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Abstract

We introduce a new technique to bound the fluctuations exhibited by a physical system, based on
the Euclidean geometry of the space of observables. Through a simple unifying argument, we
derive a sweeping generalization of so-called thermodynamic uncertainty relations (TURs). We
not only strengthen the bounds but extend their realm of applicability and in many cases prove
their optimality, without resorting to large deviation theory or information-theoretic techniques.
In particular, we find the best TUR based on entropy production alone. We also derive a periodic
uncertainty principle of which previous known bounds for periodic or stationary Markov chains
known in the literature appear as limit cases. From it a novel bound for stationary Markov
processes is derived, which surpasses previous known bounds. Our results exploit the
non-invariance of the system under a symmetry which can be other than time reversal and thus
open a wide new spectrum of applications.

1. Introduction

At several levels of complexity, random processes are successfully employed to model natural phenomena,

such as open quantum system [1], soft and active matter [2], biochemical reactions [3], and population

ecology [4], just to name a few. In recent years, the understanding of their dynamical fluctuations has

greatly advanced thanks to exact results of nonequilibrium physics. Most importantly, fluctuation theorems

[5, 6] and response relations [7] have been derived that, respectively, constrain the distribution of currents

and relate the system’s perturbation to its dissipation and dynamical activity. Moreover, stochastic

thermodynamics has emerged as a comprehensive framework to rigorously study the energetics and

thermodynamics of stochastic processes [8, 9].

Recently, uncertainty relations appeared as a new powerful tool to investigate dynamical fluctuations.

They denote a set of inequalities in which the square-mean-to-variance ratio, or precision p( f ), of a generic

observable f integrated over a time interval tf is bounded by an f-independent functional4, which constitutes

an upper estimate on the maximum possible precision pmax:

p( f ) :=
|〈 f 〉|2

Varf
� pmax. (1)

It was first conjectured in [11] that p for a time-integrated current-like (i.e. odd under time reversal)

observable f is bounded by half the expected entropy 〈σ〉 produced over the interval tf , i.e. pmax � 〈σ〉/2.

This so-called thermodynamic uncertainty relation, originally proved in the linear response regime and

under stationary conditions, triggered an intense activity seeking generalizations or improvements for the

largest possible class of out-of-equilibrium conditions. Apart from its conceptual importance, i.e. the

existence of an universal upper bound set by dissipation on the precision of any current, (1) has major

4 Observable dependent bounds were also studied see, e.g., [10].
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Table 1. Summary of the quantities entering the various bounds.

(Normalized) precision ‘Dissipation’ Total variation distance Entropy prod. per period Entropy prod. rate Prob. flow

np := 〈 f 〉2

〈 f 2〉
σ := ln p

p
d := 1

2

∑
ω |p − p| 〈σi〉 :=

∑
ωi

pi ln
pi
pi

〈σ̇〉 :=
〈σi〉

∆t
je := pe

∆t

p :=
〈 f 〉2

Varf

Table 2. Summary of the various bounds.

Non-Markovian dyn. time-antisymmetric f (section 3) npmax = 〈 tanh σ
2
〉 � d tanh 〈σ〉

2d
� tanh 〈σ〉

2

pmax �
e〈σ〉−1

2

tightest asymptotic bound pmax � e〈σ〉/4 for 〈σ〉 ≫ 1

Markovian stationary dynamics satisfying (34) (section 4) pmax (Ω)
N

� pmax(Ωi)

Markovian periodic dynamics time-antisymmetric integrated f (section 4.6) pmax(Ω)
N

� e〈σi〉−1
2

Markovian stationary dynamics time-antisymmetric time-summed f (section 5) pmax
tf

�
∑

e
( je−je)2

je+je
� 1

2

∑
e|je − je| �

1
2

∑
e( je + je)

pmax
tf

� 〈σ̇〉
2

Markovian stationary dynamics time-summed f (section 4.7) pmax
tf

� 1
2

∑
e( je + je)

practical consequences. Indeed, (1) allows one to bound functions of the system’s dissipation which are not

directly measurable, e.g. the thermodynamic efficiency of molecular motors [12], or to reveal the existence

of hidden nonequilibrium states [13]. A first proof valid beyond the linear regime but restricted to large

time intervals tf [16] was soon extended to arbitrary tf [22]. These, and related early results [14, 15, 18–21]

were obtained within large deviation theory, by progressively refining the bound on the rate function for

empirical currents of jump and diffusion processes. Simultaneously, the same formalism was employed to

extend (1) to counting observables of jump processes [17]. In this context it was found that p is bounded by

the mean of the total number of jumps, or activity, occurring in the time span tf .

A different method to tackle the problem, based on perturbing the generating function of an arbitrary

observable f, was designed in [25]. It yields an upper bound for the response of f, which reduces to (1) when

the chosen perturbation results in a time rescaling of the dynamics. The entropic [24] as well as the activity

bound [35] have thus been extended to both current-like and counting observables. This approach, which

makes contact with inequalities originally derived by Kullback [26], has sparked much interest in the

application of information theoretic results and concepts.

More recently [27], the exponential bound pmax � (exp〈σ〉 − 1)/2 has been derived for Langevin

dynamics with feedback, under the condition of validity of the detailed (joint) fluctuation theorem for σ

and f. The same bound had already been derived in [23] for periodically driven Markovian systems with a

time-symmetric protocol, where now 〈σ〉 is computed over one period and (exp〈σ〉 − 1)/2 bounds the

precision divided by the (asymptotically large) number of periods.

Here, we provide an overarching method, based on elementary observations on the Hilbert space

structure of observables, to recover and generalize the various bounds obtained so far in the literature.

First, we provide an exact expression for pmax in the case of arbitrary stochastic processes, possibly

non-Markovian, time-varying or non-stationary, and show that the bound (exp〈σ〉 − 1)/2 can be improved

by a factor 2, and no more. In the case of periodic Markovian processes, we derive a periodic uncertainty

relation—the deepest result of this article—stating that the precision over a period bounds the precision

per period over arbitrary time intervals, which trivializes or extends most asymptotic bounds obtained so

far in the periodic Markovian case. In the case of stationary time-invariant Markov processes, it also allows

to replace them with simple and tighter bounds, valid over all time intervals, the most revealing being the

sum of the absolute values of the currents (tables 1 and 2).

