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We show that the time-dependent variational principle provides a unifying framework for time-evolution

methods and optimisation methods in the context of matrix product states. In particular, we introduce a

new integration scheme for studying time-evolution, which can cope with arbitrary Hamiltonians, includ-

ing those with long-range interactions. Rather than a Suzuki-Trotter splitting of the Hamiltonian, which

is the idea behind the adaptive time-dependent density matrix renormalization group method or time-

evolving block decimation, our method is based on splitting the projector onto the matrix product state

tangent space as it appears in the Dirac-Frenkel time-dependent variational principle. We discuss how the

resulting algorithm resembles the density matrix renormalization group (DMRG) algorithm for finding

ground states so closely that it can be implemented by changing just a few lines of code and it inher-

its the same stability and efficiency. In particular, our method is compatible with any Hamiltonian for

which DMRG can be implemented efficiently and DMRG is obtained as a special case of imaginary time

evolution with infinite time step.

Tensor network states, and in particular matrix prod-

uct states (MPS) [1–4], have become increasingly popular

and successful for the description of strongly interacting

quantum many body systems. While originating from the

efficient and robust density matrix renormalization group

(DMRG) algorithm [5, 6] for finding ground states of one-

dimensional (and quasi two-dimensional) spin systems, an

undeniable influence for this success has also been the abil-

ity to accurately study dynamical properties using time-

evolution methods such as the time-evolving block decima-

tion (TEBD) method [7–9]. The reformulation of DMRG

in terms of MPS [2, 11–13] has been of key importance

in this development. Being able to probe and understand

quantum dynamics is becoming increasingly valuable for

experiments at low temperature or high energy, or for the-

oretical questions such as thermalization. Nevertheless,

quantum dynamics is mostly inaccessible to alternative

methods such as Monte Carlo sampling of the partition

function.

The key ingredient of TEBD-based methods is a Lie-

Trotter-Suzuki [14, 15] splitting of the Schrödinger equa-

tion according to the individual terms ĥi of the Hamilto-

nian Ĥ =
∑

i ĥi. When these terms are local, they can

be applied efficiently and the tensor network can be up-

dated accordingly. The resulting increase of the virtual di-

mensions of the tensors can be countered by a subsequent

truncation step, although the growth of entanglement en-

tropy under time evolution indicates that a net increase of

the dimensions is inevitable if an accurate description is re-

quired. Unfortunately, the TEBD idea is not applicable to

long-range interactions, which appear when using MPS for

quasi-2D systems or quantum chemistry applications.

An alternative idea for time evolution, the Dirac-Frenkel

time-dependent variational principle (TDVP), was formu-

lated only recently for the variational class of MPS [16, 17].

The key ingredient is to project the right hand side of the

Schrödinger equation, Ĥ |Ψ〉, onto the tangent space, so

that the evolution never leaves the manifold. This approach

is independent of the Hamiltonian and can be implemented

efficiently for long-range Hamiltonians. The TDVP equa-

tions define a simultaneous update for all MPS tensors and,

as a consequence thereof, its original implementation de-

pends on inverses of matrices conditioned by the Schmidt

coefficients, similar to the original TEBD implementation.

This results in the paradoxical situation that the stability of

this method deteriorates as the approximation of the exact

state (corresponding to the value of the smallest Schmidt

coefficient) is improved. More concretely, the TDVP equa-

tions suffer from what is known as stiffness in the nu-

merical analysis literature [18] and this results in a severe

stepsize restriction when using standard explicit time inte-

grators. Furthermore, the TDVP algorithm has so far not

gained widespread acceptance and was in fact criticised to

be complex and distinct from DMRG-inspired algorithms

in Ref. 19, where another algorithm for time-evolution with

long-range interactions is proposed, based on an approxi-

mation of the evolution operator in terms of a matrix prod-

uct operator (MPO) [20, 21].

This Letter overcomes such criticism by presenting an

alternative integration scheme for the TDVP equations for

finite MPS, based on a Lie-Trotter splitting of the tangent

space projector. The resulting algorithm resembles DMRG

so closely that it can be obtained by merely modifying 2

lines of code, and the one-site DMRG method is obtained

as special case of imaginary time evolution. In particu-

lar, this time evolution algorithm is compatible with any

Hamiltonian for which ground state DMRG can be exe-

cuted efficiently, e.g. long-range Hamiltonians which are
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written in the form of MPOs. We then discuss how to

implement a 2-site scheme that allows to dynamically in-

crease the bond dimension. We also relate our approach to

the more conventional time-dependent DMRG or TEBD

methods, which are restricted to local (typically nearest

neighbor) interactions. The resulting ideas will also be rel-

evant for continuous MPS (cMPS) [22, 23], which seem in-

compatible with traditional DMRG- and TEBD-based ap-

proaches.

We define a matrix product state (MPS) with open

boundary conditions, also known as a tensor train [24] in

the numerical mathematics community, as

|ψ[A]〉 =
d∑

{sn}=1

As1(1)As2(2) · · ·AsN (N) |s1s2 . . . sN〉

where we used square brackets [] to denote the dependence

on a set of site-dependent matrices As(n) having site-

dependent dimensions Dn−1 × Dn. As the whole matrix

product has to evaluate to a scalar, we haveD0 = DN = 1.

