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SUMMARY.  

In this paper we discuss statistical methods for curve-estimation under the assumption of 
unimodality for variables with distributions belonging to the two-parameter exponential 
family with known or constant dispersion parameter. We suggest a non-parametric method 
based on monotonicity properties. The method is applied to Swedish data on laboratory 
verified diagnoses of influenza and data on inflation from an episode of hyperinflation in 
Bulgaria.  
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1 INTRODUCTION 

One of the central subjects of statistics is the estimation of curves. There exists a vast 
literature on the subject. Examples of methods are regression analysis and time series 
analysis. Often one has some knowledge in advance of the studied phenomenon that may be 
used in the analysis of the data. Such knowledge may be that the shape of the curve is known. 
In, for example, the study of the evolution in time of influenza during a season it is known 
that the number of reported cases per week of influenza-like illness first tends to increase and 
after reaching a peak tends to decrease. In such applications, it is reasonable to assume that 
the curve has a unimodal shape. Existing theory may motivate the use of some parametric 
formulation of the model. In the absence of such knowledge of the functional form of the 
curve one may use methods with fewer assumptions. 

Some smoothing method may be considered when no information of the shape of the 
curve is available. One may for example calculate a simple moving average with all non-zero 
weights equal. Since the weights may be regarded as a discrete log-concave function 
unimodality will be preserved as pointed out by Frisén [1]. Anderson and Bock [2] found, 
however, that the location of the maximum is generally not preserved. 

Example of another kind of method, which may be considered when no information about 
the shape of the curve is available, is to use smoothing splines. One procedure is described by 
Silverman [3]. In order to produce a good fit to data and to get a smooth curve he minimizes 
the following quantity with respect to g : 

( ) ( )( ) ( )2 2x t g t g u duα ′′− +∑ ∫ , 

where ( )x t  is the observed value at time t ( )1,2,...t n= , ( )
2

g u du′′∫  is a roughness penalty 
and α  is a smoothing parameter. This method does not preserve unimodality since the 
weights are in general not log-concave [1]. 

Information about the shape of the curve can be of different kinds. Sometimes it is known 
that the curve is concave. Hildreth’s [4] method of concave regression may then be used. This 
method gives consistent estimates of the curve [5]. Holm and Frisén [6] propose a method for 
estimating concave or convex and increasing or decreasing functions. Dahlbom [7] modified 
their algorithm and extended the method to estimate sigmoid and unimodal concave 
functions. In her paper, there is an extensive analysis of the properties of the estimators for 
different curve forms. The assumption of concavity is unrealistic in some applications. In, for 
example, a study of influenza it is shown by [8] that in the up-phase an exponential function 
seems to describe the number of laboratory diagnosed cases rather good. To the down-phase, 
an exponentially decreasing function can be fitted. Such a mixture of exponential functions is 
not concave. We do not consider methods for estimating unimodal functions under 
restrictions of concavity in the present paper. 

Gill and Baron [9] consider a method for estimating a continuous change of the canonical 
parameter of an exponential family from a constant level to a linear function. By using a non-
linear transformation of the time-scale the results can be generalized to a non-linear 
continuous change of the parameter. They give conditions for consistent estimators of the 
change-point. They consider parameters with known behaviour after the change-point.  

As was seen above, there exist different methods to estimate regressions with order 
restrictions. However, here we concentrate on regression where the only restriction on shape 
is that of unimodality. 

Davies and Kovac [10] describe methods for nonparametric regression controlling the 
number of local extremes. The methods considered are the run-method and the taut-string 
multiresolution method. In the run method there is a restriction on the maximum run-length 
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of the sign of the residuals. The taut-string method was first proposed by [11] and extended to 
nonparametric regression by [12]. In the integrated process, one constructs upper and lower 
limits. A taut string is a function within those limits with the shortest length. The derivative 
of the taut string is the estimator of the curve. The estimates at the local extremes may be 
adjusted to get better results. The two methods have been used to estimate a unimodal curve. 

In the estimation of a monotone function regression splines may be used as described by 
Ramsay [13]. The idea is to define a knot sequence which partitions the interval into 
subintervals. In each subinterval a non-negative linear combination of a small number of 
monotone splines are fitted, This type of method has been used by Meyer [14] to estimate a 
unimodal density with known mode. To each side of the mode she fits monotone regression 
splines under the restriction of continuity at the mode. 