2. The Hilbert uncertainty relation

2.1. General formulation

We first state the most abstract version of our result. We consider a general real or complex Hilbert space F

with some scalar product 〈.|.〉. To every f ∈ F is associated the so-called mean value of f, a scalar quantity

〈 f 〉 that is linear and continuous in f, i.e. a one-form in the dual of F . By virtue of the Riesz representation

theorem, one can find a special element m in F , so that the mean is expressed as 〈 f 〉 = 〈m| f 〉, ∀ f ∈ F . We

call m an averaging observable for F . We now consider the following ratio, that we called normalized

2
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precision for reasons that will appear clearly below,

np( f ) :=
|〈 f 〉|2

〈 f | f 〉
. (2)

Through Cauchy–Schwarz inequality we get |〈 f 〉|2 = |〈m| f 〉|2 � 〈m|m〉〈 f | f 〉, with equality when f is a

multiple of m. Thus

npmax :=max
f∈F

|〈 f 〉|2

〈 f |f 〉
= 〈m|m〉 = 〈m〉. (3)

This constitutes the key observation of this article which we call the Hilbert uncertainty relation.

2.2. Application to random dynamical systems

To be concrete, we focus on classical physical systems described by a configuration space Ω whose elements

ω are, for example, trajectories of a random dynamical system. The configuration space is endowed with a

probability measure p(ω). An obvious Hilbert space of interest is the space L2(Ω) of square-summable

observables, i.e. functions f : Ω→ R such that the mean

〈 f 〉 =
∑

ω

f (ω)p(ω) (4)

and the mean square

〈 f 2〉 =
∑

ω

f (ω)2p(ω) (5)

are well-defined and finite. Introducing the scalar product between two observables f and g,

〈g| f 〉 =
∑

ω

g(ω)f (ω)p(ω), (6)

we can recast (4) and (5) as, respectively,

〈 f 〉 = 〈1| f 〉, 〈 f 2〉 = 〈 f |f 〉. (7)

We adopt the discrete summation notations, even though our considerations also apply to continuous cases.

For example, ω can be a point in the phase-space of a Hamiltonian system. The normalized precision now

ranges between zero and one, and is equivalent to precision via the relation

p( f ) = np( f )/(1 − np( f )), (8)

since Var( f ) = 〈 f | f 〉 − 〈 f 〉2. In this situation, the averaging observable m is simply the constant observable

1, so that npmax = 1, corresponding to zero variance and infinite precision.

However in many situations we are interested in a (closed) linear subspace F of those observables,

sharing some properties of interest, which we call for the sake of convenience the ‘legitimate observables’. If

this subspace, itself a Hilbert space for the same scalar product, does not contain the constant observables,

then there is a non-trivial legitimate averaging observable m, for which npmax now caps the normalized

precision of all legitimate observables. It is also the orthogonal projection of the constant observable 1 onto

the space F of legitimate observables, as 〈 f 〉 = 〈1| f 〉 = 〈m| f 〉 implies that 1 − m is orthogonal to all

legitimate observables. From (3) and (8), it follows that the corresponding pmax over F is

〈m|m〉/(1 − 〈m|m〉).

2.3. Geometric interpretation

Interestingly the quantity 〈m|m〉/(1 − 〈m|m〉) has a geometric interpretation. Assume that we find a

square-summable observable M—possibly illegitimate, i.e. outside of F—that

(a) is zero-mean, 〈M〉 = 〈1|M〉 = 0 i.e. it is orthogonal to 1,

(b) is an averaging observable, i.e. 〈M| f 〉 = 〈 f 〉 for all legitimate observables f.

Then 〈M| f 〉 is also the covariance of M with f. Indeed,

Cov(M, f ) := 〈M| f 〉 − 〈M〉〈 f 〉
(a)
=〈M| f 〉

(b)
=〈 f 〉. (9)

Therefore, Cauchy–Schwarz inequality applied to the covariance,

〈 f 〉2
= Cov(M, f )2 � Var(M) Var( f ) = 〈M|M〉Var( f ), (10)

3
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Figure 1. Three averaging observables for the legitimate observables F : the unit observable, the legitimate observable m and the
zero-mean observable M. Elementary arguments on similar Pythagorean triangles imply that 〈M|M〉 is indeed the maximum
precision 〈m|m〉/(1 − 〈m|m〉).

yields that 〈M|M〉 is an upper bound on the maximum precision of legitimate observables. In fact, if M

belongs to the span of 1 and m (while being orthogonal to 1), namely,

M(ω) = 1 −
1 − m(ω)

1 − 〈m〉
, (11)

we find that 〈M|M〉 is exactly the maximum precision 〈m|m〉/(1 − 〈m|m〉) reachable over F (see figure 1

for a geometric representation).

3. Time anti-symmetric observables

The TURs are obtained by considering Ω as the set of all possible paths of a random process, endowed with

an involution symmetry (i.e. a transformation whose square is the identity) called time-reversal, which

maps any path ω in Ω to its time-reversed path ω. We consider legitimate the observables that are

time-antisymmetric, i.e. satisfying f (ω) = −f (ω). The time-reversal induces another probability measure

p(ω) = p(ω), attributing to an event the p-probability of the time-reversed event. Then the scalar product

of two time-antisymmetric observables g and f can be written as

〈g| f 〉 =
∑

ω

f (ω)g(ω)(p(ω) + p(ω))/2 (12)

while the mean of f is written as

〈 f 〉 =
∑

ω

f (ω)(p(ω) − p(ω))/2. (13)

Setting g = m in (12) and equating to (13), we deduce that the mean observable m (satisfying 〈m| f 〉 = 〈 f 〉)

is the time-antisymmetric observable

m =
p − p

p + p
. (14)

Hence, the maximum normalized precision over all time-antisymmetric observables follows from the

Hilbert uncertainty principle (3):

npmax =

〈

p − p

p + p

〉

=
1

2

∑

ω

(p − p)2

p + p
. (15)

This exact bound can be written in terms of σ := ln p
p

as

npmax =

〈

tanh
σ

2

〉

. (16)

For a simple example of application, consider a stationary (Markovian or not) diffusive process (on a

continuous state space) over an infinitesimal time interval ∆t, where σ is itself very small with probability

one, due to continuity of trajectories. As a result, (16) yields pmax = 〈σ〉/2, since (8) gives npmax = pmax

plus O(∆t2) corrections. This shows that the celebrated entropy bound is tight in this case, as observed

already in [28]. Therefore, if one uses TURs in order to lower-bound entropy production on such a process,

the observation interval should be as small as possible [29].

