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UNIMODALITY AND DOMINANCE
FOR SYMMETRIC RANDOM VECTORS
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Abstract. In this paper a notion of unimodality for symmetric random
vectors in RN is developed which is closed under convolution as well as
weak convergence. A related notion of stochastic dominance for symmetric
random vectors is also studied.

1. Introduction. In this paper we explore new notions of unimodality and
dominance for random vectors in RN (for exact definitions see §3). These
notions are essentially generalizations of definitions in Sherman [13]. It must
be noted, however, that we do not restrict ourselves to random vectors with
density as Sherman did; rather, we try to explore our subject in its natural
context. In order to accomplish our purpuse we need to delve into the
interesting topic of logarithmically concave measures, which we do in §2.

In §3 we prove our main results. Namely we show that the class of
symmetric unimodal probability measures on RN is closed under convolution
and weak convergence (where unimodality is defined as in Definition 3.1).
We also prove some general results about the notion of symmetric dominance
for symmetric unimodal random vectors.

In §4 we apply our general results to the study of infinitely divisible
random vectors. We give conditions for infinitely divisible random vectors to
be symmetric unimodal and as a by-product we see that all symmetric stable
random vectors are unimodal. We then make use of semigroup theory in Hille
and Phillips [6] to show that if X(t) and Y(t) are homogeneous processes with
independent increments with symmetric unimodal Levy-Khinchine measures
Mx and MY, then X(t) dominates Y(t) for all t > 0 if and only if Mx
dominates Mr.

In §5 we compare our notion of unimodality in RN to three other ways of
defining unimodality due to Anderson [1], Olshen and Savage [8], and Ghosh
[5].

We end this introduction with a list of basic notation, some definitions and
a summary of some required facts about measures and metric spaces.
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66 MAREK KANTER

Notation. For a vector a G RN we let ||a|| stand for an arbitrary norm on
RN, while ||a||2 stands for the usual Euclidean norm (a-a)x/2. We let
B(r)={y\yERN,\\y\\2<r).

For U c R N we let 7^, be the indicator function of U.
For U c *",£(£/, r) = { v| y G RN, Mxeu\\y - x\\2 < r).
We let cl(U), U°, Uc, and dU denote the closure of U, the interior of U,

the complement of U, and the boundary of U respectively. For B(l) c RN
we denote 95(1) by SN_X.

We define diam(i/) = sup{||x - v||2; ijë [/}.
We let span( Í7) be the affine subspace spanned by U and conv( U) be the

least convex set containing U.
We let dim(U) = dimension of span(fj).
Finally if U is a convex set and L = span(t/), we let U°L stand for the

interior of U when viewed as a subset of L.
Definitions.
Definition 1.1. If L is a linear subspace of RN of dimension &, we let VolL

stand for A>dimensional Lebesgue measure on L, with the normalizing condi-
tion that VolL(5(l)) = v7*/2/r(l + \k).

If L' is an affine subspace of RN of the form L' = L + x where L is a
linear subspace of RN we let Volr(.4') = Vol¿(/l) where A' = A + x and A
is any Borel subset of L.

Definition 1.2. If K is a compact, convex subset of RN we define the
probability measure XKonRN by
(1.2) ^(-0 - VolL(/l n A)/VolL(A)
where A is any Borel subset of RN and L is the affine subspace spanned by
K.

Measures and metric spaces.
Let 9H be a metric space with metric ¿/. A measure on "D1L is a countably

additive [0, oo] valued set function on the a-field of Borel subsets of "311, i.e.
those sets generated by the open subsets of 9H. A probability measure on 3TI
is a measure on 9H with u(9H) = 1.

Definition 1.3. Let 91L be a metric space. Let u„ be a sequence of bounded
measures on ?)1L and let u be a bounded measure on 911. We write p„ -»* u
(and say u„ converges weakly to ju) if

(1-3) ffdti^fdn
for all bounded, continuous, real valued functions on 911. If X„ and A' are
random vectors in RN we say X„ converges to X in distribution (and write
Xn ->D X) if ¡i„ ->w u where u„ is the distribution of Arn (i.e. u„(^) = P[X„ G
/I] for any Borel subset of RN) and where p is the distribution of X.
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UNIMODALITY FOR SYMMETRIC RANDOM VECTORS 67

It is well known (see Parthasarathy [9]) that if 911 is separable then the set
of probability measures on 9H may be made into a separable metric space
(9H+, d+) where d+(pn, p) -» 0 if and only if pn -r>w p. If 91L is complete
then 9IL+ will also be complete. We now mention a useful lemma due to
Prokhorov, whose proof can be found in [9, p. 47].

Lemma 1.1. Let (911, d) be a complete separable metric space. Let F = { pa\a
E A) be a set of probability measures on 911. Then F has compact closure in
(9H+, d+) if and only if for all e > 0 there exists a compact subset K of 911
such that
(1.4) pa(K) >l-e

for all a G A.

Again let (911, d) be a complete separable metric space. Let (91t+ + , d + +)
denote the set of probability measures on 91t+ equipped with metric d + +
which metrizes the notion of weak convergence of probability measures on
9H+. Let F be a set of probability measures on 91t+. A double application of
Lemma 1.1 enables us to conclude that F has compact closure in
(9\L+ + ,d + +) if and only if for all e¡ > 0, e2 > 0 there exists a compact
subset K of 911 such that for all v E F

(1.5) v{p\pE ^Sl+,p(K) > 1 -e,} > 1 - e2.

If 911 = RN we shall use the notation 9H+ = 91t¿ and 91t+ + = 91t¿ + . If
911 = L, a linear subspace of RN, we shall write 91t+ = 9lt¿ and 9H++ =

Definition 1.4. Let px, ju2 G 9lt+. We define the total variation norm
between ¡xx and p2 (written || ¡ix - /x2||tv) to be supj ¡ix(A) - y.2(A)\ where the
sup is taken over the family of all Borel subsets A of 9H. We write /!.„ -*tv- ¡i
if || nn - jii||t.v.-> 0. It is well known that /x„ -+tv- p implies /in -*w jtt. It is also
well known that (91t+, || ||tv) is a complete metric space, even if 9IL is not
complete.

