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SEMI-COERCIVE BEAM PROBLEM*
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Abstract. The mathematical model of a beam on a unilateral elastic subsoil of Winkler’s
type and with free ends is considered. Such a problem is non-linear and semi-coercive. The
additional assumptions on the beam load ensuring the problem solvability are formulated
and the existence, the uniqueness of the solution and the continuous dependence on the
data are proved. The cases for which the solutions need not be stable with respect to the
small changes of the load are described. The problem is approximated by the finite element
method and the relation between the original problem and the family of approximated
problems is analyzed. The error estimates are derived in dependence on the smoothness of
the solution, the load and the discretization parameter of the partition.
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1. Introduction

Linear models of beams and plates on elastic subsoil of Winkler’s type are used

in civil engineering and other mechanical applications. Some of them are described

in [3]. However, the models are not always suitable. For example, when the beam or

plate is only laid on the subsoil, then the subsoil is active only if the beam or plate

deflects against it. In such cases, non-linear models of the subsoil are more precise.

The non-linear ones have been studied in [7], [6] and [12]. Some related problems

were treated in [5].

In this article we shall study a one-dimensional model of a beam on a unilateral

elastic subsoil (see Fig. 1). A two-dimensional model of a thin plate has been studied

*This work was supported by the Academy of Sciences of the Czech Republic, Institutional
Research Plan No. AVOZ 30860518.
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in [7] and a one-dimensional rotary-symmetric model of a thin intercircular plate has

been considered in [12]. We will assume that the beam has free ends. Thus, the

problem of finding the beam deflection will be only semi-coercive. Therefore, the

solvability of the problem and the stability of the problem solution with respect to

small changes of data are dependent on the load, in particular on the load resultant

and “the balance point of the load”.

In Section 2, some preliminaries about function spaces, solvability of a minimiza-

tion problem and a numerical quadrature are summarized. In Section 3, we set the

problem and analyze the existence, the uniqueness and the continuous dependence on

data of the problem solution. In Section 4, we approximate the problem by the finite

element method, where the subsoil is replaced by insulated “springs”, and analyze

the relation between the original problem and the family of approximated problems.

2. Some preliminaries

2.1. Function spaces

In the paper we will use the Lebesgue spaces Lp(Ω), p = 1, 2, +∞, Sobolev spaces
W k,p(Ω), p = 1, 2, k = 0, 1, 2, 3, 4, and the spaces of continuously differentiable

functions Ck(Ω), where Ω is an open, bounded and non-empty interval in R
1. The

spaces are described in the book [1]. Their standard norms are denoted by ‖ · ‖p,Ω,

‖ · ‖k,p,Ω and ‖ · ‖Ck(Ω), respectively. The ith seminorm, i = 0, 1, . . . , k, of the

spaces W k,p(Ω) are denoted by | · |i,p,Ω. The spaces W k,2(Ω), which are also Hilbert

spaces, are denoted by Hk(Ω). The space of polynomials of the kth degree is denoted

by Pk.

Now, we summarize some useful properties of the Sobolev spaces W k,p(Ω). Their

proofs can be found for more general cases in the book [1].

Theorem 2.1 (The Sobolev Imbedding Theorem). Let Ω be a bounded non-

empty interval in R
1. Then the Sobolev space W k+1,p(Ω), p = 1, 2, k = 0, 1, . . .,

can be continuously imbedded into the space Ck(Ω), i.e. there exists a positive con-

stant cp,k such that

(2.1) ‖v‖Ck(Ω) 6 cp,k‖v‖k+1,p,Ω ∀ v ∈ W k+1,p(Ω).

In addition, the space Hk+1(Ω), k = 0, 1, . . ., can be continuously imbedded into the

space Ck,1/2(Ω), i.e.

(2.2) |v(k)(x) − v(k)(y)| 6 |v|k+1,2,Ω|x − y|1/2 ∀x, y ∈ Ω, ∀ v ∈ Hk+1(Ω),

where v(k) is the kth generalized derivative of the function v.
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Notice that the values v(i)(x), i = 0, 1, . . . k, are correctly defined for any x ∈ Ω and

v ∈ W k+1,p(Ω) in the sense of equivalence classes in the space W k+1,p(Ω). Except

for the parameters p, k, the constant cp,k in the estimate (2.1) depends only on the

length of the interval Ω.

Theorem 2.2 (The Rellich Theorem). Let {vn}+∞
n=1 be any sequence of functions

belonging to the space Hk+1(Ω) such that there exists a function v ∈ Hk+1(Ω),

vn ⇀ v in Hk+1(Ω). Then vn → v in Hk(Ω).

Lemma 2.1. Let {vn}+∞
n=1 be a bounded sequence of functions belonging to the

space Hk+1(Ω). Let

|vn|k+1,2,Ω → 0, n → +∞,

where | · |k+1,2 is the (k+1)st seminorm in Hk+1(Ω). Then there exist a subsequence

{vnj
}j ⊂ {vn}+∞

n=1 and a polynomial p ∈ Pk such that

vnj
→ p in Hk+1(Ω), j → +∞.

P r o o f. Since the sequence {vn}+∞
n=1 is bounded in Hk+1(Ω), there exist its

subsequence {vnj
}j and a function v ∈ Hk+1(Ω) such that vnj

⇀ v in Hk+1(Ω). By

Theorem 2.2, vnj
→ v in Hk(Ω). Then

‖vni
− vnj

‖k+1,2,Ω 6 |vni
− vnj

|k+1,2,Ω + ‖vni
− vnj

‖k,2,Ω

6 |vni
|k+1,2,Ω + |vnj

|k+1,2,Ω + ‖vni
− vnj

‖k,2,Ω

→ 0, i, j → +∞.

Hence, vnj
→ v also in Hk+1(Ω) and |v|k+1,2,Ω = 0. Therefore v = p ∈ Pk. �

Lemma 2.2 (Equivalent norms). Let ‖ · ‖k,2,Ω be the standard norm in the

Sobolev space Hk(Ω). Let Ωs ⊂ Ω be a non-empty open interval and define

[v]k,2,Ω := (|v|2k,2,Ω + |v|20,2,Ωs
)1/2, v ∈ Hk(Ω).

Then the formula [·]k,2,Ω is a norm in the space Hk(Ω) which is equivalent to the

standard norm, i.e. there exists a positive constant c such that

(2.3) c‖v‖k,2,Ω 6 [v]k,2,Ω 6 ‖v‖k,2,Ω ∀ v ∈ Hk(Ω).

The proof of Lemma 2.2 can be found for more general case in the book [9].
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Lemma 2.3. Let Ω be a bounded, non-empty interval in R
1 and let Ωh ⊂ Ω be

any interval whose length is h. Let k > 0 be an integer. Then there exists a positive

constant c = c(k, Ω) such that

(2.4) |v|k,2,Ωh
6 ch1/2‖v‖k+1,2,Ω ∀ v ∈ Hk+1(Ω).

P r o o f. By the well-known Mean Value Theorem and Theorem 2.1, there exists

ξ ∈ Ωh such that

|v|k,2,Ωh
=

(
∫

Ωh

(v(k)(x))2 dx

)1/2

= h1/2|v(k)(ξ)|

6 h1/2‖v‖Ck(Ω) 6 ch1/2‖v‖k+1,2,Ω, ∀ v ∈ Hk+1(Ω).

Since the constant c does not depend on the choice of Ωh, Lemma 2.3 is proven. �

Lemma 2.4. Let Ω be a non-empty interval in R
1 and u, v ∈ Hk(Ω). Then

uv ∈ W k,1(Ω) and there exists a positive constant c = c(k) such that

(2.5) ‖uv‖k,1,Ω 6 c‖u‖k,2,Ω‖v‖k,2,Ω ∀u, v ∈ Hk(Ω).

The proof is based on an application of the well-known Cauchy-Schwarz inequality.

Lemma 2.5. Let Ω be a bounded and non-empty interval in R1 and v ∈ H2(Ω).

Then the negative part

v−(x) := min{0, v(x)}, x ∈ Ω,

of the function v belongs to the space H1(Ω) and ‖v−‖1,2,Ω 6 ‖v‖1,2,Ω.

In addition, the following inequality holds:

(2.6) |u−(x) − v−(x)| 6 |u(x) − v(x)| ∀u, v ∈ C(Ω), ∀x ∈ Ω.

P r o o f. Let v ∈ H2(Ω). By Theorem 2.1 we can also assume that v ∈ C1(Ω).

Therefore the set

M := {x ∈ Ω: v(x) < 0}
can be expressed as a countable union of open intervals belonging to Ω. Thus the

first generalized derivative of v− can be defined in the following way:

(v−)′(x) :=

{

v′(x), x ∈ M,

0, x ∈ Ω \ M.

Since |(v−)′| 6 |v′| almost everywhere in Ω, we have ‖v−‖1,2,Ω 6 ‖v‖1,2,Ω.