A possible site-dependence for the dimension d of the lo-

cal Hilbert space is not explicitly denoted for the sake of

brevity. To introduce the required concepts, we first sum-

marize the finite-size DMRG method algorithm in the MPS

framework and refer to Fig. 1 and the excellent review of

Ref. 13 for further details.

A key ingredient is the observation that the physical

state |Ψ[A]〉 is unchanged under the gauge transformation

As(n) 7→ As
G(n) = G(n− 1)−1As(n)G(n). This gauge

freedom can be used to impose certain canonical formats

on the MPS representation, in terms of left-orthonormal

matrices As
L(n) or right-orthonormal matrices As

R(n) [see

Fig. 1(b-e)]. The stability of finite MPS methods orig-

inates from the fact that we can transform the original

tensors As(n) into e.g. the left orthornormal representa-

tion without explicit computation of the inverses G(n)−1.

Starting from C(0) = 1, an orthogonal factorization [e.g.

QR-decomposition] allows to write C(n − 1)As(n) =
As

L(n)C(n). The final C(N) is a scalar representing the

norm of the state, and can be discarded. If the original MPS

was already in the right canonical form, the singular values

of C(n) correspond to the Schmidt coefficients of |Ψ〉 for

a bipartition of the lattice in [1 : n] and [n+1 : N ]. Defin-

ing the one-site center blockAs
C(n) = C(n−1)As

R(n) =
As

L(n)C(n) allows to write the state in the mixed canoni-

cal form [see also Fig. 1(g)]

|Ψ〉 =
∑

α,sn,β

[Asn
C (n)]α,β |Φ

[1:n−1]
L,α 〉 |sn〉 |Φ

[n+1:N ]
R,β 〉 (1)

where new states |Φ[1:n−1]
L,α 〉 (|Φ[n+1:N ]

R,β 〉) constitute an or-

thonormal basis for the left (right) block of the lattice.

The one-site DMRG method in MPS language [13],

where a single tensor is optimized, corresponds to an alter-

nating least squares optimization for a homogeneous prob-

lem and typically results in a generalized eigenvalue prob-

lem. By gauging the MPS such that the current tensor being

optimized is the center site As
C(n), this is transformed into

a standard eigenvalue problem with an effective one-site

Hamiltonian H(n) defined in Fig. 2(a). The matrix vector

product of H(n) can be computed efficiently for typical

physical Hamiltonians having either short-ranged interac-

tions or an MPO form, so that an iterative eigensolver can

be used. After updating As
C(n) as the lowest eigenvec-

tor of H(n), one performs the orthogonal factorization to

shift the center site to the left or right, so that the next ten-

sor can be optimized. Reaching one end of the chain, one

can then sweep back, so that every orthogonalization step is

immediately followed by an optimization step. For further

reference, we also define a zero-site effective Hamiltonian

K(n) [see Fig. 2(b)] for the degrees of freedom C(n) on

the virtual bond between sites n and n+ 1, as in [see also

Fig. 1(h)]

|Ψ〉 =
∑

α,β

[C(n)]α,β |Φ
[1:n]
L,α 〉 |Φ[n+1:N ]

R,β 〉 . (2)

Geometrically, the TDVP corresponds to an orthogonal

projection of the evolution vector of the Schrödinger equa-

tion (−iH |Ψ〉) onto the tangent space of the MPS mani-

fold MMPS at the current state

d |Ψ(A)〉

dt
= −iP̂T|Ψ(A)〉MMPS

Ĥ |Ψ(A)〉 (3)

which has the required effect that the time-evolving state

will never leave the MPS manifold and can thus be de-

scribed by time-evolving parameters as |Ψ(A(t))〉. The

TDVP [Eq. (3)] is a complicated set of non-linear equations

for all degrees of freedom in the MPS. The algorithm pre-

sented in Ref. 16 used the explicit Euler integration scheme

to simultaneously update all parameters, which was only

possible by using explicit inverses of matrices containing

very small singular values. However, it is a straightfor-

ward calculation [see Ref. 25 and supplementary material]

to show that the tangent space projector P̂T|Ψ(A)〉MMPS
satis-

fies

N∑

n=1

P̂
[1:n−1]
L ⊗1̂n⊗P̂

[n+1:N ]
R −

N−1∑

n=1

P̂
[1:n]
L ⊗P̂ [n+1:N ]

R (4)

where P̂
[1:n]
L =

∑D
α=1 |Φ

[1:n]
L,α 〉 〈Φ[1:n]

L,α | and P̂
[n:N ]
R =

∑D
β=1 |Φ

[n:N ]
R,β 〉 〈Φ[n:N ]

R,β |. These operators are independent

of the unitary freedom that remains in the definition of

|Φ[1:n]
L,α 〉 and |Φ[n:N ]

R,β 〉 and correspond to orthogonal projec-

tor onto the support of the reduced density matrix ρ of the

state |Ψ[A]〉 in the corresponding regions; see also Fig. 3.