None of the methods, for unimodal regression mentioned above, however, give maximum 
likelihood estimators. Such estimators were constructed for the normal distribution with 
known variances in [1] but here we aim at maximum likelihood estimation for a wider class 
of members of the exponential family. These maximum likelihood-estimates are needed in 
surveillance, see e.g. [15].  

In a study of influenza, [8] the Poisson distribution and the normal distribution were used 
to describe the distribution at given time points. The Poisson distribution belongs to the 
exponential family and has one parameter. The one-parameter exponential family may be 
regarded as a special case of the two-parameter exponential family with known or constant 
dispersion parameter. The normal distribution with constant variance is in the class of the 
exponential family with constant dispersion parameter. 

These are the motivations of this paper, in which we study unimodal regression for 
variables with distributions belonging to the two-parameter exponential family with constant 
or known dispersion parameter. This kind of estimator is of interest for example in some 
economical problems and for outbreaks of infectious diseases as will be further discussed in 
Section 5. Andersson, Bock, Frisén and Pettersson have analyzed outbreaks of influenza in 
order to construct of methods for online detection of onsets and peaks of influenza [15-20] 

The outline of the paper is the following: In Section 2 the model is described. In Section 3 
we give the estimator. Some properties of the estimator are given in Section 4. Some 
applications of the method are described in Section 5. Concluding remarks are given in 
Section 6. 

 

2 THE MODEL 

2.1 The family of distributions  

We observe a random process, ( )X t , at n discrete values of the ordering variable t which will 
here be called time. The process may be defined as well in discrete time as in continuous 
time. In both cases, inferences are only for the behaviour of the process at the observed time 
points. We further restrict the attention to processes for which ( )X t  has a distribution 
belonging to the two-parameter exponential family with constant or known dispersion 
parameter. The one-parameter exponential family may be regarded as a special case with a 
known dispersion parameter. We also assume that ( )X t  and ( )X u  are independent for t u≠  

and that ( ), 1, 2,...,t u n∈ . In applications, the assumption of independency may often be a 
realistic since we observe the process at discrete time points. 
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We write a probability function belonging to the exponential family in the canonical form 
as in [21] 

( ) ( ) ( )( )
( ) ( ) ( )( )( )

( )( ) ( ) ( )( ); , exp ;
x t t b t

f x t t t c x t t
a t

θ θ
θ φ φ

φ

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

   (1) 

where ( ) ( )t tθ ∈Θ  is constant for each t and ( )a ⋅ , ( )b ⋅  and ( ).c  are some functions. )(tφ  is 

the dispersion parameter, which is regarded as a nuisance parameter. ( )( ) 0a tφ >  is of the 

form ( ) ( )
( )( )
t

a t
t

φ
φ

ω
=  where ( ) 0tω >  are known weights for all t. We also assume that the 

dispersion parameter ( )tφ  either is known or if unknown ( )tφ φ=  for all t. f  can be either 
the p.d.f. for a continuous random variable, e.g. the exponential distribution or the probability 
function for a discrete random variable such as the Poisson distribution.  

It is also assumed that the family is regular as defined by Brown [22], i.e. that if 

( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( ): exp ;

x t t
t t c x t t dx t

a t
θ

θ φ
φ

∞

−∞

⎧ ⎫⎡ ⎤⎪ ⎪Ξ = − < ∞⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫  then the parameter space ( )tΘ  

is defined as ( ) ( )( )intt tΘ = Ξ . The parameter space shall thus be an open set. If f  is the 
probability function for a discrete random variable, then the integral should be replaced by a 
sum. 

It is also assumed the first and second derivatives of ( )b θ  with respect to θ  exist and that 

( )( )2

2 0
b tθ
θ

∂
>

∂
. It is a well-known fact that  

( ) ( )( ) ( )( )b t
t E X t

θ
μ

θ
∂

= =
∂

 

( )( ) ( ) ( )( )2

2( )
b t

Var X t a t
θ

φ
θ

∂
=

∂
 

2.2 The regression function 

In the present paper, we restrict attention to the case when the expected value of the 
process first is increasing and after having reached a peak decreases. The methods are easily 
modified for the case when the expectations first decrease and after a trough increase. 

We define unimodality as follows: There exists a t′  such that 
( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

max

max max

max

1 ...  for 1

1 ... -1  and ...  for 2,3,...,

1 ...  for 1

n t

t t n t n

n t n

μ μ μ

μ μ μ μ μ μ

μ μ μ

′= ≥ ≥ = ⎫
⎪

′ ′ ′≤ ≤ ≤ ≥ ≥ ≥ ∈ ⎬
⎪′≤ ≤ = = + ⎭

  (2) 

where ( )max 1
max

t n
tμ μ

≤ ≤
= and there is at least one strict inequality in (2). 