350



The inequality (2.6) follows from the inequality

||s| − |t|| 6 |s − t| ∀ s, t ∈ R,

since s− = 1
2 (s − |s|) for any s ∈ R. �

2.2. Minimization of convex functionals

The main goal of the subsection is to formulate a solvability criterion of the min-

imization problem

find u ∈ V : J(u) 6 J(v) ∀ v ∈ V,

where V is a reflexive Banach space and J : V → R is a functional defined on V . We

summarize some basic results, which can be found for example in the book [4].

Theorem 2.3. Let J be a convex and Gâteaux differentiable1 functional on V .

Then a function u minimizes J in V if and only if

J ′(u; v) = 0 ∀ v ∈ V,

where the symbol J ′(u; v) denotes the Gâteaux differential at the point u and in the

direction v.

Theorem 2.4 (The fundamental theorem). Let J be a convex, coercive and

Gâteaux differentiable functional on the reflexive Banach space V . Then there exists

at least one element u minimizing J in the space V .

Lemma 2.6 (Criterion of convexity). Let J be a Gâteaux differentiable func-

tional on the space V . If the inequality

J ′(u; u − v) − J ′(v; u − v) > 0 ∀u, v ∈ V

holds, then the functional J is convex on V .

2.3. Numerical quadrature

Numerical quadrature will be used to approximate the problem, see Section 4.2.

In this subsection, we summarize some basic properties.

First, we define a numerical quadrature on the reference interval [−1, 1]. Let

ϕ̂ be any function belonging to W 1,1((−1, 1)) and let ŷi, i = 1, 2, . . . , m, be points

1 The definition of a Gâteaux differentiable functional can be found in [8] or [10].
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belonging to the interval [−1, 1]. Anm-points numerical quadrature of the function ϕ̂

with positive weights ω̂i has the form

(2.7)

∫ 1

−1

ϕ̂(ξ) dξ ≈
m

∑

i=1

ω̂iϕ̂(ŷi).

Note that the values ϕ̂(ŷi), i = 1, . . . , m, are correctly defined by Theorem 2.1.

We say that the reference numerical quadrature (2.7) is exact for polynomials of

the kth degree if
∫ 1

−1

p̂(ξ) dξ =
m

∑

i=1

ω̂ip̂(ŷi) ∀ p̂ ∈ Pk.

We will assume that the numerical quadrature is exact at least for polynomials of

the zeroth degree.

Secondly, we define a numerical quadrature on any interval [s, t] with the length

h := t − s > 0. Let ϕ be any function belonging to W 1,1((s, t)) and Φ the transfor-

mation of the interval [s, t] onto the interval [−1, 1] such that

(2.8) Φ(x) := ξ =
2

h
(x − s) − 1, x ∈ [s, t].

Since
∫ t

s

ϕ(x) dx =
h

2

∫ 1

−1

ϕ̂(ξ) dξ, ϕ̂(ξ) := ϕ(Φ−1(ξ)),

the numerical quadrature of ϕ corresponding to the numerical quadrature (2.7) has

the form

(2.9)

∫ t

s

ϕ(x) dx ≈
m

∑

i=1

ωiϕ(yi),

where yi := Φ−1(ŷi) = 1
2h(ŷi + 1) + s and ωi := 1

2hω̂i.

Clearly, if the numerical quadrature (2.7) is exact for polynomials of the kth degree

then the numerical quadrature (2.9) is also exact for polynomials of the kth degree.

Theorem 2.5. Let (s, t) be any interval with the length h := t − s > 0. If

the numerical quadrature (2.9) is exact for polynomials of the kth degree then there

exists a constant c > 0, independent of h, such that

(2.10)

∣

∣

∣

∣

∫ t

s

ϕ(x) dx −
m

∑

i=1

ωiϕ(yi)

∣

∣

∣

∣

6 chk+1|ϕ|k+1,1,(s,t) ∀ϕ ∈ W k+1,1((s, t)).

The proof can be found in the book [2].

352



3. Setting and analyzing the problem

The main goal of the section is to analyze solvability of the problem and its

continuous dependence on the data. First, we set the problem and its variational

formulation. Then, we derive necessary and sufficient conditions for the existence and

uniqueness of the problem solution, and finally we prove the continuous dependence

of the problem solutions on the data and consequently describe some situations for

which the solutions need not be stable with respect to a small change of the load.

Since we will mainly use the intervalΩ := (0, l) in the remaining parts of the paper,

we will denote the norms and seminorms of the Sobolev spacesHk(Ω), k = 0, 1, 2, 3, 4,

without the symbol Ω for this particular choice of the interval.

3.1. Setting of the problem

We consider a beam of the length l with free ends which is situated in the interval

Ω = (0, l), and assume that the beam is supported by a unilateral elastic subsoil in

the interval Ωs := (xl, xr), 0 6 xl < xr 6 l. Such subsoil is active only if the beam

deflects against it. Let E, I, q and f denote functions that represent, respectively,

Young’s modulus of the beam material, the inertia moment of the cross-section of

the beam, the stiffness coefficient of the subsoil and the beam load density. The aim

is to find the deflection ω of the axes of the beam caused by the beam load. The

situation is depicted in Fig. 1.

6

-

??????? ?

xl xr l

q

f

y

x
hh((hh((hh((hh

hh((hh((hh((hh
hh((hh((hh((hh

hh((hh((hh((hh
hh((hh((hh((hh

Figure 1. Scheme of the subsoiled beam with axes orientation.

If we assume that the functions E, I, q and f are sufficiently smooth, then we can

give (see [10] and [3]) the classical formulation of the problem:

(3.1)

{

(E(x)I(x)w′′(x))′′ + q(x)w−(x) = f(x), x ∈ Ω,

w′′(0) = w′′′(0) = w′′(l) = w′′′(l) = 0,

where q = 0 in Ω \ Ωs and

w−(x) := min{0, w(x)}, x ∈ Ωs,
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is the negative part of w. Thus, the formulation has the form of a non-linear differen-

tial equation of the fourth order with homogeneous Neumann boundary conditions.

In fact, the functions E, I, q and f need not be sufficiently smooth to use the

classical formulation. Therefore, we will work with the variational formulation of

the problem.

3.2. Variational formulation of the problem

We will assume that the functions E, I, q belong to the Lebesgue space L∞(Ω).

Then we can define forms

a(v1, v2) :=

∫

Ω

EIv′′1 v′′2 dx, and b(v1, v2) :=

∫

Ωs

qv1v2 dx, v1, v2 ∈ H2(Ω),

to represent the work of the inner forces and the subsoil, respectively. The forms a,

b are bilinear and bounded on the space H2(Ω) by Lemma 2.4.

From the mechanical point of view, we will also assume that there exist positive

constants E0, I0 and q0 such that

E(x) > E0, I(x) > I0, a.e. in Ω, and q(x) > q0 a.e. in Ωs.

Therefore, the following inequalities hold:

a(v, v) > E0I0|v|22,2 > 0 ∀ v ∈ H2(Ω),(3.2)

b(v−, v) = b(v−, v−) > q0|v−|20,2,Ωs
> 0 ∀ v ∈ L2(Ω),(3.3)

b(v−1 − v−2 , v1 − v2) > b(v−1 − v−2 , v−1 − v−2 ) > 0 ∀ v1, v2 ∈ L2(Ω).(3.4)

The load density can be expressed in the form

f = f1 + f2,

where f1 ∈ L1(Ω) and f2 represents the generalized forces, i.e.

f2 =
∑

y∈XP

Pyδy +
∑

y∈XM

Myδ
′
y,

where XP , XM are finite sets of points belonging to Ω, Py, My ∈ R, δy, δ′y denote

the Dirac distribution and its first generalized derivative at a point y, and Pyδy,

Myδ
′
y represent respectively the point load and the moment at a point y.

The space of all continuous and linear functionals defined onH2(Ω) will be denoted

by V ∗ and its corresponding norm by ‖ · ‖∗. The beam load will be represented by
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a functional L ∈ V ∗ in the form

L(v) := 〈f, v〉 =

∫

Ω

f1v dx +
∑

y∈XP

Pyv(y) +
∑

y∈XM

Myv
′(y),

where 〈·, ·〉 denotes the duality pairing on V ∗ × H2(Ω).

The total potential energy functional for the problem has the form

(3.5) J(v) :=
1

2

(

a(v, v) + b(v−, v−)
)

− L(v), v ∈ H2(Ω).

The variational formulation of the problem can be written as the minimization

problem

(P) find w ∈ H2(Ω): J(w) 6 J(v) ∀ v ∈ H2(Ω).

To analyze the problem (P), we derive some properties of the functional J .

