjan et al., 2010). Such information is

also useful for analyses such as sentiment analysis

(Martı́nez-Cámara et al., 2014) and user attribute

analysis (Rao et al., 2010) to undertake detailed

region-specific analyses.

Geolocation prediction has been per-

formed for Wikipedia (Overell, 2009), Flickr

(Serdyukov et al., 2009; Crandall et al., 2009),

Facebook (Backstrom et al., 2010), and Twitter

(Cheng et al., 2010; Eisenstein et al., 2010).

Among these sources, Twitter is often preferred

because of its characteristics, which are suited

for geolocation prediction. First, some tweets

include geotags, which are useful as ground truth

locations. Secondly, tweets include metadata

such as timezones and self-declared locations that

can facilitate geolocation prediction. Thirdly, a

user network is obtainable by consideration of the

interaction between two users as a network link.

Herein, we propose a neural network model

to tackle geolocation prediction in Twitter. Past

studies have combined text, metadata, and user

network information with ensemble approaches

(Han et al., 2013, 2014; Rahimi et al., 2015a;

Jayasinghe et al., 2016) to achieve state-of-the-art

performance. Our model combines text, metadata,

and user network information using a complex

neural network. Neural networks have recently

shown effectiveness to capture complex represen-

tations combining simpler representations from

large-scale datasets (Goodfellow et al., 2016). We

intend to obtain unified text, metadata, and user

network representations with an attention mecha-

nism (Bahdanau et al., 2014) that is superior to the

earlier ensemble approaches. The contributions of

this paper are the following:

1. We propose a neural network model that

learns unified text, metadata, and user net-

work representations with an attention mech-

anism.

2. We show that the proposed model outper-

forms the previous ensemble approaches in

two open datasets.

3. We analyze some components of the pro-

posed model to gain insight into the unifica-

tion processes of the model.

Our model specifically emphasizes geolocation

prediction in Twitter to use benefits derived from

the characteristics described above. However, our
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model can be readily extended to other social me-

dia analyses such as user attribute analysis and po-

litical analysis, which can benefit from metadata

and user network information.

In subsequent sections of this paper, we explain

the related works in four perspectives in Section 2.

The proposed neural network model is described

in Section 3 along with two open datasets that we

used for evaluations in Section 4. Details of an

evaluation are reported in Section 5 with discus-

sions in Section 6. Finally, Section 7 concludes

the paper with some future directions.

2 Related Works

2.1 Text-based Approach

Probability distributions of words over locations

have been used to estimate the geolocations

of users. Maximum likelihood estimation ap-

proaches (Cheng et al., 2010, 2013) and language

modeling approaches minimizing KL-divergence

(Wing and Baldridge, 2011; Kinsella et al., 2011;

Roller et al., 2012) have succeeded in predicting

user locations using word distributions. Topic

modeling approaches to extract latent topics

with geographical regions (Eisenstein et al., 2010,

2011; Hong et al., 2012; Ahmed et al., 2013) have

also been explored considering word distributions.

Supervised machine learning methods with

word features are also popular in text-based

geolocation prediction. Multinomial Naive Bayes

(Han et al., 2012, 2014; Wing and Baldridge,

2011), logistic regression (Wing and Baldridge,

2014; Han et al., 2014), hierarchical logistic

regression (Wing and Baldridge, 2014), and a

multilayer neural network with stacked denois-

ing autoencoder (Liu and Inkpen, 2015) have

realized geolocation prediction from text. A

semi-supervised machine learning approach by

Cha et al. (2015) has also been produced using a

sparse-coding and dictionary learning.

2.2 User-network-based Approach

Social media often include interactions of several

kinds among users. These interactions can be re-

garded as links that form a network among users.

Several studies have used such user network in-

formation to predict geolocation. Backstrom et al.

(2010) introduced a probabilistic model to pre-

dict the location of a user using friendship in-

formation in Facebook. Friend and follower in-

formation in Twitter were used to predict user

locations with a most frequent friend algorithm

(Davis Jr. et al., 2011), a unified descriptive model

(Li et al., 2012b), location-based generative mod-

els (Li et al., 2012a), dynamic Bayesian networks

(Sadilek et al., 2012), a support vector machine

(Rout et al., 2013), and maximum likelihood es-

timation (McGee et al., 2013). Mention informa-

tion in Twitter is also used with label propaga-

tion models (Jurgens, 2013; Compton et al., 2014)

and an energy and social local coefficient model

(Kong et al., 2014). Jurgens et al. (2015) com-

pared nine user-network-based approaches target-

ing Twitter, controlling data conditions.