The new insight is that every single term out of Eq. (4)

can be integrated exactly [25]. For example, using the sin-

gle projector P̂
[1:n−1]
L ⊗ 1̂n⊗ P̂

[n+1:N ]
R and writing |Ψ[A]〉

as in Eq. (1) with center site n, the exact solution can be

obtained by only making AC(n) time-dependent and let-

ting it satisfy ȦC(n, t) = −iH(n)AC(n, t) where a bold

notation is used for the vector representation of AC(n).
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|Ψ[A]i =

=

=

site n AC(n)

C(n)

α β

| {z }

|Φ
[n+1:N]
R,β

i

| {z }

|Φ
[1:n−1]
L,α

i

α β

s

[As]α,β =

(a)

α β

s

[As
L]α,β =

(b)

α β

s

[As
R]α,β =

(c)

=

(d)

=

(e)

(f)

(g)

(h)

Figure 1. An arbitrary MPS tensor is represented as a shape with fat legs corresponding to the virtual indices of dimension D and

a normal leg corresponding to the physical index of dimension d (a). The left-orthonormal [right-orthonormal] MPS tensors are

represented using triangles (b) [(c)] and satisfies the condition (d) [(e)]. An MPS |Ψ[A]〉 using general tensors (f) can be brought into a

mixed-canonical form with a one-site center AC(n) at site n (g) or even a zero-site center C(n) (h), whose singular values correspond

to the Schmidt coefficients of the state.

Ĥ=H(n) = H(n)(a) K(n)(b)

Figure 2. (a) One-site effective Hamiltonian H(n). (b) Similarly, one can define a zero-site effective Hamiltonian K(n) which can

easily be computed from H(n).

N
X

n=1

H(n)
−

N−1
X

n=1

K(n)

Figure 3. Right-hand side (up to the factor −i) of the TDVP equation [Eq. (3)].

We can thus explicitly integrate this differential equation

by only making AC(n) time dependent as

AC(n, t) = exp
[

− iH(n)t
]

AC(n, 0). (5)

Similarly, a projector term of the form −P̂
[1:n]
L ⊗ P̂

[n+1:N ]
R

can be integrated explicitly by writing the |Ψ〉 as in Eq. (2)

and making C(n) time-dependent as

C(n, t) = exp
[

+ iK(n)t
]

C(n, 0). (6)

Note that opposite sign in the exponentials of Eq. (5) and

Eq. (6). The evolution of C in Eq. (6) can be interpreted as

an evolution backwards in time. Similar to the eigenvalue

problem in DMRG, both Eq. (5) and (6) can be integrated

using an iterative Lanczos scheme [26] in order to keep the

computational cost at O(D3), but this is a well-controlled

approximation for which the error can be made arbitrarily

small. We refer to Ref. 27 for estimators for the error re-

sulting from the Lanczos exponentiation.

For this type of differential equation consisting of a sum

of integrable parts, it is very natural to use a Lie-Trotter

splitting approach [14, 27, 28], where one evolves accord-

ing to each integrable part for a small time ∆t. There is a

natural order similar to the DRMG sweep, which optimizes

the computational overhead (and results in robustness in

the case of overapproximation [25]). For a right orthog-

onal MPS, start at n = 1 and repeat the following steps:

Evolve AC(n) according Eq. (5) for a time step ∆t. Fac-

torize the updated As
C(n) = As

L(n)C(n). Evolve C(n)
backwards in time according to Eq. (6) before absorbing it

into the next site to create As
C(n+1) = C(n)As

R(n+1).
Having a Lanczos routine for computing the matrix ex-

ponential acting on a vector (e.g. Ref. 29), this algorithm

differs from one-site DMRG by replacing the optimization

step for AC(n) (eigenvalue solver) with the evolution step,

and by adding an extra evolution step for C(n) before ab-

sorbing it at the next site. Completing a single left-to-right

sweep is a first-order integrator that produces an updated

|Ψ〉 at time t + ∆t with a local integration error of order

O(∆t2). Completing the right-to-left sweep is equivalent

to composing this integrator with its adjoint, resulting in
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a second-order symmetric method [30] so that the state at

time t+2∆t has a more favourable error of order O(∆t3).
It is thus natural to set ∆t→ ∆t/2 and to define the com-

plete sweep (left and right) as a single integration step. It

is also possible to obtain higher order integrators by ap-

plying composition schemes to this symmetric integrator

[28]. Note that the finite time step errors refer to errors

with respect to the exact solution of the TDVP differential

equation. The error with respect to the original Schrödinger

equation also receives a contribution from the discrepancy

between the TDVP evolution and the Schrödinger evolu-

tion. As explained in Ref. 27, this source of error can be

bound in terms of ‖(1̂− P̂T|Ψ[A]〉MMPS
)Ĥ |Ψ[A]〉‖, a quan-

tity that can easily be evaluated [31].

This integration scheme contains evolution for the 1-

site and 0-site center blocks AC(n) and C(n) according

to the respective effective Hamiltonian matrices H(n) or

K(n), which are Hermitian. Therefore, the resulting evo-

lution will have exact norm and energy conservation (in

case of a time-independent Hamiltonian). This integration

scheme can also be combined with imaginary time evolu-

tion t 7→ −iτ , e.g. for constructing (purifications of) ther-

mal states or for finding ground states. In the latter case,

the goal is not to accurately capture the full evolution and

the scheme can be varied [32]. In the particular case of

∆τ → ∞, the evolution of AC(n) will actually force it to

be the lowest eigenvector of H(n), exactly as in the opti-

mization step of the one-site DMRG algorithm. One can

check that the resulting C(n) is then an exact eigenstate of

K(n), so that its backwards evolution has no further effect.