 

3 THE MAXIMUM LIKELIHOOD ESTIMATOR 

For ( ) ( ) ( )nXXX ,...,2,1 , independently distributed random variables, ( )tX , ( )nt ,...,2,1∈ , 
having a distribution belonging to the two-parameter exponential family (1) we assume that 
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there are ( )m t  observations on ( )X t  for each t. In Lemma 1, we study the case of a 
monotone regression. Denote the maximum likelihood estimator  

of ( ) ( ) ( )( ),
1 2 ,..., nμ μ μ ′=μ  subject to ( ) ( )nμμμ ≤≤≤ ...2)1(  by 

( ) ( ) ( )( )1 , 2 ,..., nμ μ μ ′=μ .Then the following may be shown. 
 

Lemma 1: 
(a) μ  is given by minimizing  

( ) ( )( ) ( )
( )

2

1

n

t

m t
x t t

t
μ

φ=

−∑          (3) 

with respect to ( )tμ  ( )1, 2,..., )t n=  under the restriction of isotonicity for ( )tμ  if ( )tφ  is 
known for all t.  
(b) μ  is given by minimizing  

( ) ( )( ) ( )2

1

n

t

x t t m tμ
=

−∑          (4) 

with respect to ( )tμ , ( )1, 2,..., )t n= , under the restriction of isotonicity for ( )tμ  if 

( ) ( ) ( )1 2 ... nφ φ φ= = =  
The maximum likelihood estimator of μ , subject to ( ) ( )nμμμ ≥≥≥ ...2)1(  and the 

family of distributions of Section 2.1, is obtained by minimizing (3) and (4) respectively 
under the restriction of antitonicity. 

 
Proof: Silvapulle and Sen [23] consider the following case: Let ( ) ( ) ( )1 ,..., m tx t x t  be ( )m t  

independent observations on the random variable ( )X t  from group t , ( 1,..., )t n= .  

We want to find the maximum likelihood estimator of ( ) ( )( )1 ,... nμ μ  where 

( ) ( )( )t E X tμ =  under the restriction 0Aμ ≥ . A  is a matrix in which each row is a 

permutation of ( )1,1,0,...,0−  and ( ) ( )( )1 ,..., nμ μ μ ′= . Assume that the distribution of ( )X t  

belongs to the exponential family with parameters ( )tθ  and ( )tφ .  Part (a) of proposition 
2.4.3 in [23] states that the maximum likelihood estimator μ  of μ  under the restriction 

0Aμ ≥  is the value of μ  at which  

( ) ( )( ) ( )
2

1

( )n

t

m tx t t
t

μ
φ=

−∑          (5) 

reaches its minimum subject to 0Aμ ≥  if ( ) ( ) ( )1 , 2 ,..., nφ φ φ  are known constants. Part (b) 
of proposition 2.4.3 in [23] states that the maximum likelihood estimator μ  of μ  under the 
restriction 0Aμ ≥  is the value of μ  at which  

( ) ( )( )2

1
( )

n

t
x t t m tμ

=

−∑          (6) 

reaches its minimum subject to 0Aμ ≥  if ( ) ( ) ( )1 2 ... nφ φ φ φ= = = = , say. In isotonic 
regression the i :th row of A has -1 in position i , +1 in position 1i +  and 0 in all other 
positions. For antitonic regression the i :th row has +1 in position i , -1 in position 1i +  and 0 
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in all other positions. Thus the maximum likelihood estimator μ  under the restriction of 

isotonicity and antitonicity respectively is thus given by minimizing ( ) ( )( ) ( )
( )

2

1

n

t

m t
x t t

t
μ

φ=

−∑  

with respect to ( )tμ  under the restrictions of isotonicity and antitonicty respectively if ( )tφ is 

known for all t. For ( ) ( ) ( )1 2 ... nφ φ φ φ= = = =  μ  is given by minimizing 

( ) ( )( ) ( )2

1

n

t

x t t m tμ
=

−∑  with respect to ( )tμ  under the restrictions of isotonicity and 

antitonicty respectively     
 
An estimator μ  of μ  under the restriction of unimodality may be constructed in the 

following way [1]. Regard the following partitions of the observations ( ) ( ) ( )nxxx ,...,2,1 : 

 { } ( ) ( ){ }( ) ( ){ } ( ) ( ){ }( ) ( ) ( ){ } { }( ), 1 ,..., , 1 , 2 ,..., ,..., 1 ,..., ,x x n x x x n x x n∅ ∅ .  (7)  

For each of these partitions we fit monotone regressions to each part. To the first part is 
fitted an isotonic regression and to the second an antitonic regression. Denote the likelihood 
for the fitted unimodal regression for the i :th partition by iL  ( )1, 2,... 1i n= + . μ  is given by 
the partition with gives 

1 1
max ( )ii n

L
≤ ≤ +

. 