Lemma 3.1. The functional J is Gâteaux differentiable and convex on the

space H2(Ω). Its Gâteaux derivative at any point w ∈ H2(Ω) and direction v ∈
H2(Ω) has the form

(3.6) J ′(w; v) = a(w, v) + b(w−, v) − L(v).

P r o o f. Let s, t be any real numbers. Then it can be easily shown that

lim
ε→0

[(s + εt)−]2 − [s−]2

ε
= 2s−t.

Hence

lim
ε→0

b
(

(w + εv)−, w + εv
)

− b(w−, w)

ε
= 2b(w−, v).

This easily implies the relation (3.6). Since J ′(w; ·) is a continuous linear functional
on H2(Ω) for any w ∈ H2(Ω), the functional J is Gâteaux differentiable on H2(Ω).

Since the relation (3.6) and the inequalities (2.3)–(2.4) imply

J ′(v1; v1 − v2) − J ′(v2; v1 − v2) = a(v1 − v2, v1 − v2) + b(v−1 − v−2 , v1 − v2)

> E0I0|v1 − v2|22,2 + q0|v−1 − v−2 |20,2,Ωs
> 0

for all v1, v2 ∈ H2(Ω), the functional J is convex on H2(Ω) by Lemma 2.6. �
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By Theorem 2.3 and the relation (3.6), a function w ∈ H2(Ω) solves the prob-

lem (P) if and only if it solves the nonlinear variational equation

(3.7) a(w, v) + b(w−, v) = L(v) ∀ v ∈ H2(Ω).

If the functions w, E, I, q and f are sufficiently smooth, then it is possible (see [11])

to derive the classical formulation (3.1) of the problem from the variational equa-

tion (3.7).

3.3. Solvability of the problem

Since the beam does not have fixed ends (it is only laid on the subsoil), the problem

solvability depends on the beam load. This fact will be demonstrated in the following

lemmas and theorem.

Lemma 3.2 (Necessary condition for existence of the solution). Let the prob-

lem (P) have a solution. Then the condition

(3.8) L(p) 6 0 ∀ p ∈ P1, p > 0 in Ωs,

is fulfilled.

P r o o f. Let w ∈ H2(Ω) be a solution of the problem (P) and v = p ∈ P1, p > 0

in Ωs. Then, from the variational equation (3.7), we obtain

L(p) = b(w−, p) 6 0.

�

Thus additional assumptions for the beam load must be considered. Therefore,

the problem (P) is only semi-coercive (the functional J is not coercive in H2(Ω) in

general).

Lemma 3.3 (Necessary condition for uniqueness of the solution). Let the prob-

lem (P) have a unique solution. Then the condition

(3.9) L(p) < 0 ∀ p ∈ P1, p > 0 in Ωs,

is fulfilled. In addition, if (3.9) is not fulfilled then the problem (P) has a solution if

and only if the beam load satisfies

(3.10) L(p) = 0 ∀ p ∈ P1.
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Such a solution w ∈ H2(Ω) is almost everywhere non-negative in Ωs and also solves

the Neumann problem

(3.11) a(w, v) = L(v) ∀ v ∈ H2(Ω).

P r o o f. Suppose that the condition (3.9) is not fulfilled and there exists a

solution w of the problem (P). Then, by Lemma 3.2, there exists a polynomial

p̃ ∈ P1, p̃ > 0 in Ωs, such that L(p̃) = 0. If we substitute p̃ in the variational

equation (3.7), we obtain b(w−, p̃) = 0. Hence

w > 0 a.e. in Ωs.

Therefore, if the solution w exists, it also solves the Neumann problem (3.11). The

Neumann problem (3.11) has a solution if and only if the condition (3.10) is fulfilled.

Therefore, the solution w exists if and only if

L(p) = 0 ∀ p ∈ P1

is fulfilled. In such a case, the function w + p, p ∈ P1, p > 0 in Ωs, also solves (3.11)

and consequently (P). Therefore only the condition (3.9) can ensure the uniqueness

of the solution of (P). �

Theorem 3.1 (Necessary and sufficient condition for existence and uniqueness of

a solution). The problem (P) has a unique solution if and only if the condition (3.9)

is fulfilled.

P r o o f. We know that the condition (3.9) is necessary for the existence and

uniqueness of the solution. Its sufficiency remains to be shown.

Existence. The existence of a solution of (P) can be proven by Theorem 2.4. To

use this theorem, we must show that the functional J is coercive in H2(Ω) if the

beam load satisfies (3.9). Suppose that the functional J is not coercive in H2(Ω).

Then there exist a sequence {vn}+∞
n=1 ⊂ H2(Ω), ‖vn‖2,2 → +∞, and a constant c > 0

such that

J(vn) 6 c ∀n > 1

or

(3.12) 0 6 1
2a(vn, vn) + 1

2b(v−n , v−n ) 6 L(vn) + c ∀n > 1.

First, let us divide (3.12) by ‖vn‖2
2,2. Then

(3.13) E0I0|wn|22,2 + q0|w−
n |20,2,Ωs

6 a(wn, wn) + b(w−
n , w−

n ) → 0, n → +∞
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where the sequence {wn}+∞
n=1, wn := vn/‖vn‖2,2, is bounded in H2(Ω). By Lem-

ma 2.1, there exist a subsequence {wnk
}+∞

k=1 ⊂ {wn}+∞
n=1 and p ∈ P1 such that

wnk
→ p in H2(Ω) for k → +∞.

Moreover, the equality |p−|0,2,Ωs
= 0 yields p > 0 in Ωs.

Secondly, let us divide (3.12) by ‖vn‖2,2. Then

0 6 L(wnk
) + c/‖vnk

‖2,2 → L(p).

Thus the condition (3.9) implies that p = 0. However, this is a contradiction with

1 = ‖wnk
‖2,2 → ‖p‖2,2 = 0. Therefore, the functional J is coercive in H2(Ω).

Uniqueness. Let w1, w2 ∈ H2(Ω) solve the problem (P), i.e.

a(w1, v) + b(w−
1 , v) = L(v) ∀ v ∈ H2(Ω),(3.14)

a(w2, v) + b(w−
2 , v) = L(v) ∀ v ∈ H2(Ω).(3.15)

The choice v = w1 − w2 and subtraction of the equations (3.14) and (3.15) yield

a(w1 − w2, w1 − w2) + b(w−
1 − w−

2 , w1 − w2) = 0.

Hence and by the inequalities (3.2)–(3.4),

(3.16) w1 − w2 = p, p ∈ P1, and w−
1 − (w1 − p)− = 0 a.e. in Ωs.

If there exists a set M ⊂ Ωs with a positive one-dimensional Lebesgue measure such

that w1 < 0 in M , then (3.16) implies p = 0 in Ω. On the other hand, the case

w1 > 0 a.e. in Ωs contradicts the condition (3.9)—it is enough to choose v = 1 in

the variational equation (3.14). Therefore w1 = w2 a.e. in Ω. �

Theorem 3.1 can be generalized to the problem with more parts of the subsoils

and also to the 2D case of thin elastic plates (see [7]).

Now, we rewrite the condition 3.9 equivalently for easier verification of the admis-

sible loads.

Definition 1. Let L be a beam load which satisfies the condition (3.9). Then

we can define the load resultant

F := L(1) =

∫

Ω

f1(x) dx +
∑

y∈XP

Py

and the balance point

T := L(x)/L(1) =

∫

Ω f1(x)xdx +
∑

y∈XP
Pyy +

∑

y∈XM
My

∫

Ω
f1(x) dx +

∑

y∈XP
Py

of the load.
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Lemma 3.4. The condition (3.9) is fulfilled if and only if

(3.17) F < 0 and xl < T < xr.

P r o o f. Let p1(x) := 1, p2(x) := x − xl and p3(x) := xr − x. Then the

inequalities L(pi) < 0, i = 1, 2, 3, imply the condition (3.17). Conversely, let p ∈ P1,

p > 0 in Ωs. Then there exist constants c2, c3 > 0, at least one of which is positive,

such that p = c2p2 + c3p3. Hence,

L(p) = L(1)[c2(T − xl) + c3(xr − T )] < 0.

�

The condition (3.17) means that the load resultant is situated in Ωs and oriented

against the subsoil. First degree polynomials p, p > 0 in Ωs, represent the rigid beam

motions for which the subsoil is not active.

Lemma 3.5 (Solution characterization). Let the condition (3.9) or (3.17) be

fulfilled and let w ∈ H2(Ω) be a solution of the problem (P). Then the set

M := {x ∈ Ωs : w(x) < 0}

has a positive one-dimensional Lebesgue measure. In addition, let (xM
l , xM

r ) ⊂ Ωs

be the smallest interval (convex closure) containing almost all x ∈ M . Then the

balance point T belongs to (xM
l , xM

r ).