Hence, this method becomes identical to 1-site DMRG.

To implement 2-site algorithms in this framework,

the tangent space projector in Eq. (3) has to be

replaced by a projector onto the linear space of

2-site variations, which is spanned by the states
∑N−1

n=1

∑d
{sn}=1A

s1(1) · · ·Asn−1(n − 1)Bsnsn+1(n :

n + 1)Asn+2(n + 2) · · ·AsN (N) |s1 . . . sn . . . sN〉. It is

now tempting to propose the following 2-site integration

scheme: evolve a 2-site center block AC(n : n + 1) ac-

cording to its effective Hamiltonian H(n : n + 1), fac-

tor it into A
sn,sn+1

C (n : n + 1) → Asn
L (n)A

sn+1

C (n + 1)
and evolve A

sn+1

C (n + 1) backwards in time according

to H(n + 1) before absorbing it in the next 2-site block

A
sn+1

C (n+1)A
sn+2

C (n+2) → A
sn+1,sn+2

C (n+1 : n+2).
We validate this approach in the supplementary material.

Every 2-site block that is factored can increase the local

bond dimension. This requires a local truncation based

on the singular values in every step or a global approx-

imation with the best MPS with smaller bond dimen-

sions at the end of the sweep [8]. It is straightforward

to show that imaginary time evolution with a time step

∆τ → ∞ gives rise to 2-site DMRG. The TEBD algo-

rithm also fits in this framework, by observing that for

nearest-neighbor interactions, the evolution vector Ĥ |Ψ〉
fits exactly in the space of 2-site variations (no projection

Figure 4. Absolute value of 〈Ψ0|U
†σx

r (t)U |Ψ0〉−〈Ψ0|σ
x
r (t)|Ψ0〉

with H the XY Hamiltonian in Eq. (7), |Ψ0〉 the ground state of H
and U = exp(iσy

51π/4) on a chain of N = 101 spins, as function

of r and t for various values of α.

is necessary) by choosing e.g. Bsn,sn+1(n : n + 1) =
∑

tn,tn+1
〈sn, sn+1|ĥn,n+1|tn, tn+1〉A

tn(n)Atn+1(n+ 1)
and using a Trotter splitting based on these terms. The rep-

resentation Bsn,sn+1(n : n + 1) is however non-unique,

and our algorithm based on splitting the projector (even

when it acts trivially) gives rise to a slightly different

scheme. The error analysis of the 2-site algorithms is more

complicated and is discussed in more detail in the supple-

mentary material.

As an application, we study a one-dimensional model

with power-law decay of interactions. There is recently a

strong interest in such models as they can be realized in ex-

periments with ultra-cold matter, and it is thus actively in-

vestigated in what regimes they still exhibit a light cone and

what the corresponding shape of that light cone is [33, 34].

We consider the particular case of the XY model, given by

the Hamiltonian

H =
1

2

N∑

i<j=1

J

|i− j|α
(
σx
i σ

x
j + σy

i σ
y
j

)
(7)

on a finite chain ofN sites with open boundary conditions.

This Hamiltonian was recently realized in an experiment

with trapped 171Yb+
ions [35].

In Ref. 34, the time dependent expectation value σx
r (t)

was compared between a fully polarized product state

|Ψ0〉 = ⊗n |↑〉n and the perturbed state U |Ψ0〉 with

U = exp(iπσy
0/4) as function of r and t for various values

α > 1. For this choice of |Ψ0〉, the quantum many body

problem can be reduced to a single particule problem. In

accordance with the general result of that paper, there is a

light cone and the leakage outside the light cone contains a

contribution with exponential decay that is determined by

the nearest neighbor interactions and is thus independent

of α, as well as a contribution with power law decay that

dominates at larger distances. We repeat this set-up but

using the fully correlated ground state of H as |Ψ0〉, ap-

proximated as MPS. We simulate the time evolution with
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our 2-site integrator using a 4th order composition method

using a time step dt = 0.02/J for an open chain with

N = 101 sites (Fig. 4). The long-range interactions of the

Hamiltonian were approximated by an MPO with a maxi-

mal absolute error smaller than 10−8. We also consider a

value of α = 0.75 < 1, for which the results from Ref. 34

are not applicable. For α > 1, we observe a light cone and

the leakage outside is in perfect agreement with the theo-

retical predictions of Ref. 34. The light cone itself seems

to be linear for α = 3.0 and α = 6.0, but the shape is less

clear for α = 1.5. For α = 0.75 there is no sharp wave

front but it still seems to take a finite amount of time to

signal over a finite distance, up to power law corrections.