Suppose now that L is a linear subspace of RN. If zz is a Borel measurable
real valued function on L we define \\h\\L = jLlh(x)l d Wo\L(x). We shall let
£'(Vol¿) denote the set of all Borel measurable functions h on L with
||A||¿ < oo. If ju is a probability measure on L which is absolutely continuous
with respect to VolL and has Radon-Nikodym derivative / with respect to
Vol¿, we shall write dp = f d\o\L or dp/d VolL = /. It is well known that if
p, v are probability measures on L with dp-fd Vol£ and dv = g d Vol¿,
then Hii-Hltv.- ill/" ñv

Definition 1.5. Let (9H, d) be a complete separable metric space and let p
be a measure on 91L. We define the support of p (written supp(jti)) to be the
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68 MAREK KANTER

smallest closed subset D of 911 such that p(Dc) = 0. Equivalently, supp(ix) is
the set of all points x in 911 such that p(x + B(a)) > 0 for all a > 0. (See [9,
p. 29].)

We end the introduction with a well-known lemma about weak conver-
gence of measures (see [9, p. 40] for the proof).

Lemma 1.2. Let (9It, d) be a metric space. Let pn be a sequence of bounded
measures on 911 with ¡jl„ -»w p. Then:

(1) For any closed set C in 9H we have lim sup^^u^C) < p(C).
(2) For any Borel subset A of 9tt with p(dA) = 0 we have limrt_>00un(/l) =

p(A).
2. Log-concave measures. In this section we present the main facts about an

important class of probability measures on R N.
Definition 2.1. We say that a probability measure p on RN is logarithmi-

cally concave if for all open, convex sets C,D ci" and t G (0, 1) we have

(2.1) p(tC + (1 - t)D) > (p(C)')(p(D)1-).
It is easy to deduce that (2.1) is also valid for all closed, convex sets C, D,
since any closed convex set is the limit of a decreasing sequence of open
convex sets. An easy consequence of (2.1) is the inequality
(2.2) p(C -(tx + (l- t)y)) > (p(C - x)')(p(C -y)1-'),

valid for all x,y E RN. A direct consequence of (2.2) is the fact that supp(u)
is a closed convex set. If we let L = span(supp( p)) it is natural to conjecture
that dp = fd Vol¿ for some logarithmically concave function / on L. (A
function/ is said to be log-concave if log/has values in [ — oo, +oo) and is
concave.) This conjecture has recently been proved in [2, p. 123]. The
converse to this conjecture was demonstrated by Prekopa [10]. We combine
these results to get the following key lemma.

Lemma 2.1. Let p be a logarithmically concave measure on RN. Then there
exists a linear subspace L of RN and a log-concave density function f such that
dp = fd VolL. Conversely if L and a log-concave density function f are given,
then the measure u defined by dp = / d Vol¿ is logarithmically concave.

Corollary 2.1. For any compact, convex, symmetric set K and any symmet-
ric open, convex set C we have XK(C — x) < A^C).

Proof. The measure A^ has log-concave density V6lL(K)~xIK where L =
span(A), hence by Lemma 2.1, XK is a log-concave measure. Now use (2.2).
Q.E.D.

Lemma 2.2. Suppose (p„\n > 1) is a sequence of log-concave probability
measures with u„ ->w ¡i. Then p is also a log-concave probability measure.
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UNIMODALITY FOR SYMMETRIC RANDOM VECTORS 69

Proof. We wish to show that p satisfies (2.1). In fact whenever C, D are
closed convex sets with nonempty interior and p(dC) = p(dD) = 0, then
(2.1) is satisfied since in that case

*(C)"Ä*(C)   and   M(0)Kmft,(Z>)
by Lemma 1.2. To demonstrate (2.1) for general open convex sets C and D,
we note that any open convex set A is the limit of an increasing sequence An,
of closed convex sets with nonempty interior which are chosen so that
p(dAa) = 0.   Q.E.D.

Lemma 2.3. Let px and p2 be log-concave probability measures on RN. Then
px * P2 is also a log-concave probability measure on RN.

Proof. Let C¡ = supp(/t,) for z = 1, 2. Translating p¡ by vectors x¡ if
necessary, we may suppose 0 G Cx n C2. Let L¡ = span(C,) and let L(x be
the linear subspaces orthogonal to L¡ so that RN = L¡ © /./• for / = 1,2. Let

giM=Vol^{B(l/n))lB{^L'{yd   f°r  y¡EL¡±

and let

//■(*/)---A--uififlW-x)   for   x¡EL¡.J,,n\ ,)     Yol^{B(l/n)) m   w   ;       ,;

Let vin be the probability measure on RN with density fing¡n with respect to
VolL = Vol^ X Vol^x. It is proved in [10] as well as [3] that vx „ * v2n is a
log-concave probability measure.

It is clear that vXn -*wpx and p2„ ->"/t2 as zz. -» oo. We conclude that
vi,n * v2,n ̂"Pi * ih. anc^ Mi * ^2 is a log-concave measure, since log-concavity
is preserved under weak limits.   Q.E.D.

Lemma 2.4. Let p be a log-concave measure on RN. Let L be a linear
subspace and let TfL stand for the orthogonal projection operator onto L. Then
the measure p ° UL is a log-concave measure on L.

Proof. If C, D are open convex subsets of L then n¿'(C) and n¿ \D) are
open convex subsets of RN. Since p is log-concave, (2.1) is satisfied for
n~'(C), n~2(Z>); it follows that (2.1) is satisfied for p ° n¿' and C,D.
Q.E.D.