Equation (15) clearly cancels when the probability measure is time-symmetric, p = p, and can be

loosened in terms of two different quantities that capture the gap separating p from p. First, the total

4
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variation distance, ranging between zero and one, d := 1
2

∑

ω|p − p|. Second, the Kullback–Leibler (KL)

divergence 〈σ〉. Rewriting (15) as npmax/d =
∑

ω(|p − p|/2d) tanh (|σ|/2), a convex combination of

positive values of the function tanh (concave on the positive values), we obtain the relaxed inequality

npmax � d tanh
〈σ〉

2d
, (17)

the main result of this section. As this expression is increasing in d, one can use the coarse bound d � 1 to

obtain npmax � tanh 〈σ〉
2

. Using (8), the latter reads in term of square-mean-to-variance ratio

pmax �
e〈σ〉 − 1

2
, (18)

a bound recently proposed under the name of General TUR [27, 31]. We underline that this result is valid

for arbitrary dynamics, such as non-Markovian and non-autonomous, for all time intervals T, and all

possible time-antisymmetric observables—not necessarily time-integrated ones. It is even valid for set of

paths of variable length, e.g., defined by a random stopping time. It is also valid for any notion of

‘time-reversal’ that is an involution of Ω. For example, if a path is defined as a discrete or continuous list of

‘states’, then the time-reversed path may be defined as the time-reversed list of the same states, or the

time-reversed list of conjugated states. Typically, in a model of an underdamped system we want to include

the speed or momentum as part of the state, and flip it as well as reversing the order of states when applying

time-reversal. All these choices for the time-reversal involution will yield mathematically valid inequalities,

but not all will carry the same physical meaning. For instance, it is only in the circumstances where the

detailed fluctuation relation holds [6] that 〈σ〉 is the physical entropy production associated with the

process (as discussed in [27]). One such circumstance is when the system is driven by a time-symmetric

protocol, and respects local detailed balance at all times. Outside these examples, 〈σ〉 is to be regarded as an

observable of interest, accessible in principle to the measurement, bearing no direct connection to

thermodynamics, yet useful as a bound on the fluctuations of time-antisymmetric observables such as total

displacement, etc. Note that some observables of practical interest, such as work or heat, are dependent on

the parameters of the protocol and therefore are time-antisymmetric if the time-varying protocol is itself

time-symmetric. Time-symmetric protocol is an assumption requested by [23, 27]. In the case of arbitrary

time-varying protocols, another notion of time-reversal is needed, which also reverses the protocol, in order

to include those observables of interest in the space of legitimate observables. This was first investigated in

[30] with a tailored large deviation argument and later in [31]. In appendix A we provide a formal

statement and a proof of the main result in [30] as a direct corollary of (18).

A slightly tighter bound than (18) (whose implicit expression appears in [32]) follows from replacing d

in (17) by an upper bound given in terms of 〈σ〉. Here we show how to obtain such bound on d exploiting

(17) itself in combination with the legitimate observable f = sgn(p − p). For the latter the normalized

precision np is d2 and (8) becomes

d2 � d tanh
〈σ〉

2d
, (19)

or

2d atanh d � 〈σ〉, (20)

which allows to find the bound d � d∗(〈σ〉) where the right-hand-side is defined by

2d∗ atanh d∗
= 〈σ〉. (21)

Injecting this bound on d into (8), we obtain

npmax � d∗ tanh
〈σ〉

2d∗
= d∗(〈σ〉)2, (22)

a tighter bound than (18) , which was obtained from the trivial bound d � 1 (see figure 2 for a comparison

of the two bounds). Remarkably, this is the tightest bound obtainable from the sole knowledge of 〈σ〉 as the

following argument proves. We split Ω into Ω0 and Ω0. On both parts we take a uniform probability

distribution, so that the total probability of Ω0 is p0 � 1/2. With this choice we obtain

(2p0 − 1) ln p0
1−p0

= 〈σ〉. One sees that the total variation distance is precisely d = 2p0 − 1, so that

d = tanh(〈σ〉/2d). Hence, the bound is matched with equality.

As a minimal example of physical system reaching the bound, consider the deterministic, reversible

dynamics of a single particle moving in one spatial (linear or angular) dimension in absence of external

forces. The probability for the particle to have started with positive (resp. negative) velocity is p0 (resp.

1 − p0). Since the dynamics does not alter this probability, we have that at any time the average velocity is

5
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Figure 2. Ratio between the best bound on precision p obtained from the knowledge of 〈σ〉 alone, (22), and the bound (18).
Inset: the bound (17) with d = d∗(〈σ〉) given by (21), i.e. (22) (solid), and with d = 1 (dashed).

2p0 − 1, the second moment equals 1, so that np = (2p0 − 1)2 = d2 and the bound (22) is saturated. This is

also an example where σ is well-defined but may not coincide with the physical entropy production.

For 〈σ〉 ≫ 1, or equivalently 1 − d∗ ≪ 1, the asymptotic expression of (22) gives the novel bound

pmax � e〈σ〉/4 for 〈σ〉 ≫ 1. (23)

To obtain it we expand d∗ = tanh 〈σ〉
2d∗

≈ 1 − 2e−
〈σ〉
d∗ ≈ 1 − 2e−〈σ〉. The latter step stems from d∗ ≈ 1 but

requires some care in the error analysis, in particular it requires to show that (1 − d∗)〈σ〉 ≪ 1. Plugging d∗

into (22) and using the relation p = np/(1 − np), we obtain (10), confirming the numerical observation in

figure 2.

Again, (23) is reached for the deterministic one-dimensional system above, with 1 − p0 ≪ 1.