In conclusion, we have formulated a time integration

scheme for the TDVP in the context of MPS, which is

based on a Trotter decomposition of the tangent space pro-

jector rather than the Hamiltonian terms. This allows to

simulate time evolution using an algorithm that is remark-

ably similar to DMRG and can deal with arbitrary long-

range Hamiltonians. This approach will also be relevant for

formulating new algorithms to deal with continuous MPS

[22, 23], where algorithms based on a Trotter decomposi-

tion of the Hamiltonian terms are not applicable.
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SUPPLEMENTARY MATERIAL FOR

“UNIFYING TIME EVOLUTION AND OPTIMIZATION WITH MATRIX PRODUCT STATES”

Derivation of the tangent space projector

To derive the main result of this paper, we have to introduce some further notation. We repeat the definition of a general

matrix product state with open boundary conditions, given by

|ψ[A]〉 =
d∑

{sn}=1

As1(1)As2(2) · · ·AsN (N) |s1s2 . . . sN〉 . (8)

If we want to compute expectation values without bringing the MPS in a specific format, we can first define the sets

of site-dependent Dn × Dn density matrices l(n) and r(n) (with n = 0, . . . , N ) for the auxiliary system through

l(0) = 1 = r(N) and

l(n) =
d∑

s=1

(As(n))†l(n− 1)As(n), (9)

r(n) =
d∑

s=1

As(n+ 1)r(n+ 1)(As(n+ 1))†. (10)

The norm of the state is then given by r(0) = l(N) = (l(n)|r(n)) = (l(n−1)|EA(n)
A(n)|r(n)), which we require to be one.

Here, we represented the left and right density matrices asD2-dimensional bra and ket vectors with round brackets via the

Choi-Jamiołkowski isomorphism [1–4], and introduced the notation E
A
B =

∑d
s=1A

s ⊗ B
s
. For a left-canonical [right-

canonical] MPS, where all the tensors are left orthonormalized [right orthonormalized], the left density matrices l(n)
[right density matrices r(n)] would be identity matrices. The matrices C(n) that allow to go from one canonical form to

the other according toAs
L(n)C(n) = C(n−1)As

R(n) can be used to compute the right density matrices r(n) for the left-

canonical form as r(n) = C(n)C(n)†, or the left density matrices for the right-canonical form as l(n) = C(n)†C(n).
The eigenvalues of the density matrices are thus related to the square of the Schmidt coefficients.

To introduce the MPS tangent space, it is required that the set of MPS constitutes a smooth manifold. It was indeed

established that the set of full rank MPS —meaning that all density matrices l(n) and r(n) as defined in the main text have

full rank— constitute a smooth manifold in Ref. 5 and 6 (for real-valued MPS with open boundary conditions) and in Ref. 7

(for complex-valued finite MPS with open boundary conditions and uniform MPS with periodic boundary conditions or

in the thermodynamic limit). Finite MPS for which some l(n) and/or r(n) don’t have full rank, or uniform MPS which

are not injective, correspond to singular points where the tangent space is not well defined. We briefly elaborate on this

in the sections on the 2-site integrators. In the proofs of Refs. 6? , the mapping between the MPS parameters (the site

dependent tensors A(n) ∈ C
Dn−1×d×Dn) and the state |Ψ[A]〉 is identified as a principal fiber bundle, resulting from the

gauge redundancy of MPS as discussed in the main text.

The MPS tangent T|Ψ[A]〉MMPS space is spanned by the partial derivatives of |Ψ[A]〉 with respect to all entriesAs
α,β(n)

for every site n = 1, . . . , N . We now denote a general variation as Bi with a collective index i = (α, s, β, n), such that

the most general MPS tangen vector can be written as

Bi |∂iψ〉 =
N∑

n=1

d∑

{sn}=1

As1(1) · · ·Bsn(n) · · ·AsN (N) |s1 . . . sn . . . sN〉 . (11)

The gauge redundancy of the MPS parameterization reflects itself in tangent space by the fact that not all linearly inde-

pendent choicesBi produce independent tangent vectorsBi |∂iΨ[A]〉, i.e. the basis of partial derivatives is overcomplete.

Put differently, the linear map from the parameters Bi to the states Bi |∂iΨ[A]〉 has a non-trivial kernel. In partic-

ular, the space of infinitesimal gauge transformations (also known as the vertical subspace) Bs(n) = N s[X](n) =
X(n − 1)As(n) − As(n)X(n) with X(n) ∈ C

Dn×Dn result in Bi |∂iψ(A)〉 = 0, as can easily be checked by explicit

insertion. Finding a unique parameterization for every tangent vector is equivalent to specifying a complement of the

vertical subspace (the so-called horizontal subspace), for which there is no unique prescription. Within the framework of

principal fibre bundles, a natural way to define the horizontal subspace is via a principal bundle connection. We simply

refer to the result as a gauge fixing prescription for the tangent vectors and present two possible choices. One can describe

any tangent vector by a parameterization B that satisfies the ‘left gauge fixing condition’

(l(n− 1)|EB(n)
A(n) = 0, ∀n = 1, . . . , N − 1 (12)
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or alternatively the ‘right gauge fixing condition’

E
B(n)
A(n)|r(n)) = 0, ∀n = 2, . . . , N. (13)

That these two gauge fixing conditions are related to a principal bundle connection implies that they transform covariantly

under gauge transformations on the original MPS. If we transform As(n) → As
G(n) = G(n − 1)−1As(n)G(n) then

Bs(n) has to follow the identical transformation law to Bs
G(n) = G(n − 1)−1Bs(n)G(n) in order to still satisfy the

same gauge fixing condition. Extending the left gauge fixing condition to n = N or the right gauge fixing condition to

n = 1 is equivalent to restricting to those variations of |Ψ[A]〉 that preserve norm and phase, i.e. those tangent vectors

which are orthogonal to |Ψ[A]〉. In combination with the left, respectively right orthonormal form for the MPS tensors,

these gauge fixing conditions express that the orthonormality constraint is preserved to first order.

