UNIMODULAR LATTICES IN DIMENSIONS 14 AND 15 OVER THE EISENSTEIN INTEGERS

KANAT ABDUKHALIKOV AND RUDOLF SCHARLAU

ABSTRACT. All indecomposable unimodular hermitian lattices in dimensions 14 and 15 over the ring of integers in $\mathbb{Q}(\sqrt{-3})$ are determined. Precisely one lattice in dimension 14 and two lattices in dimension 15 have minimal norm 3.

In 1978 W. Feit [10] classified the unimodular hermitian lattices of dimensions up to 12 over the ring $\mathbb{Z}[\omega]$ of Eisenstein integers, where ω is a primitive third root of unity. These lattices all have roots, that is, vectors of norm 2. In dimension 13, for the first time a unimodular lattice without roots appears [1, 3]. In [2] the unimodular lattices in dimension 13 are completely classified. The root-free lattice turns out to be unique. It has minimal norm 3, and its automorphism group is isomorphic to the group $\mathbb{Z}_6 \times PSp_6(3)$ of order $2^{10}.3^{10}.5.7.13$. The remaining lattices all have roots; the rank of the root system is 12 in all cases.

In this paper, we classify the unimodular lattices in dimensions 14 and 15. There are exactly 58, respectively 259 classes of indecomposable lattices in these dimensions. Below, we list their root systems and the orders of their automorphism groups. Gram matrices for all lattices are available electronically via

www.mathematik.uni-dortmund.de/~scharlau

There is only one root-free unimodular lattice of rank 14, and there are two root-free unimodular lattices of rank 15.

The lattices without roots have minimal norm 3; they are *extremal* as introduced for unimodular Eisenstein lattices in [8], Chapter 10.7. They give rise to 3-modular extremal \mathbb{Z} -lattices in twice the dimension, as defined by Quebbemann in [17]. See [8, 19, 20] for more information on extremal and modular lattices and their relation to modular forms. In this context, the lattices classified in this paper can be considered as complex structures on (extremal) 3-modular lattices. The question for existence, uniqueness, and possibly a full classification of extremal modular lattices has been an ongoing challenge, both computationally and theoretically, after the appearance of the influential paper [17].

Let V be a vector space over $\mathbb{Q}(\sqrt{-3})$ with a positive definite hermitian product (,). A *lattice* L in V is a finitely generated $\mathbb{Z}[\omega]$ -module contained in V such that L contains a basis of V and $(x, y) \in \mathbb{Z}[\omega]$ for all $x, y \in L$. More precisely, one

©2008 American Mathematical Society

Received by the editor October 19, 2007 and, in revised form, January 2, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11H06, 11H56; Secondary 11E39, 11H71, 11F11.

 $Key\ words\ and\ phrases.$ Integral lattice, hermitian lattice, extremal lattice, unimodular lattice, root system.

The first author was supported by the Alexander von Humboldt Foundation.

calls this an *integral lattice*. The ring $\mathbb{Z}[\omega]$ is a principal ideal domain. Thus every finitely generated torsion-free $\mathbb{Z}[\omega]$ -module is free. The *discriminant* d(L) of L is the determinant of the Gram matrix (a_i, a_j) with respect to some basis a_1, \ldots, a_n of L. The lattice is *unimodular* if d(L) = 1. The norm of a vector $x \in L$ is N(x) = (x, x). The minimal norm of a lattice L is $\min\{N(x, x) \mid x \in L, x \neq 0\}$. Let $L^{(2)}$ denote the sublattice of L generated by all vectors of norm 2 in L, the so-called *roots* of L, and let $\mu_2(L)$ denote the number of roots in L. Finally, G(L)denotes the group of all automorphisms of L which preserve the form. The group G(L) is finite. Every lattice can be uniquely decomposed into an orthogonal sum of orthogonally indecomposable lattices (it can be proved by standard reasoning similar to one in [12]). In view of the known classification in smaller dimensions it is therefore sufficient to list the indecomposable lattices.

We now come to the actual construction of unimodular lattices. We use various methods, such as representations of finite groups, lifting of linear codes, neighbour steps at suitable primes, and computer-assisted as well as hand computations of various kinds. We use extensively Schiemann's computer program [21] for calculation of invariants of hermitian lattices and their neighbours, and the Magma Computational Algebra System [4]. The crucial point is the computation of automorphism groups, which (in both systems) is based on the work [16]. After we have constructed (and distinguished) sufficiently many lattices, we use the mass formula as worked out in [10] to check the completeness of our list. An easy to calculate but important invariant of our lattices is their root systems. Due to the well-known classification of complex reflection groups [22, 5], there exist a few additional root systems over $\mathbb{Z}[\omega]$ which are not defined over \mathbb{Z} . Of course, they are familiar from the work on lattices of smaller dimension cited above. We use the following standard notation for root lattices. I_n denotes a lattice of rank n with an orthonormal basis. Equivalently,

$$I_n = \langle (a_1, \dots, a_n) \mid a_i \in \mathbb{Z}[\omega] \rangle$$

and if $x = (a_1, \ldots, a_n)$, $y = (b_1, \ldots, b_n)$, then $(x, y) = \sum_{i=1}^n a_i \bar{b}_i$. The lattices $A_n \subseteq I_{n+1}, E_8, E_7$ and E_6 are as usual. For $\alpha \in \mathbb{Z}[\omega]$ define $D_n(\alpha) \subseteq I_n$ by

$$D_n(\alpha) = \langle (a_1, \dots, a_n) \mid a_i \in \mathbb{Z}[\omega], \sum_{i=1}^n a_i \equiv 0 \pmod{\alpha} \rangle.$$

Finally,

$$U_5 = \langle A_5, \ (1/\sqrt{-3})(1,\omega,\omega^2,1,\omega,\omega^2) \rangle, U_6 = \langle D_6(\sqrt{-3}), \ (1/\sqrt{-3})(1,\dots,1) \rangle.$$

The lattice U_6 is unimodular, and U_5 has discriminant 2.

The root systems of the lattices classified in this paper are given in Tables 1-3 below. For most of the lattices in dimension 14, we give "glue vectors" (additional generators) [8] together with the root systems.

In Table 1 we have collected separately all lattices that are constructed from self-dual codes of length 14 over \mathbb{F}_4 . These codes have been classified in [6, 14]. Let φ denote the composite mapping $\mathbb{Z}[\omega] \to \mathbb{Z}[\omega]/2\mathbb{Z}[\omega] \cong \mathbb{F}_4$. Then for any self-dual code C of length 14 over \mathbb{F}_4 the lattice

$$L = \frac{1}{\sqrt{2}} \langle (a_1, \dots, a_{14}) \in I_{14} \mid (\varphi(a_1), \dots, \varphi(a_{14})) \in C \rangle$$

is a unimodular lattice of rank 14. In particular, lattice No. 10 comes from a quadratic residue code [13, 23] of length 14.

Now we come to a particular construction of a unimodular lattice of rank 15.

Lemma 1. The exterior square $U_6 \wedge U_6$ is a unimodular lattice of rank 15 and minimal norm 3.

Proof. We only need to show that the lattice $U_6 \wedge U_6$ has minimal norm 3. Our proof is similar to the proof of Theorem 2.1 in [9]. Any element $a \in U_6 \wedge U_6$ can be written in the form $a = \sum_{i=1}^r x_i \wedge y_i$, where $r \leq 3$ and $x_1, \ldots, x_r, y_1, \ldots, y_r$ are 2r linearly independent vectors in U_6 . The lattice L_{2r} generated by $x_1, \ldots, x_r, y_1, \ldots, y_r$, y_1, \ldots, y_r depends only on a. We have

$$(a,a) = \left(\sum_{i=1}^{r} x_i \wedge y_i, \sum_{j=1}^{r} x_j \wedge y_j\right)$$
$$= \sum_{i,j} [(x_i, x_j)(y_i, y_j) - (x_i, y_j)(y_i, x_j)]$$
$$= \operatorname{Tr}(A\overline{B} - C\overline{C}),$$

where $A = ((x_i, x_j))_{1 \le i, j \le r}$, $B = ((y_i, y_j))_{1 \le i, j \le r}$ and $C = ((x_i, y_j))_{1 \le i, j \le r}$. Define

$$H = \begin{pmatrix} A & C \\ t\overline{C} & B \end{pmatrix}, \ J = \begin{pmatrix} 0 & I_r \\ -I_r & 0 \end{pmatrix}.$$

Then H is the hermitian matrix of the lattice L_{2r} and

$$(a,a) = \frac{1}{2} \operatorname{Tr}(H^t \overline{JH} J) \ge \frac{2r}{2} |H|^{1/2r} \cdot |t \overline{JH} J|^{1/2r} = r|H|^{1/r},$$

where we used the inequality $\operatorname{Tr}(MN) \geq m|M|^{1/m}|N|^{1/m}$ valid for any hermitian positive definite matrices M, N of degree m (it can be proved similarly to the proof of Lemma 7.1.3 in [11]). Now we show that $(a, a) \geq 3$. Indeed, for r = 3 we have $(a, a) \geq 3$. $|H|^{1/3} \geq 3$; for r = 2 we have $(a, a) \geq 2$. $|H|^{1/2} > 2$; for r = 1 we have $(a, a) \geq 1$. $|H| = d(L_{2r}) \geq 3$. Finally, it is easy to construct an element a of norm 3: take $a = x \wedge y$ with (x, x) = (y, y) = 2 and (x, y) = 1.

Theorem 1. There are 58 hermitian indecomposable unimodular lattices over $\mathbb{Z}[\omega]$ of dimension 14. They are listed in Tables 1 and 2. One of them has no roots; the remaining lattices have root systems of ranks 6, 8, 10, 11, 12, 13 and 14. The root-free lattice L_0 has minimal norm 3 and automorphism group $\mathbb{Z}_6 \times G_2(3).2$ of order $2^{8}.3^{7}.7.13$.

Theorem 2. There are 259 hermitian indecomposable unimodular lattices over $\mathbb{Z}[\omega]$ of dimension 15. They are listed in Table 3. For any integer r from 0 to 15 there is an indecomposable unimodular lattice of dimension 15 with a root system of rank r. There are only two root-free lattices. They have minimal norm 3. One of the rootfree lattices is isometric to the exterior square $U_6 \wedge U_6$ and has automorphism group $\mathbb{Z}_2 \times 3.U_4(3).2$ of order $2^9.3^7.5.7$. The second root-free lattice has automorphism group $\mathbb{Z}_2 \times (3^{1+2}_+ \times 3^{1+2}_+).SL_2(3).2$ of order $2^5.3^7$.