2.3 Metadata-based Approach

Metadata such as location fields are useful as ef-

fective clues to predict geolocation. Hecht et al.

(2011) reported that decent accuracy of geolo-

cation prediction can be achieved using location

fields. Approaches to combine metadata with texts

are also proposed to extend text-based approaches.

Combinatory approaches such as a dynami-

cally weighted ensemble method (Mahmud et al.,

2012), polygon stacking (Schulz et al., 2013),

stacking (Han et al., 2013, 2014), and average

pooling with a neural network (Miura et al., 2016)

have strengthened geolocation prediction.

2.4 Combinatory Approach Extending

User-network-based Approach

Several attempts have been made to combine user-

network-based approaches with other approaches.

A text-based approach with logistic regression

was combined with label propagation approaches

to enhance geolocation prediction (Rahimi et al.,

2015a,b, 2016). Jayasinghe et al. (2016) com-

bined nine components including text-based ap-

proaches, metadata-based approaches, and a user-

network-based approach with a cascade ensemble

method.

2.5 Comparisons with Proposed Model

A model we propose in Section 3 which com-

bines text, metadata, and user network informa-

tion with a neural network, can be regarded as

an alternative to approaches using text and meta-

data (Mahmud et al., 2012; Schulz et al., 2013;

Han et al., 2013, 2014; Miura et al., 2016), ap-

proaches with text and user network informa-

tion (Rahimi et al., 2015a,b), and an approach

with text, metadata, and user network information

(Jayasinghe et al., 2016). In Section 5, we demon-

strate that our model outperforms earlier models.
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Figure 1: Overview of the proposed model. RNN denotes a recurrent neural network layer. FC denotes

a fully connected layer. The striped layers are message-level processes. ⊕ represents element-wise

addition.

In terms of machine learning methods, our

model is a neural network model that shares some

similarity with previous neural network models

(Liu and Inkpen, 2015; Miura et al., 2016). Our

model and these previous models have two key

differences. First, our model integrates user net-

work information along with other information.

Secondly, our model combines text and metadata

with an attention mechanism (Bahdanau et al.,

2014).

3 Model

3.1 Proposed Model

Figure 1 presents an overview of our model: a

complex neural network for classification with a

city as a label. For each user, the model accepts

inputs of messages, a location field, a description

field, a timezone, linked users, and the cities of

linked users.

User network information is incorporated by

city embeddings and user embeddings of linked

users. User embeddings are introduced along with

city embeddings because linked users with city in-

formation1 are limited. We chose to let the model

learn geolocation representations of linked users

directly via user embeddings. The model can be

1City information are provided by a dataset. The detail of
the city information is explained in Section 4.

broken down to several components, details of

which are described in Section 3.1.1–3.1.4.

3.1.1 Text Component

We describe the text component of the model,

which is the “TEXT” section in Figure 1. Figure 2

presents an overview of the text component. The

component consists of a recurrent neural network

(RNN) (Graves, 2012) layer and attention layers.

An input of the component is a timeline of a user,

which consists of messages in a time sequence.

As an implementation of RNN, we used Gated

Recurrent Unit (GRU) (Cho et al., 2014) with a bi-

directional setting. In the RNN layer, word em-

beddings x of a message are processed with the

following transition functions:

zt = σ (W zxt +U zht−1 + bz) (1)

rt = σ (W rxt +U rht−1 + br) (2)

h̃t = tanh (W hxt +Uh (rt ⊙ ht−1) + bh)
(3)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (4)

where zt is an update gate, rt is a reset

gate, h̃t is a candidate state, ht is a state,

W z,W r,W h,U z,U r,Uh are weight matrices,

bz, br, bh are bias vectors, σ is a logistic sigmoid

function, and ⊙ is an element-wise multiplica-

tion operator. The bi-directional GRU outputs
−→
h
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Figure 2: Overview of the text component with

detailed description of RNNM and AttentionM.

and
←−
h are concatenated to form g where gt =

−→
ht∥
←−
ht and are passed to the first attention layer

AttentionM.