4. The periodic uncertainty relation

We come back to the general setting of (2.2), i.e. a physical system with stochastic dynamics, for an arbitrary

class of legitimate observables f. We introduce progressively the assumptions of Markovianity on the path

level, then periodicity, and finally the construction of a state space and state observables (as for now we have

only considered path observables). This will lead us to the central result of this paper, the periodic

uncertainty relation. Roughly speaking, it states that if the gradient-like observables (obtained as the

gradient of a state observable) are legitimate, then the precision reachable over N periods (for any N > 1) is

less than N times the precision reachable over a single period:

pmax(Ω)

N
� pmax(Ωi). (24)

We then show how all the results about periodic continuous-time or discrete-time Markov chains derived in

the literature for various classes of observables from various arguments can be immediately derived from

our periodic uncertainty relation.

4.1. Time-summed observables

We first set up the most appropriate formalism to describe time-summed observables. We decompose the

configuration space Ω as a Cartesian product Ω0 × Ω1 × . . .ΩN−1, so that a global configuration ω is seen

as the concatenation of N ‘local’ configurations ω0,ω1, . . . ,ωN−1. Although the formalism applies in

principle to any sort of configurations (for instance spin configurations), having in mind the application to

the thermodynamic uncertainty relations, from now on we refer to ωi as the ‘local path’, of duration ∆t,

and to ω and as the ‘global path’ of duration N∆t.

The global probability measure p(ω) on Ω naturally projects into marginal probability measures pi(ωi)

on each Ωi, and into marginal pairwise probability measures pji(ωj,ωi) on each pair Ωj × Ωi. The so-called

time-summed observables on Ω are those of the form f =
∑N−1

i=0 fi, where fi(ωi) is an observable on Ωi. We

take the legitimate observables on Ω as those time-summed observables f such that each fi is locally

legitimate, i.e. belongs to the space Fi of legitimate observables on Ωi. The mean of a time-summed

observable is the sum of local means 〈 f 〉 =
∑

i〈 fi〉i. The mean product of two such observables g =
∑

j gj

and f =
∑

i fi can be written in terms of scalar products on each Ωj,

〈g| f 〉 =
∑

i,j

∑

ωi,ωj

gjpjifi =
∑

i,j

〈gj|Pi|jfi〉j. (25)

6
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Here, we decomposed pji as pjpi|j, with pi|j(ωj, .) the conditional probability measure on Ωi given ωj, and

wrote
∑

ωi
pi|jfi = Pi|jfi to emphasize that it maps an observable on Ωi to an observable on Ωj through a

linear conditional mean operator Pi|j. If the local paths spaces Ωi and Ωj are discrete then we can understand

fi as a column vector indexed by the elements of Ωi and Pi|j as a transition matrix whose entries are

pi|j(ωj,ωi) and rows sum to one; in this intepretation Pi|jfi is a usual matrix-vector multiplication. Note that

even if fi is legitimate, i.e. belongs to Fi, the conditional mean observable Pi|jfi may be an arbitrary

square-integrable observable on Ωj, not necessarily legitimate. Observe that Pj|i = P∗
i|j, where ∗ denotes the

adjunction of linear operators between the Hilbert spaces L2(Ωi) and L2(Ωj) equipped with their respective

scalar products.

4.2. Periodic Markovian processes

We now specialize the computation of (25) introducing first the assumption of Markovian dynamics, and

later of periodic dynamics. Assuming that the sequence ω0, . . . ,ωN−1 is a Markov chain implies that

Pi|j = Pi|kPk|j for any i < k < j, and also for any j < k < i, which is known as Chapman–Kolmogorov’s

equation. Moreover, assume that the dynamics is periodic of period ∆t, which means that all Ωi can be

taken identical with identical marginals pi = pj, the joint measures pji only depend on the difference i − j,

and the spaces of legitimate observables are identical as well, Fi = Fj. Then, it is enough to consider

P := Pj+1|j, from which we compute any Pi|j as Pi−j if i � j, and (P∗)j−i if i � j, where P∗ is the adjoint of P

for the scalar product 〈.|.〉j over Ωj. Note that P is the usual transition matrix appearing in the master

equation associated to the discrete-step Markov chain ω0, . . . ,ωN−1, as we may write the propagation of

transient probability measures as

p(ωj+1) =
∑

ωj

p(ωj)P(ωj,ωj+1). (26)

In this equation, intepreted in matrix notation, the probability measures p(ωj+1) and p(ωj+1) appear as row

vectors.

Nevertheless, as we assume periodicity, i.e. stationarity of this Markov chain of local paths ω0, . . . ,ωN−1,

the master equation (26) is of little use here, except to notice that p(ωj) must be the dominant

left-eigenvector of P, of eigenvalue 1. The viewpoint explicited above, and used in (25), sees P as describing

the propagation of the conditional mean of an observable instead of the transient probability measures: this

is the ‘Heisenberg viewpoint’ dual to the master equation.

From the knowledge of P we can compute the mean product of any two time-summed observables

g = g0 + · · ·+ gN−1 and f = f0 + · · ·+ fN−1 over an arbitrary number N of intervals, as given by (25),

which now becomes

〈g| f 〉 =
∑

i

〈gi| fi〉i +
∑

i,j:i>j

〈gj|P
i−jfi〉j +

∑

i,j:i<j

〈gj|(P∗)j−ifi〉j (27)

or, equivalently:

〈g| f 〉 =
∑

i

〈gi| fi〉i +
∑

i,j:i>j

〈(P∗)i−jgj| fi〉i +
∑

i,j:i<j

〈Pj−igj| fi〉i. (28)

To proceed, we exploit Markovianity and periodicity further, as they imply the possibility to define a

concept of ‘state space’ to the Markov chain. This state space is such that to a path ωi we can associate a

source state s(ωi) and a target state t(ωi), with the properties that s(ωi+1) = t(ωi) and that ωi, ωi+1 are

independent given the state t(ωi). With the knowledge of the probability measure on the paths, one can

always build in principle (albeit in a non-unique way) a notion of state complying with these properties, as

being a sufficient statistics of the past for the future and conversely [36, 37]. In most applications, the

reverse situation occurs, where a natural notion of state is given, from which a notion of path is built as a

(discrete or continuous) list of successive states. Once a state space X is fixed, together with the source map s

and target map t, one may endow a probability measure on X as p(x) =
∑

t(ωi)=xp(ωi) =
∑

s(ωi+1)=xp(ωi+1).