Proof. Let \mathfrak{G}_n be a complete set of representatives of the isomorphism classes of lattices of rank n and discriminant 1. Let \mathfrak{G}_n^0 be the set of all those lattices in \mathfrak{G}_n

that contain no elements of norm 1. Define

$$M_n = \sum_{L \in \mathfrak{G}_n} \frac{1}{|G(L)|}, \quad M_n(2) = \sum_{L \in \mathfrak{G}_n} \frac{\mu_2(L)}{|G(L)|},$$
$$Y_n = \sum_{L \in \mathfrak{G}_n^0} \frac{1}{|G(L)|}, \quad Y_n(2) = \sum_{L \in \mathfrak{G}_n^0} \frac{\mu_2(L)}{|G(L)|}.$$

These quantities can be calculated in principle well-known formulas: the mass formula for positive definite hermitian lattices, and a similar formula for average representation numbers like μ_2 . In our situation these formulas have been made explicit in [10]:

$$\frac{M_{2m}}{M_{2m-1}} = (-1)^{m-1} B_{2m} \frac{3^m + (-1)^m}{4m}, \quad \frac{M_{2m+1}}{M_{2m}} = \frac{a_{2m+1}}{3^m + (-1)^m},$$

$$\frac{M_{2m}(2)}{M_{2m}} = \frac{4m(2^{2m-1}+1)}{(3^m + (-1)^m)B_{2m}}, \quad \frac{M_{2m+1}(2)}{M_{2m+1}} = \frac{(2^{2m}-1)(3^m - (-1)^m)}{a_{2m+1}},$$

$$Y_n = M_n - \frac{1}{n!6^n} - \sum_{j=1}^{n-1} \frac{Y_j}{(n-j)!6^{n-j}},$$

$$Y_n(2) = M_n(2) - \sum_{j=1}^{n-1} \frac{Y_j(2)}{(n-j)!6^{n-j}} - \sum_{j=1}^{n-2} \frac{Y_j}{2(n-2-j)!6^{n-2-j}} - \frac{1}{2(n-2)!6^{n-2}}$$

where $a_{2m+1} = 3^{2m}(-1)^{m-1}B_{2m+1}(\frac{1}{3})/(2m+1)$, $B_n(t)$ is the Bernoulli polynomial, and $B_{2m}(0) = B_{2m}$ is the Bernoulli number B_{2m} . By definition $M_1 = 1/6$ and $M_1(2) = Y_1 = Y_1(2) = 0$.

Then one can calculate

$$\begin{split} M_{14} &= \frac{689532652191539}{2^{25}.3^{19}.5^3.11}, \quad M_{14}(2) = \frac{1722885336811913}{2^{23}.3^{17}.5^3.11}, \\ Y_{14} &= \frac{902121810728981}{2^{24}.3^{14}.5^3.7^2.11.13}, \quad Y_{14}(2) = \frac{321547203435163}{2^{22}.3^{12}.5^3.11.13}. \\ M_{15} &= \frac{4366489808207046403}{2^{26}.3^{21}.5^3.11}, \quad M_{15}(2) = \frac{1884491476714586441}{2^{24}.3^{18}.5^3.11}, \\ Y_{15} &= \frac{3619970721202760389}{2^{18}.3^{20}.5^3.7^2.11.13}, \quad Y_{15}(2) = \frac{312324214206248801}{2^{16}.3^{17}.5^2.7^2.11.13}. \end{split}$$

Now we use an explicit list of Gram matrices of the constructed lattices. We use Schiemann's computer program and the Magma Computational Algebra System to calculate $\mu_2(L)$ and |G(L)| in each case. Then a straightforward check of the mass formulas for Y_{14} and Y_{15} confirms the completeness of our list. The formulas for $Y_{14}(2)$ and $Y_{15}(2)$ give an additional check (ignoring the lattices without roots).

We now determine the structure of the automorphism groups of the three rootfree lattices. The group $G_2(3).2$ has a representation of dimension 14 over $\mathbb{Q}(\sqrt{-3})$ (see [7]) and it acts on a lattice L of rank 14 over $\mathbb{Z}[\omega]$. Now results of [15] on rational maximal finite matrix groups in dimension 28 imply that this lattice is unimodular, and therefore is isometric to our root-free lattice L_0 . The factor \mathbb{Z}_6 in $G(L_0)$ comes from roots of unity in $\mathbb{Z}[\omega]$.

Now we come to the automorphism group of the root-free lattice $U_6 \wedge U_6$ introduced in Lemma 1. Recall that $\operatorname{Aut}(U_6) \cong 6.U_4(3).2$. There is a natural homomorphism $\varphi : \operatorname{Aut}(U_6) \mapsto \operatorname{Aut}(U_6 \wedge U_6)$, given by $\varphi(\sigma)(x \wedge y) = \sigma(x) \wedge \sigma(y)$

390

with Ker $\varphi = \{\pm id\}$. Therefore, Aut $(U_6 \wedge U_6) \supseteq 3.U_4(3).2$. But $\{\pm id\}.\varphi(Aut(U_6))$ is a group of order $2^9.3^7.5.7$. The known orders of the two automorphism groups of root-free lattices in dimension 15 show that this group must be the full group. Therefore, Aut $(U_6 \wedge U_6) \cong \mathbb{Z}_2 \times 3.U_4(3).2$.

The structure of the automorphism group of the second root-free lattice, of order $2^5.3^7$ was determined with the help of Magma.

The extremal 3-modular \mathbb{Z} -lattice in dimension 28 coming from our root-free lattice in dimension 14 appeared for the first time in [15] since its automorphism group is a rational irreducible maximal finite subgroup of $\operatorname{GL}_{28}(\mathbb{Q})$. The two rootfree lattices of rank 15 have been found by A. Schiemann ([21], also mentioned in [19]), using a sophisticated computer search for lattices with a large minimum.

We want to add some comments on algebraic techniques for lattices which are related in one way or another to the automorphism group. One of the most important algebraic techniques for lattices is "gluing", which in the most general case means: (re)constructing a lattice L from a known, "simpler" sublattice M. Then L is generated by M and certain additional vectors, called glue vectors. If M has the same rank as L, that is, generates the vector space V, the glue vectors must come from the dual lattice $M^{\#}$, which can be analyzed once for all. Typically, Mis decomposable while L is not, so the additional vectors "glue the components of M together", this is where the terminology comes from. An important choice for M is the lattice $L^{(2)}$ generated by the roots. Then M is characteristic, that is, $\operatorname{Aut}(L)$ acts on M, and is a subgroup of $\operatorname{Aut}(M)$ if M is of full rank. If M is not of full rank, it must be glued with a lattice on its orthogonal subspace. Here are two cases where the rank of the root system is very small.

Let us consider the unimodular 15-dimensional lattice Λ (No. 257) with root system A_2 . This lattice is obtained by gluing of a 2-dimensional lattice with root system A_2 and a 13-dimensional lattice Λ' with discriminant 3. Computations on Magma and [7] show that $\operatorname{Aut}(\Lambda) \cong 6.(S_3 \times \operatorname{PSL}_2(27).3)$. Therefore, $\operatorname{Aut}(\Lambda') \cong$ $6.(\operatorname{PSL}_2(27).3)$ and Λ' is associated with the irreducible complex character of the group $\operatorname{PSL}_2(27)$ of degree 13. It is the Weil character and it can indeed be realized over $\mathbb{Z}[\omega]$ (see [18]).

Similar reasoning shows that the 15-dimensional unimodular lattice No. 259 with root system A_1 has automorphism group $6.(S_2 \times PSL_2(13))$ and it is obtained from a 14-dimensional lattice of discriminant 2 with automorphism group $6.PSL_2(13)$. This lattice generates an irreducible complex character of the group $PSL_2(13)$ of degree 14 (the case of complex character of degree 13 is excluded since the description [1] of hermitian lattices of dimension 13 associated with the irreducible complex character of the group $PSL_2(13)$ of degree 13 shows that this case is impossible).

Of course, root sublattices and their complements are not the only choice for characteristic sublattices. If the automorphism group is already known, one could proceed as in the following example. The complex representation associated with the action of the automorphism group $\mathbb{Z}_2 \times (3^{1+2}_+ \times 3^{1+2}_+).\mathrm{SL}_2(3).2$ on the 15-dimensional root-free lattice L_2 is reducible, and is a sum of two irreducible representations of degrees 6 and 9 defined over $\mathbb{Q}(\sqrt{-3})$. And the complex representation, associated with the action of the subgroup $\mathbb{Z}_2 \times (3^{1+2}_+ \times 3^{1+2}_+).\mathrm{SL}_2(3)$, is a sum of three irreducible representations of degrees 3, 3 and 9. This decomposition gives rise to invariant sublattices of L_2 , and using the general method of gluing it should be possible to obtain a computer-free description of L_2 .

Obviously, root lattices cannot be used directly to obtain lattices with minimal norm 3 or larger. But one can use a scaled copy of a root lattice as in the following example. We start with a root system over \mathbb{Z} , and in addition to scaling we also use the larger ground ring $\mathbb{Z}[\omega]$. Let n be of the shape $n = 2r\bar{r}$ for some $r \in \mathbb{Z}[\omega]$. Let C be a self-dual code over \mathbb{F}_4 of length n and

$$\Lambda = \langle (a_1, \dots, a_n) \in A_{n-1} \mid (\varphi(a_1), \dots, \varphi(a_n)) \in C \rangle + \frac{1}{r} \langle (1 - n, 1, \dots, 1) \rangle.$$

Then $\frac{1}{\sqrt{2}}\Lambda$ is a unimodular hermitian lattice of rank n-1. This construction had been used in [2] to obtain the root-free lattice in dimension 13. It can also be applied in e.g. dimension 17.

We close with some remarks on the theta series of our lattices. There is one interesting observation in dimension 14 which might deserve further attention.

Proposition 1. Any indecomposable unimodular lattice of rank 14, more generally any 3-modular \mathbb{Z} -lattice of rank 28 with minimum ≥ 2 has exactly $17472 = 2^{6}.3.7.13$ vectors of norm 3.

Proof. (See [19] for the method): The relevant algebra $\mathcal{M}^*(3, \chi)$ of modular forms (where χ is an appropriate character) is generated by the cusp form $\Delta_3(q) = \eta(q)^6 \eta(3q)^6$ of weight 6 and the theta-series $\theta_3 := \theta_{A_2}$ of the A_2 -root lattice, of weight 1. A linear basis for the space $\mathcal{M}_{14}(3, \chi)$ of forms of weight 14, containing the theta-series of the lattices in question is the following:

$$\begin{array}{rcrcrcrcrcrcrc} \theta_3^{14} & = & 1 & + & 84q & + & 3276q^2 & + & 78708q^3 & + O(q^4) \\ \theta_3^{\,8}\,\Delta_3 & = & q & + & 42q^2 & + & 729q^3 & + O(q^4) \\ \theta_3^{\,2}\,\Delta_3^{\,2} & = & q^2 & & + O(q^4) \end{array}$$

The theta series of a lattice without vectors of norm 1 is of the form

$$\theta_3^{14} - 84\theta_3^{\ 8}\,\Delta_3 + c\theta_3^{\ 2}\,\Delta_3^{\ 2}$$

with c given by the number of vectors of norm 2. The absence of q^3 in the third basis vector proves the claim.

Note that $M_{13} \approx 0.00000014$ (there are 14 lattices of rank 13), $M_{14} \approx 0.000012$ (58 lattices), $M_{15} \approx 0.0045$ (259 lattices), $M_{16} \approx 6.57$, $M_{17} \approx 42188.20$. So beyond dimension 15, a full classification of unimodular Eisenstein lattices may no longer be possible.

Notations in tables. For each lattice L we present the sublattice $L^{(2)}$ generated by its root system, in standard notation, the number of roots $\mu_2(L)$ and the order |G(L)| of the automorphism group. In Tables 1 and 2 we give also glue vectors from $(L^{(2)})^{\#}$, as explained above. For instance, for lattice No. 24 the root system is $A_6D_5(2)A_2$, the glue vectors are given in terms of standard generators $y_1 \in (A_6)^{\#}$, $y_2 \in (D_5(2))^{\#}$, $y_3 \in (A_2)^{\#}$ and a vector x of norm 84 orthogonal to $L^{(2)}$.