P r o o f. The first part of the assertion has been shown in the proof of The-

orem 3.1. Let (PM ) be an auxiliary beam problem with the unilateral subsoil in

the interval (xM
l , xM

r ). Since the solution w is non-negative almost everywhere in

Ωs \ (xM
l , xM

r ), it also solves (PM ). Since w < 0 in M ∩ (xM
l , xM

r ), the problem (PM )

has a unique solution by Lemma 3.3. Therefore, by Theorem 3.1, the condition (3.17)

for the problem (PM ) holds. �

3.4. Stability of the problem

The aim of the subsection is to analyze the continuous dependence of the solutionw

on the data E, I, q and L, and consequently describe the stability of the problem

with respect to small changes in the data. We introduce the following notation for
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sets with addmissible data:

D := {(E, I, q) ∈ L∞(Ω) × L∞(Ω) × L∞(Ωs) :

E(x)I(x) > E0I0 > 0 a.e. in Ω, q(x) > q0 > 0 a.e. in Ωs},
S := {L ∈ V ∗ : F (L) < 0, xl < T (L) < xr},
Sδ := {L ∈ S : T (L) ∈ (xl + δ, xr − δ)},

Sδ,ξ,η := {L ∈ Sδ : F (L) < −ξ < 0, ‖L‖∗ 6 η},

where δ, ξ, η are positive constants and F (L), T (L) are the load resultant and the

balance point corresponding to a load L. If (E, I, q) ∈ D and L ∈ S then we know
that the problem (P) has a unique solution w = w(E, I, q, L). The set of all such

solutions will be denoted by W , i.e.

W := {w ∈ H2(Ω): ∃ (E, I, q) ∈ D, ∃L ∈ S : w = w(E, I, q, L) solves (P)}.

By analogy, we define sets Wδ and Wδ,ξ,η where the set S is replaced by Sδ and

Sδ,ξ,η, respectively.

Lemma 3.6. Let δ be a positive parameter. Then there exists a constant c > 0,

c = c(δ), such that

(3.18) c‖w‖2
2,2 6 |w|22,2 + |w−|20,2,Ωs

∀w ∈ Wδ.

P r o o f. Suppose that the estimate (3.18) does not hold. Then there exists a

sequence {wn}+∞
n=1 ⊂ Wδ such that

|wn|22,2 + |w−
n |20,2,Ωs

<
1

n
‖wn‖2

2,2, n > 1.

In the same manner as in the proof of Theorem 3.1, it can be shown that there exist

a subsequence {wnk
}+∞

k=1 ⊂ {wn}+∞
n=1 and a polynomial p ∈ P1, p > 0, in Ωs such

that

vnk
→ p in H2(Ω), vnk

:= wnk
/‖wnk

‖2,2.

Since every solution wnk
, k > 1, is negative somewhere in Ωs by Lemma 3.5, the

polynomial p satisfies p(xl) = 0 or p(xr) = 0. Suppose for example p(xl) = 0 and

p > 0 in Ωs. Then the solutions wnk
can only be negative in the interval (xl, xl+εnk

),

where 0 < εnk
→ 0. However, by Lemma 3.5, T (Lnk

) ∈ (xl, xl + εnk
). This is in

contradiction with the definition of the set Sδ. Therefore the estimate (3.18) holds.

�
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Theorem 3.2 (Boundedness of the solution). Let δ be a positive parameter.

Then there exists a constant c > 0, c = c(δ, E0, I0, q0), such that

(3.19) ‖w(E, I, q, L)‖2,2 6 c‖L‖∗ ∀ (E, I, q, L) ∈ D × Sδ,

where w = w(E, I, q, L) is the solution of the problem (P) with the data E, I, q, L.

P r o o f. By Lemma 3.6, the inequalities (3.2), (3.3) and the variational equa-

tion (3.7), we obtain

‖w‖2
2,2 6 c(E0I0|w|22,2 + q0|w−|20,2,Ωs

)

6 c
(

a(w, w) + b(w−, w−)
)

= cL(w) 6 c‖L‖∗‖w‖2,2 ∀ (E, I, q, L) ∈ D × Sδ.

�

Lemma 3.7. Let δ, ξ, η be positive parameters. Let {wn}+∞
n=1 be a sequence

of solutions belonging to the set Wδ,ξ,η. Then there exist its subsequence {wn′}n′ ,

a function w ∈ H2(Ω) and a set M ⊂ Ωs with a positive one-dimensional Lebesgue

measure such that wn′ ⇀ w weakly in H2(Ω) for n′ → +∞ and wn′ , w < 0 in M for

all n′.

P r o o f. The sequence {wn}+∞
n=1, is bounded inH2(Ω) by Theorem 3.2 and by the

definition of the set Wδ,ξ,η. Therefore there exists a subsequence {wn′}n′ ⊂ {wn}n

which has a weak limit w in the space H2(Ω). By Theorems 2.2 and 2.1, wn′ → w

in H1(Ω) and consequently in C(Ω). Then the choice v = 1 in the variational

equation (3.7) and the inequality (2.6) yield

0 > −ξ > Ln′(1) = b(w−
n′ , 1) → b(w−, 1).

Hence, we can find a setM ⊂ Ωs with a positive Lebesgue one-dimensional measure,

such that wn′ , w < 0 in M for sufficiently large n′. �

Lemma 3.8. Let δ, ξ, η be positive parameters. Then there exists a positive

constant c = c(δ, ξ, η) such that

(3.20) c‖w1 − w2‖2
2,2 6 |w1 − w2|22,2 + |w−

1 − w−
2 |20,2,Ωs

∀w1, w2 ∈ Wδ,ξ,η.

P r o o f. Suppose that the inequality (3.20) does not hold. Then there exist

sequences {wi,n}+∞
n=1 ⊂ Wδ,ξ,η, i = 1, 2, such that

(3.21) |w1,n − w2,n|22,2 + |w−
1,n − w−

2,n|20,2,Ωs
<

1

n
‖w1,n − w2,n‖2

2,2 ∀n > 1.
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By virtue of Lemma 3.7 we can assume that there exist w1,0, w2,0 ∈ H2(Ω) and sets

M1, M2 ⊂ Ωs with positive one-dimensional Lebesgue measures such that wi,n ⇀

wi,0 in H2(Ω) for n → +∞ and wi,n, wi,0 < 0 in Mi for all n, i = 1, 2. Let

vi,n := wi,n/‖w1,n − w2,n‖2,2, i = 1, 2. By Lemma 2.1 there exist subsequences

{wi,n′}n′ ⊂ {wi,n}n, i = 1, 2, and a polynomial p ∈ P1 such that the inequality (3.21)

yields

(3.22) v1,n′ − v2,n′ → p ∈ P1 in H2(Ω) and v−1,n′(x) − v−2,n′(x) → 0 a.e in Ωs.

First, suppose

‖w1,n′ − w2,n′‖2,2 → 0.

Then w1,0 = w2,0 and it is possible to choose M1, M2 such that M1 = M2 =: M .

Hence, (3.22) yields

v−1,n′ − v−2,n′ = v1,n′ − v2,n′ → 0 a.e. in M

for sufficiently large n′. Thus p = 0.

Secondly, suppose

∃ c1 > 0: ‖w1,n′ − w2,n′‖2,2 > c1 ∀n′.

Then the sequences {vi,n′}n′ are bounded inH2(Ω) and there exist their subsequences

{vi,n′′}n′′ with weak limits vi in H2(Ω), i = 1, 2. Hence, the convergences (3.22) yield

v−1 = v−2 = (v1 − p)− a.e. in Ωs.

Since the sequence {w1,n}n is bounded in H2(Ω) and w1,0 < 0 in M1, also v1 < 0

in M1. Thus p = 0.

However, the case p = 0 contradicts

1 = ‖v1,n′ − v2,n′‖2,2 → ‖p‖2,2 = 0.

Therefore, the estimate (3.20) holds. �
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Theorem 3.3. Let δ, ξ, η be positive parameters. Then there exists a positive

constant c = c(δ, ξ, η, E0, I0, q0) such that

(3.23) ‖w1 − w2‖2,2 6 c(‖L1 − L2‖∗ + ‖q1 − q2‖∞,Ωs
+ ‖E1I1 − E2I2‖∞,Ω)

for all (Ei, Ii, qi, Li) ∈ D×Sδ,ξ,η, where wi = wi(Ei, Ii, qi, Li) solve the problem (P)

with the parameters Ei, Ii, qi, Li, i = 1, 2.

P r o o f. Let ai, bi denote the forms a, b with respect to the parameters Ei, Ii,

qi and let wi = wi(Ei, Ii, qi, Li) ∈ Wδ,ξ,η, i = 1, 2, solve the problem (P), i.e.

a1(w1, v) + b1(w
−
1 , v) = L1(v) ∀ v ∈ H2(Ω),

a2(w2, v) + b2(w
−
2 , v) = L2(v) ∀ v ∈ H2(Ω).