AttentionM computes a message representa-

tion m as a weighted sum of gt with weight αt:

m =
∑

t

αtgt (5)

αt =
exp

(

vT
αut

)

∑

t exp (v
T
αut)

(6)

ut = tanh (W αgt + bα) (7)

where vα is a weight vector, W α is a weight ma-

trix, and bα a bias vector. ut is an attention con-

text vector calculated from gt with a single fully-

connected layer (Eq. 7). ut is normalized with

softmax to obtain αt as a probability (Eq. 6). The

message representation m is passed to the second

attention layer AttentionTL to obtain a timeline

representation from message representations.

3.1.2 Text and Metadata Component

We describe text and metadata components of the

model, which is the “TEXT&META” section in

Figure 1. This component considers the following

three types of metadata along with text: location

a text field in which a user is allowed to write the

user location freely, description a text field a user

can use for self-description, and timezone a selec-

tive field from which a user can choose a timezone.

Note that certain percentages of these fields are not

available2, and unknown tokens are used for inputs

in such cases.

2Han et al. (2014) reported missing percentages of 19%

for location, 24% for description, and 25%for timezone.
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Figure 3: Overview of the user network compo-

nent with a detailed description of the element-

wise addition and AttentionN.

We process location fields and description fields

similarly to messages using an RNN layer and an

attention layer. Because there is only one loca-

tion and one description per user, a second atten-

tion layer is not required, as it is in the text com-

ponent. We also chose to share word embeddings

among the messages, the location, and the descrip-

tion processes because these inputs are all textual

information. For the timezone, an embedding is

assigned for each timezone value. A processed

timeline representation, a location representation,

and a description representation are then passed

to the attention layer AttentionU with a timezone

representation. AttentionU combines these four

representations and outputs a user representation.

This combination is done as in AttentionTL with

four representations as g1 . . . g4 in Eq. 5.

3.1.3 User Network Component

We describe the user network component of the

model, which is the “USERNET” section in Fig-

ure 1. Figure 3 presents an overview of the user

network component. The model has two inputs

linked cities and linked users. Users connected

with a user network are extracted as linked users.

We treat their cities3 as linked cities. Linked cities

and linked users are assigned with city embed-

dings c and user embeddings a respectively. c

and a are then processed to output p = c ⊕ a,

where ⊕ is an element-wise addition operator. p

is then passed to the subsequent attention layer

AttentionN to obtain a user network representa-

3A user with city information implies that the user is in-
cluded in a training set.
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TwitterUS 

(train)	
W-NUT 

(train)	

#user	 279K	 782K	

#tweet	 23.8M	 9.03M	

tweet/user	 85.6	 11.6	

#edge	 3.69M	 3.21M	

#reduced-edge	 2.11M	 1.01M	

reduced-edge/user	 7.04	 1.29	

#city	 339	 3028	

Table 1: Some properties of TwitterUS (train) and

W-NUT (train). We were able to obtain approxi-

mately 70–78% of the full datasets because of ac-

cessibility changes in Twitter.

tion as in AttentionU.

3.1.4 Model Output

An output of the text and metadata component

and an output of the mention network compo-

nent are further passed to the final attention layer

AttentionUN to obtain a merged user representa-

tion as in AttentionU. The merged user represen-

tation is then connected to labels with a fully con-

nected layer FCUN.

3.2 Sub-models of the Proposed Model

SUB-NN-TEXT We prepare a sub-model SUB-

NN-TEXT by adding FCU and FCUN to the text

component. This sub-model can be considered as

a variant of a neural network model by Yang et al.

(2016), which learns a representation of hierarchi-

cal text.

SUB-NN-UNET We prepare a sub-model SUB-

NN-UNET by connecting the text component

and the user network component with FCU,

AttentionUN, and FCUN. This model can be re-

garded as a model that uses text and user network

information.

SUB-NN-META We prepare a sub-model SUB-

NN-META by adding FCU and FCUN to the

metadata component. This model is a text-meta-

based model that uses text and metadata.

4 Data

4.1 Dataset Specifications

TwitterUS The first dataset we used is Twit-

terUS assembled by Roller et al. (2012), which

consists of 429K training users, 10K development

users, and 10K test users in a North American re-

gion. The ground truth location of a user is set

to the first geotag of the user in the dataset. We

collected TwitterUS tweets using TwitterAPI to re-

construct TwitterUS to obtain metadata along with

text. Up to date versions in November–December

2016 were used for the metadata4. We additionally

assigned city centers to ground truth geotags us-

ing the city category of Han et al. (2012) to make

city prediction possible in this dataset. TwitterUS

(train) in Table 1 presents some properties related

to the TwitterUS training set.