Definition 2.2. Let L be a linear subspace of RN. We shall denote by TL
the set of all log-concave, symmetric nonnegative functions f on L with
jJdVolL = 1, and we shall denote by 7£ the set of all probability measures
p on L of the form dp = fdWolL where/ G TL.

Corollary 2.3. The set TL is complete separable metric space when equipped
with the metric \\ • \\L and when functions which agree a.e. VolL are identified.
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70 MAREK KANTER

Proof. Suppose |[/„ - fm\\L -> 0 as n, m -> oo, where the sequence/, G TL.
Then || u„ — MmlLv.-* 0, where um is a sequence of probability measures on L
defined by dpn = f„d VolL. Now this implies the existence of some probabil-
ity measure fi on L such that \\pn — u||tv-»0 as n -» oo. In particular,
¡xn -»wu, hence by Lemma 2.2, p is a log-concave measure on /?N. Now u has
density with respect to VolL since || u„ - u||tv.-> 0; also u is clearly symmet-
ric. We can now use Lemma 2.1 to conclude that d¡j./d VolL =/ where
fETL.

We have just proved completeness of T£. The proof of separability is
standard.   Q.E.D.

3. Symmetric uni modal random vectors. In this section we shall introduce
our notion of unimodality for symmetric random vectors in RN, and we shall
prove a few fundamental results about this notion.

We shall often be dealing with sets S which consist of a subset of the
collection of all probability measures on some metric space 9H and we shall
need to have a uniform convention for the concept of Borel subsets of S. Our
convention shall be to endow S with the Borel structure consisting of the
least a-field containing all those subsets U of S which are open in the
topology of weak convergence of probability measures.

Definition 3.1. Let L be a linear subspace of RN. We shall let WL stand
for the set of all probability measures on L of the form XK where A is a
compact symmetric subset of L. We give WL the Borel structure mentioned
above.

We let UL stand for all the measures ¡ionRN which are of the form

(3.1) p = f   XKdv(XK)

where v is a measure on WL. We call v the mixing measure for u. (We shall
later show that WL is a Borel measurable subset of 91L¿ .) We note that p in
(3.1) is a probability measure if and only if j» is a probability measure.

We shall use the notation WRn = WN and Urn = UN. We shall call a
random vector in RN, symmetric unimodal if its distribution is in UN. We
note that if p is a symmetric probability measure on R which is unimodal in
the standard 1-dimensional sense, then by Feller [4, p. 158] we have u G Ux.

Lemma 3.1. Let L be a linear subspace of RN and let p be a log-concave,
symmetric, probability measure on L with d¡i/d VolL = / where f G TL. Then
uG UL.

Proof. Let Ds = {y\f(y) > s} for j > 0. We have f(x) = J£IDi(x) ds;
hence it follows that for any Borel subset A of L,
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UNIMODALITY FOR SYMMETRIC RANDOM VECTORS 71

(3.2) f f(x) d Vo\L(x) = [X VolL(A n Ds) ds.
JA J0

Now Ds is a bounded convex subset of L for s > 0 and it is clear that
Völlig = VolJiQ for all s, where Ks = c\(Ds). It follows that

Voli(^ni)í) = VolL(^nAí)
for all s and we can rewrite (3.2) as

(3.3) f f(x) d VolL(x) = rVolL04 n Ks ) ds.
JA J0

Now let <& be the measurable map from (0, oo) into WL defined by
d>(j) = A^. and let v' = £ •$"' where £ is Lebesgue measure on (0, oo). We
rewrite (3.3) as

(3.4) f f(x) d VolL(*) = f XK(A) VolL(K) dv'(XK).
JA JWL

Finally we let the measure v on WL be defined by the equation

(3.5) v(B) = [VolL(K)dv'(XK)

where B is any Borel subset of WL. It is clear that we can rewrite (3.4) as

(3.6) f f(x) d VolL(*) = fXK(A) dp(XK);
JA JWL

hence we conclude that p E UL with mixing measure v.   Q.E.D.
Notation. Let u and v be as in Lemma 3.1. We shall denote v by J(p). We

claim that J is a well-defined map from T£ into W¿. In fact suppose
dp=fxdVolL=f2dVolL

where fx = f2 a.e. (VolL) and fx = f2E TL. It is then obvious that the two
compact convex sets cl{y\fx(y) > s) and cl{y\f2(y) > s} are equal for all
s > 0.

We shall study the measurability properties of the map J in the following
lemma.

Lemma 3.2. The map J: 7£ -» W¿ is measurable.

Proof. We must show that for any Borel set C of W¿, {\i\J(p) E C) is a
Borel subset of TJ. It suffices to consider sets C of the form

(3.7) C=\v

where « is a bounded continuous function on WL and r G R. We can assume
MAie) = ¡lS dXK where g is a bounded continuous function on L.

f  k(Xk)dv(XK)>
J\v,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



72 MAREK KANTER

We know that any p G 7£ is of the form dp = fßd VolL where f is a
logarithmically concave density function. Let us set K = {y\L(y) > s).
We now compute

(3.8) /   h(XK)dv(XK)=f   lfgdXK)volL(K)dv'(K),JWL JWLVL I

whence

(3.9) f h(XK) dv(XK) = ffgd Vol¿ dv'(K).JWL JWLJK

Remember now that v' — £ ° d>~' where $M(.s) = X? ', then the last ex-
pression becomes Jo°(jV g d VolL) ds.

It follows that

(3.10) [p\J(p) eC}=   *\5"[fK 8dv°h\ ds > r\.

Using (3.2) we get

{p\J(p) G C) = { p^fjWf^dVolL(x) > r}.

Hence,

(3.11) {p\J(p)EC} = {p\fLgdp>r}.

The last set is clearly a Borel subset of 7£.   Q.E.D.

Corollary 3.1. WLis a Borel subset of 91L¿.