The choice v = w1 − w2 and subtraction of the two equations yield

a1(w1 − w2, w1 − w2) + b1(w
−
1 − w−

2 , w1 − w2)

= (a2 − a1)(w2, w1 − w2) + (b2 − b1)(w
−
2 , w1 − w2) + (L1 − L2)(w1 − w2)

6 ‖w1 − w2‖2,2(‖E1I1 − E2I2‖∞,Ω‖w2‖2,2

+ ‖q1 − q2‖∞,Ωs
‖w2‖2,2 + ‖L1 − L2‖∗)

6 c1‖w1 − w2‖2,2(‖E1I1 − E2I2‖∞,Ω + ‖q1 − q2‖∞,Ωs
+ ‖L1 − L2‖∗),

where the constant c1 > 0 depends on δ, η, E0, I0, q0 by Theorem 3.2 and the

definition of the set Wδ,ξ,η. Since Lemma 3.8 and the inequalities (3.2)–(3.4) yield

‖w1 − w2‖2
2,2 6 c2(E0I0|w1 − w2|22,2 + q0|w−

1 − w−
2 |20,2,Ωs

)

6 c2[a1(w1 − w2, w1 − w2) + b1(w
−
1 − w−

2 , w1 − w2)]

with c2 = c2(δ, ξ, η, E0, I0, q0) > 0, the estimate (3.23) holds. �

By Theorem 3.3, the stability of the problem solution depends on the constant c

in the estimate (3.23), i.e. on the parameters δ, ξ, η. Since

Sδ1,ξ1,η1 ⊂ Sδ2,ξ2,η2 ⊂ S, ∀ δi, ξi, ηi, i = 1, 2, δ1 > δ2, ξ1 > ξ2, η1 6 η2,

we conclude that c(δ1, ξ1, η1) 6 c(δ2, ξ2, η2).

Now, we describe two unstable cases of the load in the problem (P). In the first,

suppose that the balance point T is close to the ends of the subsoil. Then a small

change of the load can cause a displacement of the balance point beyond the inter-

val Ωs and a subsequent overturn of the beam from the subsoil.
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The second unstable case can occur if the load resultant F has too small size in

comparison with the V ∗-norm of the load. In such a case, a small change of the

load can cause a large change of the balance point T . For example, let Ω = (0, 1),

Ωs = (0.1, 0.9), EI = const1 > 0, q = const2 > 0 and

L1(v) :=

∫ 0.1

0

100v(x) dx +

∫ 0.6

0.4

−101v(x) dx +

∫ 1

0.9

100v(x) dx,

L2(v) :=

∫ 0.1

0

100v(x) dx +

∫ 0.6

0.4

−101v(x) dx +

∫ 1

0.9

101v(x) dx.

Then F1 = −0.2, T1 = 0.5, F2 = −0.1 and T2 = 0.05. Though the difference between

the loads L1 and L2 is relative small, the problem (P) has no solution for the load L2,

since T2 6∈ Ωs.

Corollary 3.1. Let {(En, In, qn, Ln)}+∞
n=1 ⊂ D × S and let (E, I, Q, L) ∈ D × S

be an admissible data such that

En → E, In → I, qn → q in L∞(Ω), Ln → L in V ∗.

Let wn, w be solutions of the problem (P) with the data (En, In, qn, Ln) and

(E, I, Q, L). Then

wn → w in H2(Ω).

4. Approximation of the problem

The aim of the section is to set a suitable family of problem approximations and

analyze their solvability and relation to the original problem (P). First, we define

families of subspaces and bilinear forms, which approximate the space H2(Ω) and

the bilinear form b, respectively. Then, we set a finite element approximation of

the problem (P) and summarize its properties. Finally, we analyze the relation

between the original problem and its approximations, subject to the smoothness of

the problem solution.

4.1. Finite element approximations of the space H2(Ω)

Let us define a partition τh,

0 = x0 < x1 < x2 < . . . < xn = l,
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of the interval Ω = [0, l], with the nodal points xj , j = 0, 1, . . . , n, and with the

discretization parameter h > 0,

h := max
j=1,...,n

Hj , Hj := xj − xj−1.

The partition τh can also be characterized by the parameter

hmin := min
j=1,...,n

Hj .

The system of all partitions {τh}h>0 of the interval Ω will be denoted by T . The
system of all “strong” regular partitions of the interval Ω with respect to a parameter

θ > 0 will be defined by

Tθ := {τh ∈ T : h 6 θhmin}.

The interval (xj−1, xj) ∈ τh, j = 1, 2, . . . , n, will be denoted by Ωj .

With respect to a partition τh ∈ T with n + 1 nodal points, we will define the

function space

Vh ⊂ H2(Ω), Vh := {vh ∈ C1(Ω): vh|Ωj
∈ P3, Ωj ∈ τh, j = 1, 2, . . . , n},

i.e. the space of continuously differentiable and piecewise cubic functions.

Let v be any function belonging to H2(Ω). Let τh ∈ T be a partition of the
interval Ω and Vh the corresponding function space. By Theorem 2.1 we can define

the interpolation

(4.1) rh : H2(Ω) 7→ Vh, (rh(v))(i)(xj) = v(i)(xj), i = 0, 1,

at the nodal points xj , j = 0, 1, . . . , n, of the partition τh.

Theorem 4.1. Let T be the system of all partitions of the interval Ω. Then
there exist constants c1, c2 > 0 such that the following estimates hold:

‖v − rh(v)‖2,2 6 c1h
2|v|4,2 ∀ v ∈ H4(Ω), ∀τh ∈ T ,(4.2)

‖v − rh(v)‖2,2 6 c2h|v|3,2 ∀ v ∈ H3(Ω), ∀ τh ∈ T ,(4.3)

‖v − rh(v)‖2,2 → 0 ∀ v ∈ H2(Ω), h → 0(4.4)

where rh is the interpolation defined by (4.1) of the space H2(Ω) onto Vh, which

corresponds to a partition τh.
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Theorem 4.1 is proven for a more general case in the book [2]. The theorem says

the system {Vh}h approximates the space H2(Ω).

4.2. Approximation of the bilinear form b

The evaluation of the term b(w−
h , vh), wh, vh ∈ Vh, cannot be computed directly

due to the non-linear term w−
h . Therefore, an approximation of the form b must be

used.

We will apply the reference numerical quadrature (2.7) to approximate the form b.

For the sake of simplicity, we will assume that the function q, which represents the

stiffness coefficient of the subsoil, is piecewise constant in the interval Ωs. Therefore,

we introduce the notation T ′ and T ′
θ , θ > 0, for all partitions and strong regular

partitions, respectively, of the interval Ω that include the points xl, xr and the

points where the function q is not continuous.

Let τh ∈ T ′ be a partition with nodal points

0 = x0 < x1 < . . . < xl ≡ xjl−1 < . . . < xr ≡ xjr
< . . . < xn = l.

Let Φj, j = jl, jl+1, . . . , jr, be the transformation of the interval Ωj = [xj−1, xj ] onto

the interval [−1, 1] defined by (2.8), with s = xj−1 and t = xj . Let yj,i := Φ−1
j (ŷi)

and ωj,i := Hjω̂i/2, Hj = xj − xj−1, i = 1, 2, . . . , m, be the points and weights

corresponding to ŷi and ω̂i of the reference numerical quadrature (2.7). The situation

is depicted in Fig. 2 for a 1-point numerical quadrature.

x0 xn

0 l

xl xrx1

yjl,1 yjr ,1. . .

. . . . . .. . .

Figure 2. Scheme of the partition.

Then the bilinear form b can be approximated by the bilinear form

(4.5) bh(v1, v2) :=

jr
∑

j=jl

(

qj

m
∑

i=1

ωj,iv1(yj,i)v2(yj,i)

)

,

defined on H2(Ω) and associated with the partition τh and the reference numerical

quadrature. If the reference numerical quadrature is exact for polynomials of the

kth degree, we introduce the notation bh ∈ Bk
τh
, k = 0, 1, 2, . . ..

In fact, we approximate the subsoil by insulated springs at the quadrature

points yj,i, j = jl, jl + 1, . . . , jr, i = 1, 2, . . . , m. The set of these points will be

denoted by Qh.
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Lemma 4.1 (Uniform boundedness of approximated bilinear forms bh). Let

τh ∈ T ′ and bh ∈ B0
τh
. Then there exists a positive constant c depending only on the

subsoil length xr − xl such that

|bh(u, v)| 6 c‖q‖∞,Ωs
‖u‖1,2‖v‖1,2 ∀u, v ∈ H1(Ω),

where q ∈ L∞(Ωs) is the function representing the stiffness coefficient of the subsoil.