W-NUT The second dataset we used is W-NUT,

a user-level dataset of the geolocation prediction

shared task of W-NUT 2016 (Han et al., 2016).

The dataset consists of 1M training users, 10K de-

velopment users, and 10K test users. The ground

truth location of a user is decided by majority vot-

ing of the closest city center. Like in TwitterUS,

we obtained metadata and texts using TwitterAPI.

Up to date versions in August–September 2016

were used for the metadata. W-NUT (train) in Ta-

ble 1 presents some properties related to the W-

NUT training set.

4.2 Construction of the User Network

We construct mention networks (Jurgens, 2013;

Compton et al., 2014; Rahimi et al., 2015a,b)

from datasets as user networks. To do so,

we follow the approach of Rahimi et al. (2015a)

and Rahimi et al. (2015b) who use uni-directional

mention to set edges of a mention network. An

edge is set between the two users nodes if a

user mentions another user. The number of uni-

directional mention edges for TwitterUS and W-

NUT can be found in Table 1.

The uni-directional setting results to large num-

bers of edges, which often are computationally ex-

pensive to process. We restricted edges to satisfy

one of the following conditions to reduce the size:

(1) both users have ground truth locations or (2)

one user has a ground truth location and another

user is mentioned 5 times or more in a training set.

The number of reduced-edges with these condi-

tions in TwitterUS and W-NUT can be confirmed

in Table 1.

5 Evaluation

5.1 Implemented Baselines

5.1.1 LR

LR is an l1-regularized logistic regression model

with k-d tree regions (Roller et al., 2012) used

4TwitterAPI returns the current version of metadata even
for an old tweet.
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in Rahimi et al. (2015a). The model uses tf-

idf weighted bag-of-words unigrams for features.

This model is simple, but it has shown state-of-

the-art performance in cases when only text is

available.

5.1.2 MADCEL-B-LR

MADCEL-B-LR, a model presented by

(Rahimi et al., 2015a), combines LR with Modi-

fied Adsorption (MAD) (Talukdar and Crammer,

2009). MAD is a graph-based label propagation

algorithm that optimizes an objective with a prior

term, a smoothness term, and an uninforma-

tiveness term. LR is combined with MAD by

introducing LR results as dongle nodes to MAD.

This model includes an algorithm for the con-

struction of a mention network. The algorithm

removes celebrity users5 and collapses a men-

tion network6. We use binary edges for user net-

work edges because they performed slightly better

than weighted edges by accuracy@161 metric in

Rahimi et al. (2015a).

5.1.3 LR-STACK

LR-STACK is an ensemble learning model that

combines four LR classifiers (LR-MSG, LR-LOC,

LR-DESC, LR-TZ) with an l2-regularized logistic

regression meta-classifier (LR-2ND). LR-MSG,

LR-LOC, LR-DESC, and LR-TZ respectively use

messages, location fields, description fields, and

timezones as their inputs. This model is simi-

lar to the stacking (Wolpert, 1992) approach taken

in Han et al. (2013) and Han et al. (2014), which

showed superior performance compared to a fea-

ture concatenation approach.

The model takes the following three steps to

combine text and metadata: Step 1 LR-MSG, LR-

LOC, LR-DESC, and LR-TZ are trained using a

training set, Step 2 the outputs of the four classi-

fiers on the training set are obtained with 10-fold

cross validation, and Step 3 LR-2ND is trained us-

ing the outputs of the four classifiers.

5.1.4 MADCEL-B-LR-STACK

MADCEL-B-LR-STACK is a combined model of

MADCEL-B-LR and LR-STACK. LR-STACK re-

sults are introduced as dongle nodes to MAD in-

stead of LR results to combine text, metadata, and

network information.

5Users with more than t unique mentions.
6Users not included in training users or test users are re-

moved and disconnected edges with the removals are con-
verted to direct edges.

5.2 Model Configurations

5.2.1 Text Processor

We applied a lower case conversion, a unicode

normalization, a Twitter user name normalization,

and a URL normalization for text pre-processing.

The pre-processed text is then segmented us-

ing Twokenizer (Owoputi et al., 2013) to obtain

words.