Proof. We have WL c 7£ c 9H¿ .
Using Corollary 2.3 we know that T* is a complete metric space under the

total variation metric; also the imbedding 7^ c 9H¿ is continuous where 7£
is given the topology determined by the total variation metric while 91L¿ is
given the topology determined by weak convergence of probability measures.
We conclude by a theorem of Kuratowski [7, p. 21] that 7£ is a Borel subset
of 9H¿.

Consider now the set H c W¿ defined by H — { p\ p is an atomic proba-
bility measure on WL). Now WL is separable under the topology of weak
convergence; hence there exists a sequence An of Borel subsets of WL such
that H = { p\ p G 91t¿ ,p(A„) = 0 or 1 for all n). We conclude H is a Borel
subset of W¿. Noting WL = J~X(H), by Lemma 3.2 we conclude that WL is
a Borel subset of T[. Since 7£ is a Borel subset of 91L¿, we are done.
Q.E.D.
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The next theorem is one of the fundamental results in this paper, namely
that symmetric unimodal probability measures are closed under weak conver-
gence. It is easy to prove in 1 dimension; its difficulty in N dimensions is
essentially due to the fact that WN, the closure of WN in 9H^ in the topology
of weak convergence, contains WN properly. The following example will
clarify things.

Example 3.1. In R2 let

K„ - conv({(l, 0), (-1, 0), (0, 1/n), (0, - 1/n)}).

A simple computation shows that A^ -V p where u is the probability
measure on L = {(x, y)\y = 0} whose density is |1 — x\ on K = {(x,y)\x E
[-1, l], y = 0} with respect to VolL.

Theorem 3.1. The class of symmetric unimodal probability measures on RN is
closed under weak convergence.

Proof. Suppose ft, is a sequence of probability measures in UN with
ft, ->w p where p is a probability measure on RN. By Lemma 1.1 we know
that for any 9,8 >0 there exists n so large that pn(B (r)) > 1 - (9/8) for all
n as well as n(B(r)) > 1 — 9/8. Now we can write

(3.12) ft,-/ XKdvn(XK)
JwN

for some probability measure vn on WN. We conclude that v„{XK\XK(B(r))c >
ô"1} < 9. Let WN stand for the closure of WN in 91^. Applying (1.5) we
conclude immediately that the set {vn\n > 1} has compact closure in (WN)+,
so by passing to a subsequence if necessary, we know there exists v G (WN)+
such that vk -» v. This means that

(3.13) \_fdvn^[_ fd~v
Jwn J\vN

for all bounded continuous real valued functions/on WN. Now WN is clearly
a measurable subset of T% (since it is a complete separable metric space and
the theorem of Kuratowski [9, p. 21] applies), so we conclude by Lemma 3.2
that the restriction J: WN -» Wjf is a measurable map. It follows that any
probability measure Q on WN induces a probability measure Q ° J~l on
W¿. In (3.13) let us take f(a) = fR»g(x) da(x) where a E WN and g is a
bounded continuous real function on RN. We can rewrite (3.13) as

(3.14) L

dvnoJ~X(ß)

= / J/   {/ NSdXK)dß(XK)df   °J~X(ß).
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74 MAREK KANTER

It follows that for all such g,

(3.15)      f   g(x)dp(x)=f       f   If   gdXK)dß(XK)d(H°J-x)(ß).
JRN JiV¿lJWN{JRN ) ]

We now define v G W¡f by the equation

(3.16)f  h(XK)dv(XK)=f       f   \fgdXK)dß(XK)   dCv°J-x)(ß),
JWN JWj}[JWN\JR1' )

valid for all bounded continuous real valued functions on WN of the form
h(XK) = jRng dXK. Putting (3.13)—(3.16) together we conclude that p =
iwXKdv(XK).   Q.E.D.

We now prove that symmetric unimodal probability measures on RN are
closed under convolution. This closure property is a strong justification for
our belief that we are working with the proper notion of unimodality for
symmetric random vectors in RN. It is well known to be valid in one
dimension (note however that the convolution of nonsymmetric unimodal
probability measures is not necessarily unimodal as shown in [4, p. 168]).

Theorem 3.2. Let px, p2 G UN. Then px * p2E UN.

Proof. We can write p¡ = ¡WXK dvx(XK) where v, are probability measures
on WN for i = 1,2. We conclude that

(3.17) px * p2 = fXKi * XKi dvx(XKi) X v2(XKJ.
Now XK *XK is a symmetric log-concave probability measure on RN by
Lemma 2.6, hence XK *XK E UN, so we can write

(3.18) r\K*\K = f  XKdvKK(XK)
JwN

for some probability measure vK K on WN. Finally we can write px * p2 =
jwXK dp(XK) where v is the probability measure on WN defined by

(3.19) v(B)=f vKuKi(B)dvx{XKi) X dv2{XKi),

for all Borel subsets B of WN.   Q.E.D.
The following closure property is an easy corollary to Lemma 2.7. We state

it for completeness, but omit the proof.

Theorem. 3.3. Let p E UN. Let L be a linear subspace of RN and let nL
denote the orthogonal projection operator onto L. Then the measure p » n¿ ' is
in UL.

An important corollary of the last theorem is that all marginals of a
symmetric unimodal measure on RN are also symmetric unimodal measures.
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We now turn to the notion of dominance.
Definition 3.3. Let jit, and p2 be measures on RN. We say that u,

symmetrically dominates u2 (and write ¡xx > p2) if we have
(3.20) ,ix(Kc)> ¡i2(Kc)

for all compact, convex, symmetric subsets of RN. If A', and X2 are random
vectors in RN with distribution u, and ju2, respectively, we write Xx > X2 if
Mi > f*2«

Let us denote by f^ the class of continuous, symmetric log-concave
functions / on R N with values in [0, oo) such that/(0) = 1 and lim^n _«,/(*)
= 0.