P r o o f. By Theorem 2.1 we obtain

|bh(u, v)| 6 ‖q‖∞,Ωs

jr
∑

j=jl

m
∑

i=l

ωj,i|u(yj,i)||v(yj,i)|

6 c1

( jr
∑

j=jl

m
∑

i=l

ωj,i

)

‖q‖∞,Ωs
‖u‖1,2‖v‖1,2

= c1

(
∫

Ωs

1 dx

)

‖q‖∞,Ω‖u‖1,2‖v‖1,2

= c‖q‖∞,Ωs
‖u‖1,2‖v‖1,2 ∀u, v ∈ H1(Ω),

with c = c1(xr − xl). �

Theorem 4.2. Let τh ∈ T ′ be any partition and bh ∈ B1
τh
an approximated

bilinear form. Let 0 6 N < +∞ and

VN :=

{

v ∈ H2(Ω): ∃ p 6 N, ∃ z1, z2, . . . , z2p ∈ Ωs :

{x ∈ Ωs : v−(x) = 0} =

p
⋃

i=1

[z2i−1, z2i]

}

.

Then there exist positive constants c1 and c2 = c2(N), independent of the parti-

tion τh, such that

|b(v−, u) − bh(v−, u)| 6 c1h‖v‖1,2‖u‖1,2 ∀u, v ∈ H1(Ω),(4.6)

|b(v−, u) − bh(v−, u)| 6 c2h
2‖v‖2,2‖u‖2,2 ∀u ∈ H2(Ω), ∀ v ∈ VN .(4.7)

P r o o f. We prove only the estimate (4.7). The proof of the estimate (4.6) is

easier and does not contain anything new in comparison with (4.7). Let τh ∈ T ′ be

a partition with nodal points

0 = x0 < x1 < . . . < xl = xjl−1 < . . . < xr = xjr
< . . . < xn.
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Let u ∈ H2(Ω), v ∈ VN and

Iv := {j ∈ {jl, jl + 1, . . . , jr} : v− ∈ H1(Ωj) \ H2(Ωj)}, Ωj = (xj−1, xj).

Clearly, card(Iv) 6 2N and v− = v in Ωj , j 6∈ Iv. Hence, by Theorem 2.5, the

Cauchy-Schwarz inequality and Lemmas 2.4, 2.5 and 2.3 we obtain

|b(v−, u) − bh(v−, u)| 6

jr
∑

j=jl

qj

∣

∣

∣

∣

∫

Ωj

v−u dx −
m

∑

i=1

ωj,iv
−(yj,i)u(yj,i)

∣

∣

∣

∣

6 c1

∑

j∈Iv

Hj |v−u|1,1,Ωj
+ c2

∑

j 6∈Iv

H2
j |vu|2,1,Ωj

6 c1

∑

j∈Iv

Hj(|v|0,2,Ωj
|u|1,2,Ωj

+ |v|1,2,Ωj
|u|0,2,Ωj

)

+ c2

∑

j 6∈Iv

H2
j ‖v‖2,2,Ωj

‖u‖2,2,Ωj

6 (Nc̃1)h
2‖v‖2,2‖u‖2,2 + c̃2h

2‖v‖2,2‖u‖2,2

6 c(N)h2‖v‖2,2‖u‖2,2,

where Hj = xj − xj−1, j = jl, . . . , jr. �

R em a r k 4.1. The set VN is sufficiently wide to contain mechanically reasonable

functions from H2(Ω) which can represent the beam deflection. Since the number N

does not depend on the partition τh ∈ T ′, the order of convergence bh to b is two.

The following lemmas will be useful for convergence analysis of approximated

solutions to the solution of the problem (P), see subsection 4.4.

Lemma 4.2. Let {τhk
}+∞

k=1 ⊂ T ′ be a sequence of partitions and let {uk}k, {vk}k

be sequences, defined and bounded in H1(Ω), such that

bhk
(uk, vk) → 0, k → +∞,

where the bilinear form bhk
belongs to B0

τhk
. If hk → 0 then also

b(uk, vk) → 0, k → +∞.

P r o o f. By the inequality (4.6) in Theorem 4.2 we obtain

|b(uk, vk)| 6 |bhk
(uk, vk) − b(uk, vk)| + |bhk

(uk, vk)|
6 c1hk‖uk‖1,2‖vk‖1,2 + |bhk

(uk, vk)|
6 c2hk + |bhk

(uk, vk)| → 0.

�
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Lemma 4.3. Let {τhk
}+∞

k=1 ⊂ T ′ be a sequence of partitions and {bhk
}+∞

k=1 the

corresponding sequence of the approximated forms bhk
∈ B0

τhk
. Let {vk}+∞

k=1 be a

sequence of functions belonging to H1(Ω) such that vk → p in H1(Ω), where p ∈ P1.

Let 0 6 h < 1
2 (xr − xl) be a parameter such that hk → h. If bhk

(v−k , v−k ) → 0 for

k → +∞ then

bhk
(p−, p−) → 0, k → +∞ and p > 0 in [xl + h, xr − h].

P r o o f. By the inequality (2.6) and Lemma 4.1, the convergence bhk
(v−k , v−k ) →

0 implies bhk
(p−, p−) → 0, since

bhk
(p−, p−) = bhk

(p− − v−k , v−k ) + bhk
(p− − v−k , p−) + bhk

(v−k , v−k )

6 c1‖vk − p‖1,2 + bhk
(v−k , v−k ) → 0.

Suppose that the inequality p > 0 in [xl +h, xr −h] does not hold. Then there exists

ε > 0 such that p < 0 in [xl, xl +h+ε] or p < 0 in [xr −h−ε, xr]. We will assume the

former case. The proof of the latter is similar. Then there exist a positive constant c

and an index k0 such that p2 > c in [xl, xl + h + ε] and hk − h < ε/2 for any k > k0,

since hk → h. Let

0 = xk
0 < xk

1 < . . . < xl = xk
jl(k)−1 < . . . < xr = xk

jr(k) < . . . < xk
n(k) = l

be the nodal points of the partition τhk
and let yk

j,i ∈ Qhk
, j = jl(k), . . . , jr(k),

i = 1, . . . , m, be the corresponding points of the numerical quadrature. Let j(k) ∈
{jl(k), . . . , jr(k)} be a maximal index such that xk

j(k) 6 xl + h + ε. Then

xk
j(k) > xl + h + ε − hk > xl + ε/2

and

bhk
(p−, p−) =

jr(k)
∑

j=jl(k)

(

qk
j

m
∑

i=1

ωk
j,i(p

−(yk
j,i))

2

)

> q0

j(k)
∑

j=jl(k)

m
∑

i=1

ωk
j,ip

2(yk
j,i)

> q0c

∫ xk
j(k)

xl

1 dx > q0c
ε

2
> 0.

This contradicts bhk
(p−, p−) → 0. �
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4.3. Setting of approximated problems

For the sake of simplicity, we will not consider numerical quadrature of the forms a

and L. Let τh ∈ T ′ be a partition of the interval Ω with the discretization parameter

h > 0 and let Vh, bh be the corresponding approximations of the space H2(Ω) and

the bilinear form b, respectively. The approximated problem corresponding to the

partition τh has the form

(Ph)

{

find wh ∈ Vh : Jh(wh) 6 Jh(vh) ∀ vh ∈ Vh,

Jh(vh) := 1
2a(vh, vh) + 1

2bh(v−h , v−h ) − L(vh).

Since Vh is a closed subspace of H
2(Ω), the approximated problem (Ph) has prop-

erties similar to the original problem (P), except small differences caused by the

numerical quadrature. Therefore, the properties of (Ph) will be summarized more

briefly.

Lemma 4.4. The functional Jh is convex and has the Gâteaux derivative on the

space Vh. In addition, a function wh ∈ Vh solves the problem (Ph) if and only if it

solves the nonlinear variational equation

(4.8) a(wh, vh) + bh(w−
h , vh) = L(vh) ∀ vh ∈ Vh.

Lemma 4.5 (Necessary condition for existence of a solution). Let the prob-

lem (Ph) have a solution. Then the condition

(4.9) L(p) 6 0 ∀ p ∈ P1, p > 0 in (yjl,1, yjr ,m)

is fulfilled, where yjl,1 ∈ Qh is the first point of the numerical quadrature (2.9) in the

interval (xjl−1, xjl
) and yjr ,m ∈ Qh is the last point of the numerical quadrature (2.9)

in the interval (xjr−1, xjr
) (see Fig. 2).

In general, the condition (4.9) is more restrictive than (3.8) which must hold for

the original problem (P). This is caused by the fact that the subsoil is situated in the

interval Ωs, whilst the “springs” which approximate the subsoil are situated only in

the interval [yjl,1, yjr,m] ⊂ Ωs.
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Lemma 4.6 (Necessary condition for uniqueness of the solution). Let the prob-

lem (Ph) have a unique solution. Then the condition

(4.10) L(p) < 0 ∀ p ∈ P1, p > 0 in (yjl,1, yjr ,m)

is fulfilled.