392

No.	L	$L^{(2)}$	G(L)	$\mu_2(L)$
1	$\langle L^{(2)}, \frac{1}{2}(\sqrt{-3}, 1, \dots, 1) \rangle$	$D_{14}(2)$	$2^{24}.3^{6}.5^{2}.7^{2}.11.13$	1092
2	$\langle L^{(2)}, y_1 + y_2 \rangle,$	$E_7{}^2$	$2^{21}.3^9.5^2.7^2$	756
	$y_i \in E_7^* - E_7$			
3	$\langle L^{(2)}, \frac{1}{2}(\sqrt{-3}, 1, \dots, 1) + y_3,$	$D_8(2)U_5A_1$	$2^{22}.3^7.5^2.7$	612
	$\frac{1}{2}(-\sqrt{-3},1,\ldots,1)+y_2\rangle,$			
	$y_2 = \frac{1}{2\sqrt{-3}}(-5, 1, 1, 1, 1, 1), y_3 = \frac{1}{2}(-1, 1)$			
4	$\langle L^{(2)}, y_1 + z, y_2 + z \rangle$	$U_5{}^2D_4(2)$	$2^{21}.3^{11}.5^2$	612
	$z = \frac{1}{2}(\sqrt{-3}, 1, 1, 1),$			
	$y_i = \frac{1}{2\sqrt{-3}}(-5, 1, 1, 1, 1, 1)$			
5	$\langle L^{(2)},$	$D_8(2)D_6(2)$	$2^{23}.3^5.5^2.7$	516
	$\frac{1}{2}(1,\ldots,1)+(1,0,\ldots,0),$			
	$(1, 0, \dots, 0) + \frac{1}{2}(\sqrt{-3}, 1, \dots, 1))$			
6	$\langle L^{(2)},$	$D_6(2)^2 A_1^2$	$2^{21}.3^5.5^2$	372
	$(1, 0, \dots, 0) + (1, 0, \dots, 0) + \omega y_1 + \omega^2 y_2,$			
	$\frac{1}{2}(\sqrt{-3},1,\ldots,1)_1+y_1+y_2,$			
	$\frac{1}{2}(\sqrt{-3},1,\ldots,1)_1 - \frac{1}{2}(\sqrt{-3},1,\ldots,1)_2\rangle,$			
	$y_i = \frac{1}{2}(-1,1)$			
7	$\langle L^{(2)},$	$D_6(2)D_4(2)^2$	$2^{22}.3^{6}.5$	324
	$(1, 0, \dots, 0) + (1, 0, 0, 0) + (1, 0, 0, 0),$			
	$(0, \dots, 0, \omega) + \frac{1}{2}(1, 1, 1, 1) + \frac{1}{2}(1, 1, 1, 1),$			
	$\frac{1}{2}(1,\ldots,1) + \frac{1}{2}(\sqrt{-3},1,1,1)\rangle$		01 5	
8	$\langle L^{(2)},$	$D_4(2)^3 A_1^2$	$2^{21}.3^{5}$	228
	$(1,0,0,0)_1 + (1,0,0,0)_2 + (1,0,0,0)_3,$			
	$y_1 + y_2 + y_4 + y_5,$			
	$y_2 + y_3 + \omega^2 y_4 + \omega^2 y_5,$			
	$(1,0,0,0)_2 + (\omega^2,0,0,0)_3 + \omega y_4 + \omega^2 y_5),$			
0	$y_{1,2,3} = \frac{1}{2}(1, 1, 1, 1), y_{4,5} = \frac{1}{2}(-1, 1)$	$D_{1}(2)^{2} = 4^{-6}$	220 25	180
9	$(1 \ 0 \ 0)_1 + u_2 + u_4 + u_{22} + u_{22}$	$D_4(2) A_1^{-1}$	2.3	100
	$(1, 0, 0, 0)_1 + y_3 + y_4 + w_{25} + w_{26},$ $\frac{1}{2}(1 \ 1 \ 1 \ 1)_1 + w_{212}^2 + w_{212}^2 + u_4 + u_5$			
	$(1, 0, 0, 0)_2 + u_2 + \omega u_2 + u_5 + \omega u_6$			
	$(1, 0, 0, 0)_2 + y_2 + \omega y_3 + y_5 + \omega y_6,$ $\frac{1}{2}(1, 1, 1, 1)_2 + y_2 + y_3 + \omega^2 y_4 + \omega^2 y_5,$			
	$y_1 + y_2 + y_3 + y_4 + u_5 + u_6$.			
	$y_i = \frac{1}{2}(-1, 1)$			
10	$\langle L^{(2)}, \alpha_1 y_1 + \dots + \alpha_{14} y_{14} \rangle$	A_1^{14}	$2^{16}.3^2.7.13$	84
	$y_i = \frac{1}{2}(-1,1),$			
	$(\alpha_1, \ldots, \alpha_{14}) \mod 2 \in QR(14)$			

Table 1. Unimodular lattices of rank 14 (obtained from self-dual codes over $\mathbb{F}_4)$

No.	L	$L^{(2)}$	G(L)	$\mu_2(L)$
11	L_0	Ø	$2^8.3^7.7.13$	0
12	$\langle L^{(2)}, \frac{1}{\sqrt{-3}}(1, \dots, 1) + y_2 \rangle,$	$D_8(\sqrt{-3})E_6$	$2^{15}.3^{14}.5^2.7$	720
	$y_2 \in E_6^* - E_6$			
13	$\langle L^{(2)}, (2+\sqrt{-3})y_1+y_2 \rangle,$	$A_{13}A_{1}$	$2^{13}.3^6.5^2.7^2.11.13$	552
	$y_1 = \frac{1}{14}(-13, 1, \dots, 1), y_2 = \frac{1}{2}(-1, 1)$			
14	Complex conjugate of 13			
15	$\langle L^{(2)}, (1,0,0,0,0,0) + y_2 + y_3, \rangle$	$D_6(\sqrt{-3})E_6A_2$	$2^{13}.3^{13}.5^2$	504
	$\frac{1}{\sqrt{-3}}(1,1,1,1,1,1) - \sqrt{-3}y_3\rangle,$			
	$y_2 \in E_6^* - E_6, y_3 = \frac{1}{3}(-2, 1, 1)$			
16	$\langle L^{(2)},$	$A_{11}A_{3}$	$2^{14}.3^7.5^2.7.11$	432
	$\frac{\sqrt{-3}}{12}(-11,1,\ldots,1) + \frac{\sqrt{-3}}{4}(-3,1,1,1)\rangle,$			
17	$\langle L^{(2)}, \sqrt{-3}y_1 + y_2 \rangle,$	A_8E_6	$2^{15}.3^9.5^2.7$	432
	$y_1 = \frac{1}{9}(-8, 1, \dots, 1), y_2 \in E_6^* - E_6$			
18	$\langle L^{(2)}, y_1 + y_2 + y_3, y_1 - y_2 + y_4 \rangle$	$D_5(\sqrt{-3})^2 A_2^2$	$2^{11}.3^{13}.5^2$	396
	$y_{1,2} = \frac{1}{\sqrt{-3}}(1,\ldots,1), y_{3,4} = \frac{1}{3}(-2,1,1)$			
19	$\langle L^{(2)} \oplus \langle x \rangle,$	$A_8D_5(\sqrt{-3})$	$2^{11}.3^{10}.5^2.7$	396
	$y_1 + y_2 + \frac{2}{9}x, (1, 0, 0, 0, 0) + \frac{\sqrt{-3}}{3}x\rangle,$			
	$y_1 = \frac{1}{9}(-8, 1, \dots, 1),$			
	$y_2 = \frac{1}{\sqrt{-3}}(1, 1, 1, 1, 1), (x, x) = 9$			
20	$\langle L^{(2)}, (2+\sqrt{-3})y_1+y_2\rangle,$	A_7^2	$2^{15}.3^5.5^2.7^2$	336
	$y_i = \frac{1}{8}(-7, 1, \dots, 1)$			
21	$\langle L^{(2)}, y_1 + 2\sqrt{-3}y_2 + y_3 \rangle$	$A_9A_4A_1$	$2^{13}.3^6.5^3.7$	336
	$y_1 = \frac{1}{10}(-9, 1, \dots, 1),$			
	$y_2 = \frac{1}{5}(-4, 1, \dots, 1), y_3 = \frac{1}{2}(-1, 1)$		15 0 0	
22	$\langle L^{(2)} \oplus \langle x \rangle,$	$A_8D_5(2)$	$2^{15}.3^6.5^2.7$	336
	$(2+\sqrt{-3})y_1+\sqrt{-3}y_2+\frac{1}{36}x\rangle,$			
	$y_1 = \frac{1}{9}(-8, 1, \dots, 1),$			
	$y_2 = \frac{1}{2}(1, \dots, 1), (x, x) = 36$			
23	Complex conjugate of 22 $(I_{1}^{(2)})$		o13 o5 =2 =	264
24	$\langle L^{(2)} \oplus \langle x \rangle,$	$A_6D_5(2)A_2$	210.30.52.7	264
	$\sqrt{-3y_1} + \sqrt{-3y_2} + y_3 + \frac{1}{84}x$,			
	$y_1 = \frac{1}{7}(-0, 1, \dots, 1), y_2 = \frac{1}{\sqrt{-3}}(1, \dots, 1),$			
95	$y_3 = \frac{1}{3}(-2, 1, 1), (x, x) = 84$		013 05 52 7	964
25	$ \begin{array}{c} \langle L^{\times^{-}} \oplus \langle x \rangle, \\ \chi_{\pm} = 1 & \text{and} 2 + \sqrt{-3} \\ \chi_{\pm} = 1 & \text{and} 2 - \sqrt{-3} \\ \chi_{\pm} = 1 & \text{and} \chi_{\pm} = 1 \\ \chi_{\pm} = 1 \\ \chi_{\pm} = 1 \\ \chi_{\pm} = 1 \\$	$A_7 A_5 A_1$	23".5".(264
	$y_1 + y_3 + \frac{1}{8}x, y_2 + y_3 + \frac{1}{6}x, y_2 + y_3 + \frac{1}{6}x, y_2 + y_3 + \frac{1}{6}x, y_3 $			
	$y_1 - \frac{1}{8}(-1, 1, \dots, 1), y_2 - \frac{1}{6}(-3, 1, \dots, 1),$ $y_2 - \frac{1}{6}(-1, 1) (x, x) - 24$			
26	$\frac{g_3 - \frac{1}{2}(-1, 1), (x, x) - 24}{\text{Complex conjugate of } 25}$			
20	Complex conjugate of 20			