Lemma 3.3. Let ju, and ¡i2 be measures on RN with i¡.¡(Dc) < oo, for any
Borel measurable set D containing 0 in its interior. Then the condition that
¡ix >■ u2 is equivalent to the condition that

(3.21) /  (/(0) - f(x)) dpx(x) >f  (f(0) - f(x)) dp2(x)
JRN JRN

for allf E %.

Proof.   Assume   first   that   px  > p2.   For   / G ^N    let   /„  =
2i(/c/«)/{X|/W>fc/„}. Now S„ decreases to / and (3.20) holds for /„. We
conclude that (3.20) holds for/.

Arguing backwards we now assume (3.21) for all /Gf^. Let A be a
compact, symmetric convex subset of RN containing 0 in its interior. Let
D, = 3 (sK). The sets Ds are all disjoint, hence except for j in a countable set
N we have ( ju, + H2)(DS) = 0-

Define for 9 > 0,

It is clear that Se,s ̂  % and that /ôî(x) = 1 if x E (sK)°, for 9 sufficiently
small. Also for x G sK, it is clear that/fli(x) = 0 for 9 sufficiently small. Now
we let 9 -> 0 in (3.22) (and use the Lebesgue dominated convergence theo-
rem), in the following inequality,

(3.22) /  <S9J, (0) - /,,, (*)) dpx(x) >(  (/„ (0) - Se, (*)) dp2(x),JRN JRN

to get that px((sK)c) > p2((sK)c) for sZN. Letting s -> 1, j G N, we then get
u,(Ae) > p2(K<).

If K has an empty interior, we apply the previous argument to get
til(B(K,8)c)> p2(B(K,8)c) for any 8 > 0. Letting 5->0 we conclude
Ml(Ac) > ix2(Kc).   Q.E.D.
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Lemma 3.4. Suppose p E UN and that px and p2 are two measures on RN'
with px > p2. Then p X px > p X p2.

Proof. It is sufficient to prove the lemma for p = XK E WN, since the
general result will follow by mixing. Let A be in ^N+N-. We compute

/ „     mWn, <V) - H*,y) dXK(x) dpt(y)(3.23) •^"x*"

-/ J(0N.)-f(y)dpi(y)JRN

where 0^ and 0^. stand for the zero vectors in RN and RN', respectively,
while

(3.24) f(y)=f h(x,y)dXK(x).
JRN

Now / is a log-concave function on RN' by Prekopa [10]; it is obviously
continuous symmetric and satisfies lim^ Mf(x) = 0. Using (3.21) we get
that

Í N     N.(h(0)-h(z))(dXKXdpx)(z)

>S *   JA(°) - h(z))(dX* x ¿Wtt-      Q-E-D-
-,RNXRN

Corollary 3.2. Suppose (p¡ X p¡)for i — 1, 2, are measures on RN x RN\
Suppose px > p2, p'x >- /Í2 and that px E UN, p^ E UN„ Then (pxX p'x) >
(p2X /i¿.

Proof. By Lemma 3.4 we know that (px X p\) >- (pxX p£ and that
(pxX p'2)> (p2X p'^. We conclude that (px x p\) >■ (p2 X p'J.   Q.E.D.

The following corollary is a generalization of Lemma 3 in Sherman [13].

Corollary 3.3. Suppose (p¡ X p¡) for i = 1, 2, satisfy the hypothesis of
Corollary 3.2, where N = N'. Then px * p\ >■ p2 * p2.

Proof. Let Q: RN X RN -» RN stand for the addition operator Q(x,y) =
x + y. If/E^jv we note that / ° Q is in ^N+N. The rest of the proof is
straightforward using Corollary 3.2.   Q.E.D.

4. Applications to infinitely divisible symmetric random vectors. In this
section we study the notions of symmetric unimodality and symmetric domi-
nance for infinitely divisible random vectors.

Definition 4.1. A symmetric random vector X in RN is infinitely divisible
if there exists a time homogeneous stochastic process (X(f)\t > 0) with
symmetric independent increments such that A"(0) = 0 a.s. and X(l) = X a.s.
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It is well known that we can write the characteristic function <bx(v) =
E(e'(vX)) of the random vector X in the form (due to Levy and Khinchine)

(4.1) log(^(o)) = f  (cos(o • V) - 1) dMx (y) - qx(v)
JRN

where Mx is a symmetric measure on RN with Mx({0}) = 0, Mx(B(a)c) <
oo and ¡B(a)(\\y\\2)2 dMx(y) < oo for all a > 0; while qx(y) = (Bxy • Bxy)
for some symmetric matrix Bx. (Note that the conditions on Mx ensure that
!\\y - *ll2/0 + \\y - *ll2) dMx(y) < oo for all x E RN.) We shall assume
qx = 0, unless otherwise stated (no Gaussian part). The reader is referred to
[9] for a derivation of (4.1).

Let C^CR*) denote the set of all bounded infinitely differentiable real
valued functions on RN. Let us define the operator 7": Cx(RN)-> C^R")
by

(4-2) Tf(x)=(  S(*-y)dp'(y),
JRN

where p' is the distribution of X(t). The family (T'\t > 0) is a semigroup of
operators and has an infinitesimal generator A defined by

(4.3) Af-lim \(V-I)S
for any/for which this limit exists in the uniform topology on C00(RN). The
class of such functions / is a dense linear subspace W of C^R1") (see [6]).
For y G RN, let

y if||y||2<l,|

y/\\y\\i   W?h > i- J"
It can also be shown that

(4.4)        AS(x) - /  (/(*) - f(x - y)) - (f'(x) ■ r(y)) dMx (y)JRN

for any/ G W. (See [4, p. 301].) If we set x = 0 in (4.4) we get that

lim j   f  (/(<>)-/(-j0)*'O0
r-»0    *    ^yj"

(4-5)
- / SW) - x-y)) - (^'(°) • TO0)dM* (>')•

So we conclude

(4,6)   Sg 7 JU/(0) "/(_j,))*'(j,) -ÎJf(®-f(-y»dM^y)
for any/ G W, where we have used the fact that A/j. is a symmetric measure
to get the last equality. For the next lemma we need the notation vs =
Mx * p'.