From this we define a Hilbert space of square-summable real observables L2(X) on the state space X, with

scalar product denoted 〈·|·〉.

We now have natural linear mappings between the path observables and the state observables. In

particular given an observable fi(ωi), we denote Sfi the mean of fi knowing the source state. In other words,

(Sfi)(x) =
∑

ωi:s(ωi)=x

p(ωi)

p(x)
fi(ωi).

In other terms, we can write the operator S as a matrix whose entry S(x,ωi) is p(ωi)/p(x) if x = s(ωi) and 0

otherwise.

7
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The adjoint operator S∗ is even simpler to express. It lifts a state observable to a path observable: if h(x)

is a state observable, then (S∗h)(ωi) = h(s(ωi)). If we think of S∗ as a matrix (with rows indexed by paths

and columns indexed by states), its entry S∗(ωi, x) is 1 if s(ωi) = x and 0 otherwise: we see here that S∗ is the

‘source incidence matrix’, a binary matrix relating each path with its source. This is observed by writing

down the identity defining S∗, namely 〈S∗h| fi〉 = 〈h|Sf 〉X for all state observables h and all path observables

fi.

Similar considerations apply for T, the target conditional mean operator, and T∗, the ‘target incidence

matrix’. A trivial observation is that S1 = T1 = 1: the constant unit path-observable is mapped to the

constant unit state-observable. Another observation is that SS∗ = TT∗ = IdX, the identity on L2(X).

Moreover, we have P = T∗S and P∗ = S∗T.

4.3. Graph-theoretic interpretation and gradient-like observables

First we draw attention to a graph-theoretic interpretation of T∗ − S∗: in matrix terms, each row

corresponds to a path ωi, with a −1 in the column corresponding to state s(ωi), a +1 in the column

corresponding to state t(ωi), and zero entries otherwise. In other words it is the usual incidence matrix of

the graph whose nodes are states and edges are paths of length ∆t.

Defining a state observable h : X → R, we can derive a corresponding ‘gradient-like’ observable along

(local) paths, denoted ∆h, as the increment of h along the path:

∆h(ωi) = h(t(ωi)) − h(s(ωi)). (29)

One can write compactly ∆h = (T∗ − S∗)h. Therefore the space of gradient-like observables is the image

space of the incidence matrix T∗ − S∗. It can also be characterized as the observable that sum to zero over

each cycle of the graph (‘no curl’). Gradient-like observables have zero mean value, 〈∆h〉 = 0, which

directly follows from (29) and stationarity (which states that source and target of a random path are

identically distributed). In the Hilbert space formalism, we can also write:

〈∆h〉 = 〈1|∆h〉i = 〈1|(T∗ − S∗)h〉i = 〈(T − S)1|h〉X = 0.

If gradient-like observables are legitimate, it implies that their mean can be computed with any

averaging observable Mi of the space of legitimate observables:

0 = 〈∆h〉 = 〈Mi|∆h〉i = 〈Mi|(T∗ − S∗)h〉i = 〈(T − S)Mi|h〉X.

In particular, if every gradient-like observable is legitimate then we conclude that SMi = TMi for every

averaging observable of the legitimate space. In particular, we then have

Smi = Tmi (30)

for the legitimate averaging observable m: the mean value of m along a path knowing that its source is x

equals the mean value of m along a path knowing that its target is x, for every state x. This condition is

helpful in the proof of the periodic uncertainty relation as we see next.

Examples of gradient-like observables along a path include work of a conservative force (if the states of

the Markov chain represent the states of a physical system and the state observable h is the potential energy)

and displacement (if states of the Markov chain are each associated to a unique spatial position of the

system, which is the state observable).

4.4. The periodic uncertainty relation: statement of the main result

We are finally in the position to state the periodic uncertainty relation.

We assume that over a single period of a periodic Markovian system the gradient-like observables are

legitimate (or even more generally, the averaging observable mi satisfies (30)). Then the precision that can

be achieved over N periods, divided by N, is less than the precision that can be achieved in a single period,

equation (24).

This is our most general statement of the periodic uncertainty relation. After the proof, we specialize it

to antisymmetric observables, and to time-summed observables supported by the transitions of continuous

time Markov chain.

4.5. The periodic uncertainty relation: proof

We prove the periodic uncertainty relation using the mapping between trajectories and state space. Under

the assumptions introduced in the previous subsections suppose that for a certain space of legitimate

observables on Ωi, we find a zero-mean averaging observable Mi, i.e. checking 〈Mi| fi〉i = 〈 fi〉 for every

8
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legitimate observable fi. We now introduce the crucial assumption that Mi is such that SMi = TMi. Then it

is easily checked with the identities derived at the end of section 4.2 that PP∗Mi = PMi and P∗PMi = P∗Mi.

Let us get back to the computation of 〈g| f 〉, for g = g0 + · · ·+ gN−1 and f = f0 + · · ·+ fN−1. Recall

from (28) that the total contribution of fi in this sum is

〈Pig0 + Pi−1g1 + · · ·+ Pgi−1 + gi + (P∗)gi+1 + · · ·+ (P∗)N−i−2gN−2 + (P∗)N−i−1gN−1| fi〉i. (31)

Assume that we take g0 = Mi and g1 = . . . = gN−1 = (Id − P)Mi. Then the contribution of fi to 〈g| f 〉

reduces to 〈Mi| fi〉i (using among others the fact that P∗(Id − P)Mi = 0). Thus g is a zero-mean averaging

observable over Ω, as 〈g| f 〉 =
∑

i〈Mi| fi〉i = 〈 f 〉 for every legitimate f. Therefore the precision over the N

periods is bounded by 〈g|g〉, which develops as

pmax � 〈Mi|Mi〉i + (N − 1)〈(Id − P)Mi|(Id − P)Mi〉i

= N〈Mi|Mi〉i − (N − 1)〈PMi|PMi〉i (32)

� N〈Mi|Mi〉i (33)

using 〈PMi|PMi〉i = 〈Mi|P
∗PMi〉i = 〈Mi|P

∗Mi〉i = 〈PMi|Mi〉i = 〈Mi|PMi〉i. Therefore, 〈Mi|Mi〉i is not only

a bound on the precision over one period but also a bound over the precision over N periods, if scaled with

a factor N. In particular, if the legitimate averaging observable mi satisfies

Smi = Tmi, (34)

then the observable Mi given by (4) also satisfies SMi = TMi. Moreover 〈Mi|Mi〉i = pmax(Ωi). Equation (34)

states the equivalence of conditioning the average of m over the initial or the final state. In particular this is

true when all gradient-like observables are legitimate, as stated in section 4.3. This concludes the proof of

the periodic uncertainty relation, as stated above.