If the problem (Ph) has a solution and the condition (4.10) does not hold then

the equilibrium condition L(p) = 0 for all p ∈ P1 need not be fulfilled in comparison

with Lemma 3.3. For example, if L(v) = −v(yjl,1) then the problem (Ph) is solved

by every polynomial p ∈ P1 such that p(yjl,1) = −1/q1 and p(y) > 0 for any y ∈ Qh,

y 6= yjl,1.

Theorem 4.3 (Necessary and sufficient condition for existence and uniqueness of

the solution). Let the discretization parameter h > 0 be sufficiently small. Then

the problem (Ph) has a unique solution if and only if the condition (4.10) is fulfilled.

It is possible to prove existence of a solution without the assumption on h. The

assumption of sufficiently small h ensures the uniqueness of the solution. For larger h,

it is possible that a solution wh activates only one spring y ∈ Qh. If the spring y

is situated at the balance point T , then there exists a polynomial p ∈ P1 such that

p(T ) = 0 and wh(z)+p(z) > 0 for any z ∈ Qh, z 6= y. Clearly, the function wh +p is

also a solution of (Ph), since Jh(wh) = Jh(wh+p). The size of the parameter h, which

ensures the uniqueness of the solution, depends on the beam load. This assertion

will be justified by Lemmas 4.8 and 4.9.

Lemma 4.7. The condition (4.10) is fulfilled if and only if

(4.11) F < 0 and yjl,1 < T < yjr ,m,

where F = L(1) is the load resultant and T = L(x)/L(1) is the balance point of the

load.

Notice that if the condition (3.17) holds and the discretization parameter h is

sufficiently small, then the condition (4.11) also holds.

Lemma 4.8 (Solution characteristic). Let the condition (4.10) or (4.11) be

fulfilled and let wh ∈ Vh be any solution of the problem (Ph). Then the set

A := {y ∈ Qh : wh(y) < 0}
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of active springs is non-empty. In addition, let xA
l , xA

r ∈ A be the outer springs of
the set A, i.e. xA

l 6 y 6 xA
r for any y ∈ A. Then the balance point T ∈ [xA

l , xA
r ]. If

the solution wh is not unique then xA
l = xA

r .

Notice that if the discretization parameter h is sufficienly small then the set A
contains more than one active spring and the problem (Ph) has a unique solution.

The smaller the parameter h, the more active springs.

4.4. Convergence analysis

In this subsection we will analyze the relation between the solution w of the

problem (P) and its approximation wh solving the problem (Ph) in dependence on

the beam load L and the partition τh. The dependence on the data E, I, q will not be

considered. However, it can be shown, similarly to subsection 3.4, that the relation

depends on the data E, I, q only through the parameters E0, I0, q0. Further, we

will assume that the reference numerical quadrature, which determines the form bh,

is the same for all partitions τh ∈ T ′ and is exact for polynomials of the first degree.

We recall the notation S, Sδ and Sδ,ξ,η, with positive parameters δ, ξ, η, introduced

in subsection 3.4 for the classes of the beam loads. The solutions of the problems (P)

and (Ph), which depend on the load L ∈ S, will be denoted by w = w(L) and

wh = wh(L), respectively.

Theorem 4.4 (Uniform boundedness of approximated solutions). Let δ be a

positive parameter. Then there exists a positive constant c = c(δ) such that

(4.12) ‖wh(L)‖2,2 6 c‖L‖∗ ∀L ∈ Sδ, ∀ τh ∈ T ′, 0 < h 6 δ.

Notice that the solution wh(L) exists for any L ∈ Sδ and τh ∈ T ′, since the

assumption that the reference numerical quadrature is exact for polynomials of the

first degree implies [xl + δ, xr − δ] ⊂ (yjl,1, yjr ,m), i.e. the condition (4.11) is fulfilled.

The solution wh(L) need not be unique in general, but it can be characterized by

Lemma 4.8.

P r o o f. Due to the variational equation (4.8), it is sufficient to show the in-

equality

(4.13) ‖wh‖2
2,2 6 c[a(wh, wh) + bh(w−

h , w−
h )] ∀L ∈ Sδ, ∀ τh ∈ T ′, 0 < h 6 δ.

Suppose that the inequality (4.13) does not hold. Then there exist sequences

{Lk}+∞
k=1 ⊂ Sδ and {τhk

}+∞
k=1 such that the inequalities

a(whk
, whk

) + bhk
(w−

hk
, w−

hk
) <

1

k
‖whk

‖2
2,2, k > 1,
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hold, where whk
= whk

(Lk). Let vhk
:= whk

/‖whk
‖2,2. Since the sequences {hk}+∞

k=1

and {vhk
}+∞

k=1 are bounded, there exist subsequences {hk′}k′ ⊂ {hk}k and {vhk′
}k′ ⊂

{vhk
}k such that

hk′ → h, 0 6 h 6 δ,

vhk′
→ p in H2(Ω), p ∈ P1 (by Lemma 2.1),

bhk′
(v−hk′

, v−hk′
) → 0, k′ → +∞.

By Lemma 4.3,

bhk′
(p−, p−) → 0 and p > 0 in [xl + h, xr − h].

The case p = 0 is a contradiction with 1 = ‖vhk′
‖2,2 → ‖p‖2,2 = 0. Therefore,

p > 0 in the interval (xl +h, xr − h). By Lemma 4.8, the solutions whk′
are negative

somewhere in [xl, xr]. Therefore, p 6 0 somewhere in [xl, xl + h] or in [xr − h, xr].

Suppose, for example, that p 6 0 somewhere in [xl, xl + h]. Then the solutions whk′

can be only negative somewhere in [xl, xl +h+ εk′ ], where εk′ → 0+. By Lemma 4.8

and the definition of Sδ,

T (Lk′) ∈ [xl, xl + h + εk′ ] ∩ [xl + δ, xr − δ].

It means that

h = δ, T (Lk′) → xl + δ and p < 0 in [xl, xl + δ), p(xl + δ) = 0.

Hence,

∃ c1 > 0: bhk′
(p−, p−) > c1 > 0 ∀ k′,

by virtue of the assumptions on the reference numerical quadrature. This is a con-

tradiction with bhk′
(p−, p−) → 0. Thus the estimates (4.13) and consequently (4.12)

hold. �

Lemma 4.9. Let δ, ξ, η be positive parameters. Then there exists a positive

parameter h0 = h0(δ, ξ, η) such that for any load L ∈ Sδ,ξ,η and any partition τh ∈ T ′,

h 6 h0, the corresponding problem (Ph) has a unique solution wh = wh(L).

P r o o f. By Lemma 4.8, it is sufficient to show that the solution wh activates at

least two springs, i.e. there exist points y1, y2 ∈ Qh, where two springs are situated,

such that wh(yi) < 0, i = 1, 2. Suppose that the assertion does not hold. Then

there exist sequences {hk}k and {whk
}k such that hk → 0 and whk

activate at most

one spring. By Theorem 4.4, the sequence {whk
}k is bounded in H2(Ω). Therefore,
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there exists its subsequence {whk′
}k′ with a weak limit w in the space H2(Ω). The

variational equation (4.8) yields

0 > −ξ > Lk′(1) = bhk′
(w−

hk′
, 1) → b(w−, 1)

by Theorems 4.2 and 2.2. Hence, we can find an interval M ⊂ Ωs with a posi-

tive Lebesgue one-dimensional measure such that whk′
, w < 0 in M for sufficiently

large k′. Since hk′ → 0, the set Qhk′
∩ M contains at least two active springs for

sufficiently large k′. This contradicts the assumption that whk
activates only one

spring. �

Theorem 4.5. Let δ, ξ, η be positive parameters. Then there exist positive

constants c, h0 depending on the parameters δ, ξ, η such that

c‖w − wh‖2
2,2 6 a(w − wh, w − wh) + bh(w− − w−

h , w − wh)(4.14)

∀L ∈ Sδ,ξ,η, ∀ τh ∈ T ′, 0 < h 6 h0,

where w = w(L) ∈ H2(Ω) denotes the solution of the problem (P) corresponding to

a beam load L ∈ Sδ,ξ,η and wh = wh(L) ∈ Vh denotes its approximation with respect

to a partition τh ∈ T ′.

P r o o f. Suppose that the inequality (4.14) does not hold. Then there exist

sequences {Lk}+∞
k=1 ⊂ Sδ,ξ,η and {τhk

}+∞
k=1 ⊂ T ′ such that hk → 0 and

a(wk − wk,hk
, wk − wk,hk

) + bhk
(w−

k − w−
k,hk

, wk − wk,hk)(4.15)

<
1

k
‖wk − wk,hk

‖2
2,2, ∀ k > 1,

where wk ∈ H2(Ω) denotes the solution of the problem (Pk) corresponding to the

beam load Lk and wk,hk
∈ Vhk

denotes its approximation with respect to the parti-

tion τhk
. Since the sequence {Lk}k is bounded in V ∗, by Theorems 4.4 and 3.2 the

sequences {wk}k, {wk,hk
}k are bounded in H2(Ω). Let

vk := wk/‖wk − wk,hk
‖2,2 and vk,hk

:= wk,hk
/‖wk − wk,hk

‖2,2.