 
Theorem 1: μ  defined above is the maximum likelihood estimator of μ  under the 
restriction of unimodality for the regular exponential distribution with known or constant 
dispersion parameter as described in Section 2.1.  
 

Proof: First, we regard the maximum likelihood estimator of μ  for a given t′  as defined 
by (2) Assume that 1t′ = . Then ( )tμ  is an antitonic function of t . The maximum likelihood 
estimator of μ  is given by lemma 1. Denote the maximum of the likelihood function in this 
case by 1L . If 1t n′ = +  then ( )tμ  is an isotonic function of t . The maximum likelihood 
estimator of μ  follows from Lemma 1. Denote the maximum of the likelihood function by 

1nL + . Now assume that ( )2,3,..., 1t n′∈ − . According to the definition of t′  in (2) then the 
curve is first increasing and then decreasing. If 
( ) ( ) ( ) ( )max max1 ... t -1  and ...t nμ μ μ μ μ μ′ ′≤ ≤ ≤ ≥ ≥  for a given t′ , we fit an isotonic function 

according to lemma 1 to ( ) ( )1 ,..., 1x x t′ − . Denote the maximum of the likelihood by t
IL ′ . Fit 

an antitonic function according to lemma 1 to ( ) ( ),...,x t x n′ . Denote the maximum of the 

likelihood by t
AL ′ .Then the maximal likelihood for the curve is I A

t t tL L L′ ′ ′= ⋅ . Our maximum 
likelihood estimator μ  of μ  under the restriction of unimodality is given by the partition, 
which maximizes tL ′  for ( )1,2,... 1t n′∈ +      

 
The method is illustrated by a numerical example in section 5.1. 
The parameter ( )tφ  in (1) may be interpreted as a scale parameter and ( )tω  as the number 

of observations on ( )tX  for ( )nt ,...,2,1∈ . For normally distributed variables, the scale 
parameter is the variance. When a unimodal regression is fitted to observations on normally 
distributed variables with varying variances, we correct for the differences in scale by 
weighting the observations inversely to their variances. If the dispersion parameter is constant 
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for all observations, we have the same scale for all observations and we therefore do not 
correct for differences in scale and give all observations a weight, which is proportional to the 
number of observations for all time points. 

In section 2 it was stated that ( )b θ
μ

θ
∂

=
∂

 and since it was assumed that ( )2

2 0
b θ
θ

∂
>

∂
 then 

μ  is a strictly increasing function of θ . This motivates the following corollary. 
 

Corollary: The maximum-likelihood estimator of ( )tθ , ( )tθ , is given by ( )( )1b tθ μ−′ , where 

1bθ
−′  denotes the inverse of ( )b θ

θ
∂
∂

. 

 

Proof: Since 
( )( )b tθ
θ

∂

∂
 is strictly increasing in ( )tθ  the inverse exists. If the likelihood is 

maximized for ( ) ( )t tμ μ=  it is also maximized for the value ( )tθ  of ( )tθ  for which  

( ) ( )( )b t
t

θ
μ

θ
θ θ

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠ =

 i.e. ( ) ( )( )1t b tθθ μ−′= .     

 

4 PROPERTIES OF THE ESTIMATOR 

The estimated curve preserves the unimodality since the transformation of the data is log- 
concave. See Frisén [1] for a proof. In this section we study consistency and bias. 

4.1 Consistency. 

When the number, m(t), of independent observations at each time point, t, tends to infinity, 
we have the following consistency property. 
 
Theorem 2: In the class of distributions given in Section 2.1 ( )tμ  is a strongly consistent 

estimator of ( )tμ  for 1, 2,...,t n=  when min m(t)→∞. 
Proof: The theorem follows from the Kolmogorov law of large numbers since it is assumed 

in Section 2.1 that ( ) ( )( )b t
t

θ
μ

θ
∂

=
∂

 exists for 1, 2,...,t n=            

 
From this it follows that both the height and the time of the peak will be consistently 
estimated. Observe that the consistency do not prevail for the case where the number of time 
points tends to infinity.  