Table 2. Unimodular lattices of rank 14

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c } & y_1 + y_3 + \frac{2+\sqrt{-3}}{8}x, y_3 + y_4 + \frac{1}{2}x, y_2 + \frac{1}{3}x \rangle, \\ y_1 = \frac{1}{8}(-7, 1, \dots, 1), y_2 = \frac{1}{\sqrt{-3}}(1, 1, 1, 1), \\ y_{3,4} = \frac{1}{2}(-1, 1), (x, x) = 24 \\ \hline \\ 28 & \langle L^{(2)}, \\ y_1 + y_2 + y_3, 2\sqrt{-3}(y_1 - y_2) \rangle, \\ y_{1,2} = \frac{1}{6}(-5, 1, \dots, 1), y_3 = \frac{1}{\sqrt{-3}}(1, 1, 1, 1) \\ \hline \\ 29 & \langle L^{(2)} \oplus \langle x \rangle, \\ y_1 + \sqrt{-3}y_2 + y_3 + \frac{1}{60}x \rangle, \\ y_1 = \frac{1}{2}(1, 1, 1, 1), y_2 = \frac{1}{5}(-4, 1, 1, 1, 1), \\ y_3 = \frac{1}{\sqrt{-3}}(1, 1, 1, 1), (x, x) = 60 \\ \hline \\ 30 & \langle L^{(2)} \oplus \langle x \rangle \oplus \langle z \rangle, \\ y_{1,4} - \overline{3}y_2 + \frac{1}{3}x, \frac{1}{2}(\sqrt{-3}, 1, 1, 1) + \frac{1}{2}x, \\ \sqrt{-3}y_1 + y_2 + \frac{1}{3}z, \frac{1}{2}(-\sqrt{-3}, 1, 1, 1) + \frac{1}{2}z \rangle, \\ y_{1,2} = \frac{1}{\sqrt{-3}}(1, 1, 1, 1), (x, x) = 6, (z, z) = 6 \\ \hline \\ 31 & \langle L^{(2)} \oplus \langle x \rangle \oplus \langle z \rangle, \\ y_i = \frac{1}{7}(-6, 1, \dots, 1), (x, x) = 7, (z, z) = 7 \\ \hline \\ 32 & \langle L^{(2)} \oplus \langle x \rangle \oplus \langle z \rangle, \\ y_1 = \frac{1}{7}(-6, 1, \dots, 1), (x, y) = \frac{1}{3}(-2, 1, 1) \\ (x, x) = 42, (z, z) = 6 \\ \hline \\ 33 & \langle L^{(2)}, \\ & & & & & \\ \end{array}$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c c} \sqrt{-3}y_1 + y_2 + \frac{1}{3}z, \frac{1}{2}(-\sqrt{-3}, 1, 1, 1) + \frac{1}{2}z\rangle, \\ y_{1,2} = \frac{1}{\sqrt{-3}}(1, 1, 1, 1), (x, x) = 6, (z, z) = 6 \end{array} \\ \hline 31 & \langle L^{(2)} \oplus \langle x \rangle \oplus \langle z \rangle, & A_6^2 & 2^{10}.3^5.5^2.7^2 & 25 \\ y_1 + \sqrt{-3}y_2 + \frac{2}{7}x, \sqrt{-3}y_1 + y_2 + \frac{2}{7}z\rangle, \\ y_i = \frac{1}{7}(-6, 1, \dots, 1), (x, x) = 7, (z, z) = 7 \\ \hline 32 & \langle L^{(2)} \oplus \langle x \rangle \oplus \langle z \rangle, & A_6A_2D_4(2) & 2^{12}.3^6.5.7 & 21 \\ & 3\sqrt{-3}y_1 + y_2 + \frac{1}{2}(\sqrt{-3}, 1, 1, 1) + \frac{1}{42}x + \frac{1}{3}z, \\ & \frac{1}{2}(-\sqrt{-3}, 1, 1, 1) + \frac{\sqrt{-3}}{3}x - \frac{\sqrt{-3}}{6}z\rangle, \\ y_1 = \frac{1}{7}(-6, 1, \dots, 1), y_3 = \frac{1}{3}(-2, 1, 1) \\ & (x, x) = 42, (z, z) = 6 \end{array} $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_
$\begin{array}{c c} y_1 + \sqrt{-3}y_2 + \frac{2}{7}x, \sqrt{-3}y_1 + y_2 + \frac{2}{7}z\rangle, \\ y_i = \frac{1}{7}(-6, 1, \dots, 1), (x, x) = 7, (z, z) = 7 \end{array}$ $\begin{array}{c c} 32 & \langle L^{(2)} \oplus \langle x \rangle \oplus \langle z \rangle, \\ & 3\sqrt{-3}y_1 + y_2 + \frac{1}{2}(\sqrt{-3}, 1, 1, 1) + \frac{1}{42}x + \frac{1}{3}z, \\ & \frac{1}{2}(-\sqrt{-3}, 1, 1, 1) + \frac{\sqrt{-3}}{3}x - \frac{\sqrt{-3}}{6}z\rangle, \\ & y_1 = \frac{1}{7}(-6, 1, \dots, 1), y_3 = \frac{1}{3}(-2, 1, 1) \\ & (x, x) = 42, (z, z) = 6 \end{array}$ $\begin{array}{c c} A_6A_2D_4(2) & 2^{12}.3^6.5.7 & 21 \\ A_6A_2D_4(2) & 2^{12}.3^6.5.7 & 21 \\ A_6A_2D_4(2) & 2^{12}.3^6.5.7 & 21 \\ & a_1a_2a_3a_3a_3a_3a_3a_3a_3a_3a_3a_3a_3a_3a_3a$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c} & 3\sqrt{-3}y_1 + y_2 + \frac{1}{2}(\sqrt{-3}, 1, 1, 1) + \frac{1}{42}x + \frac{1}{3}z, \\ & \frac{1}{2}(-\sqrt{-3}, 1, 1, 1) + \frac{\sqrt{-3}}{3}x - \frac{\sqrt{-3}}{6}z\rangle, \\ & y_1 = \frac{1}{7}(-6, 1, \dots, 1), y_3 = \frac{1}{3}(-2, 1, 1) \\ & (x, x) = 42, (z, z) = 6 \end{array}$	
$ \frac{\frac{1}{2}(-\sqrt{-3},1,1,1) + \frac{\sqrt{-3}}{3}x - \frac{\sqrt{-3}}{6}z\rangle,}{y_1 = \frac{1}{7}(-6,1,\ldots,1), y_3 = \frac{1}{3}(-2,1,1)}(x,x) = 42, (z,z) = 6 $ 33 $\langle L^{(2)}, \qquad A_5^2 A_2^2 \qquad 2^{12}.3^7.5^2 \qquad 21$	
$\begin{array}{c c} y_1 = \frac{1}{7}(-6, 1, \dots, 1), y_3 = \frac{1}{3}(-2, 1, 1) \\ (x, x) = 42, (z, z) = 6 \end{array}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$A_5^2 A_2^2$ $2^{12} . 3^i . 5^2$ 21	
$\begin{array}{c} y_1 + y_2 + y_3 + y_4, 2y_2 + \omega y_3 - \sqrt{-3}\omega y_4 \rangle \\ 1 & (-3 + \omega) \end{pmatrix}$	
$y_{1,2} = \frac{1}{6}(-5, 1, \dots, 1), y_{3,4} = \frac{1}{3}(-2, 1, 1),$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$y_1 + y_2 + \frac{1}{3}x, y_3 + \frac{\sqrt{3}}{4}x, 2\sqrt{-3(y_1 - y_2)}$	
$y_{1,2} = \frac{1}{6}(-5, 1, \dots, 1), y_3 = \frac{1}{4}(-3, 1, 1, 1),$	
(x, x) = 12	
35 Complex conjugate of 34 26 $J(L^{(2)} \oplus J_{(2)} \oplus J_{(2)})$ $A^{(2)} \oplus J_{(2)} \oplus J_{(2)}$ $A^{(2)} \oplus J_{(2)} \oplus J_{(2)}$ $A^{(2)} \oplus J_{(2)} \oplus J_{(2)}$	
$ \begin{array}{c} 30 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	
$2\sqrt{-3y_1 + y_2 + \frac{1}{5}x, \frac{1}{2}(\sqrt{-3}, 1, 1, 1) + \frac{1}{2}x,}$	
$\begin{bmatrix} y_1 + 2\sqrt{-3y_2} + \frac{1}{5}z, \frac{1}{2}(1, -1, 1, \sqrt{-3}) + \frac{1}{2}z \end{bmatrix},$	
$\begin{array}{c} g_{1,2} - \frac{1}{5}(-4, 1, \dots, 1), \\ (x, x) = 10, (z, z) = 10 \end{array}$	

Table 2. Unimodular lattices of rank 14 (continued)

K. ABDUKHALIKOV AND R. SCHARLAU

 $L^{(2)}$ L|G(L)|No. $\mu_2(L)$ $2^{12}.3^5.5^2$ 192 $\langle L^{(2)} \oplus \langle x \rangle,$ 37 $A_5 A_4 A_3 A_1$ $\begin{array}{l} 2y_1 + \sqrt{-3}y_2 + y_3 + y_4 + \frac{1}{60}x, \\ 3\omega y_1 + 2y_3 + y_4 \rangle, \, (x,x) = 60, \end{array}$ $y_1 = \frac{1}{6}(-5, 1, \dots, 1), y_3 = \frac{1}{4}(-3, 1, 1, 1),$ $y_2 = \frac{1}{5}(-4, 1, 1, 1, 1), y_4 = \frac{1}{2}(-1, 1)$ Complex conjugate of 37 38 $A_5^2 A_1^2$ $2^{12}.3^5.5^2$ 39 192 $D_3(\sqrt{-3})^2 A_2^4$ $2^{10}.3^{12}$ 40 180 $A_5 D_3 (\sqrt{-3}) A_2^2$ $2^9.3^9.5$ 41180 $A_4{}^2D_3(\sqrt{-3})A_1$ $2^{10}.3^6.5^2$ 42180 $D_4(2)D_3(\sqrt{-3})^2$ $2^{13}.3^{10}$ 43180 $A_4^2 A_2^2$ $2^{10}.3^5.5^2$ $\langle L^{(2)} \oplus \langle x \rangle \oplus \langle z \rangle,$ 44156 $\begin{aligned} & (L^{(1)} \oplus \langle x \rangle) \oplus \langle z \rangle, \\ & y_1 + 2\sqrt{-3}y_2 + \frac{1}{5}x, y_3 + y_4 + \frac{1}{3}x, \\ & 2\sqrt{-3}y_1 + y_2 + \frac{1}{15}z, y_3 - y_4 + \frac{1}{3}z \rangle, \\ & y_{1,2} = \frac{1}{5}(-4, 1, \dots, 1), (x, x) = 15, \\ & y_{3,4} = \frac{1}{3}(-2, 1, 1), (z, z) = 15 \\ & \langle L^{(2)} \oplus \langle x \rangle \oplus \langle z \rangle \oplus \langle u \rangle, \\ & 2\sqrt{-2} \langle z \rangle \oplus \langle z \rangle \oplus \langle u \rangle, \end{aligned}$ 45 $A_4{}^2A_3$ $2^{11}.3^4.5^2$ 156 $\begin{aligned} & (2,7) \oplus (x) \oplus (z) \oplus (u), \\ & 2\sqrt{-3}(y_1 - y_2) + y_3 + \frac{1}{2}u + \frac{1}{20}x, \\ & 2\sqrt{-3}(y_1 + y_2) + 2y_3 + \frac{\sqrt{-3}}{4}u + \frac{1}{20}z), \\ & y_{1,2} = \frac{1}{5}(-4, 1, \dots, 1), (x, x) = 20, \\ & y_3 = \frac{1}{4}(-3, 1, 1, 1), (z, z) = 20, (u, u) = 4 \end{aligned}$ $2^{13}.3^4.5$ $A_4 A_3^2 A_1^2$ 46144 $2^{15}.3^{5}$ 47 A_{3}^{4} 144 $2^{12}.3^5$ 48 $A_3{}^2A_2{}^2A_1{}^2$ 12049 $A_3{}^3A_1{}^2$ $2^{13}.3^5$ 120 50Complex conjugate of 49 $2^{9}.3^{9}$ 51 A_{2}^{6} 108 52 $A_3 A_2^4$ $2^{10}.3^{7}$ 108 $A_3^2 A_2^2$ 53 $2^{11}.3^{6}$ 108 $A_2^4 A_1^2$ $2^{10}.3^{5}$ 5484 $A_2^2 A_1^6$ $2^{11}.3^5$ 5572 A_2^4 $2^{8}.3^{9}$ 7256 $A_1^{\ 8}$ $2^{13}.3^2.7$ 5748 A_{1}^{6} $2^{13}.3^4.5$ 5836