ri»-
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Lemma 4.1. If f is a bounded measurable function which is constant in a
neighbourhood of 0, then

(4.7)/ (/(0) -/(-*)) dp'(x) =/'[/  (/(0) -f(-y)) dv>(y)\ ds.JRN Jq   [JRN )

Proof. We first note that for all a > 0,
v*(B(a)c) < ps(B(a/2)c) + Mx(B(a/2)c) < co

and

L XIM^'OO <L (IWVOO + f   (\\y\\ù2^x(y)
JB{a) JB(a) JB(a)

Now for any semigroup of operators (Tt\t > 0) with infinitesimal generator
A, the formula

(4.8) (Tt-I)=f'ATsds

is well known (see [6, p. 308]). When we interpret (4.8) in our context we
conclude that for any/ G C^R'*) vie have

f  (f(z)-f(z-x))dp'(x)
(4.9) J*"

= f0{fRP(z) - f(z - y)) - (/'(*)-TOO) dv°(y)} ds.
Setting z = 0 in (4.9) gives us (4.7) for/ G CX(RN), after we note that vs is
symmetric so ¡f'(z) -r(y) dvs = 0.

Suppose now that/is bounded, measurable and constant on 5(a) for some
a > 0. Let v be the measure J'0vs ds. We note that

v{B(a)c) <£(p*(B(a/2)c) + Mx(B(a/2)c)) ds< t(l + Mx(B(a/2)c)).

Let fn be a sequence of bounded infinitely differentiable functions which are
constant on B(a) and such that fn(x) - fn(0)^f(x) - /(0) in Lx(v + p').
Since (4.7) is valid for/n we conclude it is valid for/.   Q.E.D.

Corollary 4.1. Let f be a bounded measurable real valued function which is
constant in a neighbourhood ofO. Let F(s) = /(/(0) - f(-x)) dps(x). Then F
is a continuous and differentiable function for s > 0 wz'zA

F'(s)=f(f(0)-f(-x))dv*(x).
Proof. This follows immediately from (4.7).

Theorem 4.1. Let X be a symmetric infinitely divisible random vector in RN.
Suppose the Levy-Khinchine measure Mx is in UN; then X is a symmetric
unimodal random vector in RN.
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Proof. Suppose first the special case that MX(RN) is a finite constant and
let 11 My 11 denote this constant. Let p.x stand for the distribution of X. It is
well known that nx can be written as the mixture

00

(4.10) fe - exp<-»«,ii> £   ±{Mx)k

where (Mx)k stands for the &-fold convolution of Mx with itself. (See [9, p.
79].) For convenience rewrite (4.10) in symbolical form as

(4.11) px - expi-U^W*.
Now each measure (Mx)k is in UN by Theorem 3.2 (which clearly extends

to finite measures in UN). Since UN is closed under mixtures we conclude nx
is in UN in the special case \\MX\\ < oo.

For the case with || Afy|| = oo we consider the representation

(4.12) Mx=f  XKd.x(XK)

which follows from (2.1), where vx is a measure on WN. For any r > 0 we
know that F(r) = Mx(B(r)c) < oo. We conclude from (4.12) that for any
a > 0 we have vx {XK\XK(B (r)c) > I/a) < aF(r). Let us now define a
sequence of finite measures vn on WN by

(4.13) vn(A) = vx{A n {XK\XK(B(l/n)c) > 1/2}).

Let M„ be the measures on R N defined by

Mn = f  XK dvn(XK).
•>wN

Clearly Mn are finite measures in UN with M„(RN) < 2F(l/n).
It is trivial to see that for all a > 0 we have M„ -*WM on B (a)c. Using [9, p.

80] we then see that Xn ->ßA where Xn is the symmetric infinitely divisible
random vector with Levy-Khinchine measure Mn. Now X„ is symmetric
unimodal by the special case first considered in the proof of this theorem. We
conclude X is symmetric unimodal by applying Theorem 3.1.   Q.E.D.

Corollary 4.2. Let X be a symmetric inSinitely divisible random vector in
RN whose Levy-Khinchine measure MxSactors as 9 X ty, where 9 is a measure
on (0, oo) while ^ is a Smite measure on SN_X. Suppose Surther that 9 has Sinite
density q(t) which is a decreasing Sunction o¡ t. Then X is symmetric unimodal.

Proof. We claim that Mx is in UN. For any í G SN_, let f stand for the set
A A

{s, - s) and let Sn_x stand for the image of 5^ under the map í-» s. Let ¥
stand for the image of the measure ty under this map. Finally for any
s G SN_ x, let/>¿ stand for the measure on RN defined by
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(4.14) p.(B) = 0{t\ts E B) + 9{t\ - ts G B)
where B is any Borel subset of RN and s = { — s, s). Clearly we can write Mx
as a mixture

(4.15) Mx=f    p;d*(s).
JSN-t

Now each measure p¡ is symmetric and clearly has support on the line
L = {ts\t E R). In other words, since UN is closed under mixing, we have
reduced our claim to the one-dimensional case, where it is obvious. We
conclude Mx is indeed in UN, and hence it follows from Theorem 4.1 that X
itself is symmetric unimodal.   Q.E.D.

We are now going to apply our results to the study of multivariate stable
densities.

Definition 4.2. A random vector X in R N is said to be stable of index a if
whenever Xx,... ,X„ are independent random vectors distributed like X,
then for some nonrandom vector Vn we have that n~l^"(Xx + • • • + X„ +
Vn) is distributed like X. It can be shown that a must be in (0, 2] and that X is
multivariate normal if a = 2. (See Feller [4] for some basic facts about stable
random variables.)