4.6. The periodic uncertainty relation for time-antisymmetric observables

In this section assume that the legitimate observables over one period Ωi are the time-antisymmetric

observables, fi(ωi) = −fi(ωi), for some definition time-reversal, i.e. any involutive symmetry of Ωi. We also

assume that the path on a period (which up to now has been defined as an element of some arbitrary

abstract space Ωi, from which we can derive a source state and a target state) is a discrete or continuous

sequence of states of a Markov process, and the time-reversal simply consists in taking this sequence in

reverse order. This is the case when the Markov process models an overdamped system, fully described at all

times by ‘even’ quantities, not changing sign under time reversal.

In this framework, it is clear that gradient-like observables are legitimate, as they are

time-antisymmetric. Indeed, time-reversal of a path swaps source and targets, thus changes the sign of ∆h

in (29). Note that this does not hold in general for underdamped process, where the time-reversal of a path

running from x to y is not a path from y to x, but a path between a different pair of states (typically

obtained from y and x by ‘flipping momenta’).

Alternatively we can prove directly that (30) holds for the legitimate averaging observable mi defined by

(14) in the following way. It is enough to show that S(1 − mi) = T(1 − mi), since S1 = T1. But

1 − mi =
p

p+p
, thus S(1 − mi) evaluated at state x reads

S(1 − mi) =
1

p(x)

∑

ωi:s(ωi)=x

p(ωi)p(ωi)

p(ωi) + p(ωi)
. (35)

As this expression is symmetric for time-reversal, this is also T(1 − mi) evaluated at state x. It is essential for

the proof above that state x has an even parity under time reversal. Namely, quantities like momenta are

excluded as in overdamped systems.

Therefore we can apply the periodic uncertainty relation (24).

In particular, applying (18) to a single period, we find that the precision of N periods is bounded by

pmax(Ω)

N
�

e〈σi〉 − 1

2
, (36)

where 〈σi〉 is now the Kullback–Leibler divergence over a single interval. This is valid for arbitrary protocols

(being understood that 〈σi〉 is not necessarily the entropy production). This includes in particular the result

in [23] as a limit case N →∞, which was proved originally by large deviation techniques, for overdamped

systems under time-symmetric protocols.

This includes the discrete-time stationary Markov chain case, where ∆t = 1. The continuous-time

stationary Markov chain case is obtained as the limit ∆t → 0. This is further discussed in section 5 below.
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4.7. The activity bound as a periodic uncertainty relation

Finally, we used the above results to prove the activity bound [35]: the precision of an observable that is the

weighted sum of the transitions undergone by a finite-state continuous time Markov chain during an

arbitrary time interval is bounded by the mean number of transitions over that same interval.

In the first step, we find the maximum precision over a short time interval ∆t. Over such an interval, we

consider that zero or one transition takes place, as multiple transitions are extremely unlikely in such a

short time. The legitimate observables are those that take zero value over constant paths (where zero

transitions occur).

Let us first consider a general setting (absolutely no assumption on Ω). When the legitimate observables

are defined as those that take zero value on a given subset Ωz, we find that the legitimate averaging

observable m is the function that takes zero value on Ωz and unit value on Ω\Ωz. Therefore the maximum

normalized precision is 〈m|m〉 = 1 − p(Ωz) and the maximum precision is p(Ωz)−1 − 1.

Coming back to the case of stationary finite state Markov chains over a short time interval ∆t, we take

Ωz as the constant paths, and mi assigns a unit weight to all transitions. The normalized precision 1 − p(Ωz)

is the probability of a transition, which is also the mean number of transitions over ∆t. This is proportional

to ∆t, and also equal in the first order to the the maximum precision (as second moment and variance

differ by an order of ∆t2).

Now, gradient-like observable are clearly legitimate, as they take zero value on constant paths

(alternatively, we can also check that (34) is satisfied, as the left-hand side now computes the probability

flow leaving a state, and the right-hand side computes the probability flow entering a state). Therefore the

periodic uncertainty principle applies, and the precision available over any time interval is no larger than

the expected number of transitions: this is the activity bound.

5. Time anti-symmetric observables of stationary Markov processes

In the case of stationary (jump or diffusive) processes over a total time interval [0, tf ], the period is

infinitesimal, ∆t = tf/N → 0, and so is 〈σi〉. Then (36) reduces to

pmax

tf

�
〈σi〉

2∆t
=:

〈σ̇〉

2
, (37)

with 〈σ̇〉 the mean entropy production rate. Hence, we recover the entropy bound for arbitrary time

intervals, previously proved with information-theoretic means [24].

Beyond recovering these results with a unified method, we can derive far sharper bounds. In particular,

as already mentioned in section 4.7, for a stationary continuous-time Markov process precision and

normalized precision over an infinitesimal time interval ∆t coincide. So, in view of (15), the precision over

a time interval tf = N∆t is bounded by

pmax

tf

�
1

∆t

∑

e

(pe − pe)
2

pe + pe

(38)

where pe is the probability of a transition along a path e relating a source state s(e) to a target state t(e) over

an infinitesimal time interval ∆t. The flow is defined as je := pe/∆t. In a finite state jump process, e is a

transition between two different states, and je factors as ps(e)we for stationary state probability ps(e) and

jumping rate we. We know that (38) can be relaxed to pmax/tf � (d/∆t) tanh (〈σ〉/2d) with

d = 1
2

∑

e|pe − pe|. We obtain in particular the simple and novel bound,

pmax

tf

�
d

∆t
=

1

2

∑

e

|je − je| (39)

which we call the absolute current bound, valid for all stationary (jump or diffusion) Markov processes.

In the case of finite state jump processes, it is evidently tighter than the activity bound,

pmax

tf

�
1

2

∑

e

( je + je). (40)

As we have seen in section 4.7 this last bound applies to all time-summed observables taking non-zero

values only on the transitions (thus zero values on the constant paths), without any request of

time-antisymmetry [35], as a direct consequence of the periodic uncertainty relation.