Table 2.	Unimodular	lattices	of rank	14	(continued))
T 00010 -	o mino a anon	10001000	OT TOULT		(COLLOLLOG)	

D.T.			(T)
No.		G(L)	$\mu_2(L)$
1	0	25.37.5.7	0
2		2°.3′	0
3	$D_{15}(\sqrt{-3})$	$2^{12}.3^{20}.5^{3}.7^{2}.11.13$	1890
4	$D_9(\sqrt{-3})D_6(\sqrt{-3})$	$2^{12}.3^{19}.5^{2}.7$	918
5	$E_7D_7(\sqrt{-3})$	$2^{15}.3^{13}.5^{2}.7^{2}$	756
6	A ₁₅	$2^{16}.3^{7}.5^{3}.7^{2}.11.13$	720
7	A ₁₄	$2^{12}.3^{7}.5^{3}.7^{2}.11.13$	630
8	complex conjugate of 7		
9	$D_9(2)D_5(\sqrt{-3})$	$2^{19}.3^{10}.5^2.7$	612
10	$A_8D_7(\sqrt{-3})$	$2^{12}.3^{13}.5^{2}.7^{2}$	594
11	$D_6(\sqrt{-3})D_6(\sqrt{-3})D_3(\sqrt{-3})$	$2^{11}.3^{17}.5^2$	594
12	A_9U_5	$2^{16}.3^9.5^3.7$	540
13	$A_5 D_5(\sqrt{-3}) U_5$	$2^{15}.3^{12}.5^3$	540
14	$E_6 U_5 D_3(\sqrt{-3})$	$2^{16}.3^{13}.5^2$	540
15	$A_{11}D_4(\sqrt{-3})$	$2^{14}.3^{10}.5^2.7.11$	504
16	$A_8 D_6(\sqrt{-3})$	$2^{12}.3^{12}.5^{2}.7$	486
17	$D_7(2)E_6$	$2^{18}.3^8.5^2.7$	468
18	$A_{11}D_3(\sqrt{-3})$	$2^{12}.3^{9}.5^{2}.7.11$	450
19	$A_9D_5(\sqrt{-3})$	$2^{12}.3^{10}.5^3.7$	450
20	complex conjugate of 20		
21	$A_{8}E_{6}$	$2^{15}.3^{9}.5^{2}.7$	432
22	$D_6(\sqrt{-3})D_3^3(\sqrt{-3})$	$2^9.3^{18}.5$	432
23	$U_5 D_4(\sqrt{-3}) D_4(\sqrt{-3})$	$2^{15}.3^{13}.5$	432
24	$D_7(2)A_7$	$2^{18}.3^5.5^2.7^2$	420
25	$D_6(2)D_5(\sqrt{-3})A_3$	$2^{16}.3^{9}.5^{2}$	396
26	$A_{10}A_{4}$	$2^{12}.3^{6}.5^{3}.7.11$	390
27	$A_5D_5(\sqrt{-3})D_4(\sqrt{-3})$	$2^{11}.3^{12}.5^2$	378
28	A_9A_5	$2^{13}.3^{7}.5^{3}.7$	360
29	complex conjugate of 28		
30	$A_7 D_6(2)$	$2^{17}.3^5.5^2.7$	348
31	$A_6D_5(\sqrt{-3})A_3$	$2^{11}.3^9.5^2.7$	342
32	A_8A_6	$2^{12}.3^{7}.5^{2}.7^{2}$	342
33	complex conjugate of 32		
34	$A_8 D_4 (\sqrt{-3}) A_2$	$2^{12}.3^{10}.5.7$	342
35	complex conjugate of 34		
36	$A_8D_5(2)$	$2^{15}.3^{6}.5^{2}.7$	336
37	$D_5(\sqrt{-3})D_4(2)D_4(2)$	$2^{17}.3^{10}.5$	324
38	$D_6(2)A_5D_3(\sqrt{-3})$	$2^{15}.3^8.5^2$	324
39	$A_8 D_3 (\sqrt{-3}) A_2$	$2^{12}.3^{9}.5.7$	306
40	A8A5	$2^{12}.3^{7}.5^{2}.7$	306
41	complex conjugate of 40		
42	Az Ac	$2^{12} 3^5 5^2 7^2$	294
42	complex conjugate of 49	2.0.0.1	204
40	complex conjugate of 42	1	1

Table 3 Unimodular lattices of rank 15

No.	$L^{(2)}$	G(L)	$\mu_2(L)$
44	$D_5(2)D_4(\sqrt{-3})A_4$	$2^{14}.3^7.5^2$	288
45	$D_4(\sqrt{-3})A_5A_5$	$2^{12}.3^{9}.5^{2}$	288
46	$D_5(2)D_5(2)A_3$	$2^{19}.3^4.5^2$	276
47	$A_6 A_5 D_3(\sqrt{-3})$	$2^{10}.3^8.5^2.7$	270
48	$A_6 D_4(\sqrt{-3})A_3$	$2^{11}.3^8.5.7$	270
49	$A_5 D_4(\sqrt{-3}) D_3(\sqrt{-3}) A_2$	$2^{10}.3^{11}.5$	270
50	$D_4(\sqrt{-3})D_4(\sqrt{-3})A_2A_2A_2$	$2^{11}.3^{13}$	270
51	$D_3(\sqrt{-3})^5$	$2^8.3^{16}.5$	270
52	$A_6A_6A_2$	$2^{11}.3^6.5^2.7^2$	270
53	complex conjugate of 52		
54	$A_7 A_4 A_3$	$2^{14}.3^5.5^2.7$	264
55	$A_6D_5(2)A_2$	$2^{13}.3^5.5^2.7$	264
56	complex conjugate of 55		
57	$A_{6}A_{6}A_{1}$	$2^{10}.3^5.5^2.7^2$	258
58	$D_5(2)D_4(2)D_3(\sqrt{-3})A_1$	$2^{16}.3^{7}.5$	252
59	$A_5 A_5 D_4(2)$	$2^{16}.3^7.5^2$	252
60	$A_7A_4A_2$	$2^{12}.3^5.5^2.7$	246
61	$D_5(2)A_4A_4$	$2^{14}.3^4.5^3$	240
62	$D_5(2)A_4A_4$	$2^{15}.3^4.5^3$	240
63	$A_7 A_3 A_3$	$2^{15}.3^{5}.5.7$	240
64	$A_5 D_4(\sqrt{-3})A_2 A_2$	$2^{10}.3^{9}.5$	234
65	$A_4 A_4 D_4 (\sqrt{-3}) A_1$	$2^{11}.3^7.5^2$	234
66	$A_6A_5A_2$	$2^{10}.3^{6}.5^{2}.7$	234
67	$A_6A_5A_2$	$2^{10}.3^{6}.5^{2}.7$	234
68	complex conjugate of 67		
69	$A_5 A_5 D_3(\sqrt{-3})$	$2^{11}.3^8.5^2$	234
70	complex conjugate of 69		
71	$D_5(2)A_3A_3A_3$	$2^{17}.3^{6}.5$	228
72	$A_{6}A_{4}A_{3}$	$2^{11}.3^5.5^2.7$	222
73	complex conjugate of 72		
74	$D_4(\sqrt{-3})A_3A_3A_3$	$2^{14}.3^{9}$	216
75	$D_4(2)D_4(\sqrt{-3})A_2A_2$	$2^{13}.3^{10}$	216
76	$D_4(\sqrt{-3})D_3(\sqrt{-3})A_2A_2A_2$	$2^9.3^{13}$	216
77	$A_5 D_3 (\sqrt{-3})^2 A_2$	$2^9.3^{11}.5$	216
78	$A_6 D_3(\sqrt{-3}) A_2 A_2$	$2^9.3^8.5.7$	216
79	$A_6D_4(2)A_2$	$2^{12}.3^{6}.5.7$	216
80	$A_5A_5A_3$	$2^{12}.3^{6}.5^{2}$	216
81	$A_5 A_5 A_3$	$2^{13}.3^{6}.5^{2}$	216
82	complex conjugate of 81		
83	$A_6A_4A_2A_1$	$2^{10}.3^5.5^2.7$	210
84	complex conjugate of 83		
85	$A_5A_4A_4$	$2^{11}.3^5.5^3$	210
86	complex conjugate of 85		
87	$A_5D_4(2)A_3A_1$	$2^{15}.3^{5}.5$	204

Table 3. Unimodular lattices of rank 15 (continued)

	(2)		
No.	$L^{(2)}$	G(L)	$\mu_2(L)$
88	$A_6A_3A_2A_2$	$2^{10}.3^{6}.5.7$	198
89	$A_5A_5A_2$	$2^{11}.3^7.5^2$	198
90	$A_5A_5A_2$	$2^{11}.3^6.5^2$	198
91	complex conjugate of 90		
92	$A_5 A_3 D_3(\sqrt{-3}) A_2$	$2^{10}.3^8.5$	198
93	complex conjugate of 92		
94	$A_5A_4A_3A_1$	$2^{12}.3^5.5^2$	192
95	complex conjugate of 94		
96	$A_4A_4D_4(2)$	$2^{14}.3^4.5^2$	192
97	complex conjugate of 96		
98	$A_5 A_4 A_3$	$2^{11}.3^5.5^2$	186
99	$A_5 A_4 A_3$	$2^{11}.3^5.5^2$	186
100	$A_5D_4(2)A_1A_1A_1$	$2^{14}.3^{6}.5$	180
101	$D_4(2)D_3(\sqrt{-3})A_3A_1A_1A_1$	$2^{14}.3^{7}$	180
102	$D_4 D_4(2) A_3$	$2^{17}.3^{6}$	180
103	A3A3A3A3A3	$2^{18}.3^{7}.5$	180
104	AAAAAA	$2^{10}.3^{5}.5^{3}$	180
105	complex conjugate of 104		
106	$A \in A_4 A_2 A_1$	$2^{10} 3^5 5^2$	174
107		2^{10} 3^{5} 5^{2}	174
107	complex conjugate of 107	2 .0 .0	114
100	A t A t A a A a	211 25 52	174
110	acmpler conjugate of 100	2 .5 .5	174
111	$A \cdot D \cdot (2) A_2 A_2$	212 25 5	168
111	$A_4D_4(2)A_2A_2$	2 .5 .5 913 95 5	168
112	$A_4D_4(2)A_2A_2$	2 . 3 . 5 914 95 5	100
113		2 .3 .5	168
114	A5A3A3A1	2 .5 .5	108
110	complex conjugate of 114	010 26 F	100
110	$A_4D_3(\sqrt{-3})A_3A_1A_1$	$2^{10}.3^{\circ}.5$	162
117	$A_3A_3A_3D_3(\sqrt{-3})$	211.30	162
118	$A_3A_3D_3(\sqrt{-3})A_2A_2$	211.30	162
119	$A_5A_2A_2A_2A_2$	$2^{3}.3^{3}.5$	162
120	$D_3(\sqrt{-3})D_3(\sqrt{-3})A_2A_2A_2$	$2^7.3^{12}$	162
121	$A_5A_3A_2A_2$	$2^{10}.3^{6}.5$	162
122	complex conjugate of 121	11 4 0	
123	$A_4A_4A_3A_1$	$2^{11}.3^4.5^2$	162
124	complex conjugate of 123		
125	$A_4A_4A_2A_2$	$2^{10}.3^5.5^2$	156
126	$D_4(2)A_3A_3A_1A_1$	$2^{16}.3^4$	156
127	$A_4 A_4 A_2 A_1 A_1$	$2^{10}.3^4.5^2$	150
128	$A_4 A_4 A_2 A_1 A_1$	$2^{11}.3^4.5^2$	150
129	$A_4A_3A_3A_2$	$2^{11}.3^5.5$	150
130	$A_4A_3A_3A_2$	$2^{11}.3^{5}.5$	150
131	$A_4A_3A_3A_2$	$2^{11}.3^5.5$	150
132	complex conjugate of 131		
-			