It can be shown that every stable random vector is infinitely divisible. If X
is a symmetric stable random vector in RN of index a then its characteristic
function <bx(v) has the representation

(4.16) - logfe^)) = f     \(v s)\" d*(s)

where ¥ is a finite measure on SN_X (see [12]). We can rewrite (4.16) as

(4.17) logO^t;)) = ka f      f °°(cos(o • ts) - I)-±- dt d*(s)
JsN.lJo r-1""

for some positive constant ka, so we conclude that the Levy-Khinchine
measure for X factors as in Corollary 4.2, whence it follows that X is
symmetric and unimodal.

We now explore the notion of stochastic dominance in the context of
symmetric infinitely divisible random vectors and derive results which are
new even in one dimension (where they are easier to prove).

Theorem 4.2. Let (X¡(t)\t > 0) be a time homogeneous stochastic process
with symmetrically distributed independent increments with values in RN for
i «■ 1, 2. (Assume also that X¡(0) = 0 a.s.) Let M¡ be the Levy-Khinchine
measure for Xx(l) and suppose M¡ E UN for i = 1, 2. Then Mx >- M2 if and
only ifXx(t) > X2(t)for all t > 0.
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Proof. If Xx(t) > X2(t) for all / > 0, then applying Corollary 4.1 to
functions /G^ which are constant in a neighbourhood of 0, we conclude
that

(4.18) f  (S(0) - fix)) dMx (x) > / (/(0) - f(x)) dM2 (x)
JRN JRN

for such /. To show that (4.18) holds for any /EÍ, choose 0 < 9 < /(0)
and define

(4 19)      f(x^-lm~9 ^m>m>s(o)-9,
(4.19) '•<*)-[/(,) for all other x.

It is clear that/# is constant in a neighbourhood of 0, so (4.18) is valid for/tf.
Noting that f9(0) -/,(x)î/(0) - f(x) as 9-+0, we conclude that (4.18) is
valid for all/ G %, so Mx > M2.

We now argue the reverse implication. Suppose Mx > M2 and let 9 > 0.
We shall show that Xx((l + 9)t) > X2(t) for all t > 0. (Note that A^l + 9)
has Levy-Khinchine measure (1 + 9)M¡.) We denote by p'¡ the distribution of
X¡(t) and by v¡ the convolution of pf with M¡ for i = 1,2.

Suppose now that/ G fÄ*. By [3] we have that

(4.20) f(x) < exp(-c||x||2)   on {jc| ||*|2 > d)
for some c, d > 0. From (4.20) we conclude

(4.21) f fix) dYolLix)< oo
JL

for any linear subspace Loi R1
Consider now the inequality

(4.22) /  (/(0) - /(*)) dpp+'\x) >/  (/(0) - fix)) dpi(x)
R R

which we wish to establish for all/ G ^N and all t > 0. Our procedure will be
to establish (4.22) for successively larger classes of functions by a step-wise
procedure. Let us make the following definitions: For 8 > 0, % stands for
{/|/ G %, fR»(S(0) - f(x)) dMxix) >8). For 8, a > 0, fSa stands for the
set {/|/ E %, f m Í on 5(a)}. For 8, a, k > 0, %¡a¡k stands for the set
{/|/ G %<a, \fix) - fiy)\ < k\\x - y\\2 for x,y E R*}. First we claim that
if (4.22) holds for all elements of % for any 8 > 0, then (4.22) holds for all
elements of %. This is obvious since for any non trivial A/„ it is certainly true
that fR»iS(0) - S(x)) dMx(x) > 8 > 0 for any / G % and 5 sufficiently
small. Next we claim that if (4.22) holds for all elements of %a for any
8, a > 0 then (4.22) holds for all elements of %,, for any 8' > 0. This follows
since for / G %., 0 < 9 < 1, and a sufficiently small, we have B(a) c
[x\S(x) > 1 - 0}. Defining Se as in (4.19), we have Se G %-/i,a for #

tN
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sufficiently small (a depending on 9). Now assuming (4.22) valid for %-/2¡a
we conclude (4.22) is valid for / by letting 9 -» 0.

Our last claim is that if (4.22) holds for % a k for any 8, a, k > 0 then (4.22)
holds for Sj,fl. for any 8', a' > 0. We show this by first letting h(x) be a fixed
element of % such that h(x) = 1 on J5(l/2) and h(x) = 0 on B(l)c. We may
also assume that for some k0 > 0 we have \h(x) — h(y)\ < k0\\x — y\\2 for
x,y E RN. We define h„(x) = (n)sh(nx) and note that \hn(x) - hn(y)\ <
(n)N+xkQ\\x - y|| for x,y E RN. Suppose now that / G %w for 5', a' > 0.
We define/, =/* A„ (which exists by 4.21). It is clear that/,(*)-»/(;<:) for
all x G RN, and that/, G f^. (We know that/is a logarithmically concave
function by [3] or [10].) It is also clear that/, is identically 1 on B(a'/2) for zi
sufficiently large. Noting that sup„|/„(0) — f„(x)\ < /(0) for all x we con-
clude that

/   Un W - fn (*)) dMx (X) -/   (/(0) - /(*)) ¿A/, (X)
•'/?" JR"

by the Lebesgue dominated convergence theorem. It follows that

f  Un(0)-fn(*))dMx(x)>8'/2JaN

for zz sufficiently large. Since |/„(x) - f„(y)\ < (n)N+lkQ\\x - y\\2 for x,y G
Äw, we have that/, is in SV/2,a'/2,oy+V So "* we assume (4.22) valid for all
^a,s,k we conclude (4.22) is valid for/by letting zz -» oo.

At this point we have convinced ourselves that it is sufficient to demon-
strate (4.22) for / G %tajk for 8, a, k > 0. Suppose by way of contradiction
that (4.22) is false for some t > 0 and some/ G fSafc. Then the set V = {t\t
> 0 and (4. 22) is false for some / in %jaJc} is nonempty. Let T «■ inf( V). If
T = 0 then there exists a sequence r^jO and /, G ÍF5 0>fc such that (4.22) fails
for/, at tn.