5.2.2 Pre-training of Embeddings

We pre-trained word embeddings using messages,

location fields, and description fields of a train-

ing set using fastText (Bojanowski et al., 2016)

with the skip-gram algorithm. We also pre-trained

user embeddings using the non-reduced mention

network described in Section 4.2 of a training

set with LINE (Tang et al., 2015). The detail of

pre-training parameters are described in Appendix

A.1.

5.2.3 Neural Network Optimization

We chose an objective function of our models to

cross-entropy loss. l2 regularization was applied

to the RNN layers, the attention context vectors,

and the FC layers of our models to avoid over-

fitting. The objective function was minimized

through stochastic gradient descent over shuffled

mini-batches with Adam (Kingma and Ba, 2014).

5.2.4 Model Parameters

The layers and the embeddings in our models have

unit size and embedding dimension parameters.

Our models and the baseline models have reg-

ularization parameter α, which is sensitive to a

dataset. The baseline models have additional k-d

tree bucket size c, celebrity threshold t, and MAD

parameters µ1, µ2, and µ3, which are also data

sensitive.

We chose optimal values for these parameters

in terms of accuracy with a grid search using the

development sets of TwitterUS and W-NUT. De-

tails of the parameter selection strategies and the

selected values are described in Appendix A.2.

5.2.5 Metrics

We evaluate the models in the following four

commonly used metrics in geolocation predic-

tion: accuracy the percentage of correctly pre-

dicted cities, accuracy@161 a relaxed accuracy

that takes prediction errors within 161 km as cor-

rect predictions, median error distance median

value of error distances in predictions, and mean

error distance mean value of error distances in

predictions.
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Model	
Sign. Test 

ID	
Accuracy	

Accuracy

@161	

Error Distance	

Median	 Mean	

Baselines 

(reported)	

Han et al. (2012)	
Wing and Baldridge (2014)	
LR (Rahimi et al. 2015b) 

LR-NA (Rahimi et al. 2016)	
MADCEL-B-LR (Rahimi et al. 2015a) 

MADCEL-W-LR (Rahimi et al. 2015a) 

26.0	
-	
-	
- 

- 

-	

45.0	
49.2	
50 

51	
60 

60	

260	
170.5	
159 

148	
77 

78	

814	
703.6	
686 

636	
533 

529	

Baselines 

(implemented)	

LR	
MADCEL-B-LR	
LR-STACK	
MADCEL-B-LR-STACK	

i	
ii	
iii	
iv	

42.0	
50.2	
50.8	
55.7	

52.7	
60.1	
64.1	
67.7	

121.1	
66.5	
42.3*	

45.1	

666.6	
582.8	
427.7	
412.7	

Our Models	

SUB-NN-TEXT	
SUB-NN-UNET	
SUB-NN-META 

Proposed Model	

i	
ii	
iii	
iv	

44.9**	

51.0	
54.6**	

58.5**	

55.6**	

61.5*	

67.2**	

70.1**	

110.5	
65.0	
46.8	
41.9*	

585.1**	

481.5**	

356.3** 

335.7**	

Table 2: Performances of our models and the baseline models on TwitterUS. Significance tests were per-

formed between models with same Sign. Test IDs. The shaded lines represent values copied from related

papers. Asterisks denote significant improvements against paired counterparts with 1% confidence (**)

and 5% confidence (*).

Model	
Sign. Test 

ID	
Accuracy	

Accuracy

@161	

Error Distance	

Median	 Mean	

Baselines 

(reported)	
Miura et al. (2016) 

Jayasinghe et al. (2016) 

47.6	
52.6	

- 

-	
16.1	
21.7	

1122.3 

1928.8	

Baselines 

(implemented)	

LR	
MADCEL-B-LR	
LR-STACK	
MADCEL-B-LR-STACK	

i	
ii	
iii	
iv	

34.1	
36.2 

51.2	
51.6	

46.7 

49.7 

64.9	
65.3	

248.7 

166.3 

0.0 

0.0	

2216.4	
2120.6	
1496.4 

1471.9	

Our Models	

SUB-NN-TEXT 

SUB-NN-UNET	
SUB-NN-META 

Proposed Model	

i	
ii	
iii	
iv	

35.4**	

38.1** 

54.7**	

56.4**	

50.3**	

53.3** 

70.2**	

71.9**	

155.8**	

99.9**	

0.0 

0.0	

1592.6**	

1498.6** 

825.8**	

780.5**	

Table 3: Performance of our models and baseline models on W-NUT. The same notations as those in

Table 2 are used in this table.