Table 3. Unimodular lattices of rank 15 (continued)

No.	$L^{(2)}$	G(L)	$\mu_2(L)$
133	$A_4A_3A_3A_1A_1$	$2^{12}.3^4.5$	144
134	$A_3D_3(\sqrt{-3})A_3A_2A_2A_2$	$2^8.3^9$	144
135	$A_5 A_2 A_2 A_1 A_1 A_1$	$2^{11}.3^{6}.5$	144
136	$A_4 D_3(\sqrt{-3})A_2 A_1 A_1$	$2^9.3^7.5$	144
137	$A_5 A_2 A_2 A_2$	$2^9.3^8.5$	144
138	$A_3A_3A_3A_3$	$2^{16}.3^{6}$	144
139	$D_4(2)A_2A_2A_2A_2$	$2^{12}.3^{8}$	144
140	$D_4(2)A_2A_2A_2A_2$	$2^{13}.3^7$	144
141	$A_3A_3A_3A_2A_2$	$2^{13}.3^7$	144
142	complex conjugate of 141		
143	$A_4 A_4 A_1 A_1 A_1$	$2^{11}.3^3.5^2$	138
144	$A_4 A_3 A_2 A_2 A_1$	$2^{10}.3^5.5$	138
145	$A_4 A_3 A_2 A_2 A_1$	$2^{10}.3^5.5$	138
146	complex conjugate of 145		
147	$A_4 A_3 A_2 A_2 A_1$	$2^{10}.3^5.5$	138
148	complex conjugate of 147		
149	$A_4A_3A_3A_1$	$2^{11}.3^4.5$	138
150	complex conjugate of 149		
151	$A_4A_3A_2A_2$	$2^9.3^5.5$	132
152	$A_3D_3(\sqrt{-3})A_2A_1A_1A_1$	$2^9.3^7$	126
-			
153	$D_3(\sqrt{-3})A_2A_2A_2A_2$	$2^8.3^9$	126
153 154	$D_{3}(\sqrt{-3})A_{2}A_{2}A_{2}A_{2}$ $A_{3}A_{3}A_{3}A_{3}A_{2}$	$2^8.3^9$ $2^{11}.3^6$	126 126
153 154 155	$D_{3}(\sqrt{-3})A_{2}A_{2}A_{2}A_{2}$ $A_{3}A_{3}A_{3}A_{2}$ $A_{3}A_{3}A_{2}A_{2}A_{2}A_{2}$	$ \begin{array}{c} 2^8.3^9 \\ 2^{11}.3^6 \\ 2^{11}.3^6 \end{array} $	126 126 126
153 154 155 156	$D_{3}(\sqrt{-3})A_{2}A_{2}A_{2}A_{2}$ $A_{3}A_{3}A_{3}A_{2}$ $A_{3}A_{3}A_{2}A_{2}A_{2}$ $A_{3}A_{3}A_{2}A_{2}A_{2}$	$ \begin{array}{c} 2^{8}.3^{9} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \end{array} $	126 126 126 126
153 154 155 156 157	$\begin{array}{c} D_{3}(\sqrt{-3})A_{2}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{3}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ \text{complex conjugate of 156} \end{array}$	$ \begin{array}{c} 2^{8}.3^{9} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ \end{array} $	126 126 126 126
153 154 155 156 157 158	$\begin{array}{c} D_{3}(\sqrt{-3})A_{2}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{3}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ complex \ conjugate \ of \ 156\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ \end{array}$	$2^{8}.3^{9}$ $2^{11}.3^{6}$ $2^{11}.3^{6}$ $2^{11}.3^{6}$ $2^{11}.3^{7}$	126 126 126 126 126
153 154 155 156 157 158 159	$\begin{array}{c} D_3(\sqrt{-3})A_2A_2A_2A_2\\ A_3A_3A_3A_2\\ A_3A_3A_2A_2A_2\\ A_3A_3A_2A_2A_2\\ \text{complex conjugate of 156}\\ A_3A_3A_2A_2A_2\\ \text{complex conjugate of 158} \end{array}$	$ \begin{array}{c} 2^{8}.3^{9} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ 2^{11}.3^{7} \\ \end{array} $	126 126 126 126 126
153 154 155 156 157 158 159 160	$\begin{array}{c} D_{3}(\sqrt{-3})A_{2}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{3}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ \text{complex conjugate of 156}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ \text{complex conjugate of 158}\\ A_{4}A_{3}A_{2}A_{1}A_{1} \end{array}$	$\begin{array}{c} 2^{8}.3^{9} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ \\ 2^{11}.3^{7} \\ \\ 2^{10}.3^{4}.5 \end{array}$	126 126 126 126 126 126
$ \begin{array}{r} 153 \\ 154 \\ 155 \\ 156 \\ 157 \\ 158 \\ 159 \\ 160 \\ 161 \\ \end{array} $	$\begin{array}{c} D_3(\sqrt{-3})A_2A_2A_2A_2\\ A_3A_3A_3A_2\\ A_3A_3A_2A_2A_2\\ A_3A_3A_2A_2A_2\\ complex \ conjugate \ of \ 156\\ A_3A_3A_2A_2A_2\\ complex \ conjugate \ of \ 158\\ A_4A_3A_2A_1A_1\\ complex \ conjugate \ of \ 160\\ \end{array}$	$2^{8}.3^{9}$ $2^{11}.3^{6}$ $2^{11}.3^{6}$ $2^{11}.3^{6}$ $2^{11}.3^{7}$ $2^{10}.3^{4}.5$	126 126 126 126 126 126 126
$ \begin{array}{r} 153 \\ 154 \\ 155 \\ 156 \\ 157 \\ 158 \\ 159 \\ 160 \\ 161 \\ 162 \\ \end{array} $	$\begin{array}{c} D_{3}(\sqrt{-3})A_{2}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{3}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ complex conjugate of 156\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ complex conjugate of 158\\ A_{4}A_{3}A_{2}A_{1}A_{1}\\ complex conjugate of 160\\ A_{3}A_{3}A_{2}A_{2}A_{1}A_{1}\\ \end{array}$	$2^{8}.3^{9}$ $2^{11}.3^{6}$ $2^{11}.3^{6}$ $2^{11}.3^{7}$ $2^{10}.3^{4}.5$ $2^{11}.3^{5}$	126 126 126 126 126 126 126 126 120
$ \begin{array}{r} 153 \\ 154 \\ 155 \\ 156 \\ 157 \\ 158 \\ 159 \\ 160 \\ 161 \\ 162 \\ 163 \\ \end{array} $	$\begin{array}{c} D_{3}(\sqrt{-3})A_{2}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{3}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ complex conjugate of 156\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ complex conjugate of 158\\ A_{4}A_{3}A_{2}A_{1}A_{1}\\ complex conjugate of 160\\ A_{3}A_{3}A_{2}A_{2}A_{1}A_{1}\\ A_{4}A_{3}A_{1}A_{1}A_{1}A_{1}\\ \end{array}$	$\begin{array}{c} 2^{8}.3^{9} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ \\ 2^{11}.3^{7} \\ \\ 2^{10}.3^{4}.5 \\ \\ 2^{11}.3^{5} \\ 2^{12}.3^{3}.5 \end{array}$	126 126 126 126 126 126 126 120 120
$ \begin{array}{r} 153 \\ 154 \\ 155 \\ 156 \\ 157 \\ 158 \\ 159 \\ 160 \\ 161 \\ 162 \\ 163 \\ 164 \\ \end{array} $	$\begin{array}{c} D_{3}(\sqrt{-3})A_{2}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{3}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ complex conjugate of 156\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ complex conjugate of 158\\ A_{4}A_{3}A_{2}A_{1}A_{1}\\ complex conjugate of 160\\ A_{3}A_{3}A_{2}A_{2}A_{1}A_{1}\\ A_{4}A_{3}A_{1}A_{1}A_{1}A_{1}\\ A_{4}A_{3}A_{3}A_{3}A_{1}\\ \end{array}$	$\begin{array}{c} 2^{8}.3^{9} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ 2^{11}.3^{7} \\ \\ 2^{11}.3^{7} \\ \\ 2^{10}.3^{4}.5 \\ \\ 2^{11}.3^{5} \\ 2^{12}.3^{3}.5 \\ 2^{8}.3^{6}.5 \\ \end{array}$	126 126 126 126 126 126 126 120 120 120
$ \begin{array}{r} 153 \\ 154 \\ 155 \\ 156 \\ 157 \\ 158 \\ 159 \\ 160 \\ 161 \\ 162 \\ 163 \\ 164 \\ 165 \\ \end{array} $	$\begin{array}{c} D_{3}(\sqrt{-3})A_{2}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{3}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ complex conjugate of 156\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ complex conjugate of 158\\ A_{4}A_{3}A_{2}A_{1}A_{1}\\ complex conjugate of 160\\ A_{3}A_{3}A_{2}A_{2}A_{1}A_{1}\\ A_{4}A_{3}A_{1}A_{1}A_{1}\\ A_{4}A_{3}A_{3}A_{3}A_{1}\\ A_{3}A_{3}A_{3}A_{1}A_{1}\\ \end{array}$	$\begin{array}{c} 2^{8}.3^{9} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ \\ 2^{11}.3^{7} \\ \\ 2^{10}.3^{4}.5 \\ \\ 2^{10}.3^{4}.5 \\ \\ 2^{12}.3^{3}.5 \\ 2^{8}.3^{6}.5 \\ 2^{12}.3^{5} \\ \end{array}$	126 126 126 126 126 126 126 120 120 120 120
$ \begin{array}{r} 153 \\ 154 \\ 155 \\ 156 \\ 157 \\ 158 \\ 159 \\ 160 \\ 161 \\ 162 \\ 163 \\ 164 \\ 165 \\ 166 \\ \end{array} $	$\begin{array}{c} D_{3}(\sqrt{-3})A_{2}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{3}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ complex conjugate of 156\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ complex conjugate of 158\\ A_{4}A_{3}A_{2}A_{1}A_{1}\\ complex conjugate of 160\\ A_{3}A_{3}A_{2}A_{2}A_{1}A_{1}\\ A_{4}A_{3}A_{1}A_{1}A_{1}A_{1}\\ A_{4}A_{3}A_{3}A_{3}A_{1}\\ A_{3}A_{3}A_{3}A_{1}A_{1}\\ A_{3}A_{3}A_{3}A_{1}A_{1}\\ \end{array}$	$\begin{array}{c} 2^{8}.3^{9} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ \\ \\ 2^{11}.3^{7} \\ \\ \\ 2^{10}.3^{4}.5 \\ \\ \\ 2^{11}.3^{5} \\ 2^{12}.3^{3}.5 \\ 2^{8}.3^{6}.5 \\ 2^{12}.3^{5} \\ 2^{13}.3^{4} \\ \end{array}$	126 126 126 126 126 126 126 120 120 120 120 120