If there is only one observation for each time point but the number of time points 
tends to infinity then ( )maxˆ max tμ μ= ⎡ ⎤⎣ ⎦  is in general an inconsistent estimator of 

( )max max tμ μ= ⎡ ⎤⎣ ⎦  as is pointed out by Frisén [1] and Dahlbom [24] for a regression with 
normal distribution and by Woodroofe and Sun [25] for density estimation in the exponential 
family. 
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4.2 Bias. 

In the case when there is one observation per time point the estimators of the end-points and 
the maximum points are positively biased, as was pointed out by Dahlbom [24]. She also 
found that the bias of the estimators of other points at the curve often is negligible. Some 
results from her simulation experiments of certain curves and the normal distribution will 
now be reviewed. 

We focus our interest to the problem of estimating ( )max 1,2,..
max
t n

tμ μ
=

= ⎡ ⎤⎣ ⎦  when the time 

point for the maximum is unknown and when there is one observation at each of a fixed 
number of time points. As an estimator of maxμ  one may use ( )max 1,2,..

ˆ max
t n

tμ μ
=

= ⎡ ⎤⎣ ⎦ . Dahlbom 

[24] studied, the case when maxt  is unique, where ( )max 1,2,...,
arg max

t n
t tμ

=
= . One of the models for 

( )tμ  was a symmetrical and concave second-degree polynomial. The bias of maxμ̂  as an 
estimator of maxμ  was a decreasing function of the curvature normalised for the standard 
deviation. When the number of time points in an interval of fixed length increases then the 
bias tends to increase. Since deviations from symmetry may affect the bias, she also used a 
third-degree polynomial as a model for ( )tμ  with values of the coefficients giving unimodal 
and concave curves. It was found that moderate deviations from symmetry had small 
influence on the bias. 

The errors in the simulation experiments by Dahlbom were normally distributed. There is 
no obvious reason to expect much different results for other members of the exponential 
family. The curves studied by Dahlbom in the simulation experiments are concave. The bias 
in the estimator of maxμ  for other curve forms and other distributions is not necessarily the 
same. As mentioned in Section 1 a mixture of exponential functions, one increasing and one 
decreasing, seems to give a good fit to laboratory diagnosed influenza in Sweden. Such 
mixtures of exponential functions are not concave. 

 

5 EXAMPLES 

5.1 A numerical example. 

We have one observation on ( )tX  at each of the time points 5,4,3,2,1=t  where ( )tX  
follows the Poisson distribution ( )( )P tλ . The Poisson distribution is in the exponential 

family of equation (1), with ( )lnθ λ= , ( )b eθθ = λ= , ( ) 1a φ = , ( ) ( ), ln !c x xφ =  and 

( ) ( )( )b t
t

θ
μ

θ
∂

=
∂

eθ λ= = . We assume that ( )tμ  is unimodal as in (2). 

We give the calculations for the case there the observed values of X are 1, 3, 1, 5, and 1. In 
the table below, we give the observed values and the estimates of ( )tμ  at different time 
points and the likelihood for different partitions of the observations. As an example, we get 
the following likelihood for the partition { } { }1,3 , 1,5,1   

3
1

1
5

3
1

3
3

3
1

1 10457.0
!1

1
!5

3
!1

3
!3

3
!1

1 −−−−−− ⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅= eeeeeL  
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Table 1. The likelihood and the maximum likelihood estimators for each time conditional on each of the 
possible partitions of the dataset {1, 3, 1, 5, 1} 

 
Partitions t=1 t=2 t=3 t=4 t=5 Likelihood 

{ } { }, 1,3,1,5,1∅  2.5 2.5 2.5 2.5 1 30.221 10−⋅  
{ } { }1 , 3,1,5,1  1 3 3 3 1 30.457 10−⋅  
{ } { }1,3 , 1,5,1  1 3 3 3 1 30.457 10−⋅  
{ } { }1,3,1 , 5,1  1 2 2 5 1 31.160 10−⋅  
{ } { }1,3,1,5 , 1  1 2 2 5 1 31.160 10−⋅  

{ } { }1,3,1,5,1 , ∅  1 2 2 3 3 30.271 10−⋅  
 
The conclusion from Table 1 is that the maximum likelihood estimate of the curve is given 

in the rows for the partitions { } { }( )1,3,1 , 5,1  and { } { }( )1,3,1,5 , 1 . Thus, the maximum 

likelihood estimator isμ ( )1, 2,2,5,1= . 