5.3 Result

Performance on TwitterUS

Table 2 presents results of our models and the im-

plemented baseline models on TwitterUS. We also

list values from earlier reports (Han et al., 2012;

Wing and Baldridge, 2014; Rahimi et al., 2015a,b,

2016) to make our results readily comparable with

past reported values.

We performed some statistical significance tests

among model pairs that share the same inputs.

The values in the Sign. Test ID column of Table

2 represent the IDs of these pairs. As a prepa-

ration of statistical significance tests, accuracies,

accuracy@161s, and error distances of each test

user were calculated for each model pair. Two-

sided Fisher-Pittman Permutation tests were used

for testing accuracy and accuracy@161. Mood’s

median test was used for testing error distance in

terms of median. Paired t-tests were used for test-

ing error distance in terms of mean.

We confirmed the significance of improvements

in accuracy@161 and mean distance error for all

of our models. Three of our models also im-

proved in terms of accuracy. Especially, the pro-

posed model achieved a 2.8% increase in accu-

racy and a 2.4% increase in accuracy@161 against

the counterpart baseline model MADCEL-B-LR-

STACK. One negative result we found was the me-

dian error distance between SUB-NN-META and

LR-STACK. The baseline model LR-STACK per-

formed 4.5 km significantly better than our model.

Performance on W-NUT

Table 3 presents the results of our models and

the implemented baseline models on W-NUT. As

for TwitterUS, we listed values from Miura et al.

(2016) and Jayasinghe et al. (2016). We tested the

significance of these results in the same way as we

did for TwitterUS.

We confirmed significant improvement in the

four metrics for all of our models. The proposed

model achieved a 4.8% increase in accuracy and a
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description	

location	timeline	

timezone	

Figure 4: Estimated probability density functions

of the four representations in AttentionU.

6.6% increase in accuracy@161 against the coun-

terpart baseline model MADCEL-B-LR-STACK.

The accuracy is 3.8% higher against the previously

reported best value (Jayasinghe et al., 2016) which

combined texts, metadata, and user network infor-

mation with an ensemble method.

6 Discussion

6.1 Analyses of Attention Probabilities

6.1.1 Unification Strategies

In the evaluation, the proposed model has implic-

itly shown effectiveness at unifying text, meta-

data, and user network representations through im-

provements in the four metrics. However, details

of the unification processes are not clear from the

model outputs because they are merely the prob-

abilities of estimated locations. To gain insight

into the unification processes, we analyzed the

states of two attention layers: AttentionU and

AttentionUN in Figure 1.

Figure 4 presents the estimated probability den-

sity functions (PDFs) of the four input represen-

tations for AttentionU. These PDFs are esti-

mated with kernel density estimation from the de-

velopment sets of TwitterUS and W-NUT, where

all four representations are available. From the

PDFs, it is apparent that the model assigns higher

probabilities to time line representations than to

other three representations in TwitterUS compared

to W-NUT. This finding is reasonable because

timelines in TwitterUS consist of more tweets

(tweet/user in Table 1) and are likely to be more

informative than in W-NUT.

Figure 5 presents the estimated PDFs of user

network representations for AttentionUN. These

user network	

Figure 5: Estimated probability density functions

of user network representations in AttentionUN.

PDFs are estimated from the development sets

of TwitterUS and W-NUT, where both input rep-

resentations are available. Strong preference of

network representation for TwitterUS against W-

NUT is found in the PDFs. This finding is in-

tuitive because TwitterUS has substantially more

user network edges (reduced-edge/user in Table 1)

than W-NUT, which is likely to benefit more from

user network information.

6.1.2 Attention Patterns

We further analyzed the proposed model by clus-

tering attention probabilities to capture typical

attention patterns. For each user, we assigned

six attention probabilities of AttentionU and

AttentionUN as features for a clustering. A k-

means clustering was performed over these users

with 9 clusters. The clustering clearly separated

the users to 5 clusters for TwitterUS users and 4
clusters for W-NUT users. We extracted typical

users of each cluster by selecting the closest users

of the cluster centroids. Figure 6 shows a cluster-

ing result and the attention probabilities of these

users.