$\begin{array}{c} 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ 161\\ 162\\ 163\\ 164\\ 165\\ 166\\ 167\\ \end{array}$	$\begin{array}{c} D_{3}(\sqrt{-3})A_{2}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{3}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}A_{2}\\ complex conjugate of 156\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ complex conjugate of 158\\ A_{4}A_{3}A_{2}A_{1}A_{1}\\ complex conjugate of 160\\ A_{3}A_{3}A_{2}A_{2}A_{1}A_{1}\\ A_{4}A_{3}A_{1}A_{1}A_{1}A_{1}\\ A_{4}A_{3}A_{3}A_{3}A_{1}\\ A_{3}A_{3}A_{3}A_{1}A_{1}\\ complex conjugate of 166\\ \end{array}$	$\begin{array}{c} 2^{8}.3^{9} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ \\ \\ 2^{11}.3^{7} \\ \\ \\ 2^{10}.3^{4}.5 \\ \\ \\ 2^{12}.3^{3}.5 \\ 2^{12}.3^{3}.5 \\ 2^{12}.3^{5} \\ 2^{12}.3^{5} \\ 2^{13}.3^{4} \\ \\ \end{array}$	126 126 126 126 126 126 126 120 120 120 120 120
$\begin{array}{c} 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ 161\\ 162\\ 163\\ 164\\ 165\\ 166\\ 167\\ 168\\ \end{array}$	$\begin{array}{c} D_{3}(\sqrt{-3})A_{2}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{3}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ complex conjugate of 156\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ complex conjugate of 158\\ A_{4}A_{3}A_{2}A_{1}A_{1}\\ complex conjugate of 160\\ A_{3}A_{3}A_{2}A_{2}A_{1}A_{1}\\ A_{4}A_{3}A_{1}A_{1}A_{1}A_{1}\\ A_{4}A_{3}A_{3}A_{3}A_{1}\\ A_{3}A_{3}A_{3}A_{1}A_{1}\\ A_{3}A_{3}A_{3}A_{1}A_{1}\\ complex conjugate of 166\\ A_{4}A_{2}A_{2}A_{1}A_{1}A_{1}\\ \end{array}$	$\begin{array}{c} 2^{8}.3^{9} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ \\ \\ 2^{11}.3^{7} \\ \\ \\ 2^{10}.3^{4}.5 \\ \\ \\ 2^{10}.3^{4}.5 \\ \\ 2^{12}.3^{3}.5 \\ 2^{12}.3^{5} \\ 2^{12}.3^{5} \\ 2^{13}.3^{4} \\ \\ \\ 2^{9}.3^{4}.5 \end{array}$	126 126 126 126 126 126 126 120 120 120 120 120 120 120
$\begin{array}{c} 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ 161\\ 162\\ 163\\ 164\\ 165\\ 166\\ 167\\ 168\\ 169\\ \end{array}$	$\begin{array}{c} D_{3}(\sqrt{-3})A_{2}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{3}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}A_{2}\\ complex conjugate of 156\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ complex conjugate of 158\\ A_{4}A_{3}A_{2}A_{2}A_{1}A_{1}\\ complex conjugate of 160\\ A_{3}A_{3}A_{2}A_{2}A_{1}A_{1}\\ A_{4}A_{3}A_{1}A_{1}A_{1}A_{1}\\ A_{4}A_{3}A_{3}A_{3}A_{1}\\ A_{3}A_{3}A_{3}A_{1}A_{1}\\ complex conjugate of 166\\ A_{4}A_{2}A_{2}A_{1}A_{1}\\ A_{3}A_{3}A_{2}A_{2}A_{1}\\ \end{array}$	$\begin{array}{c} 2^{8}.3^{9} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ 2^{11}.3^{7} \\ \\ \\ 2^{11}.3^{7} \\ \\ \\ 2^{10}.3^{4}.5 \\ \\ 2^{12}.3^{3}.5 \\ 2^{12}.3^{3}.5 \\ 2^{12}.3^{5} \\ 2^{12}.3^{5} \\ 2^{13}.3^{4} \\ \\ \\ \\ 2^{9}.3^{4}.5 \\ 2^{10}.3^{5} \\ \end{array}$	126 126 126 126 126 126 120 120 120 120 120 120 120 120 120 120
$\begin{array}{c} 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ 161\\ 162\\ 163\\ 164\\ 165\\ 166\\ 167\\ 168\\ 169\\ 170\\ \end{array}$	$\begin{array}{c} D_{3}(\sqrt{-3})A_{2}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{3}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ \hline A_{3}A_{3}A_{2}A_{2}A_{2}\\ \hline complex conjugate of 156\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ \hline complex conjugate of 158\\ A_{4}A_{3}A_{2}A_{2}A_{1}A_{1}\\ \hline complex conjugate of 160\\ A_{3}A_{3}A_{2}A_{2}A_{1}A_{1}\\ A_{4}A_{3}A_{1}A_{1}A_{1}A_{1}\\ A_{4}A_{3}A_{3}A_{3}A_{1}\\ A_{3}A_{3}A_{3}A_{1}A_{1}\\ \hline A_{3}A_{3}A_{3}A_{1}A_{1}\\ \hline complex conjugate of 166\\ A_{4}A_{2}A_{2}A_{1}A_{1}\\ A_{3}A_{3}A_{2}A_{2}A_{1}\\ \hline A_{3}A_{3}A_{2}A_{2}A_{1}\\ \hline A_{3}A_{3}A_{2}A_{2}A_{1}\\ \hline \end{array}$	$\begin{array}{c} 2^{8}.3^{9} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ \\ \\ 2^{11}.3^{7} \\ \\ \\ 2^{10}.3^{4}.5 \\ \\ \\ 2^{12}.3^{3}.5 \\ 2^{12}.3^{5} \\ 2^{12}.3^{5} \\ 2^{13}.3^{4} \\ \\ \\ 2^{9}.3^{4}.5 \\ 2^{10}.3^{5} \\ 2^{10}.3^{5} \\ \end{array}$	126 126 126 126 126 126 126 120 120 120 120 120 120 120 120 120 120
$\begin{array}{c} 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ 161\\ 162\\ 163\\ 164\\ 165\\ 166\\ 167\\ 168\\ 169\\ 170\\ 171\\ \end{array}$	$\begin{array}{c} D_{3}(\sqrt{-3})A_{2}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{3}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}A_{2}\\ complex conjugate of 156\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ complex conjugate of 158\\ A_{4}A_{3}A_{2}A_{2}A_{1}A_{1}\\ complex conjugate of 160\\ A_{3}A_{3}A_{2}A_{2}A_{1}A_{1}\\ A_{4}A_{3}A_{1}A_{1}A_{1}A_{1}\\ A_{4}A_{3}A_{3}A_{3}A_{1}\\ A_{3}A_{3}A_{3}A_{1}A_{1}\\ A_{3}A_{3}A_{3}A_{1}A_{1}\\ complex conjugate of 166\\ A_{4}A_{2}A_{2}A_{1}A_{1}\\ A_{3}A_{3}A_{2}A_{2}A_{1}\\ A_{3}A_{3}A_{2}A_{2}A_{1}\\ A_{3}A_{3}A_{2}A_{2}A_{1}\\ complex conjugate of 166\\ A_{4}A_{2}A_{2}A_{1}A_{1}\\ A_{3}A_{3}A_{2}A_{2}A_{1}\\ complex conjugate of 170\\ \end{array}$	$\begin{array}{c} 2^{8}.3^{9} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ \\ \\ 2^{11}.3^{7} \\ \\ \\ 2^{10}.3^{4}.5 \\ \\ \\ 2^{12}.3^{3}.5 \\ 2^{12}.3^{3}.5 \\ 2^{12}.3^{5} \\ 2^{12}.3^{5} \\ 2^{13}.3^{4} \\ \\ \\ 2^{9}.3^{4}.5 \\ 2^{10}.3^{5} \\ 2^{10}.3^{5} \\ \\ \end{array}$	126 126 126 126 126 126 120 120 120 120 120 120 120 120 120 120
$\begin{array}{c} 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ 161\\ 162\\ 163\\ 164\\ 165\\ 166\\ 167\\ 168\\ 169\\ 170\\ 171\\ 172\\ \end{array}$	$\begin{array}{c} D_{3}(\sqrt{-3})A_{2}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{3}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ complex conjugate of 156\\ A_{3}A_{3}A_{2}A_{2}A_{2}\\ complex conjugate of 158\\ A_{4}A_{3}A_{2}A_{1}A_{1}\\ complex conjugate of 160\\ A_{3}A_{3}A_{2}A_{2}A_{1}A_{1}\\ A_{4}A_{3}A_{1}A_{1}A_{1}\\ A_{4}A_{3}A_{3}A_{3}A_{1}\\ A_{3}A_{3}A_{3}A_{1}A_{1}\\ A_{3}A_{3}A_{3}A_{1}A_{1}\\ A_{3}A_{3}A_{2}A_{2}A_{1}\\ A_{3}A_{3}A_{2}A_{2}A_{1}\\ A_{3}A_{3}A_{2}A_{2}A_{1}\\ A_{3}A_{3}A_{2}A_{2}A_{1}\\ Complex conjugate of 166\\ A_{4}A_{2}A_{2}A_{1}A_{1}\\ A_{3}A_{3}A_{2}A_{2}A_{1}\\ complex conjugate of 170\\ A_{3}A_{3}A_{2}A_{2}A_{1}\\ \end{array}$	$\begin{array}{c} 2^{8}.3^{9} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ 2^{11}.3^{6} \\ \\ \\ 2^{11}.3^{7} \\ \\ \\ 2^{10}.3^{4}.5 \\ \\ \\ 2^{12}.3^{3}.5 \\ 2^{12}.3^{3}.5 \\ 2^{12}.3^{5} \\ 2^{13}.3^{4} \\ \\ \\ \\ 2^{9}.3^{4}.5 \\ 2^{10}.3^{5} \\ 2^{10}.3^{5} \\ \\ 2^{11}.3^{5} \\ \end{array}$	126 126 126 126 126 126 120 120 120 120 120 120 120 120 120 120

Table 3. Unimodular lattices of rank 15 (continued)

Table 3. Unimodular lattices of rank 15 (continued)