Note that the mean entropy production rate in (37) when written in terms of the forward flow je and the

backward one je reads 〈σ̇〉 = 1
2

∑

e( je − je) ln je
je

. Therefore, (37), (39) and (40) require the same amount of

10
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Figure 3. Precision p (solid) for the kinesin displacement along the microtubule. Comparison with the absolute current bound
(39) (dashed), the activity bound (40) (dotted), and the entropy production bound (37) (dash-dotted). From panel a) to d) the
ATP concentration grows as [ATP] = 1, 10, 102, 103 μM.

information of the microscopic dynamics to be computed, namely, knowledge of je and je on each

edge.

6. Example

We illustrate the different bounds for stationary Markovian dynamics on a benchmark example [35] which

provides a minimal model for the molecular motor kinesin moving under load along a microtubule.

Kinesin is either in a low energy state (1) with both heads on the microtubule or in a high energy state (2)

with only one head attached. Transitions from state 1 to state 2 happen with or without ATP consumption,

and cause both forward and backward motion along the microtubule (with half step size ℓ ≃ 4 nm). Each

of these four transitions e = 1, . . . , 4 out of each state x = 1, 2 (making eight possible transitions) has an

associated rate wxe, given by [33, 34]:

w11 = ωe−ǫ+θ+a f , w22 = ωe−θ−
b

f ,

w12 = ω′e−ǫ−θ−a f , w22 = ω′eθ
+

b
f ,

w13 = αe−ǫ+θ+a f k0[ATP] , w23 = αe−θ−
b

f ,

w14 = α′e−ǫ−θ−a f k0[ATP] , w24 = α′eθ
+

b
f .

The control parameters are the ATP concentration, [ATP], and the external loading force F < 0, with

f = Fℓ/(kBT) being its associated dimensionless work along the length ℓ. Typical ranges for in vitro

experiments are 1μM � [ATP] � 103 μM and 1 pN � |F| � 10 pN. Other parameters encode kinetic

details. The constants ω,ω′,α,α′ are the bare rates for the two (forward and backward) pathways

corresponding to ATP hydrolysis and thermal activation, and θ±a,b are loading factors accounting for

different repartition of the force F among the transitions. All these parameters are chosen as in [33, 35], i.e.

extracted from fits of experimental velocity data.

Note that in this case displacement is not a gradient-like observable, because each state of the Markov

process is not associated with a single position of the kinesin.

In figure 3 we plot p for the displacement (analytically obtained in appendix C) and the various bounds.

We see that our simpler novel bound (39) outperforms the activity bound and entropy production bounds

without requiring further information.
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7. Conclusions

The general approach here introduced solely exploits the properties of the Hilbert space of observables and

the presence of a (broken) involutive symmetry. Therefore, it is not restricted to trajectories of random

systems endowed with some notion of time-reversal symmetry. Rather, Ω can be, e.g., the configuration

space of a classical or quantum system and the involution may be parity, charge conjugation, spin reversal,

etc.

For example, imagine a classical Ising system of n spins si, in an external magnetic field h, equilibrated at

inverse temperature β. The Gibbs probability measure is thus

p({si}) ∝ e−β[H0({si})−hM], (41)

where H0({si}) = H0({−si}) is the interaction Hamiltonian and M =
∑n

i=1 si is the system magnetization.

If we consider spin reversal si = −si, entailing the legitimate observables f({si}) = −f({−si}), then (18) is

an upper bound on the precision of, e.g. the magnetization, taking the form (see with [39])

〈M〉2

VarM
�

eβh〈M〉 − 1

2
. (42)

Beyond the classical case, it is also evident that the same Hilbert uncertainty principle apply to the

quantum case. The spin system is then characterized by a density matrix ρ rather than a probability

measure, and the mean and second moment of an observable f (now a Hermitian matrix) are computed as

the trace of ρf and ρff∗ respectively. Now for any subspace of legitimate observables, one may again find an

appropriate maximum precision. Further examples may arise from broken symmetries of order larger than

2 (for example spatial rotational or translational symmetries) or in case of spontaneously broken symmetries

emerging in the thermodynamic limit. We leave these exciting opportunities of generalization for future

investigations.
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Appendix A. Bound for arbitrary time-varying protocols

Here, we tackle the case a random system subject to arbitrary time-varying protocols. In this case some

meaningful observables, such as work and heat, are not time-antisymmetric in the naive sense of

time-reversal as reading the list of states in reverse order, because work and heat depend on the parameters

of the time-varying protocol.

For this reason, we consider the auxiliary configuration space Ω = Ωforw × Ωback, which is the space of

all pairs of paths (ω,ω′), endowed with the direct product measure p(ω,ω′) = pforw(ω)pback(ω′). Here

pforw(ω) evaluates the probability of ω in the forward protocol, and pback(ω′) is the probability computed in

the time-reversed protocol.

On Ω we consider the involution (ω,ω′) �→ (ω′,ω). In other words the involution reverses and swaps the

paths. We consider the legitimate observables on Ω as those that take the form F(ω,ω′) = f(ω) + f ′(ω′) and

are antisymmetric for the involution, which is equivalent to the identity f (ω) = −f ′(ω). One checks that

protocol-dependent thermodynamic variables, such as heat are indeed anti-symmetric for this involution,

where in this case f (resp., f ′) denotes the heat exchanged along the path as computed from the forward

(resp., backward) protocol.

We can now apply the bound (18) of the main text, only with the linear form 〈 f 〉 occurring in (2) now

being the sum 〈 f 〉 = 〈 f 〉forw + 〈 f ′〉backw of means according to the forward and backward protocol

(similarly for the variance). Moreover, 〈σ〉 turns out to be

〈σ〉 =

〈

ln
pforw

pback

〉

forw

+

〈

ln
pback

pforw

〉

back

.