To derive the inverse-free action of the tangent space projector, we now switch to a different representation of tangent

vectors, given by

|Θ[B]〉 =
N∑

n=1

d∑

{sn}=1

As1
L (1) · · ·Asn−1

L (n− 1)Bsn(n)A
sn+1

R (n+ 1) · · ·AsN
R (N) |s1 . . . sn . . . sN〉 .

=
N∑

n=1

∑

{α,β,sn}

Bsn
α,β(n) |Φ

[1:n−1]
L,α 〉 |sn〉 |Φ

[n+1:N ]
R,β 〉

(14)

It is clear how this representation can be obtained from Eq. (11) by applying left orthonormalization and right orthonor-

malization in every term separately, and absorbing the resulting factors in the new definition of Bsn(n). In this new

representation, however, there is no easy way to relate B to the basis of partial derivatives. The vertical subspace is now

given by choicesBs(n) = N s[X](n) = X(n−1)As
R(n)−A

s
L(n)X(n) and allows to impose e.g. the ‘left gauge fixing

condition’
∑

sA
s
L(n)B

s(n) = 0, ∀n = 1, . . . , N − 1. This ensures that the overlap of two tangent vectors only contains

diagonal contributions, as in

〈Θ[B1]|Θ[B2]〉 =
N∑

n=1

∑

sn

tr
[
Bsn

1 (n)†Bsn
2 (n)

]
. (15)

This corresponds to the standard Euclidean inner product and thus to the choice of an orthonormal basis. Note that

imposing the ‘left gauge fixing condition‘ is essential, since the basis composed of the states
{

|Φ[1:n−1]
L,α 〉 |sn〉 |Φ

[n+1:N ]
R,β 〉 , ∀α, β, sn, ∀n = 1, . . . , N

}

might seem orthonormal at first, but is not (consider the overlap between two states for different n) and is in fact overcom-

plete.

Let us now discuss action of the tangent space projector PT|Ψ[A]〉MMPS
onto an arbitrary vector |Ξ〉 in the Hilbert space

H. The resulting vector PT|Ψ[A]〉MMPS
|Ξ〉 should be an element of the tangent space T|Ψ[A]〉MMPS

of the manifold MMPS of

MPS at the base point |Ψ[A]〉. It can thus be represented in the form |Θ[B]〉. The standard Euclidean inner product of H

guarantees that the equation |Θ[B]〉 = PT|Ψ[A]〉MMPS
|Ξ〉 is also a solution of

min
B

‖|Θ[B]〉 − |Ξ〉‖2. (16)

We can reformulate the minimization problem of Eq. (16) as

min
B

N∑

n=1

∑

s

[
Bs(n)Bs(n)† −Bs(n)F s(n)† − F s(n)Bs(n)†

]

together with the constraints
∑

s

As
L(n)

†Bs(n) = 0, ∀n = 1, . . . , N − 1.

The tensor F (n) can easily be read from omitting tensor B(n) in the overlap between the nth term of Eq. (14) and the

general state |Ξ〉, and corresponds to the overlap with the basis vectors

F sn
α,β(n) = 〈Φ[1:n−1]

L,α , sn,Φ
[n+1:N ]
R,β |Ξ〉 . (17)
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The solution to this constrained optimization problem is given by

Bs(n) =
∑

t

(δs,t −As
L(n)A

t
L(n)

†)F t(n)

for all n = 1, . . . , N − 1, where first factor is a projector that imposes the left-gauge fixing condition. Tensor B(N) is

not subject to any constraint and is given by Bs(N) = F s(N). For n = 1, . . . , N − 1, we also introduce the notation

G(n) =
∑

tA
t
L(n)

†F t(n), or thus

Gα,β(n) = 〈Φ[1:n]
L,α ,Φ

[n+1:N ]
R,β |Ξ〉 , (18)

so that we can rewrite Bs(n) = F s(n)−As
L(n)G(n). Inserting this solution into |Θ[B]〉 gives immediate rise to

|Θ[B]〉 = PT|Ψ[A]〉MMPS
|Ξ〉 =

(
N∑

n=1

P̂
[1:n−1]
L ⊗ 1̂n ⊗ P̂

[n+1:N ]
R −

N−1∑

n=1

P̂
[1:n]
L ⊗ P̂

[n+1:N ]
R

)

|Ξ〉 (19)

where we can recognise the contents of the brackets as the decomposition of the tangent space projector into a sum of

orthogonal projectors, where P̂
[1:n]
L and P̂

[n+1:N ]
R where defined in the main text.

This derivation differs from previous papers in using the new representation |Θ[B]〉. Previous implementations of the

TDVP required parameters that were directly defined with respect to the basis of partial derivatives |∂iΨ[A]〉, which then

specified how to update the parameters A in the time-evolution. For the new representation |Θ[B]〉, the parameters of B
cannot easily be related to basis of partial derivatives with respect to all parameters As(n), ∀n = 1, . . . , N . The splitting

scheme presented in the main text nevertheless allows us to update the MPS |Ψ〉 using this representation.

Full algorithm for the symmetric 1-site integrator

For completeness, and to indicate the strong similarity to a typical DMRG implementation, we here present the imple-

mentation of a full step of the symmetric 1-site integration scheme, which was presented in the main text and is based on

a Lie-Trotter splitting scheme according to the decomposition of the tangent space projector as discussed in the previous

section.