Then the sequence {vk − vk,hk
}k is also bounded in H2(Ω). Therefore there exist

subsequences {wk′}k′ , {wk′,hk′
}k′ , {vk′}k′ , {vk′,hk′

}k′ , {hk′}k′ , {τhk′
}k′ such that

wk′ → w, in H1(Ω) (by Theorem 2.2),

wk′,hk′
→ wh, in H1(Ω) (by Theorem 2.2),

vk′ − vk′,hk′
→ p, in H2(Ω), p ∈ P1 (by (4.15) and Lemma 2.1),
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and

(4.16) b(v−k′ − v−k′,hk′
, vk′ − vk′,hk′

) → 0 (by (4.15) and Lemma 4.2).

By Lemma 3.7 and the proof of Lemma 4.9 we can find setsM, Mh ⊂ Ωs with pos-

itive Lebesgue one-dimensional measure such that wk′ , w < 0 in M and whk′
, wh < 0

in Mh for sufficiently large k′ > 1.

First, suppose

‖wk′ − whk′
‖2,2 → 0.

Then w = wh and it is possible to choose M , Mh such that M = Mh and the

convergence (4.16) implies

v−k′ − v−k′,hk′
= vk′ − vk′,hk′

→ p = 0 a.e. in M.

Thus p = 0.

Secondly, suppose

∃ c1 > 0: ‖wk′ − whk′
‖2,2 > c1 ∀ k′ > 1.

Then there exist weak limits vh, v = vh + p of the sequences {vk′,hk′
}k′ , {vk′}k′ in

the space H2(Ω). Hence, from (4.16) and (2.6),

b
(

(vh + p)− − v−h , (vh + p) − vh

)

= 0,

and consequently (vh + p)− = v−h almost everywhere in Ωs. Hence, p = 0 in Mh and

consequently in Ω.

However, the case p = 0 is a contradiction with

1 = ‖vk′ − vhk′
‖2,2 → ‖p‖2,2 = 0.

Therefore the estimate (4.14) holds. �

R em a r k 4.2. Let us consider the class T ′
θ of the partitions for any θ > 0 instead

of T ′ in Theorem 4.5. Then it can be shown that the constant h0 in Theorem 4.5 can

be chosen in the same way as in Lemma 4.9, i.e. the uniqueness of the solution must

be ensured. The constant c in Theorem 4.5 can also depend on the parameter θ in

that case.
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Lemma 4.10. Let w ∈ H2(Ω) be a solution of the problem (P) and wh ∈ Vh a

solution of an approximated problem (Ph). Then

(4.17) a(w − wh, vh) + b(w−, vh) − bh(w−
h , vh) = 0 ∀ vh ∈ Vh.

Lemma 4.10 immediately follows from the variational equations (3.7) and (4.8).

Lemma 4.11. Let the assumptions of Theorem 4.5 be fulfilled. Then there exist

positive constants c, h0 depending on δ, ξ, η such that

c‖w − wh‖2
2,2 6 ‖w − wh‖2,2‖w − vh‖2,2(4.18)

+ |b(w−, wh − vh) − bh(w−, wh − vh)|
∀L ∈ Sδ,ξ,η, ∀ τh ∈ T ′, h 6 h0, ∀ vh ∈ Vh,

where w ∈ H2(Ω) denotes the solution of the problem (P) corresponding to a beam

load L ∈ Sδ,ξ,η and wh ∈ Vh denotes its approximation corresponding to a partition

τh ∈ T ′.

P r o o f. By Theorem 4.5, Lemmas 4.10 and 4.1 and the inequality (2.6), we

obtain

c‖w − wh‖2
2,2 6 a(w − wh, w − wh) + bh(w− − w−

h , w − wh)

= a(w − wh, w − wh) + b(w−, w − wh) − bh(w−
h , w − wh)

+ bh(w−, w − wh) − b(w−, w − wh)

= a(w − wh, w − vh) + b(w−, w − vh) − bh(w−
h , w − vh)

+ bh(w−, w − wh) − b(w−, w − wh)

= a(w − wh, w − vh) + bh(w− − w−
h , w − vh)

+ bh(w−, vh − wh) − b(w−, vh − wh)

6 c̃‖w − wh‖2,2‖w − vh‖2,2 + |b(w−, wh − vh) − bh(w−, wh − vh)|
∀L ∈ Sδ,ξ,η, ∀ vh ∈ Vh, ∀ τh ∈ T ′

θ , h 6 h0,

where c, c̃ are positive constants which do not depend on the partition τh. �

Theorem 4.6 (Convergence results). Let δ, ξ, η be positive parameters. Let

L ∈ Sδ,ξ,η be any load. Then there exist positive constants c1, c2, h0, which depend

on the load only through the parameters δ, ξ, η, such that

‖w − wh‖2,2 6 c1h
2‖w‖4,2, w ∈ H4(Ω) ∩ VN , ∀ τh ∈ T ′, h 6 h0,(4.19)

‖w − wh‖2,2 6 c2h‖w‖3,2, w ∈ H3(Ω), ∀ τh ∈ T ′, h 6 h0,(4.20)

‖w − wh‖2,2 → 0, w ∈ H2(Ω), h → 0,(4.21)
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where w = w(L) is the solution of the problem (P) and wh = wh(L) denotes the

solution of the problem (Ph) with respect to the partition τh ∈ T ′ and the bilinear

form bh ∈ B1
τh
. The set of functions VN , N > 0, is defined in Theorem 4.2.

P r o o f. Let w ∈ H4(Ω)∩VN . We start from the estimate (4.18) in Lemma 4.11

and choose vh = rh(w). By the estimates (4.2) and (4.7) in Theorems 4.1 and 4.2

we derive

‖w − wh‖2
2,2 6 c1‖w − wh‖2,2‖w − rh(w)‖2,2 + c2h

2‖w‖2,2‖wh − rh(w)‖2,2

6 c1‖w − wh‖2,2‖w − rh(w)‖2,2

+ c2h
2‖w‖2,2(‖w − rh(w)‖2,2 + ‖w − wh‖2,2)

6 c3h
2‖w‖4,2‖w − wh‖2,2 + c4h

4‖w‖2
4,2

6 c5 max{h2‖w‖4,2‖w − wh‖2,2, h
4‖w‖2

4,2} ∀ τh ∈ T ′

with positive constants ci, i = 1, . . . , 5. Hence,

‖w − wh‖2,2 6 ch2‖w‖4,2 ∀ τh ∈ T ′,

where c = max{c5,
√

c5}. So the estimate (4.19) holds.
The proof of the estimate (4.20) is similar, only instead of the estimates (4.2) and

(4.7), the estimates (4.3) and (4.6) are used. To prove the limit (4.21), the limit (4.4)

and the estimate (4.6) are used. �

Thus the family of the problems {(Ph)}h approximates the original problem (P).

The assumption w ∈ H4(Ω) can be satisfied as the following lemma shows.

Lemma 4.12. Let the functions E and I, which represent Young’s modulus of

the beam and the inertia moment of the cross-section of the beam, be constant in

the interval Ω. Let the beam load be represented by the density f ∈ L2(Ω). Then

the solution w of the problem (P) belongs to the space H4(Ω).

P r o o f. In the sense of the theory of distributions, we can rewrite the variational

equation (3.7) in the following way (see also the classical formulation (3.1) of the

problem):

EIw′′′′(x) + q(x)w−(x) = f(x), x ∈ Ω.

Since w ∈ H2(Ω) and q ∈ L∞(Ω), the function qw− belongs to L2(Ω). Therefore, also

w′′′′ = (EI)−1(f − qw−) ∈ L2(Ω). By Lemma 2.2 there exists a positive constant c

such that

‖w‖4,2 6 c(|w|24,2 + |w|20,2)
1/2 < +∞.

Thus w ∈ H4(Ω). �
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5. Conclusion

The model of the unilateral elastic subsoil of Winkler’s type and its approximation

is studied in the paper. The problem can also be formulated as a contact one with

two unknowns: deflection of the beam and compression of the subsoil. The non-

penetration condition between the beam and the subsoil is considered. By enforcing

this condition by Lagrange multipliers, the dual formulation of the problem can be

derived, see [14]. The dual problem is a problem of convex quadratic programming

with linear constraints and is suitable for numerical realization of the problem. Other

numerical methods suitable for the problem are described in [6] and [13].

Acknowledgements. The author thanks Jiří V. Horák from the Palacký Uni-
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