In this way we retrieve the recent result of [30], which is there derived with a large deviation argument. We

refer to that paper for a discussion on the meaning and importance of this bound.
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Appendix B. Computing the variance of a time-summed observable in a stationary
finite-state continuous-time Markov chain

We indicate here how to evaluate numerically the variance and covariances of observables for a stationary

ergodic finite-state Markov chain over asymptotically large time intervals. This is useful to evaluate the

variance of the displacement observable in the kinesin model, as we show in the next section. A

continuous-time Markov chain is often represented by a master equation, or Kolmogorov forward equation,

computing the evolution of a transient probability towards stationarity:

ṗ(y) =
∑

x

p(x)L(x, y), or ṗ = pL (B.1)

in matrix notation, where p is a row vector and L is the Laplacian matrix encoding the rates: L(x, y) = wx→y,

the rate at which the Markov chain, in state y, transitions to another state x. The diagonal entry is picked so

that every row sums to zero: L(x, x) = −
∑

y �=x wx→y, to ensure preservation of total probability. To make

an explicit link with the periodic case exposed above, we take Ωi as the space of paths of some arbitrary

duration ∆t. It is then useful to write the discrete-time master equation which propagates the state over an

interval ∆t:

pt+∆t = pte
∆tL.

As we already observed in last section, the master equation is of little use for a stationary Markov chain,

and we prefer the observable viewpoint. Given a state observable h, assigning value h(x) on each state x,

then e∆tLh is a state observable assigning to each x the mean value of h at time t +∆t knowing that the

state at time t is x. The mean value at time t given the state at time t +∆t is encoded in the state observable

e∆tL∗h. Here L∗ denotes the adjoint of L under the natural scalar product on states, which is defined

elementwise with (L∗)(x, y) = p(y)
p(x)

L(y, x). In the same way that the path-to-path operator P factorizes as

P = T∗S, the state-to-state operator factorizes as e∆tL = ST∗. Therefore for k > 0, we can write

Pk = T∗e(k−1)∆tLS.

We now consider 〈g| f 〉 in the case where all fi are zero-mean and identical to one another, and all gj are

zero-mean and identical to one another. In this case, (31) provides the scaling of the covariance 〈g| f 〉 with

N:

lim
N→∞

〈g| f 〉

N
= 〈(

∑

k>0

Pk
+
∑

k>0

(P∗)k
+ Id)gi| fi〉i

We can rewrite
∑

k>0Pkgi = T∗(Id − e∆tL)−1Sgi which in the limit of short time intervals gives
∑

k>0Pkgi = −T∗(∆tL)−1Sgi. Note that the inversion of the non-invertible matrix L is not problematic for

an ergodic Markov chain, because L is then invertible on the subspace of zero-mean state observables, such

as Sgi. In the limit of short times, it is convenient to consider a time horizon tf , with N = tf/∆t, and then

take tf →∞, as we are interested in asymptotically large times.

lim
tf→∞

〈g| f 〉

tf

= ∆t−1〈(−T∗(∆tL)−1S − S∗(∆tL∗)−1T + Id)gi| fi〉i

This expression can be processed further by expressing 〈T∗(∆tL)−1Sgi| fi〉i as the state-space scalar product

∆t−1〈L−1Sgi|Tfi〉X , and similarly for 〈S∗(∆tL∗)−1Tgi| fi〉i. Overall, the covariance for asymptotically large

times is

lim
tf→∞

〈g| f 〉

tf

= −∆t−2〈L−1Sgi|Tfi〉X −∆t−2〈L−1Tgi|Sfi〉X +∆t−1〈gi| fi〉i. (B.2)

which is the main result of this section.

If we want to evaluate the covariance of non-zero-mean observables, then we may first center the

observable by removing the mean.

Appendix C. The kinesin model: analytic calculation of the variance

We are interested in computing the variance of the displacement for arbitrarily large times. For that purpose

we use (B.3) for fi = gi encoding the centered displacement on each path over an infinitesimal time ∆t. The

displacement is ±1 on each proper transition, and zero on each constant path (∆t is short enough to ignore

multiple transitions). The mean displacement 〈 fi〉 is proportional to ∆t, therefore the centered

displacement on each transition can still be taken to ±ℓ up to a negligible transition, and is set to −〈 fi〉 on
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both constant paths. The mean displacement over ∆t conditioned on the initial state x = 1, 2 is

Sfi =

(

∆t c1 − 〈 fi〉

−∆t c2 − 〈 fi〉

)

, (C.1)

where 〈 fi〉 = ∆t[c1p(1) − c2p(2)], cx = ℓ
∑4

e=1 (−1)e−1kxe. The stationary probabilities read

p(1) = a2/(a1 + a2) and p(2) = 1 − p(1) = a1/(a1 + a2). The mean displacement over ∆t conditioned on

the final state x = 1, 2 is

Tfi =

(

−∆tc2p(2)/p(1) − 〈 fi〉

∆tc1p(1)/p(2) − 〈 fi〉

)

(C.2)

while the Laplacian is

L =

(

−a1 a1

a2 −a2

)

, (C.3)

where ax =
∑4

e=1 wxe. Therefore the two state-space products are

− 2∆t−2〈L−1Sfi|Tfi〉X = −
[a1(c1 − 〈 fi〉) + a2(c2 + 〈 fi〉)][p(1)(c1 + 〈 fi〉) + p(2)(c2 − 〈 fi〉)]

a2
1 + a2

2

(C.4)

while the path-space scalar product is

∆t−1〈 fi| fi〉i = ℓ2(p(1)a1 + p(2)a2) = ℓ2 a1a2

a1 + a2

. (C.5)

Summing together (C.4) and (C.5) we obtain the variance of the displacement.

We checked these results by relying on the large deviation approach [38]. The scaled cumulant

generating function of any observable f is found by ‘tilting’ the stochastic matrix L by vxe(q) = eqfxe into

Lf (q) =

⎛

⎜

⎜

⎝

−
∑

j

k1e

∑

e

k1ev1e(q)

∑

j

k2ev2e(q) −
∑

j

k2e

⎞

⎟

⎟

⎠

, (C.6)

and looking for its leading eigenvalue g(q), i.e. the one satisfying g(0) = 0. In (C.6), fxe defines the

observable f. For example, the dynamical activity is obtained for fxe = 1∀x, e, while the motor displacement

for f1e = −f2e, and f1e = ∆(−∆) with e odd (even). The (scaled) mean and variance of f are calculated as

〈 f 〉 = ∂qg|q=0 and Varf /tf = ∂2
q g|q=0, respectively.
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