These attention probabilities can be considered

as typical attention patterns of the proposed model

and match with the previously estimated PDFs.

For example, cluster 2 and 3 represent an atten-

tion pattern that processes users by balancing the

representations of locations along with the repre-

sentations of timelines. Additionally, the location

probabilities in this pattern are in the right tail re-

gion of the location PDF.

6.2 Limitations of Proposed Model

6.2.1 City Prediction

The evaluation produced improvements in most

of our models in the four metrics. One excep-

tion we found was the median distance error be-

tween SUB-NN-META and LR-STACKING in

TwitterUS. Because the median distance error of

SUB-NN-META was quite low (46.8 km), we
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1	

2	

3	

4	

5	
6	

7	 8	

9	

TwitterUS	

W-NUT	

Cluster 

ID
Dataset Timeline Location Description Timezone User 

User 

Network 

1 TwitterUS 0.843 0.082 0.040 0.035 0.359 0.641

2 W-NUT 0.517 0.317 0.081 0.085 0.732 0.268

3 TwitterUS 0.432 0.430 0.069 0.069 0.319 0.681

4 W-NUT 0.637 0.160 0.097 0.105 0.737 0.263

5 TwitterUS 0.593 0.219 0.114 0.075 0.230 0.770

6 TwitterUS 0.672 0.214 0.069 0.045 0.365 0.635

7 W-NUT 0.741 0.077 0.080 0.102 0.605 0.395

8 TwitterUS 0.766 0.099 0.068 0.067 0.222 0.778

9 W-NUT 0.800 0.067 0.056 0.078 0.730 0.270

Figure 6: A k-means clustering result and the attention probabilities of users that are closest to the cluster

centroids. The underlined values are the max values of the two datasets for each column.

Model	
Error Distance 

Median Mean σ 

Oracle	 23.3	 31.4	 30.1	

Table 4: Error distance values in TwitterUS with

oracle predictions. σ in the table denotes the stan-

dard deviation.

measured the performance of an oracle model

where city predictions are all correct (accuracy of

100%) in the test set.

Table 4 denotes this oracle performance. The

oracle mean error distance is 31.4 km. Its stan-

dard deviation is 30.1. Note that ground truth loca-

tions of TwitterUS are geotags and will not exactly

match the oracle city centers. These oracle values

imply that the current median error distances are

close to the lower bound of the city classification

approach and that they are difficult to improve.

6.2.2 Errors with High Confidences

The proposed model still contains 28–30% errors

even in accuracy@161. A qualitative analysis of

errors with high confidences was performed to in-

vestigate cases that the model fails. We found two

common types of error in the error analysis. The

first is a case when a location field is incorrect due

to a reason such as a house move. For example,

the model predicted “Hong Kong” for a user with

a location field of “Hong Kong” but has the gold

location of “Toronto”. The second is a case when

a user tweets a place name of a travel. For exam-

ple, the model predicted “San Francisco” for a user

who tweeted about a travel to “San Francisco” but

has the gold location of “Boston”.

These two types of error are difficult to han-

dle with the current architecture of the proposed

model. The architecture only supports single lo-

cation field which disables the model to track lo-

cation changes. The architecture also treats each

tweet independently which forbids the model to

express a temporal state like traveling.

7 Conclusion

As described in this paper, we proposed a complex

neural network model for geolocation prediction.

The model unifies text, metadata, and user net-

work information. The model achieved the max-

imum of a 3.8% increase in accuracy and a max-

imum of 6.6% increase in accuracy@161 against

several previous state-of-the-art models. We fur-

ther analyzed the states of several attention layers,

which revealed that the probabilities assigned to

timeline representations and user network repre-

sentations match to some statistical characteristics

of datasets.

As future works of this study, we are planning

to expand the proposed model to handle multi-

ple locations and a temporal state to capture lo-

cation changes and states like traveling. Addi-

tionally, we plan to apply the proposed model to

other social media analyses such as gender anal-

ysis and age analysis. In these analyses, meta-

data like location fields and timezones may not

be effective like in geolocation prediction. How-

ever, a user network is known to include various

user attributes information including gender and

age (McPherson et al., 2001) which suggests the

unification of text and user network information

to result in a success as in geolocation prediction.
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Eugenio Martı́nez-Cámara, Maria Teresa Martı́n-
Valdivia, Luis Alfonso Ureña López, and Arturo
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A Supplemental Materials

A.1 Parameters of Embedding Pre-training

Word embeddings were pre-trained with the pa-

rameters of learning rate=0.025, window size=5,

negative sample size=5, and epoch=5. User em-

beddings were pre-trained with the parameters of

initial learning rate=0.025, order=2, negative sam-

ple size=5, and training sample size=100M.