5.2 An economical example. 

An economical example where it is of interest to use an inverted U-shaped curve is in the 
study of inflation before, during and after periods of hyperinflation [26]. See for example 
monthly data on the inflation for Bulgaria during the time period from 1995 to 2000. After 
the end of central planning, there was a budget deficit and high monetary growth. The 
confidence in government was decreasing and the inflation was steadily increasing. During 
March, the twelve-month inflation was about 2000%. After reforms, Bulgarians became more 
confident in their currency and inflation decreased. In figure 1, we show the Bulgarian 
twelve-month inflation in percent during the time period from June 1995 to September 1999. 
We also show the unimodal regression function fitted under the assumption of normally 
distributed values with constant variances.  
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Figure 1. Bulgarian inflation and fitted regression for the years 1996 and 1997 
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5.3 Application to influenza incidences 

In the study of the number of influenza cases during an ordinary season it may be reasonable 
to assume that the number of cases are initially increasing and that they after having reached 
a peak are decreasing. It is of interest to study the incidence, since influenza epidemics 
impose huge costs on society. The Swedish Institute for Infectious Disease control (SMI) 
publishes information on Swedish influenza incidence. Two types of weekly data are 
published, namely the number of influenza like illness (ILI) and laboratory diagnosed 
influenza cases (LDI). Details on the reporting can be found in [27]. 

The number of reported cases per week of influenza-like illness and the number of 
laboratory-diagnosed cases per week are counting variables. In some studies, it is assumed 
that the distribution of the number of cases can be approximated by the normal distribution. 
However, at the onset of an epidemic there are few cases. Assumption of normality then may 
assign a non-zero probability that cannot be ignored to a negative number of cases. The 
assumption of normality of the number of influenza cases has been criticized by Le Strat and 
Carrat [28]and Rath et al. [29]. Held et al [30] suggest the Poisson distribution for infectious 
surveillance data and also discuss the negative binomial distribution in cases of over-
dispersion relative to the Poisson distribution. Sebastiani et al [31] use a log-normal 
distribution for ILI data. Andersson et al [8] studied the distributional properties for ILI and 
LDI in Swedish influenza data from five influenza seasons. They fitted piecewise exponential 
functions to each season and examined the residuals. The auto-correlations in the residuals 
were low all seasons for the two variables. Near the peak, there was no evident relation 
between the squared residuals and the estimated curve. Since there were numerous cases near 
the peak an assumption of normally distributed values with constant variance may be 
adequate for that part. In [19], they also studied the onset of an epidemic using ILI-data. They 
found that the squared residuals depend on the estimated means. Since there was no direct 
evidence against the Poisson distribution they suggested that this distribution may be used a 
first approximation. 

Here we restrict our attention to the LDI data. The LDI-cases are reported weekly from 
five virus laboratories and between 15 and 20 microbiological laboratories. See [32] and [33] 
for details. The LDI cases are mostly patients in need of hospital care.  

In figure 2, we show the number of cases and the unimodal regression for the number of 
laboratory diagnosed cases under the assumption of Poisson distributed values for the season 
2005/2006 
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Figure 2. The number of LDI cases and the fitted regression during the season 2005/2006. 
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6 CONCLUDING REMARKS 

We have given examples of situations where it is reasonable to assume that the evolution in 
time of a process may be described by a unimodal curve and when it can be assumed that the 
distribution of the observed process may be described by a distribution belonging to the one-
parameter exponential distribution. 

In unimodal regression with distributions belonging to the exponential family with varying 
dispersion parameter, the observations are weighted inversely proportional to that parameter 
if there is one observation per time point. For distributions belonging to a one-parameter 
exponential family or two-parameter exponential family with constant dispersion parameter, 
all observations shall have the same weight for one observation per time point. An example 
of a two-parameter distribution in the exponential family with constant dispersion parameter 
is the normal distribution with constant variance. An example of a distribution belonging to 
the one-parameter exponential family is the Poisson distribution. In this paper, we restrict 
attention to estimation of the unimodal regression curve under the assumptions given above. 
The results are also important in the construction of surveillance procedures in order to 
monitor different processes in time. An example is in timely detection of influenza peaks 
where the Poisson distribution is useful. In some financial time series, the assumption of a 
normal distribution with constant variance may be used as in the example of Bulgarian 
hyperinflation. The monitoring of such time series may be of interest to among others actors 
on the foreign exchange markets.  
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