Algorithm 1 (1-site symmetric integration step) Starting from a right-orthonormal MPS parameterization

{AC(1, t), AR(2, t), . . . , AR(N, t)} for the state at time t, compute a right-orthonormal MPS parameterization

{AC(1, t+∆t), AR(2, t+∆t), . . . , AR(N, t+∆t)} for the state at time t+∆t by applying the following steps:

1. Repeat for n=1:N-1 # left-to-right sweep

(a) Evolve AC(n, t) forward in time according to

AC(n, t+∆t/2) = exp[−iH(n)∆t/2]AC(n, t)

where H(n) is computed using AL(1, t+∆t/2), . . . , AL(n− 1, t+∆t/2), AR(n+ 1, t), . . . , AR(N, t).

(b) Perform an orthogonal decomposition of AC(n, t+∆t/2) into AL(n, t+∆t/2) and C̃(n, t+∆t/2).

(c) Evolve C̃(n, t+∆t/2) backwards in time according to

C̃(n, t) = exp[+iK(n)∆t/2]C̃(n, t+∆t/2)

where K(n) is computed using AL(1, t+∆t/2),. . . ,AL(n, t+∆t/2), AR(n+ 1, t), . . . , AR(N, t).

(d) Absorb C̃(n, t) into AR(n+ 1, t) to obtain AC(n+ 1, t).

2. Evolve AC(N, t) forward in time according to

AC(N, t+∆t) = exp[−iH(N)∆t]AC(N, t)

where H(N) is computed using AL(1, t+∆t/2), . . . , AL(N − 1, t+∆t/2).

3. Repeat for n=N-1:-1:1 # right-to-left sweep

(a) Perform an orthogonal decomposition of AC(n+ 1, t+∆t) into C̃(n, t+∆t) and AR(n, t+∆t).
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(b) Evolve C̃(n, t+∆t) backwards in time according to

C̃(n, t+∆t/2) = exp[+iK(n)∆t/2]C̃(n, t+∆t)

whereK(n) is computed usingAL(1, t+∆t/2),. . . ,AL(n, t+∆t/2),AR(n+1, t+∆t), . . . ,AR(N, t+∆t).

(c) Absorb C̃(n, t+∆t/2) into AL(n, t+∆t/2) to obtain AC(n+ 1, t+∆t/2).

(d) Evolve AC(n, t+∆t/2) forward in time according to

AC(n, t+∆t) = exp[−iH(n)∆t/2]AC(n, t+∆t/2)

where H(n) is computed using AL(1, t + ∆t/2), . . . , AL(n − 1, t + ∆t/2), AR(n + 1, t + ∆t), . . . ,

AR(N, t+∆t).

Let us briefly elaborate on the philosophy behind this integration scheme. If we separate the evolution in step 2 into

two consecutive evolutions with time step ∆t/2, referred to as step 2(a) and 2(b) respectively, then one can recognize the

right-to-left sweep [step 2(b) and everything in step 3] as the adjoint method to the left-to-right sweep [everything in step

1 combined with step 2(a)]. For a general finite-step integrator I∆t with time step ∆t, the adjoint method I∗
∆t is defined

as the inverse map of I−∆t. The combined scheme I∗
∆t/2 ◦ I∆t/2 is symmetric by construction. If I∆t is a first order

integrator (meaning that the local error scales as O(∆t2), the combined scheme becomes second order. However, it is not

often the case that the adjoint method I∗ can exactly be evaluated. For example, the adjoint method of the explicit Euler

method is the implicit Euler method. That the adjoint method for the finite MPS integrator can be evaluated explicitly can

be traced back to the fact that the individual terms obtained from splitting the tangent space projector are exactly integrable.

The underlying reason for this is that the effective Hamiltonian H(n) [or C(n)] for the 1-site [or 0-site] center degrees

of freedom AC(n) [or C(n)] does not depend on these degrees of freedom, but only on the tensors on the neighbouring

sites, so that the differential equations corresponding to the individual terms are first-order linear differential equations.

Two-site integration scheme

For general variational manifold, the TDVP principle of projecting the evolution vector onto the tangent space is the

only strategy that ensures that the evolution can be described within the set of states that are assumed tractable, i.e. the

manifold itself. Matrix product states as variational ansatz are special in the sense that they have (a set of) refinement

parameters corresponding to the virtual dimensions. There is thus not a single variational manifold, but rather a hierarchy

of manifolds, where the ones with lower bond dimension actually correspond to the singular regions of the ones with

higher bond dimension. This raises the question whether we can generalize the ‘TDVP philosophy’ so as to obtain an

evolution within this hierarchy of states. From DMRG and TEBD, we know that such an evolution typically involves

acting on a center block of two sites. The two-site evolution will take the state out of the manifold of MPS with fixed bond

dimensions. While one typically truncates back to the original manifold, the advantage is that such an approach allows to

truncate to a different manifold with higher (or lower) bond dimension when this is still computationally feasible. For the

remainder, we assume that the truncation scheme is based on discarding singular values smaller than some tolerance level

ε. Unfortunately, such a strategy cannot easily be formulated as a differential equation, as it necessarily requires a finite

time step ∆t. We can nevertheless get inspired by the normal TDVP derivation.