A.2 Model Parameters and Parameter

Selection Strategies

Unit Sizes, Embedding Dimensions, and a Max

Tweet Number

The layers and the embeddings in our models have

unit size and embedding dimension parameters.

We also restricted the maximum number of tweets

per user for TwitterUS to reduce memory foot-

prints. Table 5 shows the values for these param-

eters. Smaller values were set for TwitterUS be-

cause TwitterUS is approximately 2.6 times larger

in terms of tweet number. It was computationally

expensive to process TwiiterUS in the same set-

tings as W-NUT.

Regularization Parameters and Bucket Sizes

We chose optimal values of α using a grid search

with the development sets of TwitterUS and W-

NUT. The range of α was set as the following:

α ∈ {1e−4, 5e−5, 1e−5, 5e−6, 1e−6, 5e−7, 1e−7,

5e−8, 1e−8}.
We also chose optimal values of c using grid

search with the development sets of TwitterUS and

W-NUT for the baseline models. The range of c

was set as the following for TwitterUS:

c ∈ {50, 100, 150, 200, 250, 300, 339}.
The following was set for W-NUT:

c ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900,
1000, 1500, 2000, 2500, 3000, 3028}.
Table 6 presents selected values of α and c. For

LR-STACK and MADCEl-B-LR-STACK, differ-

ent parameters of α and c were selected for each

logistic regression classifier.

MAD Parameters and Celebrity Threshold

The MAD parameters µ1, µ2, and µ3 and celebrity

threshold t were also chosen using grid search

with the development sets of TwitterUS and W-

NUT. The ranges of µ1, µ2, and µ3 were set as the

following:

µ1 ∈ {1.0}, µ2 ∈ {0.001, 0.01, 0.1, 1.0, 10.0},
µ3 ∈ {0.0, 0.001, 0.01, 0.1, 1.0, 10.0}.
The range of t for TwitterUS was set as t ∈
{2, . . . , 16}. The range of t for W-NUT was set

TwitterUS W-NUT 

RNN unit size	 100	 200	

Attention context vector size	 200	 400	

FC unit size	 200	 400	

Word embedding dimension	 100	 200	

Timezone embedding dimension	 200	 400	

City embedding dimension	 200	 400	

User embedding dimension	 200	 400	

Max tweet number per user	 200	 -	

Table 5: Unit sizes, embedding dimensions, and

max tweet numbers of our models.

Model	 Parameter	 TwitterUS W-NUT 

SUB-NN-TEXT	

α	

1e-8	 1e-7	

SUB-NN-UNET	 1e-6	 5e-8	

SUB-NN-META	 1e-8	 5e-8	

Proposed Model	 1e-6	 5e-8	

LR 

MADCEL-B-LR	
α	 1e-6	 5e-7	

c	 300	 3000	

LR-STACK 

MADCEL-B-LR-STACK	

α
MSG	 1e-6	 5e-7	

α
LOC	 1e-6	 1e-6	

α
DESC	 5e-6	 1e-6	

α
TZ	 1e-4	 5e-6	

α
2ND	 1e-6	 1e-7	

c
MSG	 300	 3000	

c
LOC	 300	 3000	

c
DESC	 250	 1500	

c
TZ	 100	 2500	

c
2ND	 300	 2000	

Table 6: Regularization parameters and bucket

sizes selected for our models and baseline models.

Model	 Parameter	 TwitterUS W-NUT 

MADCEL-B-LR	

µ1	 1.0	 1.0	

µ2	 1.0	 10.0	

µ3	 0.01	 0.1	

t	 5	 4	

MADCEL-B-LR-STACK	

µ1	 1.0	 1.0	

µ2	 1.0	 1.0	

µ3	 0.1	 0.0	

t	 4	 2	

Table 7: MAD parameters and celebrity threshold

selected for baseline models.

as t ∈ {2, . . . , 6}. Table 6 presents selected val-

ues of µ1, µ2, µ3, and t.
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