Now by [9, p. 51] we know that for i = 1, 2,

lim   sup
f->0 fgff(4.23) /e** 7 f w(/(0)-/(*))«*)

-fiW)-f(x))dMt(x) = 0.

We conclude from (4.23) and the fact that (4.22) is false for /„ and/, that

0 < 5 < lim sup f  (/„(0) - /B(*))(l + 9)dMx (x)
(4.24) "">°0     äW

lim inf f  (fn(0)~ M*)) dM2(x).
fl—»OO     JdN

Clearly (4.24) contradicts the assumption that Mx > M2; we conclude that
T >0.
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It is easy to show that /if<I+i> > ni for all 5 G (0, T) if T is finite by
arguing as above.

We will show that T = oo. Suppose not, then for some/ G %ak we have
(4.22) valid for t E [0, T) but fails when t = T. Let

f.W-f   (f(P)-fi-x))dpf + '\x)
JRN

and let

We know that /•)($) are continuous and differentiable functions by Corollary
4.1. We have already shown that F{(0) > F2(0). It follows that Fx(s) > F2(s)
fors G [0, tx) for some tx> 0. Using Corollary 4.1 again, and noting that
Pi{l+e) > pi for s G (°. T) we see that F\(T) > F2(T) which is a contradic-
tion.   Q.E.D.

5. Other notions of unimodality and some counterexamples. In this section
we consider other possible definitions of unimodality for symmetric random
vectors in RN. We end with a counterexample relating to symmetric stable
random vectors.

The earliest relevant definition is due to Anderson [1] who defined a
random variable X in RN to be symmetric unimodal if it had a density
function / with respect to Vol^ such that / was symmetric and the sets
(x\S(x) > u} were convex for all p E [0, oo). This notion of unimodality is
not closed under convolution, as he himself was able to show.

In [13] Sherman introduced a more general definition. According to him a
random variable X in RN was symmetric unimodal if X had a density
function/ with respect to Vol^ such that limn^,x\\S — Sn\\i = 0» where/, was
some finite mixture Sî^-A^ with K¡ compact, symmetric, convex sets in RN
containing 0 in their interior, while \\h\\ - maxdl/zll^, ||A||,}. (|| ||M is the
supremum norm and || ||[ is the LxÇVo\N) norm.) This notion of unimodality
is closed under convolution, but it is easy to see that it is not closed under
weak convergence.

A more recent definition is due to Olshen and Savage [8]. They define a
random vector X in RN to be a-unimodal about 0 if for all real valued
bounded, nonnegative, Borel functions g on RN the function taE(g(tx)) is
decreasing as t increases, / G [0, oo). If X has a density function with respect
to VolL for some linear subspace L of RN of dimension k, then according to
[6] X is a-unimodal about 0 if and only if there exists some version / of the
density such that the function (sx)k~"S(sx) is decreasing for any x G L as s
increases, s G [0, oo). The notion of a-unimodality is closed under weak
convergence, but not under convolution (the convolution of a-unimodal
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probability measures with /?-unimodal probability measures is only a + ß-
unimodal).

Comparing the above notions of unimodality to our own we see clearly that
any symmetric random vector X which is unimodal according to Anderson or
Sherman is unimodal in our sense as well. On the other hand if a symmetric
random vector X in R N has distribution p which is a mixture of measures all
in UL where L is a (variable) linear subspace of RN with dim(L) < k, then we
easily conclude that X is zc-unimodal.

For symmetric random vectors X in RN with density with respect to Vol^
the condition that X be AT-unimodal (i.e. that some version of the density of X
is decreasing along rays from the origin) seems to be the most general notion
of unimodality possible. It is clear that any symmetric random vector in RN
which is unimodal in our sense is A/-unimodal. We now give an example
showing the converse is not true.

Example 5.1. Let K = conv(0, 0), (1, 1), (1, - 1), let A = K u - K, and
let/ = IA/Vol2(A). It is clear that/is 2-unimodal. To show that/a" Vol2 is
not in U2 we consider the function

F(s) =f + l/2 f + l/2f(x + s,y)dx dy.
•'-1/2 J-l/2

We evaluate F(0) = \ and F(\) = \. However, if / is in U2 then it is clear
from Corollary 2.1 that F(s) is decreasing as s increases, s E [0, co).

In [5] Ghosh introduces another definition of multivariate unimodality
(called type 1) by defining a random vector X in RN to be unimodal with
vertex at 0 if for every a E RN we have a • X has a one-dimensional unimodal
distribution with vertex at 0 (i.e. concave to the left of 0 and convex to the
right of 0). He claimed his definition was motivated by geometrical considera-
tions, however, as the following example shows, densities which are unimodal
in the Ghosh sense need not even be iV-unimodal.

Example 5.2. For any e G (0, 1) consider the density/(x, v) in R2 defined
by f(x,y) = Ke(IBm + e(x2 + y2)), where Kt is a normalizing constant. A
trivial calculation shows that all one-dimensional marginals of / are symmet-
ric unimodal, hence / is unimodal in the Ghosh sense.

We conclude with an instructive example of a stable density.
Example 5.3. Consider the function

It is the density of a bivariate Cauchy random vector, both coordinates
independent and identically distributed, and gives an example of a random
vector which is symmetric unimodal in our sense, but is not unimodal
according to Anderson's definition. (Note that the curves (1 + x2)(l + y2) =
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C are starlike in shape, but not convex, if C is large.)
Added in proof. R. Ahmad and A. M. Abonammoh have announced the

solution of a conjecture of Sherman which provides another characterization
of the class of symmetric unimodal random vectors. (See I. M. S. Bulletin 6
(1977), 38.) Dharmadhikari and Jogdeo [Ann. Math. Statist. 4 (1976),
607-613] have done related work.
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