No.	$L^{(2)}$	G(L)	$\mu_2(L)$
174	$A_4A_2A_2A_1A_1$	$2^9.3^5.5$	108
175	$A_3A_3A_2A_2$	$2^{10}.3^{6}$	108
176	$A_3A_2A_2A_2A_2$	$2^9.3^6$	108
177	$A_3A_3A_1A_1A_1A_1A_1A_1A_1$	$2^{14}.3^4$	108
178	$D_3(\sqrt{-3})A_2A_2A_2$	$2^{6}.3^{11}$	108
179	$D_3(\sqrt{-3})D_3(\sqrt{-3})$	$2^{10}.3^{13}$	108
180	$D_3(\sqrt{-3})A_1A_1A_1A_1A_1A_1A_1A_1A_1A_1A_1$	$2^{14}.3^{7}$	108
181	$A_2A_2A_2A_2A_2A_2A_2$	$2^8.3^9$	108
182	$A_2A_2A_2A_2A_2A_2A_2$	$2^{10}.3^{10}$	108
183	$A_3A_3A_2A_1A_1$	$2^{10}.3^4$	102
184	$A_3A_2A_2A_2A_1A_1$	$2^9.3^5$	102
185	$A_3A_2A_2A_2A_1A_1$	$2^9.3^5$	102
186	$A_3A_2A_2A_2A_1A_1$	$2^9.3^5$	102
187	complex conjugate of 186		
188	$A_3A_3A_2A_1A_1$	$2^{11}.3^4$	102
189	complex conjugate of 188		
190	$A_3A_3A_2A_1A_1$	$2^{11}.3^4$	102
191	complex conjugate of 190		
192	$A_3A_2A_2A_1A_1A_1A_1$	$2^{11}.3^4$	96
193	$A_3A_3A_1A_1A_1A_1$	$2^{13}.3^3$	96
194	$A_3A_2A_2A_2A_1$	$2^9.3^5$	96
195	$A_3A_2A_2A_1A_1A_1A_1$	$2^{12}.3^4$	96
196	$A_3A_3A_1A_1A_1$	$2^{11}.3^4$	90
197	$A_2A_2A_2A_2A_1A_1A_1$	$2^9.3^6$	90
198	$A_3A_2A_2A_1A_1A_1$	$2^9.3^5$	90
199	$A_3A_2A_2A_1A_1A_1$	$2^9.3^4$	90
200	$A_3A_2A_2A_1A_1A_1$	$2^9.3^4$	90
201	complex conjugate of 200		
202	$A_2A_2A_2A_2A_2$	$2^8.3^7$	90
203	$A_2A_2A_2A_2A_2$	$2^7.3^7$	90
204	complex conjugate of 203		
205	$A_2A_2A_2A_2A_2$	$2^8.3^7.5$	90
206	complex conjugate of 205		
207	$A_3A_2A_2A_1A_1$	$2^9.3^4$	84
208	$A_3A_1A_1A_1A_1A_1A_1A_1A_1A_1$	$2^{15}.3^3$	84
209	$A_2A_2A_2A_2A_1A_1$	$2^8.3^5$	84
210	complex conjugate of 209		
211	$A_3A_2A_1A_1A_1A_1$	$2^9.3^3$	78
212	$A_2A_2A_2A_2A_1$	$2^{7}.3^{5}$	78
213	$A_2A_2A_2A_1A_1A_1A_1$	2 ⁹ .3 ⁴	78
214	$A_2A_2A_2A_1A_1A_1A_1$	$2^9.3^4$	78
215	complex conjugate of 214		

No.	$L^{(2)}$	G(L)	$\mu_2(L)$
216	$A_3A_2A_2$	$2^8.3^6$	72
217	$A_3A_2A_1A_1A_1$	$2^9.3^5$	72
218	$A_2 A_2 A_2 A_1 A_1 A_1$	$2^7.3^5$	72
219	$A_3A_3A_3A_1A_1A_1$	$2^8.3^6$	72
220	$A_2 A_2 A_1 A_1 A_1 A_1 A_1 A_1 A_1$	$2^{10}.3^5$	72
221	$A_2 A_2 A_1 A_1 A_1 A_1 A_1 A_1 A_1$	$2^{10}.3^4$	72
222	complex conjugate of 221		
223	$A_3A_1A_1A_1A_1A_1A_1A_1$	$2^{12}.3^3$	72
224	complex conjugate of 223		
225	$A_2 A_2 A_2 A_1 A_1$	$2^{7}.3^{4}$	66
226	$A_2 A_2 A_2 A_1 A_1$	$2^{7}.3^{5}$	66
227	$A_2A_2A_1A_1A_1A_1A_1A_1$	$2^8.3^3$	66
228	$A_2A_2A_1A_1A_1A_1A_1A_1$	$2^9.3^3$	66
229	complex conjugate of 228		
230	$A_2 A_2 A_1 A_1 A_1 A_1$	$2^8.3^3$	60
231	$A_2 A_2 A_1 A_1 A_1 A_1$	$2^{10}.3^3$	60
232	$A_1 A_1 A_1 A_1 A_1 A_1 A_1 A_1 A_1 A_1 $	$2^{13}.3^2.5$	60
233	$A_2A_2A_2$	$2^5.3^8$	54
234	$A_2 A_2 A_1 A_1 A_1$	$2^7.3^5$	54
235	$A_2A_2A_1A_1A_1$	$2^7.3^4$	54
236	complex conjugate of 235		
237	$A_2A_1A_1A_1A_1A_1A_1$	$2^9.3^2$	54
238	$A_2A_1A_1A_1A_1A_1A_1A_1$	$2^9.3^3$	54
239	complex conjugate of 238		
240	$A_2A_1A_1A_1A_1A_1$	$2^8.3^3$	48
241	$A_1A_1A_1A_1A_1A_1A_1A_1A_1$	$2^{14}.3$	48
242	$A_1A_1A_1A_1A_1A_1A_1A_1A_1$	$2^{10}.3^2.7$	48
243	complex conjugate of 242		
244	$A_2A_1A_1A_1A_1$	$2^8.3^2$	42
245	$A_1A_1A_1A_1A_1A_1A_1A_1$	$2^9.3^2$	42
246	$A_1A_1A_1A_1A_1A_1A_1A_1$	$2^9.3.7$	42
247	complex conjugate of 246		
248	$A_2 A_1 A_1 A_1$	$2^6.3^5$	36
249	$A_1 A_1 A_1 A_1 A_1 A_1 A_1$	$2^9.3^2$	36
250	A_2A_2	$2^{6}.3^{7}$	36
251	A_3	$2^{13}.3^{6}$	36
252	$A_1A_1A_1A_1A_1$	$2^7.3.5$	30
253	$A_1A_1A_1A_1A_1$	$2^8.3^2.5$	30
254	complex conjugate of 253		
255	$A_1 A_1 A_1 A_1$	$2^9.3^2$	24
256	$A_1A_1A_1$	$2^5.3^4$	18
257	A_2	$2^4.3^6.7.13$	18
258	A_1A_1	$2^{10}.3^3$	12
259	A_1	$2^4.3^2.7.13$	6

Table 3. Unimodular lattices of rank 15 (continued)

References

- K. Abdukhalikov, Invariant Hermitian lattices in the Steinberg module and their isometry groups, Comm. Algebra 25 (8) (1997) 2607–2626. MR1459581 (98e:20005)
- K. Abdukhalikov, Unimodular Hermitian lattices in dimension 13, J. Algebra 272 (1) (2004) 186–190. MR2029031 (2005b:11098)
- C. Bachoc, Applications of coding theory to the construction of modular lattices, J. Combin. Theory Ser. A 78 (1997) 92–119. MR1439633 (98a:11084)
- 4. W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (3/4) (1997) 235–265. MR1484478
- A. M. Cohen, *Finite complex reflection groups*, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 3, 379–436. MR0422448 (54:10437)
- J. H. Conway, N. J. A. Sloane, Self-dual codes over GF(3) and GF(4) of length not exceeding 16, IEEE Trans. Inform. Theory 25 (1979) 312–322. MR528009 (80h:94026)
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, ATLAS of finite groups, Clarendon Press, Oxford, 1985. MR827219 (88g:20025)
- J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Springer-Verlag New York, Inc., 1999. MR1662447 (2000b:11077)
- R. Coulangeon, Minimal vectors in the second exterior power of a lattice, J. Algebra 194 (1997) 467–476. MR1467163 (98d:11078)
- 10. W. Feit, Some lattices over $\mathbf{Q}(\sqrt{-3})$, J. Algebra 52 (1978) 248–263. MR0498407 (58:16534)
- Y. Kitaoka, Arithmetic of quadratic forms, Cambridge Tracts in Math., 1993. MR1245266 (95c:11044)
- M. Kneser, Klassenzahlen definiter quadratischer Formen, Arch. Math. 8 (1957) 241–250. MR0090606 (19:838c)
- J. H. van Lint, F. J. MacWilliams, Generalized quadratic residue codes, IEEE Trans. Inform. Theory 24 (6) (1978) 730–737. MR514352 (80a:94032)
- F. G. MacWilliams, A. M. Odlyzko, N. J. A. Sloane, H. N. Ward, *Self-dual codes over GF*(4), J. Combin. Theory Ser. A 25 (1978) 288–318. MR514624 (80f:94016)
- 15. G. Nebe, Finite subgroups of $GL_n(\mathbb{Q})$ for $25 \le n \le 31$, Comm. Algebra 24 (7) (1996) 2341–2397. MR1390378 (97e:20066)
- W. Plesken, B. Souvignier, Computing isometries of lattices, Computational Algebra and Number Theory (London, 1993), J. Symbolic Comput. 24 (3/4) (1997) 327–334. MR1484483 (98i:11047)
- H.-G. Quebbemann, Modular lattices in Euclidean spaces, J. Number Theory 54 (2) (1995) 190–202. MR1354045 (96i:11072)
- U. Riese, On integral representations for SL(2, q), J. Algebra 242 (2001) 729–739. MR1848968 (2003c:20013)
- R. Scharlau, R. Schulze-Pilot, *Extremal lattices*, in: B. H. Matzat, G.-M. Greuel, G. Hiss (Eds.), Algorithmic Algebra and Number Theory, Springer, 1998, 139–170. MR1672117 (99m:11074)
- R. Scharlau, A. Schiemann, R. Schulze-Pilot, Theta series of modular, extremal, and hermitian lattices, Proceedings of the Conference on Integral and Quadratic Forms and Lattices, Seoul 1998, Contemporary Math. 249 (1999) 221–233. MR1732362 (2001a:11066)
- A. Schiemann, Classification of hermitian forms with the neighbour method, J. Symbolic Comput. 26 (4) (1998) 487–508. MR1646667 (99g:11053)
- G. C. Shephard, J. A. Todd, Finite unitary reflection groups, Canadian J. Math. 6 (1954) 274–304. MR0059914 (15:600b)
- H. N. Ward, Quadratic residue codes and symplectic groups, J. Algebra 29 (1974) 150–171. MR0444290 (56:2648)

INSTITUTE OF MATHEMATICS, 125 PUSHKIN STR, 050010, KAZAKHSTAN *E-mail address*: abdukhalikov@math.kz

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DORTMUND, 44221 DORTMUND, GERMANY *E-mail address*: Rudolf.Scharlau@math.uni-dortmund.de