We start by defining the linear space of two-site variations to the current MPS |Ψ[A]〉. This is the linear space contains

states of the form

N−1
∑

n=1

d
∑

{sn}=1

As1
L (1) · · ·Asn−1

L (n− 1)Bsnsn+1(n : n+ 1)A
sn+2

R (n+ 2) · · ·AsN
R (N) |s1 . . . sn . . . sN〉 . (20)

Let us call this space T
[2]
|Ψ[A]〉MMPS. Note that this notation should not be confused with the double tangent space, which

contains the span of all single-site variations on two arbitrary sites. As for the tangent space, the linear map from the

representation {Bs,t(n : n + 1);n = 1, . . . , N − 1} to the physical states in T
[2]
|Ψ[A]〉MMPS has a non-trivial kernel

corresponding to choices

Bs,t(n : n+ 1) = As
L(n)X

t(n+ 1)−Xs(n)At
R(n+ 1)

for any {X(n) ∈ C
Dn×d×Dn+1 , n = 2, . . . , N − 1}. This freedom allows to impose a gauge-fixing condition of the form

∑

s

As
L(n)

†Bs,t(n : n+ 1) = 0, ∀n = 1, . . . , N − 2. (21)
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The orthogonal projector P̂
T

[2]

|Ψ[A]〉
MMPS

that maps any state |Φ〉 ∈ H onto the subspace T
[2]
|Ψ[A]〉MMPS can then be con-

structed and decomposed —using manipulations similar to those of the previous subsection— as a sum of orthogonal

projections

P̂
T

[2]

|Ψ[AL]〉
MMPS

=
N−1
∑

n=1

P̂
[1:n−1]
L ⊗ 1̂n ⊗ 1̂n+1 ⊗ P̂

[n+2:N ]
R −

N−1
∑

n=2

P̂
[1:n−1]
L ⊗ 1̂n ⊗ P̂

[n+1:N ]
R (22)

In particular, when applying P̂
T

[2]

|Ψ[AL]〉
MMPS

onto Ĥ |Ψ[A]〉, one obtains

P̂
T

[2]

|Ψ[AL]〉
MMPS

Ĥ |Ψ[A]〉 =
N−1
∑

n=1

∑

α,β,sn,sn+1

B
snsn+1

α,β (n : n+ 1) |Φ[1:n−1]
L,α , sn, sn+1,Φ

[n+2:N ]
R,β 〉

−
N−1
∑

n=2

∑

α,β,sn,sn+1

Bsn
α,β(n) |Φ

[1:n−1]
L,α , sn,Φ

[n+2:N ]
R,β 〉

(23)

where B(n) = H(n)AC(n) and now also B(n : n+1) = H(n : n+1)AC(n : n+1), with H(n) and H(n : n+1)
the effective one-site and two-site Hamiltonians defined in the context of DMRG in the main text. This result justifies the

2-site integration scheme that was proposed in the main text.

The error analysis of this 2-site integrator is more complicated, as there does not exist an underlying differential equation

that describes the evolution projected down to T
[2]
|Ψ[AL]〉MMPS. With respect to the full Schrödinger equation, we except a

competition between the finite time step error, a truncation error ε, and a projection error that can be estimated in terms of

‖(1̂−P̂
T

[2]

|Ψ[AL]〉
MMPS

)Ĥ |Ψ[A]〉‖. Without truncation (ε = 0), one can easily verify that, after applying the complete sweep

(left-to-right and back) with a time step ∆t to an MPS |Ψ[A]〉, the original physical state |Ψ[A]〉 is obtained by reapplying

the scheme with a time step −∆t, although |Ψ[A]〉 will now be encoded as an MPS with a larger bond dimension (and

matrices l(n) or r(n) which don’t have full rank). Hence, without the truncation, the integrator is still symmetric and

one expects a finite time step error that scales as O(∆t4). This should still hold for ǫ > 0, since any error of lower

order in ∆t should scale at least proportional to ǫ and is thus negligible in comparison to the contribution of O(ǫ) that is

introduced by the truncation anyway. Instead of truncating after every step in the algorithm, we could also find the best

MPS approximation with lower bond dimension after a complete sweep without truncation [8].

In the case of a nearest neighbor Hamiltonian, the projector error is absent as the action of Ĥ on |Ψ[A]〉 is exactly

contained in T
[2]
|Ψ[AL]〉MMPS. It is then also possible to apply a Lie-Trotter splitting scheme to the individual terms in the

Hamiltonian. This is exactly the scheme that gives rise to the TEBD algorithm. In contrast, our scheme is based on the

splitting of the projector in Eq. (22) and can be applied to arbitrary Hamiltonians (for which H(n) and H(n : n + 1)
can be computed efficiently) with the same computational cost. The difference between both schemes can be related

to redundancy in the representation of states in T
[2]
|Ψ[AL]〉MMPS. In particular, by directly applying a nearest neighbor

Hamiltonian Ĥ =
∑N−1

n=1 ĥ(n : n + 1) to |Ψ[A]〉, one obtains a state of the form of Eq. (20) which is represented

by Bs1,s2(n : n + 1) =
∑

t1,t2
〈s1, s2|ĥ(n : n+ 1)|t1, t2〉A

s1(n)As2(n). This is different from the representation in

Eq. (23), even though both describe the same physical state Ĥ |Ψ[A]〉.
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